JP7404502B2 - Sodium transition metal phosphate and its uses - Google Patents

Sodium transition metal phosphate and its uses Download PDF

Info

Publication number
JP7404502B2
JP7404502B2 JP2022504400A JP2022504400A JP7404502B2 JP 7404502 B2 JP7404502 B2 JP 7404502B2 JP 2022504400 A JP2022504400 A JP 2022504400A JP 2022504400 A JP2022504400 A JP 2022504400A JP 7404502 B2 JP7404502 B2 JP 7404502B2
Authority
JP
Japan
Prior art keywords
sodium
coating layer
salt
namp
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022504400A
Other languages
Japanese (ja)
Other versions
JPWO2021177305A1 (en
Inventor
鮎子 喜多條
真歩 山下
昌樹 岡田
渉 小林
俊也 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Yamaguchi University NUC
Original Assignee
Tosoh Corp
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp, Yamaguchi University NUC filed Critical Tosoh Corp
Publication of JPWO2021177305A1 publication Critical patent/JPWO2021177305A1/ja
Application granted granted Critical
Publication of JP7404502B2 publication Critical patent/JP7404502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本開示は、ナトリウム遷移金属リン酸塩及びその用途に関する。 The present disclosure relates to sodium transition metal phosphates and uses thereof.

レアメタルであるリチウムを使用しないナトリウム二次電池は、資源やコスト面で優位であることのみならず、新規材料の適用やハイレート充放電特性に優れる可能性を持つ。
これまでのナトリウム二次電池では、現行のリチウム二次電池と同様な電解液、主として非水系の電解液、を備えたものが検討されてきた。
最近になって、水系電池の最大のウイークポイントであった水の分解に由来する1.23Vの狭い電位窓が、電解質の高濃度化によって2V超えることが報告され(非特許文献1)、水系ナトリウム二次電池の実用化への期待が高まっている。
特に、電池の大型化に対しては、コストや安全確保の点から、水系の電解液を使用する水系ナトリウム二次電池が好適と言える。
水系ナトリウム二次電池実用化のもうひとつの課題である負極材料に関しては、ナシコン型NaTi(POが機能することが見出されているが、サイクル安定性が低くその改善が課題となっている(非特許文献2)。
Sodium secondary batteries that do not use the rare metal lithium not only have advantages in terms of resources and cost, but also have the potential to use new materials and have excellent high-rate charge/discharge characteristics.
So far, sodium secondary batteries have been considered that have the same electrolyte as current lithium secondary batteries, mainly non-aqueous electrolytes.
Recently, it has been reported that the narrow potential window of 1.23V derived from water decomposition, which was the biggest weak point of water-based batteries, exceeds 2V due to high concentration of electrolyte (Non-Patent Document 1). Expectations are rising for the practical application of sodium secondary batteries.
In particular, for larger batteries, a water-based sodium secondary battery using an aqueous electrolyte is preferable from the viewpoint of cost and safety.
Regarding the negative electrode material, which is another issue in the practical application of aqueous sodium secondary batteries, Nasicon type NaTi 2 (PO 4 ) 3 has been found to be functional, but its cycle stability is low and its improvement is an issue. (Non-patent Document 2).

Ruben-Simon et al, ACS Energy Letters,2,2005(2017)Ruben-Simon et al, ACS Energy Letters, 2, 2005 (2017) Sun Il Park et al, Jouranal of The Electrochemical Society,158(10)A1067-A1070(2011)Sun Il Park et al, Journal of The Electrochemical Society, 158(10) A1067-A1070 (2011)

本開示は、ナトリウム遷移金属リン酸塩、更には、従来の水系ナトリウム二次電池と比べて、サイクル安定性が優れるナトリウム二次電池を与える負極活物質、及びこれを備えるナトリウム二次電池の少なくともいずれかを提供することを目的とし、特に、ナシコン型NaTi(POを負極活物質として備えた従来の水系ナトリウム二次電池と比べてサイクル安定性が高い水系ナトリウム二次電池を与える負極活物質を提供すること、を別の目的とする。The present disclosure provides at least one sodium transition metal phosphate, a negative electrode active material that provides a sodium secondary battery with excellent cycle stability compared to conventional aqueous sodium secondary batteries, and a sodium secondary battery including the same. In particular, the present invention aims to provide an aqueous sodium secondary battery with higher cycle stability than conventional aqueous sodium secondary batteries equipped with Nasicon-type NaTi 2 (PO 4 ) 3 as a negative electrode active material. Another purpose is to provide a negative electrode active material.

本開示においては、ナトリウム含有リン酸塩で被覆したナトリウム遷移金属リン酸塩組成物が、従来知られているナトリウム二次電池負極材料に比べてサイクル安定性に優れ、これを負極に用いることで、サイクル安定性に優れるナトリウム二次電池が構成できることを見出した。
すなわち、本発明は特許請求の範囲の記載のとおりであり、本開示の要旨は以下のとおりである。
In the present disclosure, a sodium transition metal phosphate composition coated with a sodium-containing phosphate has superior cycle stability compared to conventionally known sodium secondary battery negative electrode materials, and can be used as a negative electrode. We have discovered that a sodium secondary battery with excellent cycle stability can be constructed.
That is, the present invention is as described in the claims, and the gist of the present disclosure is as follows.

[1] リン酸ナトリウムを含む被覆層を有することを特徴とするナトリウム遷移金属リン酸塩。
[2] 前記ナトリウム遷移金属リン酸塩が、一般式Na1+xTi(PO(但し、0≦x≦2)で表されるナトリウムチタンリン酸塩である上記[1]に記載のナトリウム遷移金属リン酸塩。
[3] 前記ナトリウム遷移金属リン酸塩の結晶構造がナシコン型結晶構造である上記[1]又は[2]に記載のナトリウム遷移金属リン酸塩。
[4] 前記リン酸ナトリウムを含む被覆層が、ナトリウム遷移金属リン酸塩に対して0質量%を超え5質量%未満である上記[1]乃至[3]のいずれかひとつに記載のナトリウム遷移金属リン酸塩。
[5] 被覆層の厚みが、0nmを超え50nm以下である上記[1]乃至[4]のいずれかひとつに記載のナトリウム遷移金属リン酸塩。
[6] ナトリウム遷移金属リン酸塩と、被覆層の前駆体との混合物を焼成する工程、を有する上記[1]乃至[5]のいずれかひとつに記載のナトリウム遷移金属リン酸塩の製造方法。
[7] 前記前駆体が、炭酸ナトリウム及びリン酸水素二アンモニウムである上記[6]に記載の製造方法。
[8] 上記[1]乃至[5]のいずれかひとつに記載のナトリウム遷移金属リン酸塩を含む負極活物質。
[9] 上記[1]乃至[5]のいずれかひとつに記載のナトリウム遷移金属リン酸塩を含む負極と、正極及び電解液を備えるナトリウム二次電池。
[10] 前記電解液が水系電解液である上記[9]に記載のナトリウム二次電池。
[1] A sodium transition metal phosphate characterized by having a coating layer containing sodium phosphate.
[2] The sodium transition metal phosphate according to the above [1], wherein the sodium transition metal phosphate is a sodium titanium phosphate represented by the general formula Na 1+x Ti 2 (PO 4 ) 3 (0≦x≦2). Sodium transition metal phosphate.
[3] The sodium transition metal phosphate according to [1] or [2] above, wherein the sodium transition metal phosphate has a Nasicon crystal structure.
[4] The sodium transition according to any one of [1] to [3] above, wherein the coating layer containing sodium phosphate is more than 0% by mass and less than 5% by mass based on the sodium transition metal phosphate. Metal phosphate.
[5] The sodium transition metal phosphate according to any one of [1] to [4] above, wherein the coating layer has a thickness of more than 0 nm and less than 50 nm.
[6] The method for producing a sodium transition metal phosphate according to any one of [1] to [5] above, comprising the step of firing a mixture of a sodium transition metal phosphate and a precursor of the coating layer. .
[7] The manufacturing method according to the above [6], wherein the precursor is sodium carbonate and diammonium hydrogen phosphate.
[8] A negative electrode active material containing the sodium transition metal phosphate according to any one of [1] to [5] above.
[9] A sodium secondary battery comprising a negative electrode containing the sodium transition metal phosphate according to any one of [1] to [5] above, a positive electrode, and an electrolyte.
[10] The sodium secondary battery according to the above [9], wherein the electrolyte is an aqueous electrolyte.

本開示により、ナトリウム遷移金属リン酸塩、更には、従来の水系ナトリウム二次電池と比べて、サイクル安定性が優れるナトリウム二次電池を与える負極活物質、及びこれを備えるナトリウム二次電池の少なくともいずれかを提供することができる。さらには、ナシコン型NaTi(POを負極活物質として備えた従来の水系ナトリウム二次電池と比べてサイクル安定性が高い水系ナトリウム二次電池を与える負極活物質を提供することができる。The present disclosure provides at least a sodium transition metal phosphate, a negative electrode active material that provides a sodium secondary battery with excellent cycle stability compared to conventional aqueous sodium secondary batteries, and a sodium secondary battery including the same. can provide either. Furthermore, it is possible to provide a negative electrode active material that provides an aqueous sodium secondary battery with higher cycle stability than conventional aqueous sodium secondary batteries that include Nasicon type NaTi 2 (PO 4 ) 3 as a negative electrode active material. .

図1は、実施例1、比較例1及び2のナトリウム遷移金属リン酸塩のXRDパターン(a:比較例1、b:実施例1、c:比較例2、d:PDFパターン(ICDD:33-1296 NaTi(PO)を示す図である。Figure 1 shows the XRD patterns of sodium transition metal phosphates of Example 1, Comparative Examples 1 and 2 (a: Comparative Example 1, b: Example 1, c: Comparative Example 2, d: PDF pattern (ICDD: 33 -1296 NaTi 2 (PO 4 ) 3 ). 図2は、実施例1のNaTi(POのTEM観察図(a:全体図、b:拡大図)を示す図である。FIG. 2 is a diagram showing a TEM observation diagram (a: overall view, b: enlarged view) of NaTi 2 (PO 4 ) 3 of Example 1. 図3は、実施例1、比較例1及び2の充放電曲線(a:比較例1、b:実施例1、c:比較例2)を示す図である。FIG. 3 is a diagram showing charge-discharge curves of Example 1 and Comparative Examples 1 and 2 (a: Comparative Example 1, b: Example 1, c: Comparative Example 2). 図4は、実施例1、比較例1及び2のサイクル維持率のグラフ(○:比較例1、△:実施例1、▽:比較例2)を示す図である。FIG. 4 is a graph showing the cycle maintenance rates of Example 1 and Comparative Examples 1 and 2 (◯: Comparative Example 1, △: Example 1, ▽: Comparative Example 2).

以下、本開示のナトリウム遷移金属リン酸塩について、実施形態の一例を示して説明する。 Hereinafter, the sodium transition metal phosphate of the present disclosure will be described by showing an example of an embodiment.

<ナトリウム遷移金属リン酸塩>
本実施形態はリン酸ナトリウムを含む被覆層を有することを特徴とするナトリウム遷移金属リン酸塩である。リン酸ナトリウムを含む被覆層を有することで、ナトリウム遷移金属リン酸塩(以下、「NaMP塩」ともいう。)の表面におけるナトリウムイオン(Na)の拡散がしやすくなる。
本実施形態におけるNaMP塩は、ナトリウム及び遷移金属を含むリン酸化合物であり、ナトリウムチタンリン酸塩であることが更に好ましく、一般式Na1+xTi(PO(但し、0≦x≦2)で表されるナトリウムチタンリン酸塩であることがより好ましく、NaTi(POであること(すなわち、一般式Na1+xTi(PO)においてx=0であること)が更に好ましい。本実施形態において、NaMP塩の組成は、公知の組成分析方法、例えば、誘電結合プラズマ発光分析、原子吸光分析、TEM-EDSなどから求めることができる。
本実施形態のNaMP塩は、結晶構造がナシコン型結晶構造であること(いわゆるナシコン型NaMP塩、であること)が好ましい。ナシコン型結晶構造の同定は、本実施形態のNaMP塩のXRDパターンと、PDFパターン(ICDD:33-1296 NaTi(PO)との対比により行うことができる。
<Sodium transition metal phosphate>
This embodiment is a sodium transition metal phosphate characterized by having a coating layer containing sodium phosphate. Having a coating layer containing sodium phosphate facilitates the diffusion of sodium ions (Na + ) on the surface of the sodium transition metal phosphate (hereinafter also referred to as "NaMP salt").
The NaMP salt in this embodiment is a phosphoric acid compound containing sodium and a transition metal, more preferably sodium titanium phosphate, and has the general formula Na 1+x Ti 2 (PO 4 ) 3 (0≦x≦ It is more preferable that it is a sodium titanium phosphate represented by 2), and that it is NaTi 2 (PO 4 ) 3 (that is, x=0 in the general formula Na 1+x Ti 2 (PO 4 )). More preferred. In the present embodiment, the composition of the NaMP salt can be determined by a known composition analysis method, such as inductively coupled plasma emission spectrometry, atomic absorption spectrometry, TEM-EDS, etc.
The NaMP salt of this embodiment preferably has a Nasicon type crystal structure (a so-called Nasicon type NaMP salt). The Nasicon type crystal structure can be identified by comparing the XRD pattern of the NaMP salt of this embodiment with the PDF pattern (ICDD: 33-1296 NaTi 2 (PO 4 ) 3 ).

本実施形態のNaMP塩は、リン酸ナトリウムを含む被覆層(以下、単に「被覆層」ともいう。)を有する。これにより、リン酸ナトリウムと、NaMP塩を物理的に混合して得られる混合物では示すことのない、高いサイクル安定性を示す。被覆層は、ナトリウムの拡散を阻害しない状態で、NaMP塩の少なくとも一部にあればよく、NaMP塩の表面の少なくとも一部にあることが好ましい。被覆層がNaMP塩の少なくとも一部にある形態としては、少なくとも、NaMP塩とリン酸ナトリウムとの界面を介して両者が存在していること、すなわち被覆層がNaMP塩と界面を形成していること、が挙げられる。NaMP塩とリン酸ナトリウムとが界面を有する結果、被覆層を有さないNaMP塩と同等のナトリウムの拡散係数を示すと考えられる。本実施形態のNaMP塩のナトリウムの拡散係数は、例えば、後述する測定例で示す方法により測定される値として、酸化反応時及び還元反応時のナトリウムの拡散係数が3.0×10-10cm/秒以上であること、が例示できる。
被覆層は、NaMP塩の全面を覆っている必要はなく、海島状であってもよい。すなわち、被覆層は、NaMP塩の表面の少なくとも一部に存在するリン酸ナトリウム及びリン酸ナトリウム含有組成物の少なくともいずれか、好ましくはリン酸ナトリウム、であればよい。
被覆層に含まれるリン酸ナトリウムは、一般式NaPOで表されるリン酸ナトリウムであることが好ましい。被覆層は、リン酸ナトリウムを含んでいればよく、遷移金属元素を含まないことが好ましく、く、被覆層は該リン酸ナトリウムからなることがより好ましい。 本実施形態のNaMP塩は、被覆層をその表面の全部又は少なくとも一部に有していればよく、被覆層を少なくとも一部に有していればよい。また、NaMP塩粒子の表面の全部又は少なくとも一部、好ましくは表面の少なくとも一部に、リン酸ナトリウムを有していればよい。被覆層に含まれるリン酸ナトリウムの性状には特に制限はなく、結晶質及び非晶質の少なくともいずれかであること、更には緻密性及び多孔性の少なくともいずれかであること、が例示できる。さらに、被覆層は、NaMP塩の表面上におけるナトリウム源及びリン源の反応により生成した状態のリン酸ナトリウムを含むことが好ましい。これにより、充放電サイクルにおける分極(ヒステリシス)が抑制されやすくなる。被覆膜の存在は、TEM観察(透過型電子顕微鏡観察)により確認できる。図2で示すように、TEM観察において、被覆層は、NaMP塩と異なる視野像として観察され、被覆層はNaMP塩よりも濃い色調の視野像として観察される。
The NaMP salt of this embodiment has a coating layer (hereinafter also simply referred to as "coating layer") containing sodium phosphate. As a result, it exhibits high cycle stability that is not exhibited by a mixture obtained by physically mixing sodium phosphate and NaMP salt. The coating layer may be present on at least a portion of the NaMP salt without inhibiting the diffusion of sodium, and is preferably present on at least a portion of the surface of the NaMP salt. The form in which the coating layer is present on at least a portion of the NaMP salt is that at least both the NaMP salt and sodium phosphate exist through an interface, that is, the coating layer forms an interface with the NaMP salt. This can be mentioned. As a result of the presence of an interface between the NaMP salt and sodium phosphate, it is thought that the NaMP salt exhibits a sodium diffusion coefficient equivalent to that of the NaMP salt without a coating layer. The sodium diffusion coefficient of the NaMP salt of this embodiment is, for example, a value measured by the method shown in the measurement example described later, where the sodium diffusion coefficient during the oxidation reaction and the reduction reaction is 3.0 × 10 -10 cm. 2 /sec or more.
The covering layer does not need to cover the entire surface of the NaMP salt, and may have a sea-island shape. That is, the coating layer may be at least one of sodium phosphate and a sodium phosphate-containing composition, preferably sodium phosphate, present on at least a portion of the surface of the NaMP salt.
The sodium phosphate contained in the coating layer is preferably sodium phosphate represented by the general formula Na 3 PO 4 . The coating layer only needs to contain sodium phosphate, preferably does not contain a transition metal element, and more preferably contains the sodium phosphate. The NaMP salt of this embodiment only needs to have a coating layer on all or at least a part of its surface, and it is sufficient that it has a coating layer on at least a part of its surface. Moreover, it is sufficient that the NaMP salt particles have sodium phosphate on all or at least a portion of the surface, preferably on at least a portion of the surface. The properties of the sodium phosphate contained in the coating layer are not particularly limited, and examples include at least one of crystalline and amorphous, and further, at least one of dense and porous. Furthermore, it is preferable that the coating layer contains sodium phosphate in a state generated by a reaction of a sodium source and a phosphorus source on the surface of the NaMP salt. This makes it easier to suppress polarization (hysteresis) during charge/discharge cycles. The presence of the coating film can be confirmed by TEM observation (transmission electron microscopy). As shown in FIG. 2, in TEM observation, the coating layer is observed as a visual field image different from that of the NaMP salt, and the coating layer is observed as a visual field image with a darker tone than the NaMP salt.

ナトリウムイオン(Na)が拡散しやすくなる傾向があるため、本実施形態における被覆層の割合(以下、「被覆量」ともいう。)は、NaMP塩に対して0質量%を超え5質量%未満、更には0.01質量%以上3質量%以下、また更には0.1質量%以上2.5質量%以下であることが好ましい。被覆量の測定方法は任意であるが、例えば、組成分析による被覆層の形成前後の差分から算出する方法やTEM-EDSによる定量分析が挙げられる。被覆量が5質量%以上であると、ナトリウムの拡散を阻害しない状態の被覆層が形成されず、ナトリウムイオンの拡散係数が著しく低下する。
被覆層の厚みは任意であるが、ナトリウムの拡散を阻害しない程度の厚みであればよい。被覆層の厚みとして、例えば0nmを超え50nm以下、更には5nm以上40nm以下、又は0.1nm以上5nm以下が挙げられる。被覆層の厚みはTEM観察により求めることができ、TEM観察図において観察される被覆層の厚み(すなわち、TEM観察図において被覆層が確認でき、なおかつ、該TEM観察図で観察される被覆層の最大厚み)は0nm超又は0.1nm以上であり、かつ、50nm以下、40nm以下、5nm以下又は3nm以下、であることが挙げられる。
本実施形態のNaMP塩は、これを負極活物質として備えるナトリウム二次電池とした場合に、高いサイクル安定性をします。例えば、ナトリウム二次電池を使用した充放電サイクル試験における、充放電サイクル試験における1サイクル目の放電容量に対する、50サイクル目の放電容量の割合(%)が80%を超え又は85%となることが挙げられる。以下、ナトリウム二次電池の構成及び充放電サイクル試験の条件を示す。
(ナトリウム二次電池)
電解液 :17mol/kg NaClO水溶液
正極 :NaMP塩70質量%、アセチレンブラック25質量%、及び、
ポリテトラフルオロエチレン5質量%からなる正極
負極 :NaNi[Fe(CN)]70質量%、アセチレンブラック25質量%、及び、
ポリテトラフルオロエチレン5質量%からなる負極
(充放電サイクル試験条件)
電流密度 :2mA/cm
電圧 :-0.9V~-0.3V(vs Ag/AgCl参照極)
充放電温度:25℃
Since sodium ions (Na + ) tend to diffuse easily, the ratio of the coating layer (hereinafter also referred to as "coating amount") in this embodiment is more than 0% by mass and 5% by mass based on the NaMP salt. It is preferably less than 0.01% by mass and 3% by mass or less, and further preferably 0.1% by mass and less than 2.5% by mass. The coating amount can be measured by any method, but examples include a method of calculating from the difference between before and after the formation of the coating layer by compositional analysis, and a quantitative analysis by TEM-EDS. When the coating amount is 5% by mass or more, a coating layer that does not inhibit the diffusion of sodium is not formed, and the diffusion coefficient of sodium ions is significantly reduced.
The thickness of the coating layer is arbitrary, but it may be as long as it does not inhibit the diffusion of sodium. The thickness of the coating layer may be, for example, more than 0 nm and less than 50 nm, more preferably more than 5 nm and less than 40 nm, or more than 0.1 nm and less than 5 nm. The thickness of the coating layer can be determined by TEM observation, and the thickness of the coating layer observed in the TEM observation diagram (i.e., the thickness of the coating layer can be confirmed in the TEM observation diagram, and the thickness of the coating layer observed in the TEM observation diagram) The maximum thickness) is more than 0 nm or 0.1 nm or more, and is 50 nm or less, 40 nm or less, 5 nm or less, or 3 nm or less.
The NaMP salt of this embodiment exhibits high cycle stability when used in a sodium secondary battery equipped as a negative electrode active material. For example, in a charge/discharge cycle test using a sodium secondary battery, the ratio (%) of the discharge capacity at the 50th cycle to the discharge capacity at the first cycle in the charge/discharge cycle test exceeds 80% or becomes 85%. can be mentioned. The configuration of the sodium secondary battery and the conditions of the charge/discharge cycle test are shown below.
(Sodium secondary battery)
Electrolyte: 17 mol/kg NaClO 4 aqueous solution Positive electrode: 70% by mass of NaMP salt, 25% by mass of acetylene black, and
Positive electrode consisting of 5% by mass of polytetrafluoroethylene Negative electrode: 70% by mass of Na 2 Ni [Fe(CN) 6 ], 25% by mass of acetylene black, and
Negative electrode consisting of 5% by mass of polytetrafluoroethylene
(Charge/discharge cycle test conditions)
Current density: 2mA/ cm2
Voltage: -0.9V to -0.3V (vs Ag/AgCl reference electrode)
Charge/discharge temperature: 25℃

<被覆層の形成>
本実施形態のNaMP塩の製造方法は任意であるが、NaMP塩と、被覆層の前駆体との混合物を焼成する工程、を有する製造方法、が挙げられる。これにより、NaMP塩被覆層を形成することができる。
被覆層の前駆体(以下、単に「前駆体」ともいう。)は、ナトリウム源及びリン酸源となるもの、又は、ナトリウム源及びリン酸源の少なくともいずれかとなるもの、であればよい。ナトリウム源は、ナトリウム(Na)を含む化合物であればよく、炭酸ナトリウム、水酸化ナトリウム及び塩化ナトリウムの群から選ばれる1以上、更には炭酸ナトリウム及び水酸化ナトリウムの少なくともいずれか、また更には炭酸ナトリウムであることが好ましい。また、リン酸源は、リン酸(PO)を含む化合物であればよく、ピロリン酸、ポリリン酸及びリン酸二水素アンモニウムの群から選ばれる1以上、更にリン酸二水素アンモニウムであることが好ましい。特に好ましい前駆体として、炭酸ナトリウム及びリン酸水素二アンモニウムが挙げられる。
前記混合物は、NaMP塩と、前駆体とを任意の方法で混合することで得られる。混合方法は湿式混合及び乾式混合の少なくともいずれか、更には湿式混合が例示できる。特に好ましい混合方法として、NaMP塩、前駆体及び溶媒を含む混合溶液を、撹拌した後又は撹拌しながら、乾燥させる方法が挙げられる。溶媒としては水及びアルコールの少なくともいずれか、更には水が例示できる。撹拌は、NaMP塩と各前駆体とが均一に混合される条件であればよく、前記混合溶液を撹拌数100~500rpmで撹拌することが例示でき、混合溶液量が多くなるほど撹拌数を多くすればよい。乾燥は、混合溶液から溶媒が除去できる条件であればよく、大気中、60℃以上又は70℃以上、また、150℃以下、120℃以下又は100℃以下であることが挙げられる。これにより、ナトリウム源及びリン源からなる前駆体が均一な状態でNaMP塩上に配置した混合物が得られる。
焼成の方法は、NaMP塩に被覆層が形成される条件であれば特に制限はないが、ナトリウム源及びリン源からリン酸ナトリウムが生成する条件があればよい。焼成の方法として、酸化雰囲気中、好ましくは大気中、400℃以上又は500℃以上、かつ、800℃以下又は750℃以下での処理が例示できる。リン酸ナトリウムとNaMP塩と混合及び熱処理したリン酸ナトリウムと比べ、NaMP塩の表面上におけるナトリウム源及びリン源の反応により生成したリン酸ナトリウムは、NaMP塩との相互作用が強いと考えられる。このような形態のリン酸ナトリウムを含む被覆層を有するNaMP塩を負極活物質とした場合に、サイクル安定性がより高くなると考えられる。
<Formation of coating layer>
Although the method for producing the NaMP salt of this embodiment is arbitrary, a method including a step of firing a mixture of the NaMP salt and the precursor of the coating layer can be mentioned. Thereby, a NaMP salt coating layer can be formed.
The precursor of the coating layer (hereinafter also simply referred to as "precursor") may be one that serves as a source of sodium and a source of phosphoric acid, or one that serves as a source of at least one of a sodium source and a phosphoric acid source. The sodium source may be any compound containing sodium (Na), including at least one selected from the group of sodium carbonate, sodium hydroxide, and sodium chloride, and at least one of sodium carbonate and sodium hydroxide, or even carbonate. Preferably it is sodium. Further, the phosphoric acid source may be any compound containing phosphoric acid (PO 4 ), and may be one or more selected from the group of pyrophosphoric acid, polyphosphoric acid, and ammonium dihydrogen phosphate, and more preferably ammonium dihydrogen phosphate. preferable. Particularly preferred precursors include sodium carbonate and diammonium hydrogen phosphate.
The mixture can be obtained by mixing the NaMP salt and the precursor using any method. Examples of the mixing method include at least one of wet mixing and dry mixing, and further wet mixing. A particularly preferred mixing method includes a method in which a mixed solution containing the NaMP salt, the precursor, and the solvent is dried after or while being stirred. Examples of the solvent include at least one of water and alcohol, and further water. Stirring may be carried out under any condition as long as the NaMP salt and each precursor are mixed uniformly, and an example is stirring the mixed solution at a stirring speed of 100 to 500 rpm, and the larger the amount of the mixed solution, the higher the stirring speed. Bye. Drying may be carried out under any conditions as long as the solvent can be removed from the mixed solution, such as in the air at temperatures of 60°C or higher, 70°C or higher, and 150°C or lower, 120°C or lower, or 100°C or lower. This results in a mixture in which the precursors consisting of a sodium source and a phosphorus source are uniformly arranged on the NaMP salt.
The firing method is not particularly limited as long as the conditions are such that a coating layer is formed on the NaMP salt, but any conditions are sufficient as long as the conditions are such that sodium phosphate is generated from the sodium source and the phosphorus source. Examples of the firing method include treatment in an oxidizing atmosphere, preferably in the air, at a temperature of 400°C or higher or 500°C or higher and 800°C or lower or 750°C or lower. Compared to sodium phosphate mixed with NaMP salt and heat-treated, the sodium phosphate generated by the reaction of the sodium source and phosphorus source on the surface of the NaMP salt is considered to have a stronger interaction with the NaMP salt. It is thought that cycle stability will be higher when a NaMP salt having a coating layer containing such a form of sodium phosphate is used as a negative electrode active material.

<負極活物質>
次に、本開示のNaMP塩を含む負極活物質について実施形態の一例を示して説明する。
本実施形態において「負極活物質」とは、電気化学デバイスを構成する電極のうち電位の低い極の電極活物質であり、特にナトリウム二次電池の負極の電極活物質である。
本実施形態の負極活物質は、本実施形態のNaMP塩(すなわち、リン酸ナトリウムを含む被覆層を有するNaMP塩)を含み、本実施形態のNaMP塩のみ(すなわち、リン酸ナトリウムを含む被覆層を有するNaMP塩のみ)からなっていてもよい。一方、本実施形態の負極活物質は、本実施形態のNaMP塩以外の活物質、例えばナトリウム遷移金属化合物などの活物質、を含んでいてもよい。
本実施形態の負極活物質は、炭素層その他、負極活物質の表面の一部又は全部に被膜層、好ましくは導電性を有する被膜層(すなわち、導電層)、を有していてもよい。この場合において、被膜層は、リン酸ナトリウムを含む被覆層上に有されていてもよい。しかしながら、被膜層がNaMP塩の表面上に存在していてもよい。
<Negative electrode active material>
Next, an example embodiment of the negative electrode active material containing the NaMP salt of the present disclosure will be described.
In the present embodiment, the "negative electrode active material" refers to an electrode active material of a low potential electrode among the electrodes constituting an electrochemical device, and particularly an electrode active material of a negative electrode of a sodium secondary battery.
The negative electrode active material of this embodiment includes the NaMP salt of this embodiment (i.e., a NaMP salt having a coating layer containing sodium phosphate), and only the NaMP salt of this embodiment (i.e., a coating layer containing sodium phosphate). may consist of only NaMP salt having . On the other hand, the negative electrode active material of this embodiment may contain an active material other than the NaMP salt of this embodiment, for example, an active material such as a sodium transition metal compound.
In addition to the carbon layer, the negative electrode active material of the present embodiment may have a coating layer, preferably a conductive coating layer (ie, a conductive layer), on part or all of the surface of the negative electrode active material. In this case, the coating layer may be provided on a coating layer containing sodium phosphate. However, a coating layer may also be present on the surface of the NaMP salt.

<ナトリウム二次電池>
次に、本開示のNaMP塩を含む負極と、正極及び電解液を備えることを特徴とするナトリウム二次電池について、実施形態の一例を示して説明する。
本実施形態において「ナトリウム二次電池」とは、ナトリウムイオン(Na)の挿入脱離により充放電が生じる電気化学デバイスであり、ナトリウム二次電池、ナトリウムイオン二次電池、ナトリウムイオン電池、ナトリウム蓄電池、Na二次電池、Naイオン電池又はNa蓄電池等と同義である。
「非水系電解液」は溶媒として非水溶媒を含む電解液であり、「水系電解液」は溶媒として水溶媒を含む電解液である。
「非水系ナトリウム二次電池」は、電解液として非水系電解液を備えるナトリウム二次電池であり、「水系ナトリウム二次電池」は、電解液として水系電解液を備えるナトリウム二次電池である。
<Sodium secondary battery>
Next, a sodium secondary battery characterized by comprising a negative electrode containing the NaMP salt of the present disclosure, a positive electrode, and an electrolyte will be described by showing an example of an embodiment.
In this embodiment, a "sodium secondary battery" is an electrochemical device in which charging and discharging occur due to the insertion and desorption of sodium ions (Na + ), and includes a sodium secondary battery, a sodium ion secondary battery, a sodium ion battery, and a sodium ion secondary battery. It is synonymous with storage battery, Na secondary battery, Na ion battery, Na storage battery, etc.
A "non-aqueous electrolytic solution" is an electrolytic solution containing a non-aqueous solvent as a solvent, and an "aqueous electrolytic solution" is an electrolytic solution containing an aqueous solvent as a solvent.
A "nonaqueous sodium secondary battery" is a sodium secondary battery that includes a nonaqueous electrolyte as an electrolyte, and a "aqueous sodium secondary battery" is a sodium secondary battery that includes an aqueous electrolyte as an electrolyte.

<負極>
負極は、本実施形態のNaMP塩を含む負極活物質を含む負極合剤と、集電体とを備えていればよい。
負極合剤は、負極活物質、バインダー及び導電材、並びに、必要に応じて添加剤、を含む。バインダー、導電材及び添加剤は、それぞれ、公知のものを使用することができる。
バインダーは、フッ素樹脂、ポリエチレン、ポリプロピレン、SBR材料及びイミド材料の群から選ばれる1以上、更にはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)及びエチレンテトラフルオロエチレン(ETFE)の群から選ばれる1以上が例示できる。
導電材は、炭素材料、金属繊維などの導電性繊維、銅、銀、ニッケル、アルミニウムなどの金属粉末、ポルフェニレン誘導体等の有機導電性材料から選ばれる1以上が例示できる。好ましい炭素材料として、黒鉛、ソフトカーボン、ハードカーボン、カーボンブラック、ケッチェンブラック、アセチレンブラック、グラファイト、活性炭、カーボンナノチューブ、カーボンファイバー、メソポーラスカーボンが例示できる。
負極合剤は公知の方法で製造すればよく、負極活物質、バインダー及び導電材を所望の比率で混合すればよい。
<Negative electrode>
The negative electrode may include a negative electrode mixture containing a negative electrode active material containing the NaMP salt of the present embodiment, and a current collector.
The negative electrode mixture contains a negative electrode active material, a binder, a conductive material, and, if necessary, additives. Known binders, conductive materials, and additives can be used.
The binder is one or more selected from the group of fluororesin, polyethylene, polypropylene, SBR material, and imide material, and further from the group of polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and ethylenetetrafluoroethylene (ETFE). One or more selected ones can be exemplified.
Examples of the conductive material include one or more selected from carbon materials, conductive fibers such as metal fibers, metal powders such as copper, silver, nickel, and aluminum, and organic conductive materials such as porphenylene derivatives. Preferred carbon materials include graphite, soft carbon, hard carbon, carbon black, Ketjenblack, acetylene black, graphite, activated carbon, carbon nanotubes, carbon fiber, and mesoporous carbon.
The negative electrode mixture may be manufactured by a known method, and the negative electrode active material, binder, and conductive material may be mixed in a desired ratio.

<正極>
正極は、正極活物質を含む正極合剤と集電体、必要に応じて添加剤を備えていればよい。
正極合剤は、正極活物質、バインダー及び導電材、並びに、必要に応じて添加剤、を含む。
正極活物質は、負極活物質のナトリウムイオンの挿入脱離を妨げない材料を含んでいればよく、ナトリウム含有遷移金属酸化物及びナトリウム含有ポリアニオン化合物及び炭素系材料の少なくともいずれかが例示できる。
バインダー及び導電材は公知のものであればよく、上記の負極合剤で使用できるバインダー及び導電材と同様であればよい。
正極合剤は公知の方法で製造すればよく、正極活物質、バインダー及び導電材を所望の比率で混合すればよい。
<Positive electrode>
The positive electrode may include a positive electrode mixture containing a positive electrode active material, a current collector, and, if necessary, additives.
The positive electrode mixture includes a positive electrode active material, a binder, a conductive material, and, if necessary, additives.
The positive electrode active material only needs to contain a material that does not prevent insertion and desorption of sodium ions from the negative electrode active material, and examples include at least one of a sodium-containing transition metal oxide, a sodium-containing polyanion compound, and a carbon-based material.
The binder and conductive material may be any known one, and may be the same as the binder and conductive material that can be used in the negative electrode mixture described above.
The positive electrode mixture may be manufactured by a known method, and the positive electrode active material, binder, and conductive material may be mixed in a desired ratio.

<電解液>
電解液は、非水系電解液又は水系電解液のいずれかであり、水系電解液であることが好ましい。
電解質は、ナトリウム塩であり、可溶性のナトリウム塩が好ましい。好ましい電解質として、NaCl、NaSO、NaNO、NaClO、NaOH及びNaSの群から選ばれる1以上が例示できる。取り扱いの容易性から、電解質はNaCl、NaSO、NaNO及びNaClOの群から選ばれる1つ以上が好ましく、NaCl及びNaClOの少なくともいずれかであることがより好ましい。
電解液中の電解質濃度は特に制限はないが、ナトリウム二次電池としてのエネルギー密度を高くする観点から、電解液における電解質濃度(ナトリウム塩濃度)は高いことが好ましく、ナトリウム塩濃度として1mol/kg(1m)以上、飽和溶解度以下の濃度、が例示できる。
電解液は添加剤を含んでいてもよい。添加剤は、特に限定されないが、コハク酸、グルタミン酸、マレイン酸、シトラコン酸、グルコン酸、イタコン酸、ジグリコール、シクロヘキサンジカルボン酸、シクロペンタンテトラカルボン酸、1,3-プロパンスルトン、1,4-ブタンスルトン、メタンスルホン酸メチル、スルホラン、ジメチルスルホン及びN,N-ジメチルメタンスルホンアミドの群から選ばれる1以上が例示できる。添加剤の含有量は、電解液の質量に対する添加剤の質量割合として0.01質量%以上10質量%以下であることが例示できる。
<Electrolyte>
The electrolyte is either a nonaqueous electrolyte or an aqueous electrolyte, and preferably an aqueous electrolyte.
The electrolyte is a sodium salt, preferably a soluble sodium salt. Preferred electrolytes include one or more selected from the group of NaCl, Na 2 SO 4 , NaNO 3 , NaClO 4 , NaOH and Na 2 S. In view of ease of handling, the electrolyte is preferably one or more selected from the group of NaCl, Na 2 SO 4 , NaNO 3 and NaClO 4 , and more preferably at least one of NaCl and NaClO 4 .
The electrolyte concentration in the electrolytic solution is not particularly limited, but from the viewpoint of increasing the energy density as a sodium secondary battery, the electrolyte concentration (sodium salt concentration) in the electrolytic solution is preferably high, and the sodium salt concentration is 1 mol/kg. (1 m) or more and less than the saturation solubility.
The electrolyte may contain additives. Additives include, but are not limited to, succinic acid, glutamic acid, maleic acid, citraconic acid, gluconic acid, itaconic acid, diglycol, cyclohexanedicarboxylic acid, cyclopentanetetracarboxylic acid, 1,3-propane sultone, 1,4- Examples include one or more selected from the group of butane sultone, methyl methanesulfonate, sulfolane, dimethylsulfone, and N,N-dimethylmethanesulfonamide. An example of the content of the additive is 0.01% by mass or more and 10% by mass or less as a mass ratio of the additive to the mass of the electrolytic solution.

<その他の構成>
正極及び負極の集電体、セパレータなどの他の構成要素は、ナトリウム二次電池やリチウム二次電池で使用される公知のものが使用できる。
本実施形態のNaMP塩を含む負極を備えたナトリウム二次電池は、従来のナトリウム二次電池、特に負極活物質としてナシコン型NaTi(POを備えた従来の水系ナトリウム二次電池、と比べ、高いサイクル安定性を示す。
<Other configurations>
As other components such as current collectors and separators for the positive and negative electrodes, known components used in sodium secondary batteries and lithium secondary batteries can be used.
The sodium secondary battery equipped with the negative electrode containing the NaMP salt of this embodiment is a conventional sodium secondary battery, particularly a conventional aqueous sodium secondary battery equipped with Nasicon type NaTi 2 (PO 4 ) 3 as the negative electrode active material, It shows high cycle stability compared to

次に、本開示を実施例によって説明する。しかしながら、本開示はこれらの実施例に限定して解釈されるものではない。 Next, the present disclosure will be explained by examples. However, the present disclosure is not to be construed as limited to these examples.

<結晶性の評価>
NaMP塩の結晶構造を、デスクトップX線解析装置(装置名:MiniFlex600/ASC-8、リガク社製)で、下記の条件にて同定した。
ターゲット :Cu
出力 :0.6kW(15mA-40kV)
ステップスキャン:0.02°(2θ/θ)
計測時間 :0.05秒
<Evaluation of crystallinity>
The crystal structure of the NaMP salt was identified using a desktop X-ray analyzer (device name: MiniFlex600/ASC-8, manufactured by Rigaku Corporation) under the following conditions.
Target: Cu
Output: 0.6kW (15mA-40kV)
Step scan: 0.02° (2θ/θ)
Measurement time: 0.05 seconds

<組成分析>
NaMP塩の組成は、試料50mgを、10mLの35%塩酸及び1mLの35%過酸化水素水を含む水溶液に溶解し、これをICP分析することで組成を求めた。また、被覆前後のNaMP塩の組成差をもって、被覆層の組成とした。
<Composition analysis>
The composition of the NaMP salt was determined by dissolving 50 mg of the sample in an aqueous solution containing 10 mL of 35% hydrochloric acid and 1 mL of 35% hydrogen peroxide, and performing ICP analysis of the solution. Furthermore, the composition of the coating layer was determined by the difference in the composition of NaMP salt before and after coating.

<被覆層の観察>
透過型電子顕微鏡(装置名:JEM-2100、日本電子社製)、及び、サーマル電界放出形走査電子顕微鏡(装置名:JSM-7600F、日本電子社製)で行った。
<Observation of coating layer>
The measurements were performed using a transmission electron microscope (equipment name: JEM-2100, manufactured by JEOL Ltd.) and a thermal field emission scanning electron microscope (equipment name: JSM-7600F, manufactured by JEOL Ltd.).

<ナトリウム二次電池>
(正極の作製)
正極活物質として立方体結晶構造のニッケルヘキサシアノフェレートNaNi([Fe(CN)]を使用した。NaNi([Fe(CN)]は以下の方法で合成した。すなわち、10mmolのNi(OCOCH・4HO 2.69gをHO 175mLおよびDMF(N,N-ジメチルホルムアミド。HCON(CH) 25mLに溶解し、第1溶液を得た。一方、10mmolのNa[Fe(CN)]・10HOの4.84gおよびNaClの7gをHO175mLに溶かして、第2溶液を得た。
第1溶液を第2溶液にゆっくり添加した後、室温で72時間、撹拌して反応させ沈殿物を得た。得られた沈殿物は、遠心分離して回収し、メタノールで洗浄した後、空気中で乾燥させて、立方体結晶構造のニッケルヘキサシアノフェレート(NaNi[Fe(CN)])を得た。
得られたNaNi([Fe(CN)]、アセチレンブラック(以下、「AB」ともいう。)及びポリテトラフルオロエチレン(以下、「PTFE」ともいう。)を、質量比70:25:5となるように混合した後、直径3mmのペレット状に成形し、これを正極(正極合剤)とした。
<Sodium secondary battery>
(Preparation of positive electrode)
Nickel hexacyanoferrate Na 2 Ni ([Fe(CN) 6 ]) with a cubic crystal structure was used as the positive electrode active material. Na 2 Ni ([Fe(CN) 6 ] was synthesized by the following method. That is, 10 mmol of 2.69 g of Ni(OCOCH 3 ) 2.4H 2 O was dissolved in 175 mL of H 2 O and 25 mL of DMF (N,N-dimethylformamide.HCON(CH 3 ) 2 ) to obtain a first solution. On the other hand, 10 mmol A second solution was obtained by dissolving 4.84 g of Na 4 [Fe(CN) 6 ].10H 2 O and 7 g of NaCl in 175 mL of H 2 O.
The first solution was slowly added to the second solution, and the mixture was stirred and reacted at room temperature for 72 hours to obtain a precipitate. The resulting precipitate was collected by centrifugation, washed with methanol, and then dried in air to obtain nickel hexacyanoferrate (Na 2 Ni [Fe(CN) 6 ]) with a cubic crystal structure. .
The obtained Na 2 Ni ([Fe(CN) 6 ], acetylene black (hereinafter also referred to as "AB") and polytetrafluoroethylene (hereinafter also referred to as "PTFE") were mixed in a mass ratio of 70:25: 5, and then molded into a pellet with a diameter of 3 mm, which was used as a positive electrode (positive electrode mixture).

(負極の作製)
負極活物質とABを質量比70:30となるように、遊星ボールミルを使用して、400rpm、1時間、Ar雰囲気下で混合を行い混合物を得た。その後、混合物を800℃、1時間、Ar気流下でカーボサーマル処理を行った後、AB及びPTFEを、質量比70:25:5で混合し、直径2mmのペレット状に成形し、これを負極(負極合剤)とした。
(Preparation of negative electrode)
The negative electrode active material and AB were mixed at a mass ratio of 70:30 using a planetary ball mill at 400 rpm for 1 hour in an Ar atmosphere to obtain a mixture. Thereafter, the mixture was subjected to carbothermal treatment at 800°C for 1 hour under an Ar flow, and then AB and PTFE were mixed at a mass ratio of 70:25:5, formed into a pellet with a diameter of 2 mm, and this was used as a negative electrode. (negative electrode mixture).

(水系ナトリウム二次電池の作製)
作用極(正極に相当する極)に正極合剤、対極(負極に相当する極)に負極合剤、参照極に塩化銀電極(Ag/AgCl)、及び、電解液に電解質濃度(NaClO濃度)17mのNaClO水溶液を備えた水系ナトリウム二次電池を作製した。
(Preparation of water-based sodium secondary battery)
The working electrode (corresponding to the positive electrode) has a positive electrode mixture, the counter electrode (the electrode corresponding to the negative electrode) has a negative electrode mixture, the reference electrode has a silver chloride electrode (Ag/AgCl), and the electrolyte has an electrolyte concentration (NaClO 4 concentration). ) A water-based sodium secondary battery equipped with 17 m of NaClO 4 aqueous solution was fabricated.

(NaMP塩の合成)
<実施例1>
Ti(OCHCHCHCHを溶解したエタノール溶液40mLに、NaCO3、NHPO及びTiの2倍モル量のクエン酸を加えて得られた混合溶液を500rpmで撹拌しながら60℃で30分、続いて80℃で1~2時間で蒸発乾固させた。その後、大気中、350℃で5時間加熱してNaTi(POを得た。
得られたNaTi(PO粉末2g、炭酸ナトリウム39mg、リン酸水素二アンモニウム87mg及び蒸留水2gを混合した混合水溶液を、300rpmで撹拌しながら120℃で加熱して蒸発乾固させた。蒸発乾固後の混合物を、大気中、700℃で12時間焼成して、2質量%のNaPOからなる被覆層を有するナシコン型構造のNaTi(PO(ナシコン型NaTi(PO)を得た。
(Synthesis of NaMP salt)
<Example 1>
To 40 mL of an ethanol solution in which Ti(OCH 2 CH 2 CH 2 CH 3 ) 4 was dissolved, Na 2 CO 3 , NH 4 H 2 PO 4 and citric acid in an amount twice the molar amount of Ti were added. It was evaporated to dryness at 60°C for 30 minutes with stirring at 500 rpm, followed by 1-2 hours at 80°C. Thereafter, it was heated in the air at 350° C. for 5 hours to obtain NaTi 2 (PO 4 ) 3 .
A mixed aqueous solution of 2 g of the obtained NaTi 2 (PO 4 ) 3 powder, 39 mg of sodium carbonate, 87 mg of diammonium hydrogen phosphate, and 2 g of distilled water was heated at 120° C. and evaporated to dryness while stirring at 300 rpm. . The mixture after evaporation to dryness was calcined in the air at 700° C. for 12 hours to obtain NaTi 2 (PO 4 ) 3 ( NaTi 2 (PO 4 ) 3 ) was obtained.

<実施例2>
蒸発乾固の温度を100℃としたこと以外は実施例1と同様な方法により、2質量%のNaPOからなる被覆層を有するナシコン型構造のNaTi(POを得た。
<Example 2>
NaTi 2 (PO 4 ) 3 having a Nasicon-type structure having a coating layer consisting of 2% by mass of Na 3 PO 4 was obtained by the same method as in Example 1 except that the temperature of evaporation to dryness was 100° C. .

<実施例3>
蒸発乾固の温度を80℃としたこと以外は実施例1と同様な方法により、2質量%のNaPOからなる被覆層を有するナシコン型構造のNaTi(POを得た。
<Example 3>
NaTi 2 (PO 4 ) 3 having a Nasicon-type structure having a coating layer consisting of 2% by mass of Na 3 PO 4 was obtained by the same method as in Example 1 except that the temperature of evaporation to dryness was 80° C. .

<比較例1>
実施例1と同様な方法でNaTi(POを得、これを大気中、700℃で12時間焼成し、ナシコン型構造のNaTi(PO、すなわち、NaPOからなる被覆層を有さないNaMP塩、を得た。
<Comparative example 1>
NaTi 2 (PO 4 ) 3 was obtained in the same manner as in Example 1 and calcined in the air at 700° C. for 12 hours to form NaTi 2 (PO 4 ) 3 with a Nasicon-type structure, that is, from Na 3 PO 4 A NaMP salt without a coating layer was obtained.

<比較例2>
得られたNaTi(PO粉末2g、炭酸ナトリウム96mg、リン酸水素二アンモニウム218mg及び蒸留水2gを混合した混合水溶液を使用したこと以外は実施例1と同様な方法で、5質量%のNaPOからなる被覆層を有するナシコン型構造のNaTi(POを得た。
<Comparative example 2>
5% by mass in the same manner as in Example 1 except that a mixed aqueous solution of 2g of the obtained NaTi 2 (PO 4 ) 3 powder, 96mg of sodium carbonate, 218mg of diammonium hydrogen phosphate, and 2g of distilled water was used. NaTi 2 (PO 4 ) 3 having a Nasicon-type structure having a coating layer made of Na 3 PO 4 was obtained.

<比較例3>
炭酸ナトリウムの3.9gとリン酸水素二アンモニウム8.7gと蒸留水20gを混合して得られた混合溶液を300rpmで撹拌しながら120℃で加熱して蒸発乾固させて、NaPOを得た。得られたNaPO 0.02g、実施例1と同様にして得られたNaTi(PO(被覆層を有さないNaTi(PO) 0.98g、蒸留水2gを混合して得られた混合溶液を300rpmで撹拌しながら120℃で加熱して蒸発乾固させた。これを大気中、700℃で12時間焼成して、ナシコン型構造のNaTi(POと、2質量%NaPOからなる混合物を得た。
<Comparative example 3>
A mixed solution obtained by mixing 3.9 g of sodium carbonate, 8.7 g of diammonium hydrogen phosphate, and 20 g of distilled water was heated at 120° C. while stirring at 300 rpm to evaporate to dryness to obtain Na 3 PO 4 I got it. 0.02 g of the obtained Na 3 PO 4 , 0.98 g of NaTi 2 (PO 4 ) 3 obtained in the same manner as in Example 1 (NaTi 2 (PO 4 ) 3 without a coating layer), 2 g of distilled water The mixed solution obtained by mixing was heated at 120° C. while stirring at 300 rpm to evaporate to dryness. This was calcined in the air at 700° C. for 12 hours to obtain a mixture consisting of NaTi 2 (PO 4 ) 3 having a Nasicon-type structure and 2% by mass Na 3 PO 4 .

実施例及び比較例で得られたNaTi(POのXRDパターンを図1に示す。いずれもNaTi(POのXRDピークが確認された。また、図2に実施例1のNaTi(POのTEM観察図を示す。TEM観察により、NaTi(POの粒子の表面に、黒色で観察される被膜層が確認でき、NaTi(POは、その表面に0.5~1nmの被覆層を有することが確認できる。FIG. 1 shows the XRD patterns of NaTi 2 (PO 4 ) 3 obtained in Examples and Comparative Examples. In both cases, an XRD peak of NaTi 2 (PO 4 ) 3 was confirmed. Further, FIG. 2 shows a TEM observation diagram of NaTi 2 (PO 4 ) 3 of Example 1. Through TEM observation, a coating layer observed in black can be confirmed on the surface of the NaTi 2 (PO 4 ) 3 particles, and NaTi 2 (PO 4 ) 3 has a coating layer of 0.5 to 1 nm on its surface. This can be confirmed.

<測定例1>(充放電サイクル試験)
実施例又は比較例の負極活物質を備えた水系ナトリウム二次電池を使用し、以下の条件で充放電を繰返し、各充放電サイクルの放電容量を測定した。1サイクル目の放電容量に対する、50サイクル目の放電容量の割合(%)をサイクル維持率とし、これによりサイクル安定性を評価した。
電流密度 :2mA/cm
電圧 :-0.9V~-0.3V(vs Ag/AgCl参照極)
充放電温度:25℃
図3に1~3サイクルの充放電曲線を、充放電サイクル試験の結果を下表及び図4に示す。
<Measurement example 1> (charge/discharge cycle test)
Using a water-based sodium secondary battery equipped with the negative electrode active material of the example or comparative example, charging and discharging were repeated under the following conditions, and the discharge capacity of each charge and discharge cycle was measured. The ratio (%) of the discharge capacity at the 50th cycle to the discharge capacity at the 1st cycle was defined as the cycle maintenance rate, and the cycle stability was evaluated based on this ratio.
Current density: 2mA/ cm2
Voltage: -0.9V to -0.3V (vs Ag/AgCl reference electrode)
Charge/discharge temperature: 25℃
FIG. 3 shows the charge/discharge curves for cycles 1 to 3, and the results of the charge/discharge cycle test are shown in the table below and FIG. 4.

Figure 0007404502000001
表1より、実施例のNaTi(POは、サイクル維持率が高いことが確認できる。また、図3より、実施例1のNaTi(POは被覆層を有しているにも関わらず、被覆層を有していない比較例1と同等の充放電曲線の形状であり、被覆層の形成による分極がほとんどないことが分かる。
Figure 0007404502000001
From Table 1, it can be confirmed that NaTi 2 (PO 4 ) 3 of the example has a high cycle retention rate. Moreover, from FIG. 3, although NaTi 2 (PO 4 ) 3 of Example 1 has a coating layer, the shape of the charge-discharge curve is the same as that of Comparative Example 1, which does not have a coating layer. , it can be seen that there is almost no polarization due to the formation of the coating layer.

<測定例2>(ナトリウムイオンの拡散係数)
実施例1、比較例1又は比較例3の負極活物質を備えた水系ナトリウム二次電池を使用し、以下の条件でサイクリックボルタメトリー測定を行った。
負極電位 :-0.9V~0.0V(vs Ag/AgCl参照極)
電位走査速度 :0.05、0.1、0.5、1mV/秒
充放電温度 :25℃
電位走査速度と得られた最大電流値(ピーク電流値)から、下式を用いて充電時及び放電時の負極のNaイオンの拡散係数を求めた。
Ip=2.69×103/2AD1/2CV1/2
ここで、Ipはピーク電流値(単位:A)、Aは負極の面積(単位:cm)、Dがナトリウムイオンの拡散係数(単位:cm/sec)、Cは電解液濃度(単位:mol/cm)、及び、Vは電位走査速度(単位:V/sec)である。
結果を下表に示す。
<Measurement example 2> (diffusion coefficient of sodium ions)
Using an aqueous sodium secondary battery equipped with the negative electrode active material of Example 1, Comparative Example 1, or Comparative Example 3, cyclic voltammetry measurements were performed under the following conditions.
Negative electrode potential: -0.9V to 0.0V (vs Ag/AgCl reference electrode)
Potential scanning speed: 0.05, 0.1, 0.5, 1 mV/sec Charge/discharge temperature: 25°C
From the potential scanning speed and the obtained maximum current value (peak current value), the diffusion coefficient of Na + ions in the negative electrode during charging and discharging was determined using the following formula.
Ip=2.69×10 5 n 3/2 AD 1/2 CV 1/2
Here, Ip is the peak current value (unit: A), A is the area of the negative electrode (unit: cm 2 ), D is the diffusion coefficient of sodium ions (unit: cm 2 /sec), and C is the electrolyte concentration (unit: cm 2 ). mol/cm 3 ), and V is the potential scanning speed (unit: V/sec).
The results are shown in the table below.

Figure 0007404502000002
これらの結果より、実施例1及び比較例1のナトリウムイオンの拡散速度はほぼ同等であり、被覆層の形成によるナトリウムイオンの拡散性への影響がないことが分かる。被覆層を有しているにも関わらず、ナトリウムイオンの拡散係数が同等であることから、被覆層とNaMP塩とが単に物理的に接触している状態とは異なり、界面を形成していると考えられる。
本出願は、2020年3月5日に出願された日本特許出願である特願2020-037424号に基づく優先権を主張し、当該日本特許出願のすべての記載内容を援用する。
Figure 0007404502000002
From these results, it can be seen that the diffusion rates of sodium ions in Example 1 and Comparative Example 1 are almost the same, and that the formation of the coating layer has no influence on the diffusivity of sodium ions. Despite having a coating layer, the diffusion coefficients of sodium ions are the same, so unlike the state where the coating layer and NaMP salt are simply in physical contact, they form an interface. it is conceivable that.
This application claims priority based on Japanese Patent Application No. 2020-037424, which is a Japanese patent application filed on March 5, 2020, and incorporates all the contents of the Japanese patent application.

Claims (9)

ナトリウムチタンリン酸塩と、
前記ナトリウムチタンリン酸塩を被覆する、リン酸ナトリウムを含む被覆層と、
を有するナトリウムチタンリン酸塩組成物であって、
前記リン酸ナトリウムを含む被覆層が、前記ナトリウムチタンリン酸塩に対して0質量%を超え5質量%未満である、ナトリウムチタンリン酸塩組成物。
Sodium titanium phosphate,
a coating layer containing sodium phosphate that covers the sodium titanium phosphate ;
A sodium titanium phosphate composition having
A sodium titanium phosphate composition , wherein the coating layer containing sodium phosphate is more than 0% by mass and less than 5% by mass based on the sodium titanium phosphate.
前記ナトリウムチタンリン酸塩が、一般式Na1+xTi(PO(但し、0≦x≦2)で表される請求項1に記載のナトリウムチタンリン酸塩組成物 The sodium titanium phosphate composition according to claim 1, wherein the sodium titanium phosphate is represented by the general formula Na 1+x Ti 2 (PO 4 ) 3 (0≦x≦2). 前記ナトリウムチタンリン酸塩の結晶構造がナシコン型結晶構造である請求項1又は2に記載のナトリウムチタンリン酸塩組成物 The sodium titanium phosphate composition according to claim 1 or 2, wherein the crystal structure of the sodium titanium phosphate is a Nasicon type crystal structure. 被覆層の厚みが、0nmを超え50nm以下である請求項1乃至3のいずれか一項に記載のナトリウムチタンリン酸塩組成物 The sodium titanium phosphate composition according to any one of claims 1 to 3, wherein the coating layer has a thickness of more than 0 nm and less than 50 nm. ナトリウムチタンリン酸塩と、被覆層の前駆体との混合物を焼成する工程、を有する請求項1乃至4のいずれか一項に記載のナトリウムチタンリン酸塩組成物の製造方法。 The method for producing a sodium titanium phosphate composition according to any one of claims 1 to 4 , comprising the step of firing a mixture of sodium titanium phosphate and a precursor of the coating layer. 前記前駆体が、炭酸ナトリウム及びリン酸水素二アンモニウムである請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the precursors are sodium carbonate and diammonium hydrogen phosphate. 請求項1乃至4のいずれか一項に記載のナトリウムチタンリン酸塩組成物を含む負極活物質。 A negative electrode active material comprising the sodium titanium phosphate composition according to any one of claims 1 to 4 . 請求項1乃至4のいずれか一項に記載のナトリウムチタンリン酸塩組成物を含む負極と、正極及び電解液を備えるナトリウム二次電池。 A sodium secondary battery comprising a negative electrode comprising the sodium titanium phosphate composition according to any one of claims 1 to 4 , a positive electrode, and an electrolyte. 前記電解液が水系電解液である請求項8に記載のナトリウム二次電池。 The sodium secondary battery according to claim 8, wherein the electrolyte is an aqueous electrolyte.
JP2022504400A 2020-03-05 2021-03-02 Sodium transition metal phosphate and its uses Active JP7404502B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020037424 2020-03-05
JP2020037424 2020-03-05
PCT/JP2021/007957 WO2021177305A1 (en) 2020-03-05 2021-03-02 Sodium transition metal phosphate and use for same

Publications (2)

Publication Number Publication Date
JPWO2021177305A1 JPWO2021177305A1 (en) 2021-09-10
JP7404502B2 true JP7404502B2 (en) 2023-12-25

Family

ID=77612618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022504400A Active JP7404502B2 (en) 2020-03-05 2021-03-02 Sodium transition metal phosphate and its uses

Country Status (2)

Country Link
JP (1) JP7404502B2 (en)
WO (1) WO2021177305A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116081591B (en) * 2023-02-23 2024-05-14 武汉工程大学 Preparation method of negative electrode material of sodium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175830A (en) 2017-05-29 2019-10-10 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery or positive electrode active material composite for sodium ion secondary battery, secondary battery including the same, and method of manufacturing the same
JP2020027733A (en) 2018-08-10 2020-02-20 太平洋セメント株式会社 Method of producing negative electrode active material particle for sodium ion secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175830A (en) 2017-05-29 2019-10-10 太平洋セメント株式会社 Positive electrode active material composite for lithium ion secondary battery or positive electrode active material composite for sodium ion secondary battery, secondary battery including the same, and method of manufacturing the same
JP2020027733A (en) 2018-08-10 2020-02-20 太平洋セメント株式会社 Method of producing negative electrode active material particle for sodium ion secondary battery

Also Published As

Publication number Publication date
JPWO2021177305A1 (en) 2021-09-10
WO2021177305A1 (en) 2021-09-10

Similar Documents

Publication Publication Date Title
Han et al. Investigation of K 3 V 2 (PO 4) 3/C nanocomposites as high-potential cathode materials for potassium-ion batteries
US7285260B2 (en) Synthesis method for carbon material based on LixM1-yM&#39;(XO4)n
Pham et al. Facile synthesis of pyrite (FeS 2/C) nanoparticles as an electrode material for non-aqueous hybrid electrochemical capacitors
Jiang et al. Synthesis of nanorod-FeP@ C composites with hysteretic lithiation in lithium-ion batteries
JP6387227B2 (en) Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
JP2018517243A (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR20130139711A (en) Positive active material, method for preparation thereof and lithium battery comprising the same
KR20120099383A (en) Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density
JP2013510405A (en) High capacity anode materials for lithium ion batteries
RU2619600C2 (en) Electrode material for metal-ion battery, method of its production, electrode and electrode material based battery
WO2022190985A1 (en) Sodium titanium phosphate and use therefor
US9882218B2 (en) Lithium secondary battery and method for producing same
JP2020145061A (en) Electrolyte for potassium-ion battery, potassium-ion battery, electrolyte for potassium-ion capacitor, and potassium-ion capacitor
JP2020536038A (en) Method for producing sulfur-carbon composite
Yang et al. Self-Crystallized Interlayer Integrating Polysulfide-Adsorbed TiO 2/Tio and Highly-Electron-Conductive Tio for High-Stability Lithium-Sulfur Batteries
JP7404502B2 (en) Sodium transition metal phosphate and its uses
Shi et al. Boosting the fast electrochemical kinetics of Na 4 Fe 3 (PO 4) 2 (P 2 O 7) via a 3D graphene network as a cathode material for potassium-ion batteries
KR102522173B1 (en) Anode active material coated with nitrogen-doped carbon for sodium ion secondary battery and method of preparing the same
RU2748159C1 (en) Electrode material for sodium-ion batteries, method of its production, electrode and battery based on the electrode material
JP2001126764A (en) Nonaqueous electrolyte secondary battery
KR102213109B1 (en) Cellulose-Templated, Dual-Carbonized Cathode Materials for Na-ion Batteries and Method of Preparing the Same
JP6042512B2 (en) Positive electrode active material for secondary battery and method for producing the same
WO2020012739A1 (en) Positive electrode active material and cell comprising same
Liang et al. Carbon/Li4Ti5O12 composite spheres prepared using chinese yam as carbon source with ultrahigh capacity as anode materials for lithium ion batteries
JP6307133B2 (en) Polyanionic positive electrode active material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231213

R150 Certificate of patent or registration of utility model

Ref document number: 7404502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150