JP7403960B2 - Acoustic wave devices and their manufacturing methods, filters and multiplexers - Google Patents

Acoustic wave devices and their manufacturing methods, filters and multiplexers Download PDF

Info

Publication number
JP7403960B2
JP7403960B2 JP2019046395A JP2019046395A JP7403960B2 JP 7403960 B2 JP7403960 B2 JP 7403960B2 JP 2019046395 A JP2019046395 A JP 2019046395A JP 2019046395 A JP2019046395 A JP 2019046395A JP 7403960 B2 JP7403960 B2 JP 7403960B2
Authority
JP
Japan
Prior art keywords
insulating layer
substrate
refractive index
support substrate
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019046395A
Other languages
Japanese (ja)
Other versions
JP2020150415A (en
Inventor
洋平 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2019046395A priority Critical patent/JP7403960B2/en
Publication of JP2020150415A publication Critical patent/JP2020150415A/en
Application granted granted Critical
Publication of JP7403960B2 publication Critical patent/JP7403960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、弾性波デバイスおよびその製造方法フィルタ並びにマルチプレクサに関し、例えば櫛型電極を有する弾性波デバイスおよびその製造方法、フィルタ並びにマルチプレクサに関する。 The present invention relates to an acoustic wave device, a method for manufacturing the same , a filter, and a multiplexer, and for example, an acoustic wave device having comb-shaped electrodes, a method for manufacturing the same, a filter, and a multiplexer.

スマートフォン等の通信機器に用いられる弾性波共振器として、弾性表面波共振器が知られている。弾性表面波共振器を形成する圧電基板を支持基板に接合することが知られている。支持基板の上面を粗面とすることが知られている(例えば特許文献1および2)。 Surface acoustic wave resonators are known as elastic wave resonators used in communication devices such as smartphones. It is known to bond a piezoelectric substrate forming a surface acoustic wave resonator to a support substrate. It is known that the upper surface of the support substrate is roughened (for example, Patent Documents 1 and 2).

特開2015-115870号公報Japanese Patent Application Publication No. 2015-115870 米国特許第10020796号明細書US Patent No. 10020796

特許文献1および2のように、支持基板の上面を粗面化することで、スプリアス等が抑制される。しかしながら、弾性波デバイスをチップ化が難しくなることがある。 As in Patent Documents 1 and 2, by roughening the upper surface of the support substrate, spurious waves and the like are suppressed. However, it may be difficult to make an acoustic wave device into a chip.

本発明は、上記課題に鑑みなされたものであり、適切にチップ化することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to appropriately form a chip.

本発明は、多結晶基板または単結晶基板である支持基板と、前記支持基板上に設けられた圧電基板と、前記圧電基板上に設けられた一対の櫛型電極と、前記支持基板と前記圧電基板との間に設けられ、前記支持基板の屈折率よりも低い屈折率を有する第1絶縁層と、前記第1絶縁層と前記支持基板との間に設けられ、前記支持基板との間の第1面の表面粗さは前記第1絶縁層との間の第2面の表面粗さより大きく、前記第1絶縁層より屈折率高くかつ前記支持基板より屈折率が低い第2絶縁層と、を備え、前記支持基板の側面には前記支持基板の構成元素を主成分としアモルファスまたは多結晶である複数の改質領域が平面方向に設けられており、前記第2絶縁層の屈折率と前記第1絶縁層の屈折率との差は、前記支持基板の屈折率と前記第2絶縁層の屈折率との差以上である弾性波デバイスである。 The present invention provides a support substrate that is a polycrystalline substrate or a single crystal substrate, a piezoelectric substrate provided on the support substrate, a pair of comb-shaped electrodes provided on the piezoelectric substrate, and the support substrate and the piezoelectric substrate. a first insulating layer provided between the first insulating layer and the supporting substrate and having a refractive index lower than that of the supporting substrate; The surface roughness of the first surface is greater than the surface roughness of the second surface between the first insulating layer and the second insulating layer, which has a higher refractive index than the first insulating layer and a lower refractive index than the supporting substrate. , a plurality of modified regions which are amorphous or polycrystalline and whose main component is the constituent element of the support substrate are provided in the plane direction on the side surface of the support substrate, and the refractive index of the second insulating layer is the same as that of the second insulating layer. The acoustic wave device is such that the difference between the refractive index of the first insulating layer and the refractive index of the first insulating layer is greater than or equal to the difference between the refractive index of the supporting substrate and the second insulating layer.

上記構成において、前記第1絶縁層および前記第2絶縁層の弾性定数の温度係数の符号は前記圧電基板の弾性定数の温度係数の符号と反対である構成とすることができる。 In the above structure, the signs of the temperature coefficients of elastic constants of the first insulating layer and the second insulating layer may be opposite to the signs of the temperature coefficients of elastic constants of the piezoelectric substrate.

上記構成において、前記第1絶縁層および前記第2絶縁層の音速は、前記支持基板の音速より遅い構成とすることができる。 In the above configuration, the sound velocity of the first insulating layer and the second insulating layer may be slower than the sound velocity of the support substrate.

本発明は、多結晶基板または単結晶基板である支持基板と、前記支持基板上に設けられた圧電基板と、前記圧電基板上に設けられた一対の櫛型電極と、前記支持基板と前記圧電基板との間に設けられ、前記支持基板の屈折率よりも低い屈折率を有する第1絶縁層と、前記第1絶縁層と前記支持基板との間に設けられ、前記支持基板との間の第1面の表面粗さは前記第1絶縁層との間の第2面の表面粗さより大きく、前記第1絶縁層より屈折率の高い第2絶縁層と、を備え、前記支持基板の側面には前記支持基板の構成元素を主成分としアモルファスまたは多結晶である複数の改質領域が平面方向に設けられており、前記第1絶縁層と前記第2絶縁層との主成分は同じであり、前記第2絶縁層は前記第1絶縁層に添加されていない不純物を含む弾性波デバイス。 The present invention provides a support substrate that is a polycrystalline substrate or a single crystal substrate, a piezoelectric substrate provided on the support substrate, a pair of comb-shaped electrodes provided on the piezoelectric substrate, and the support substrate and the piezoelectric substrate. a first insulating layer provided between the first insulating layer and the supporting substrate and having a refractive index lower than that of the supporting substrate; a second insulating layer having a surface roughness greater than that of a second surface between the first insulating layer and the first insulating layer, and a second insulating layer having a higher refractive index than the first insulating layer; A plurality of modified regions which are amorphous or polycrystalline and whose main component is the constituent element of the support substrate are provided in the plane direction, and the main components of the first insulating layer and the second insulating layer are the same. In the acoustic wave device, the second insulating layer includes impurities that are not added to the first insulating layer.

本発明は、多結晶基板または単結晶基板である支持基板と、前記支持基板上に設けられた圧電基板と、前記圧電基板上に設けられた一対の櫛型電極と、前記支持基板と前記圧電基板との間に設けられ、前記支持基板の屈折率よりも低い屈折率を有する第1絶縁層と、前記第1絶縁層と前記支持基板との間に設けられ、前記支持基板との間の第1面の表面粗さは前記第1絶縁層との間の第2面の表面粗さより大きく、前記第1絶縁層より屈折率の高い第2絶縁層と、を備え、前記支持基板の側面には前記支持基板の構成元素を主成分としアモルファスまたは多結晶である複数の改質領域が平面方向に設けられており、前記第1絶縁層および前記第2絶縁層の主成分は酸化シリコンであり、前記第2絶縁層の酸化ゲルマニウムまたは酸化ジルコニウムの濃度は前記第1絶縁層の酸化ゲルマニウムまたは酸化ジルコニウムの濃度より高い弾性波デバイスである。 The present invention provides a support substrate that is a polycrystalline substrate or a single crystal substrate, a piezoelectric substrate provided on the support substrate, a pair of comb-shaped electrodes provided on the piezoelectric substrate, and the support substrate and the piezoelectric substrate. a first insulating layer provided between the first insulating layer and the supporting substrate and having a refractive index lower than that of the supporting substrate; a second insulating layer having a surface roughness greater than that of a second surface between the first insulating layer and the first insulating layer, and a second insulating layer having a higher refractive index than the first insulating layer; A plurality of modified regions which are amorphous or polycrystalline and whose main component is the constituent element of the support substrate are provided in the plane direction, and the main component of the first insulating layer and the second insulating layer is silicon oxide. In the acoustic wave device, the concentration of germanium oxide or zirconium oxide in the second insulating layer is higher than the concentration of germanium oxide or zirconium oxide in the first insulating layer.

上記構成において、前記第1面の算術平均粗さは10nm以上であり、前記第2面の算術平均粗さは1nm以下である構成とすることができる。 In the above configuration, the first surface may have an arithmetic mean roughness of 10 nm or more, and the second surface may have an arithmetic mean roughness of 1 nm or less.

上記構成において、前記支持基板単結晶基板である構成とすることができる。
上記構成において、前記改質領域はアモルファスである構成とすることができる。
In the above structure, the support substrate may be a single crystal substrate.
In the above structure, the modified region may be amorphous.

本発明は、上記弾性波デバイスを含むフィルタである。 The present invention is a filter including the above elastic wave device.

本発明は、上記のフィルタを含むマルチプレクサである。 The present invention is a multiplexer including the above filter.

本発明は、支持基板と、前記支持基板上に設けられた圧電基板と、前記支持基板と前記圧電基板との間に設けられ、前記支持基板の屈折率よりも低い屈折率を有する第1絶縁層と、前記第1絶縁層と前記支持基板との間に設けられ、前記支持基板との間の第1面の表面粗さは前記第1絶縁層との間の第2面の表面粗さより大きく、前記第1絶縁層より屈折率高くかつ前記支持基板より屈折率が低い第2絶縁層と、を備える複合基板に前記圧電基板側からレーザ光を照射し前記支持基板内に改質領域を形成する工程と、前記改質領域に沿って前記複合基板を割断する工程と、を含み、前記第2絶縁層の屈折率と前記第1絶縁層の屈折率との差は、前記支持基板の屈折率と前記第2絶縁層の屈折率との差以上である弾性波デバイスの製造方法である。
本発明は、支持基板と、前記支持基板上に設けられた圧電基板と、前記支持基板と前記圧電基板との間に設けられ、前記支持基板の屈折率よりも低い屈折率を有する第1絶縁層と、前記第1絶縁層と前記支持基板との間に設けられ、前記支持基板との間の第1面の表面粗さは前記第1絶縁層との間の第2面の表面粗さより大きく、前記第1絶縁層より屈折率の高い第2絶縁層と、を備える複合基板に前記圧電基板側からレーザ光を照射し前記支持基板内に改質領域を形成する工程と、前記改質領域に沿って前記複合基板を割断する工程と、を含み、前記第1絶縁層と前記第2絶縁層との主成分は同じであり、前記第2絶縁層は前記第1絶縁層に添加されていない不純物を含む弾性波デバイスの製造方法である。
本発明は、支持基板と、前記支持基板上に設けられた圧電基板と、前記支持基板と前記圧電基板との間に設けられ、前記支持基板の屈折率よりも低い屈折率を有する第1絶縁層と、前記第1絶縁層と前記支持基板との間に設けられ、前記支持基板との間の第1面の表面粗さは前記第1絶縁層との間の第2面の表面粗さより大きく、前記第1絶縁層より屈折率の高い第2絶縁層と、を備える複合基板に前記圧電基板側からレーザ光を照射し前記支持基板内に改質領域を形成する工程と、前記改質領域に沿って前記複合基板を割断する工程と、を含み、前記第1絶縁層および前記第2絶縁層の主成分は酸化シリコンであり、前記第2絶縁層の酸化ゲルマニウムまたは酸化ジルコニウムの濃度は前記第1絶縁層の酸化ゲルマニウムまたは酸化ジルコニウムの濃度より高い弾性波デバイスの製造方法である。
The present invention provides a support substrate, a piezoelectric substrate provided on the support substrate, and a first insulator provided between the support substrate and the piezoelectric substrate and having a refractive index lower than the refractive index of the support substrate. the first insulating layer and the supporting substrate, the surface roughness of the first surface between the first insulating layer and the supporting substrate is greater than the surface roughness of the second surface between the first insulating layer and the supporting substrate. a second insulating layer having a larger refractive index than the first insulating layer and a lower refractive index than the supporting substrate , a composite substrate is irradiated with laser light from the piezoelectric substrate side to form a modified region in the supporting substrate. and cutting the composite substrate along the modified region, wherein the difference between the refractive index of the second insulating layer and the refractive index of the first insulating layer is and the refractive index of the second insulating layer.
The present invention provides a support substrate, a piezoelectric substrate provided on the support substrate, and a first insulator provided between the support substrate and the piezoelectric substrate and having a refractive index lower than the refractive index of the support substrate. the first insulating layer and the supporting substrate, the surface roughness of the first surface between the first insulating layer and the supporting substrate is greater than the surface roughness of the second surface between the first insulating layer and the supporting substrate. a second insulating layer that is larger and has a higher refractive index than the first insulating layer; irradiating a composite substrate with a laser beam from the piezoelectric substrate side to form a modified region in the support substrate; cutting the composite substrate along a region, the first insulating layer and the second insulating layer have the same main component, and the second insulating layer is added to the first insulating layer. This is a method for manufacturing an acoustic wave device that contains no impurities.
The present invention provides a support substrate, a piezoelectric substrate provided on the support substrate, and a first insulator provided between the support substrate and the piezoelectric substrate and having a refractive index lower than the refractive index of the support substrate. the first insulating layer and the supporting substrate, the surface roughness of the first surface between the first insulating layer and the supporting substrate is greater than the surface roughness of the second surface between the first insulating layer and the supporting substrate. a second insulating layer that is larger and has a higher refractive index than the first insulating layer; irradiating a composite substrate with a laser beam from the piezoelectric substrate side to form a modified region in the support substrate; cutting the composite substrate along regions, the main component of the first insulating layer and the second insulating layer is silicon oxide, and the concentration of germanium oxide or zirconium oxide in the second insulating layer is This is a method of manufacturing an acoustic wave device in which the concentration of germanium oxide or zirconium oxide is higher than that of the first insulating layer.

本発明によれば、適切にチップ化することができる。 According to the present invention, it is possible to appropriately form a chip.

図1(a)は、実施例1における弾性波共振器の平面図、図1(b)は、図1(a)のA-A断面図である。FIG. 1(a) is a plan view of the elastic wave resonator in Example 1, and FIG. 1(b) is a sectional view taken along line AA in FIG. 1(a). 図2(a)から図2(d)は、実施例1に係る弾性波デバイスの製造方法を示す断面図(その1)である。FIGS. 2(a) to 2(d) are cross-sectional views (part 1) showing the method for manufacturing the acoustic wave device according to the first embodiment. 図3(a)から図3(c)は、実施例1に係る弾性波デバイスの製造方法を示す断面図(その2)である。3(a) to 3(c) are cross-sectional views (part 2) showing the method for manufacturing the acoustic wave device according to the first embodiment. 図4(a)は、実施例1に係る弾性波デバイスの製造方法を示す断面図(その3)であり、図4(b)は、実施例1における複合基板の側面図である。FIG. 4(a) is a cross-sectional view (Part 3) showing the method for manufacturing the acoustic wave device according to Example 1, and FIG. 4(b) is a side view of the composite substrate in Example 1. 図5は、比較例におけるサンプルAからBのアドミッタンスを示す図である。FIG. 5 is a diagram showing the admittance of samples A to B in a comparative example. 図6は、比較例における課題を説明する図である。FIG. 6 is a diagram illustrating problems in the comparative example. 図7(a)は、実施例2に係るフィルタの回路図、図7(b)は、実施例2の変形例1に係るデュプレクサの回路図である。FIG. 7A is a circuit diagram of a filter according to a second embodiment, and FIG. 7B is a circuit diagram of a duplexer according to a first modification of the second embodiment.

以下、図面を参照し本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図1(a)は、実施例1における弾性波共振器の平面図、図1(b)は、図1(a)のA-A断面図である。電極指の配列方向をX方向、電極指の延伸方向をY方向、支持基板および圧電基板の積層方向をZ方向とする。X方向、Y方向およびZ方向は、圧電基板の結晶方位のX軸方向およびY軸方向とは必ずしも対応しない。圧電基板が回転YカットX伝搬基板の場合、X方向は結晶方位のX軸方向となる。 FIG. 1(a) is a plan view of the elastic wave resonator in Example 1, and FIG. 1(b) is a sectional view taken along line AA in FIG. 1(a). The direction in which the electrode fingers are arranged is the X direction, the extending direction of the electrode fingers is the Y direction, and the direction in which the support substrate and the piezoelectric substrate are laminated is the Z direction. The X direction, Y direction, and Z direction do not necessarily correspond to the X-axis direction and Y-axis direction of the crystal orientation of the piezoelectric substrate. When the piezoelectric substrate is a rotating Y-cut X-propagation substrate, the X direction is the X-axis direction of the crystal orientation.

図1(a)および図1(b)に示すように、支持基板10上に絶縁層17が設けられている。絶縁層17上に絶縁層11が設けられている。絶縁層11上に圧電基板12が設けられている。支持基板10と絶縁層17との間の界面50は粗面である。絶縁層17と11との界面51、絶縁層11と圧電基板12との界面52および圧電基板12の上面53は平坦面である。界面50の算術平均表面粗さRaは界面51、52および上面53の算術表面粗さより大きい。 As shown in FIGS. 1(a) and 1(b), an insulating layer 17 is provided on the support substrate 10. Insulating layer 11 is provided on insulating layer 17 . A piezoelectric substrate 12 is provided on the insulating layer 11. The interface 50 between the support substrate 10 and the insulating layer 17 is a rough surface. An interface 51 between the insulating layers 17 and 11, an interface 52 between the insulating layer 11 and the piezoelectric substrate 12, and an upper surface 53 of the piezoelectric substrate 12 are flat surfaces. The arithmetic mean surface roughness Ra of the interface 50 is larger than the arithmetic surface roughness of the interfaces 51, 52 and the upper surface 53.

圧電基板12上に弾性波共振器20が設けられている。弾性波共振器20はIDT22および反射器24を有する。反射器24はIDT(Inter Digital Transducer)22のX方向の両側に設けられている。IDT22および反射器24は、圧電基板12上の金属膜14により形成される。 An elastic wave resonator 20 is provided on the piezoelectric substrate 12. The elastic wave resonator 20 has an IDT 22 and a reflector 24. The reflectors 24 are provided on both sides of the IDT (Inter Digital Transducer) 22 in the X direction. IDT 22 and reflector 24 are formed by metal film 14 on piezoelectric substrate 12 .

IDT22は、対向する一対の櫛型電極18を備える。櫛型電極18は、複数の電極指15と、複数の電極指15が接続されたバスバー16と、を備える。一対の櫛型電極18の電極指15が交差する領域が交差領域25である。交差領域25の長さが開口長である。一対の櫛型電極18は、交差領域25の少なくとも一部において電極指15がほぼ互い違いとなるように、対向して設けられている。交差領域25において複数の電極指15が励振する弾性波は、主にX方向に伝搬する。一対の櫛型電極18のうち一方の櫛型電極の電極指15のピッチがほぼ弾性波の波長λとなる。弾性波の波長λはほぼ電極指15の2本分のピッチとなる。反射器24は、IDT22の電極指15が励振した弾性波(弾性表面波)を反射する。これにより弾性波はIDT22の交差領域25内に閉じ込められる。 The IDT 22 includes a pair of comb-shaped electrodes 18 facing each other. The comb-shaped electrode 18 includes a plurality of electrode fingers 15 and a bus bar 16 to which the plurality of electrode fingers 15 are connected. The area where the electrode fingers 15 of the pair of comb-shaped electrodes 18 intersect is the intersection area 25 . The length of the crossing region 25 is the opening length. The pair of comb-shaped electrodes 18 are provided facing each other so that the electrode fingers 15 are substantially alternated in at least a portion of the crossing region 25. The elastic waves excited by the plurality of electrode fingers 15 in the intersection region 25 mainly propagate in the X direction. The pitch of the electrode fingers 15 of one of the pair of comb-shaped electrodes 18 is approximately equal to the wavelength λ of the elastic wave. The wavelength λ of the elastic wave is approximately the pitch of two electrode fingers 15. The reflector 24 reflects the elastic waves (surface acoustic waves) excited by the electrode fingers 15 of the IDT 22 . As a result, the elastic waves are confined within the intersection area 25 of the IDT 22.

圧電基板12は、単結晶タンタル酸リチウム(LiTaO)基板、単結晶ニオブ酸リチウム(LiNbO)基板または単結晶水晶基板であり、例えば回転YカットX伝搬タンタル酸リチウム基板または回転YカットX伝搬ニオブ酸リチウム基板である。絶縁層11は、例えば酸化シリコン(SiO)を主成分とする。絶縁層11は、酸化シリコンを主成分とし、弗素等の不純物を含んでいてもよい。絶縁層11の弾性定数の温度係数の符号は圧電基板12の弾性定数の温度係数の符号の反対である。これにより、弾性波共振器の周波数温度係数を小さくできる。 The piezoelectric substrate 12 is a single-crystal lithium tantalate (LiTaO 3 ) substrate, a single-crystal lithium niobate (LiNbO 3 ) substrate, or a single-crystal quartz substrate, and is, for example, a rotating Y-cut X-propagating lithium tantalate substrate or a rotating Y-cut It is a lithium niobate substrate. The insulating layer 11 has, for example, silicon oxide (SiO 2 ) as a main component. The insulating layer 11 is mainly composed of silicon oxide and may contain impurities such as fluorine. The sign of the temperature coefficient of the elastic constant of the insulating layer 11 is opposite to the sign of the temperature coefficient of the elastic constant of the piezoelectric substrate 12. Thereby, the frequency temperature coefficient of the elastic wave resonator can be reduced.

絶縁層17の屈折率は絶縁層11の屈折率より大きい。絶縁層17は、酸化シリコンを主成分とし、酸化ゲルマニウム(GeO)または酸化ジルコニウム(ZrO)を含む。Siに対するGeまたはZrの重量濃度は例えば10ppm以上かつ10000ppm以下であり、例えば100ppm以上かつ1000ppm以下である。これにより、酸化シリコン膜の屈折率を大きくできる。 The refractive index of the insulating layer 17 is greater than the refractive index of the insulating layer 11. The insulating layer 17 is mainly composed of silicon oxide and contains germanium oxide (GeO 2 ) or zirconium oxide (ZrO 2 ). The weight concentration of Ge or Zr relative to Si is, for example, 10 ppm or more and 10,000 ppm or less, for example, 100 ppm or more and 1,000 ppm or less. Thereby, the refractive index of the silicon oxide film can be increased.

支持基板10は、圧電基板12のX方向の線膨張係数より小さな線膨張係数を有する。これにより、弾性波共振器の周波数温度係数を小さくできる。支持基板10は、例えばサファイア基板、アルミナ基板、スピネル基板、シリコン基板または炭化シリコン基板である。サファイア基板はr面、c面またはa面を上面とする単結晶酸化アルミニウム(Al)基板である。アルミナ基板は多結晶酸化アルミニウム(Al)基板である。スピネル基板は単結晶または多結晶スピネル(MgAl)基板である。シリコン基板は単結晶または多結晶シリコン(Si)基板である。炭化シリコン基板は単結晶または多結晶炭化シリコン(SiC)基板である。 The support substrate 10 has a linear expansion coefficient smaller than that of the piezoelectric substrate 12 in the X direction. Thereby, the frequency temperature coefficient of the elastic wave resonator can be reduced. Support substrate 10 is, for example, a sapphire substrate, an alumina substrate, a spinel substrate, a silicon substrate, or a silicon carbide substrate. The sapphire substrate is a single crystal aluminum oxide (Al 2 O 3 ) substrate with an r-plane, c-plane, or a-plane as the upper surface. The alumina substrate is a polycrystalline aluminum oxide (Al 2 O 3 ) substrate. The spinel substrate is a single crystal or polycrystalline spinel (MgAl 2 O 4 ) substrate. The silicon substrate is a single crystal or polycrystalline silicon (Si) substrate. The silicon carbide substrate is a single crystal or polycrystalline silicon carbide (SiC) substrate.

金属膜14は、例えばアルミニウム(Al)、銅(Cu)またはモリブデン(Mo)を主成分とする膜であり、例えばアルミニウム膜、銅膜またはモリブデン膜である。電極指15と圧電基板12との間にチタン(Ti)膜またはクロム(Cr)膜等の密着膜が設けられていてもよい。密着膜は電極指15より薄い。電極指15を覆うように絶縁膜が設けられていてもよい。絶縁膜は保護膜または温度補償層として機能する。 The metal film 14 is a film whose main component is, for example, aluminum (Al), copper (Cu), or molybdenum (Mo), and is, for example, an aluminum film, a copper film, or a molybdenum film. An adhesive film such as a titanium (Ti) film or a chromium (Cr) film may be provided between the electrode finger 15 and the piezoelectric substrate 12. The adhesive film is thinner than the electrode fingers 15. An insulating film may be provided to cover the electrode fingers 15. The insulating film functions as a protective film or a temperature compensation layer.

支持基板10の厚さは例えば50μmから500μmである。絶縁層17の厚さは例えば0.5μmから5.0μmである。絶縁層11の厚さは、例えば0.5μmから10μmであり、例えば弾性波の波長λ以下である。圧電基板12の厚さは例えば0.5μmから20μmであり、例えば弾性波の波長λ以下である。弾性波の波長λは例えば1μmから6μmである。2本の電極指15を1対としたときの対数は例えば20対から300対である。IDT22のデュティ比は、電極指15の太さ/電極指15のピッチであり、例えば30%から80%である。IDT22の開口長は例えば10λから50λである。 The thickness of the support substrate 10 is, for example, 50 μm to 500 μm. The thickness of the insulating layer 17 is, for example, 0.5 μm to 5.0 μm. The thickness of the insulating layer 11 is, for example, from 0.5 μm to 10 μm, and is, for example, less than the wavelength λ of the elastic wave. The thickness of the piezoelectric substrate 12 is, for example, from 0.5 μm to 20 μm, and is, for example, less than the wavelength λ of the elastic wave. The wavelength λ of the elastic wave is, for example, 1 μm to 6 μm. The number of pairs of electrode fingers 15 is, for example, 20 to 300 pairs. The duty ratio of the IDT 22 is the thickness of the electrode fingers 15/the pitch of the electrode fingers 15, and is, for example, 30% to 80%. The aperture length of the IDT 22 is, for example, 10λ to 50λ.

[実施例1の製造方法]
図2(a)から図4(a)は、実施例1に係る弾性波デバイスの製造方法を示す断面図である。図2(a)に示すように、表面が粗面である支持基板10を準備する。図2(b)に示すように、支持基板10上に絶縁層17を例えばCVD(Chemical Vapor Deposition)法、スパッタリング法または真空蒸着法を用い形成する。支持基板10と絶縁層17との界面50は粗面となる。絶縁層17の上面を例えばCMP(Chemical Mechanical Polishing)法を用い平坦化する。
[Production method of Example 1]
FIGS. 2(a) to 4(a) are cross-sectional views showing a method for manufacturing an acoustic wave device according to Example 1. FIG. As shown in FIG. 2(a), a support substrate 10 having a rough surface is prepared. As shown in FIG. 2B, an insulating layer 17 is formed on the support substrate 10 using, for example, a CVD (Chemical Vapor Deposition) method, a sputtering method, or a vacuum evaporation method. The interface 50 between the support substrate 10 and the insulating layer 17 is a rough surface. The upper surface of the insulating layer 17 is planarized using, for example, a CMP (Chemical Mechanical Polishing) method.

図2(c)に示すように、絶縁層17上に絶縁層11を例えばCVD法、スパッタリング法または真空蒸着法を用い形成する。絶縁層17と11との界面51は平坦面となる。図2(d)に示すように、接合層13は例えば酸化アルミニウム層、窒化アルミニウム層、ダイヤモンドライクカーボン層、炭化シリコン層、窒化シリコン層またはシリコン層である。接合層13の厚さは例えば1nmから100nmである。接合層13を介さず絶縁層11と圧電基板12とを接合してもよい。接合には例えば表面活性化法を用いる。絶縁層11と圧電基板12との間の界面52は平坦面となる。絶縁層11および圧電基板12に比べ接合層13は十分に薄い。 As shown in FIG. 2C, the insulating layer 11 is formed on the insulating layer 17 using, for example, a CVD method, a sputtering method, or a vacuum evaporation method. The interface 51 between the insulating layers 17 and 11 becomes a flat surface. As shown in FIG. 2D, the bonding layer 13 is, for example, an aluminum oxide layer, an aluminum nitride layer, a diamond-like carbon layer, a silicon carbide layer, a silicon nitride layer, or a silicon layer. The thickness of the bonding layer 13 is, for example, 1 nm to 100 nm. The insulating layer 11 and the piezoelectric substrate 12 may be bonded without using the bonding layer 13. For example, a surface activation method is used for bonding. The interface 52 between the insulating layer 11 and the piezoelectric substrate 12 is a flat surface. Bonding layer 13 is sufficiently thinner than insulating layer 11 and piezoelectric substrate 12 .

図3(a)に示すように、圧電基板12の上面を例えばCMP法を用い平坦化する。これにより、支持基板10、絶縁層17、11および圧電基板12を有する複合基板62(ウエハ)が形成される。圧電基板12の上面に金属膜14からなる弾性波共振器20を形成する。図3(b)に示すように、切断領域にレーザ光33を圧電基板12の上方から照射する。これにより、支持基板10内に改質領域34を形成する。改質領域34は例えば支持基板10が溶融しアモルファスおよび/または多結晶となった領域である。改質領域34は支持基板10の構成元素からなる。レーザ光33は例えばNd:YAGレーザの第2高調波であり、レーザ光33の波長は例えば532nmであり、例えば500nmから600nmである。レーザ光は可視光、紫外線または赤外線でもよい。レーザ光33のパワーは例えば0.01Wである。図3(c)に示すように、支持基板10の下面(図3(c)では上面)をダイシングフィルム35を貼り付ける。ダイシングフィルム35を介しブレーク刃を支持基板10に押し付ける。 As shown in FIG. 3(a), the upper surface of the piezoelectric substrate 12 is planarized using, for example, the CMP method. As a result, a composite substrate 62 (wafer) having the supporting substrate 10, the insulating layers 17 and 11, and the piezoelectric substrate 12 is formed. An elastic wave resonator 20 made of a metal film 14 is formed on the upper surface of the piezoelectric substrate 12. As shown in FIG. 3(b), the cutting area is irradiated with laser light 33 from above the piezoelectric substrate 12. As shown in FIG. Thereby, a modified region 34 is formed within the support substrate 10. The modified region 34 is, for example, a region where the supporting substrate 10 is melted and becomes amorphous and/or polycrystalline. The modified region 34 is made of the constituent elements of the support substrate 10. The laser beam 33 is, for example, the second harmonic of an Nd:YAG laser, and the wavelength of the laser beam 33 is, for example, 532 nm, for example, from 500 nm to 600 nm. The laser light may be visible light, ultraviolet light, or infrared light. The power of the laser beam 33 is, for example, 0.01W. As shown in FIG. 3(c), a dicing film 35 is attached to the lower surface (upper surface in FIG. 3(c)) of the support substrate 10. The break blade is pressed against the support substrate 10 via the dicing film 35.

図4(a)に示すように、支持基板10は改質領域34において割断され、支持基板10が個片化(チップ化)される。これにより、実施例1の弾性波デバイスが形成される。図4(b)は、実施例1における複合基板の側面図である。図4(b)に示すように、図3(b)において、レーザ光33をパルス光とし、一定の速度で走査した場合、支持基板10の側面には平面方向に配列する複数の改質領域34が露出する。改質領域34の大きさD1は例えば1μmから10μmであり、改質領域34の平面方向の間隔D2は例えば改質領域34の大きさの1.5倍から5倍程度である。 As shown in FIG. 4A, the support substrate 10 is cut in the modified region 34, and the support substrate 10 is divided into pieces (chips). As a result, the acoustic wave device of Example 1 is formed. FIG. 4(b) is a side view of the composite substrate in Example 1. As shown in FIG. 4B, when the laser beam 33 is pulsed and scanned at a constant speed in FIG. 34 is exposed. The size D1 of the modified region 34 is, for example, 1 μm to 10 μm, and the interval D2 of the modified region 34 in the planar direction is, for example, about 1.5 to 5 times the size of the modified region 34.

[比較例]
比較例を用い絶縁層17を設ける理由を説明する。絶縁層17を設けず、支持基板10と絶縁層11との界面の表面粗さが異なる弾性波共振器を作製した。作製条件は以下である。
支持基板10:サファイア基板
絶縁層11:厚さが0.4λの酸化シリコン膜
圧電基板12:厚さが0.4λの42°回転Yカットタンタル酸リチウム基板
[Comparative example]
The reason for providing the insulating layer 17 will be explained using a comparative example. Acoustic wave resonators were manufactured in which the insulating layer 17 was not provided and the surface roughness of the interface between the supporting substrate 10 and the insulating layer 11 was different. The manufacturing conditions are as follows.
Support substrate 10: Sapphire substrate Insulating layer 11: Silicon oxide film with a thickness of 0.4λ Piezoelectric substrate 12: 42° rotated Y-cut lithium tantalate substrate with a thickness of 0.4λ

各サンプルの支持基板10と絶縁層11との間の界面50aの算術平均粗さRaは以下である。
サンプルA:約100nm
サンプルB:約10nm
サンプルC:1nm以下(ほぼ鏡面)
The arithmetic mean roughness Ra of the interface 50a between the support substrate 10 and the insulating layer 11 of each sample is as follows.
Sample A: about 100nm
Sample B: about 10nm
Sample C: 1 nm or less (almost mirror surface)

図5は、比較例におけるサンプルAからCのアドミッタンスを示す図である。図5に示すように、共振周波数frおよび反共振周波数faより高い周波数帯域にスプリアス59が生成される。スプリアス59は、IDT22が主モードの弾性波を励振するときに同時に励振されたバルク波が支持基板10と絶縁層11との界面で反射することで生成される。サンプルCでは大きなスプリアス59が観察される。サンプルBではスプリアス59が少し小さくなる。サンプルAではスプリアス59はかなり小さくなる。このように、支持基板10と絶縁膜との間に粗面を設けることで、バルク波は粗面で散乱され、バルク波に起因するスプリアスを抑制できる。 FIG. 5 is a diagram showing the admittance of samples A to C in the comparative example. As shown in FIG. 5, spurious waves 59 are generated in a frequency band higher than the resonant frequency fr and the anti-resonant frequency fa. The spurious component 59 is generated when the bulk wave simultaneously excited when the IDT 22 excites the main mode elastic wave is reflected at the interface between the support substrate 10 and the insulating layer 11 . In sample C, a large spurious signal 59 is observed. In sample B, spurious 59 is slightly smaller. In sample A, spurious 59 is considerably smaller. By providing a rough surface between the support substrate 10 and the insulating film in this manner, bulk waves are scattered by the rough surface, and spurious waves caused by bulk waves can be suppressed.

図6は、比較例における課題を説明する図であり、比較例に係る弾性波デバイスの製造方法を示す断面図である。図6に示すように、レーザ光33を圧電基板12側から支持基板10内に照射するときにレーザ光33界面50aの粗面において散乱される。これにより、支持基板10内に改質領域34が形成されにくくなる。レーザ光の波長は数100nmであり、界面50aのRaがスプリアスの抑制に効果がある10nm以上ではレーザ光33が散乱されやすくなる。 FIG. 6 is a diagram illustrating problems in the comparative example, and is a cross-sectional view illustrating a method of manufacturing an acoustic wave device according to the comparative example. As shown in FIG. 6, when the laser beam 33 is irradiated into the support substrate 10 from the piezoelectric substrate 12 side, the laser beam 33 is scattered on the rough surface of the interface 50a. This makes it difficult for the modified region 34 to be formed within the support substrate 10. The wavelength of the laser beam is several hundred nm, and when the Ra of the interface 50a is 10 nm or more, which is effective in suppressing spurious, the laser beam 33 is easily scattered.

レーザ光33を支持基板10の下面から照射することも考えられる。しかし、圧電基板12、絶縁層11および支持基板10は透明なため、圧電基板12上に弾性波共振器を形成するプロセスにおいて、ウエハを認識できるように下面を梨地面(粗面)とする。このため、レーザ光33を支持基板10の下面から照射するためには、支持基板10の下面を鏡面とすることになる。圧電基板12に弾性波共振器を形成した後に、支持基板10の下面を研磨しようとすると支持基板10の厚さのばらつきが大きくなる。これにより、改質領域34の深さがばらついてしまう。よって、レーザ光33は圧電基板12側から支持基板10に照射することが好ましい。 It is also conceivable to irradiate the laser beam 33 from the lower surface of the support substrate 10. However, since the piezoelectric substrate 12, the insulating layer 11, and the support substrate 10 are transparent, in the process of forming an acoustic wave resonator on the piezoelectric substrate 12, the lower surface is made a matte surface (rough surface) so that the wafer can be recognized. Therefore, in order to irradiate the laser beam 33 from the lower surface of the support substrate 10, the lower surface of the support substrate 10 must be made into a mirror surface. If an attempt is made to polish the lower surface of the support substrate 10 after forming the acoustic wave resonator on the piezoelectric substrate 12, the thickness variation of the support substrate 10 will increase. This causes the depth of the modified region 34 to vary. Therefore, it is preferable that the laser beam 33 is irradiated onto the support substrate 10 from the piezoelectric substrate 12 side.

実施例1によれば、支持基板10および絶縁層17(第2絶縁層)の屈折率は絶縁層11の屈折率より大きい。支持基板10と絶縁層17との間の界面50(第1面)の表面粗さを絶縁層11(第1絶縁層)と17との間の界面51(第2面)の表面粗さより大きくする。このように、界面50を粗面とすることにより、図5のように、バルク波に起因するスプリアスを抑制できる。界面51を平坦面とし、絶縁層17の屈折率を絶縁層11の屈折率より大きくする。これにより、図3(b)のように、複合基板62に圧電基板12側からレーザ光33を照射し支持基板10内に改質領域34を形成するときに、レーザ光33は界面50において散乱されにくくなる。図3(c)のように、改質領域34に沿って複合基板62を割断することで、適切にチップ化することができる。 According to Example 1, the refractive index of the support substrate 10 and the insulating layer 17 (second insulating layer) is larger than the refractive index of the insulating layer 11. The surface roughness of the interface 50 (first surface) between the supporting substrate 10 and the insulating layer 17 is greater than the surface roughness of the interface 51 (second surface) between the insulating layers 11 (first insulating layer) and 17. do. In this way, by making the interface 50 a rough surface, spurious waves caused by bulk waves can be suppressed, as shown in FIG. The interface 51 is a flat surface, and the refractive index of the insulating layer 17 is made larger than the refractive index of the insulating layer 11. As a result, as shown in FIG. 3B, when the composite substrate 62 is irradiated with the laser beam 33 from the piezoelectric substrate 12 side to form the modified region 34 in the supporting substrate 10, the laser beam 33 is scattered at the interface 50. become less likely to be By cutting the composite substrate 62 along the modified region 34 as shown in FIG. 3(c), it is possible to appropriately form it into chips.

例えば、支持基板10をサファイアとすると屈折率は1.768である。絶縁層11を酸化シリコンとすると屈折率は1.457である。絶縁層17を酸化イリジウムまたは酸化ゲルマニウムを添加した酸化シリコンとすると、屈折率を1.7程度とすることができる。 For example, if the support substrate 10 is made of sapphire, the refractive index is 1.768. When the insulating layer 11 is made of silicon oxide, the refractive index is 1.457. When the insulating layer 17 is made of silicon oxide doped with iridium oxide or germanium oxide, the refractive index can be set to about 1.7.

支持基板10の屈折率と絶縁層11の屈折率との差が0.1または0.2以上の場合、図6のように絶縁層11と支持基板10との界面50aでレーザ光33が散乱されやすい。そこで、絶縁層17を設けることが好ましい。絶縁層17の屈折率は支持基板10の屈折率より小さいことが好ましい。絶縁層17と11との屈折率の差は絶縁層17と支持基板10との屈折率の差以上であることが好ましい。絶縁層17と11との屈折率の差は絶縁層17と支持基板10との屈折率の差の2倍以上であることが好ましい。これにより、レーザ光33は界面50より界面51で反射されやすくなるため、粗面での散乱を抑制できる。なお、屈折率はレーザ光33の波長等の可視光における屈折率であることが好ましい。 When the difference between the refractive index of the supporting substrate 10 and the refractive index of the insulating layer 11 is 0.1 or 0.2 or more, the laser beam 33 is scattered at the interface 50a between the insulating layer 11 and the supporting substrate 10 as shown in FIG. easy to be Therefore, it is preferable to provide the insulating layer 17. Preferably, the refractive index of the insulating layer 17 is smaller than the refractive index of the supporting substrate 10. It is preferable that the difference in refractive index between the insulating layers 17 and 11 is greater than or equal to the difference in refractive index between the insulating layer 17 and the supporting substrate 10. The difference in refractive index between the insulating layers 17 and 11 is preferably at least twice the difference in refractive index between the insulating layer 17 and the supporting substrate 10. Thereby, the laser beam 33 is reflected more easily at the interface 51 than at the interface 50, so that scattering on the rough surface can be suppressed. Note that the refractive index is preferably a refractive index in visible light such as the wavelength of the laser beam 33.

絶縁層11および17の弾性定数の温度係数の符号は前記圧電基板の弾性定数の温度係数の符号と反対である。これにより、弾性波共振器の周波数温度係数を小さくできる。 The sign of the temperature coefficient of elastic constant of the insulating layers 11 and 17 is opposite to the sign of the temperature coefficient of elastic constant of the piezoelectric substrate. Thereby, the frequency temperature coefficient of the elastic wave resonator can be reduced.

絶縁層11および17の音響インピーダンスが支持基板の音響インピーダンスより小さい(すなわち絶縁層11および17の音速は支持基板10の音速より遅い)。これにより、バルク波は絶縁層11と17の界面51で反射されにくく、絶縁層17と支持基板10との界面で反射される。よって、バルク波が散乱されスプリアスを抑制できる。 The acoustic impedance of the insulating layers 11 and 17 is smaller than the acoustic impedance of the support substrate (ie, the sound speed of the insulating layers 11 and 17 is lower than the sound speed of the support substrate 10). Thereby, the bulk wave is hardly reflected at the interface 51 between the insulating layers 11 and 17, and is reflected at the interface between the insulating layer 17 and the support substrate 10. Therefore, bulk waves are scattered and spurious waves can be suppressed.

例えば、支持基板10をサファイアとすると音響インピーダンスは44.4×10kg/m・sである。絶縁層11を酸化シリコンとすると音響インピーダンスは15.7×10kg/m・sである。絶縁層17を酸化イリジウムまたは酸化ゲルマニウムを添加した酸化シリコンとすると、音響インピーダンスを15×10kg/m・s程度とすることができる。 For example, if the support substrate 10 is made of sapphire, the acoustic impedance is 44.4×10 6 kg/m 2 ·s. When the insulating layer 11 is made of silicon oxide, the acoustic impedance is 15.7×10 6 kg/m 2 ·s. When the insulating layer 17 is made of silicon oxide added with iridium oxide or germanium oxide, the acoustic impedance can be about 15×10 6 kg/m 2 ·s.

支持基板10の音響インピーダンスは絶縁層11および17の音響インピーダンスの1.5倍以上が好ましく、2倍以上がより好ましい。絶縁層17と支持基板10との音響インピーダンスの差は絶縁層17と11との音響インピーダンスの差以上であることが好ましい。絶縁層17と支持基板10との音響インピーダンスの差は絶縁層17と11との音響インピーダンスの差の2倍以上であることが好ましい。これにより、バルク波は平坦面である界面51より粗面である界面50で反射されやすくなるため、スプリアスを抑制できる。 The acoustic impedance of the supporting substrate 10 is preferably 1.5 times or more, more preferably 2 times or more, the acoustic impedance of the insulating layers 11 and 17. The difference in acoustic impedance between the insulating layer 17 and the support substrate 10 is preferably greater than the difference in acoustic impedance between the insulating layers 17 and 11. The difference in acoustic impedance between the insulating layer 17 and the support substrate 10 is preferably at least twice the difference in acoustic impedance between the insulating layers 17 and 11. Thereby, the bulk wave is more likely to be reflected at the rough interface 50 than at the flat interface 51, so that spurious waves can be suppressed.

絶縁層11と17の主成分は同じであり、絶縁層17は絶縁層11に添加されていない不純物を含む。これにより、絶縁層11と17の音響インピーダンスをほぼ同じとし、絶縁層17の屈折率を大きくできる。例えば、絶縁層11および17の主成分を酸化シリコンとし、絶縁層17の酸化ゲルマニウムまたは酸化ジルコニウムの濃度を絶縁層11の酸化ゲルマニウムまたは酸化ジルコニウムの濃度より高くする。これにより、絶縁層11と17の音響インピーダンスをほぼ同じとし、絶縁層17の屈折率を大きくできる。 The main components of the insulating layers 11 and 17 are the same, and the insulating layer 17 contains impurities that are not added to the insulating layer 11. Thereby, the acoustic impedance of the insulating layers 11 and 17 can be made almost the same, and the refractive index of the insulating layer 17 can be increased. For example, the main component of the insulating layers 11 and 17 is silicon oxide, and the concentration of germanium oxide or zirconium oxide in the insulating layer 17 is higher than the concentration of germanium oxide or zirconium oxide in the insulating layer 11. Thereby, the acoustic impedance of the insulating layers 11 and 17 can be made almost the same, and the refractive index of the insulating layer 17 can be increased.

レーザダイシング法を用いて切断した弾性波デバイスでは、支持基板10の側面には支持基板10の構成元素を主成分とする複数の改質領域34が平面方向に設けられる。改質領域34は、レーザ光により溶融しその後固体となった溶融痕であり、支持基板10の結晶構造と異なる結晶構造を有するアモルファスおよび/または多結晶である。また、圧電基板12、絶縁層11および支持基板10はレーザ光33に対し透光性を有する。 In the acoustic wave device cut using the laser dicing method, a plurality of modified regions 34 containing the constituent elements of the support substrate 10 as a main component are provided on the side surface of the support substrate 10 in the planar direction. The modified region 34 is a melting trace that is melted by a laser beam and then becomes solid, and is amorphous and/or polycrystalline having a crystal structure different from that of the supporting substrate 10 . In addition, the piezoelectric substrate 12, the insulating layer 11, and the support substrate 10 are transparent to the laser beam 33.

スプリアスを抑制するため、界面51の算術平均粗さRaは10nm以上が好ましく、100nm以上がより好ましい。レーザ光33の散乱を抑制するため、界面51および52の算術平均粗さは1nm以下が好ましく、0.5nm以下がより好ましい。 In order to suppress spurious noise, the arithmetic mean roughness Ra of the interface 51 is preferably 10 nm or more, more preferably 100 nm or more. In order to suppress scattering of the laser beam 33, the arithmetic mean roughness of the interfaces 51 and 52 is preferably 1 nm or less, more preferably 0.5 nm or less.

IDT22がSH(Shear Horizontal)を励振するとき、バルク波が生成されやすい。圧電基板12が36°以上かつ48°以下回転Yカットタンタル酸リチウム基板のとき、SH波が励振される。よって、このとき、界面50を粗面とすることが好ましい。圧電基板12の厚さが弾性波の波長λ以下のとき、すなわち電極指15のピッチの平均値に2倍以下のとき、損失が抑制される。また、支持基板10の上面から圧電基板12の上面までの距離が電極指15のピッチの平均値に4倍以下のとき、損失が抑制される。 When the IDT 22 excites SH (Shear Horizontal), bulk waves are likely to be generated. When the piezoelectric substrate 12 is a Y-cut lithium tantalate substrate rotated by 36 degrees or more and 48 degrees or less, SH waves are excited. Therefore, at this time, it is preferable to make the interface 50 a rough surface. When the thickness of the piezoelectric substrate 12 is equal to or less than the wavelength λ of the elastic wave, that is, when the thickness is equal to or less than twice the average pitch of the electrode fingers 15, loss is suppressed. Further, when the distance from the top surface of the support substrate 10 to the top surface of the piezoelectric substrate 12 is four times or less the average value of the pitch of the electrode fingers 15, loss is suppressed.

弾性波が支持基板10に漏れないように、支持基板10の音響インピーダンスは圧電基板12の音響インピーダンスより高い(すなわち支持基板10の音速は圧電基板12の音速より速い)ことが好ましい。また、絶縁層11および17内に弾性波が伝搬するため絶縁層11および17の音響インピーダンスは圧電基板12および支持基板10の音響インピーダンスより低い(すなわち絶縁層11および17の音速は圧電基板12および支持基板10の音速より遅い)ことが好ましい。 In order to prevent elastic waves from leaking to the support substrate 10, the acoustic impedance of the support substrate 10 is preferably higher than the acoustic impedance of the piezoelectric substrate 12 (that is, the sound speed of the support substrate 10 is faster than the sound speed of the piezoelectric substrate 12). Furthermore, since elastic waves propagate within the insulating layers 11 and 17, the acoustic impedance of the insulating layers 11 and 17 is lower than the acoustic impedance of the piezoelectric substrate 12 and the supporting substrate 10 (that is, the sound velocity of the insulating layers 11 and 17 is lower than that of the piezoelectric substrate 12 and the supporting substrate 10). (lower than the sound velocity of the support substrate 10) is preferable.

図7(a)は、実施例2に係るフィルタの回路図である。図7(a)に示すように、入力端子Tinと出力端子Toutとの間に、1または複数の直列共振器S1からS3が直列に接続されている。入力端子Tinと出力端子Toutとの間に、1または複数の並列共振器P1およびP2が並列に接続されている。1または複数の直列共振器S1からS3および1または複数の並列共振器P1およびP2の少なくとも1つに実施例1の弾性波共振器を用いることができる。ラダー型フィルタの共振器の個数等は適宜設定できる。フィルタは、多重モード型フィルタでもよい。 FIG. 7(a) is a circuit diagram of a filter according to the second embodiment. As shown in FIG. 7A, one or more series resonators S1 to S3 are connected in series between the input terminal Tin and the output terminal Tout. One or more parallel resonators P1 and P2 are connected in parallel between the input terminal Tin and the output terminal Tout. The elastic wave resonator of Example 1 can be used as at least one of the one or more series resonators S1 to S3 and the one or more parallel resonators P1 and P2. The number of resonators of the ladder filter can be set as appropriate. The filter may be a multimode filter.

[実施例2の変形例1]
図7(b)は、実施例2の変形例1に係るデュプレクサの回路図である。図7(b)に示すように、共通端子Antと送信端子Txとの間に送信フィルタ40が接続されている。共通端子Antと受信端子Rxとの間に受信フィルタ42が接続されている。送信フィルタ40は、送信端子Txから入力された高周波信号のうち送信帯域の信号を送信信号として共通端子Antに通過させ、他の周波数の信号を抑圧する。受信フィルタ42は、共通端子Antから入力された高周波信号のうち受信帯域の信号を受信信号として受信端子Rxに通過させ、他の周波数の信号を抑圧する。送信フィルタ40および受信フィルタ42の少なくとも一方を実施例2のフィルタとすることができる。
[Modification 1 of Example 2]
FIG. 7(b) is a circuit diagram of a duplexer according to a first modification of the second embodiment. As shown in FIG. 7(b), a transmission filter 40 is connected between the common terminal Ant and the transmission terminal Tx. A reception filter 42 is connected between the common terminal Ant and the reception terminal Rx. The transmission filter 40 passes a signal in the transmission band among the high frequency signals inputted from the transmission terminal Tx to the common terminal Ant as a transmission signal, and suppresses signals of other frequencies. The reception filter 42 passes a signal in the reception band among the high-frequency signals inputted from the common terminal Ant to the reception terminal Rx as a reception signal, and suppresses signals at other frequencies. At least one of the transmission filter 40 and the reception filter 42 can be the filter of the second embodiment.

マルチプレクサとしてデュプレクサを例に説明したがトリプレクサまたはクワッドプレクサでもよい。 Although a duplexer has been described as an example of a multiplexer, a triplexer or a quadplexer may also be used.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to these specific embodiments, and various modifications and variations can be made within the scope of the gist of the present invention as described in the claims. Changes are possible.

10 支持基板
11、17 絶縁層
12 圧電基板
13 接合層
15 電極指
18 櫛型電極
20 弾性波共振器
22 IDT
33 レーザ光
50-52 界面
10 Support substrate 11, 17 Insulating layer 12 Piezoelectric substrate 13 Bonding layer 15 Electrode finger 18 Comb-shaped electrode 20 Acoustic wave resonator 22 IDT
33 Laser light 50-52 Interface

Claims (13)

多結晶基板または単結晶基板である支持基板と、
前記支持基板上に設けられた圧電基板と、
前記圧電基板上に設けられた一対の櫛型電極と、
前記支持基板と前記圧電基板との間に設けられ、前記支持基板の屈折率よりも低い屈折率を有する第1絶縁層と、
前記第1絶縁層と前記支持基板との間に設けられ、前記支持基板との間の第1面の表面粗さは前記第1絶縁層との間の第2面の表面粗さより大きく、前記第1絶縁層より屈折率高くかつ前記支持基板より屈折率が低い第2絶縁層と、
を備え、
前記支持基板の側面には前記支持基板の構成元素を主成分としアモルファスまたは多結晶である複数の改質領域が平面方向に設けられており、
前記第2絶縁層の屈折率と前記第1絶縁層の屈折率との差は、前記支持基板の屈折率と前記第2絶縁層の屈折率との差以上である弾性波デバイス。
a supporting substrate that is a polycrystalline substrate or a single crystalline substrate;
a piezoelectric substrate provided on the support substrate;
a pair of comb-shaped electrodes provided on the piezoelectric substrate;
a first insulating layer provided between the support substrate and the piezoelectric substrate and having a refractive index lower than the refractive index of the support substrate;
provided between the first insulating layer and the supporting substrate, the surface roughness of the first surface between the first insulating layer and the supporting substrate is greater than the surface roughness of the second surface between the first insulating layer; a second insulating layer having a higher refractive index than the first insulating layer and a lower refractive index than the supporting substrate ;
Equipped with
A plurality of modified regions which are amorphous or polycrystalline and whose main component is the constituent element of the support substrate are provided in a planar direction on the side surface of the support substrate,
The acoustic wave device wherein the difference between the refractive index of the second insulating layer and the refractive index of the first insulating layer is greater than or equal to the difference between the refractive index of the support substrate and the second insulating layer.
多結晶基板または単結晶基板である支持基板と、
前記支持基板上に設けられた圧電基板と、
前記圧電基板上に設けられた一対の櫛型電極と、
前記支持基板と前記圧電基板との間に設けられ、前記支持基板の屈折率よりも低い屈折率を有する第1絶縁層と、
前記第1絶縁層と前記支持基板との間に設けられ、前記支持基板との間の第1面の表面粗さは前記第1絶縁層との間の第2面の表面粗さより大きく、前記第1絶縁層より屈折率の高い第2絶縁層と、
を備え、
前記支持基板の側面には前記支持基板の構成元素を主成分としアモルファスまたは多結晶である複数の改質領域が平面方向に設けられており、
前記第1絶縁層と前記第2絶縁層との主成分は同じであり、前記第2絶縁層は前記第1絶縁層に添加されていない不純物を含む弾性波デバイス。
a supporting substrate that is a polycrystalline substrate or a single crystalline substrate;
a piezoelectric substrate provided on the support substrate;
a pair of comb-shaped electrodes provided on the piezoelectric substrate;
a first insulating layer provided between the support substrate and the piezoelectric substrate and having a refractive index lower than the refractive index of the support substrate;
provided between the first insulating layer and the supporting substrate, the surface roughness of the first surface between the first insulating layer and the supporting substrate is greater than the surface roughness of the second surface between the first insulating layer; a second insulating layer having a higher refractive index than the first insulating layer;
Equipped with
A plurality of modified regions which are amorphous or polycrystalline and whose main component is the constituent element of the support substrate are provided in a planar direction on the side surface of the support substrate,
The first insulating layer and the second insulating layer have the same main components, and the second insulating layer contains impurities that are not added to the first insulating layer.
多結晶基板または単結晶基板である支持基板と、
前記支持基板上に設けられた圧電基板と、
前記圧電基板上に設けられた一対の櫛型電極と、
前記支持基板と前記圧電基板との間に設けられ、前記支持基板の屈折率よりも低い屈折率を有する第1絶縁層と、
前記第1絶縁層と前記支持基板との間に設けられ、前記支持基板との間の第1面の表面粗さは前記第1絶縁層との間の第2面の表面粗さより大きく、前記第1絶縁層より屈折率の高い第2絶縁層と、
を備え、
前記支持基板の側面には前記支持基板の構成元素を主成分としアモルファスまたは多結晶である複数の改質領域が平面方向に設けられており、
前記第1絶縁層および前記第2絶縁層の主成分は酸化シリコンであり、前記第2絶縁層の酸化ゲルマニウムまたは酸化ジルコニウムの濃度は前記第1絶縁層の酸化ゲルマニウムまたは酸化ジルコニウムの濃度より高い弾性波デバイス。
a supporting substrate that is a polycrystalline substrate or a single crystalline substrate;
a piezoelectric substrate provided on the support substrate;
a pair of comb-shaped electrodes provided on the piezoelectric substrate;
a first insulating layer provided between the support substrate and the piezoelectric substrate and having a refractive index lower than the refractive index of the support substrate;
provided between the first insulating layer and the supporting substrate, the surface roughness of the first surface between the first insulating layer and the supporting substrate is greater than the surface roughness of the second surface between the first insulating layer; a second insulating layer having a higher refractive index than the first insulating layer;
Equipped with
A plurality of modified regions which are amorphous or polycrystalline and whose main component is the constituent element of the support substrate are provided in a planar direction on the side surface of the support substrate,
The main component of the first insulating layer and the second insulating layer is silicon oxide, and the concentration of germanium oxide or zirconium oxide in the second insulating layer has higher elasticity than the concentration of germanium oxide or zirconium oxide in the first insulating layer. wave device.
前記第1絶縁層および前記第2絶縁層の弾性定数の温度係数の符号は前記圧電基板の弾性定数の温度係数の符号と反対である請求項1から3のいずれか一項に記載の弾性波デバイス。 The elastic wave according to any one of claims 1 to 3, wherein the signs of the temperature coefficients of elastic constants of the first insulating layer and the second insulating layer are opposite to the signs of the temperature coefficients of elastic constants of the piezoelectric substrate. device. 前記第1絶縁層および前記第2絶縁層の音速は、前記支持基板の音速より遅い請求項4に記載の弾性波デバイス。 The acoustic wave device according to claim 4, wherein the sound velocity of the first insulating layer and the second insulating layer is lower than the sound velocity of the support substrate. 前記第1面の算術平均粗さは10nm以上であり、前記第2面の算術平均粗さは1nm以下である請求項1から5のいずれか一項に記載の弾性波デバイス。 The acoustic wave device according to any one of claims 1 to 5, wherein the first surface has an arithmetic mean roughness of 10 nm or more, and the second surface has an arithmetic mean roughness of 1 nm or less. 前記支持基板は単結晶基板である請求項1から6のいずれか一項に記載の弾性波デバイス。 The acoustic wave device according to any one of claims 1 to 6, wherein the support substrate is a single crystal substrate. 前記改質領域はアモルファスである請求項1から7のいずれか一項に記載の弾性波デバイス。 The acoustic wave device according to any one of claims 1 to 7, wherein the modified region is amorphous. 請求項1から8のいずれか一項に記載の弾性波デバイスを含むフィルタ。 A filter comprising the elastic wave device according to any one of claims 1 to 8. 請求項9に記載のフィルタを含むマルチプレクサ。 A multiplexer comprising a filter according to claim 9. 支持基板と、前記支持基板上に設けられた圧電基板と、前記支持基板と前記圧電基板との間に設けられ、前記支持基板の屈折率よりも低い屈折率を有する第1絶縁層と、前記第1絶縁層と前記支持基板との間に設けられ、前記支持基板との間の第1面の表面粗さは前記第1絶縁層との間の第2面の表面粗さより大きく、前記第1絶縁層より屈折率高くかつ前記支持基板より屈折率の低い第2絶縁層と、を備える複合基板に前記圧電基板側からレーザ光を照射し前記支持基板内に改質領域を形成する工程と、
前記改質領域に沿って前記複合基板を割断する工程と、
を含み、
前記第2絶縁層の屈折率と前記第1絶縁層の屈折率との差は、前記支持基板の屈折率と前記第2絶縁層の屈折率との差以上である弾性波デバイスの製造方法。
a support substrate, a piezoelectric substrate provided on the support substrate, a first insulating layer provided between the support substrate and the piezoelectric substrate and having a refractive index lower than the refractive index of the support substrate; provided between a first insulating layer and the supporting substrate, the surface roughness of the first surface between the first insulating layer and the supporting substrate is greater than the surface roughness of the second surface between the first insulating layer and the first insulating layer; a second insulating layer having a higher refractive index than the first insulating layer and a second insulating layer having a lower refractive index than the supporting substrate; irradiating a composite substrate with laser light from the piezoelectric substrate side to form a modified region in the supporting substrate; and,
cutting the composite substrate along the modified region;
including;
The method for manufacturing an acoustic wave device, wherein the difference between the refractive index of the second insulating layer and the refractive index of the first insulating layer is greater than or equal to the difference between the refractive index of the support substrate and the second insulating layer.
支持基板と、前記支持基板上に設けられた圧電基板と、前記支持基板と前記圧電基板との間に設けられ、前記支持基板の屈折率よりも低い屈折率を有する第1絶縁層と、前記第1絶縁層と前記支持基板との間に設けられ、前記支持基板との間の第1面の表面粗さは前記第1絶縁層との間の第2面の表面粗さより大きく、前記第1絶縁層より屈折率の高い第2絶縁層と、を備える複合基板に前記圧電基板側からレーザ光を照射し前記支持基板内に改質領域を形成する工程と、
前記改質領域に沿って前記複合基板を割断する工程と、
を含み、
前記第1絶縁層と前記第2絶縁層との主成分は同じであり、前記第2絶縁層は前記第1絶縁層に添加されていない不純物を含む弾性波デバイスの製造方法。
a support substrate, a piezoelectric substrate provided on the support substrate, a first insulating layer provided between the support substrate and the piezoelectric substrate and having a refractive index lower than the refractive index of the support substrate; provided between a first insulating layer and the supporting substrate, the surface roughness of the first surface between the first insulating layer and the supporting substrate is greater than the surface roughness of the second surface between the first insulating layer and the first insulating layer; a second insulating layer having a higher refractive index than the first insulating layer; irradiating a composite substrate with a laser beam from the piezoelectric substrate side to form a modified region in the supporting substrate;
cutting the composite substrate along the modified region;
including;
The first insulating layer and the second insulating layer have the same main components, and the second insulating layer contains impurities that are not added to the first insulating layer.
支持基板と、前記支持基板上に設けられた圧電基板と、前記支持基板と前記圧電基板との間に設けられ、前記支持基板の屈折率よりも低い屈折率を有する第1絶縁層と、前記第1絶縁層と前記支持基板との間に設けられ、前記支持基板との間の第1面の表面粗さは前記第1絶縁層との間の第2面の表面粗さより大きく、前記第1絶縁層より屈折率の高い第2絶縁層と、を備える複合基板に前記圧電基板側からレーザ光を照射し前記支持基板内に改質領域を形成する工程と、
前記改質領域に沿って前記複合基板を割断する工程と、
を含み、
前記第1絶縁層および前記第2絶縁層の主成分は酸化シリコンであり、前記第2絶縁層の酸化ゲルマニウムまたは酸化ジルコニウムの濃度は前記第1絶縁層の酸化ゲルマニウムまたは酸化ジルコニウムの濃度より高い弾性波デバイスの製造方法。
a support substrate, a piezoelectric substrate provided on the support substrate, a first insulating layer provided between the support substrate and the piezoelectric substrate and having a refractive index lower than the refractive index of the support substrate; provided between a first insulating layer and the supporting substrate, the surface roughness of the first surface between the first insulating layer and the supporting substrate is greater than the surface roughness of the second surface between the first insulating layer and the first insulating layer; a second insulating layer having a higher refractive index than the first insulating layer; irradiating a composite substrate with laser light from the piezoelectric substrate side to form a modified region in the supporting substrate;
cutting the composite substrate along the modified region;
including;
The main component of the first insulating layer and the second insulating layer is silicon oxide, and the concentration of germanium oxide or zirconium oxide in the second insulating layer is higher than the concentration of germanium oxide or zirconium oxide in the first insulating layer. Method of manufacturing wave devices.
JP2019046395A 2019-03-13 2019-03-13 Acoustic wave devices and their manufacturing methods, filters and multiplexers Active JP7403960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019046395A JP7403960B2 (en) 2019-03-13 2019-03-13 Acoustic wave devices and their manufacturing methods, filters and multiplexers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019046395A JP7403960B2 (en) 2019-03-13 2019-03-13 Acoustic wave devices and their manufacturing methods, filters and multiplexers

Publications (2)

Publication Number Publication Date
JP2020150415A JP2020150415A (en) 2020-09-17
JP7403960B2 true JP7403960B2 (en) 2023-12-25

Family

ID=72430920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019046395A Active JP7403960B2 (en) 2019-03-13 2019-03-13 Acoustic wave devices and their manufacturing methods, filters and multiplexers

Country Status (1)

Country Link
JP (1) JP7403960B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116325499A (en) * 2020-10-02 2023-06-23 株式会社村田制作所 Elastic wave device and method for manufacturing elastic wave device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074464A1 (en) 2009-12-15 2011-06-23 株式会社村田製作所 Boundary acoustic wave device
WO2013187410A1 (en) 2012-06-13 2013-12-19 日本碍子株式会社 Composite substrate
JP2014216451A (en) 2013-04-25 2014-11-17 株式会社リコー Multilayer substrate, piezo electric element, droplet discharge head, droplet discharge apparatus
JP2015115870A (en) 2013-12-13 2015-06-22 株式会社村田製作所 Acoustic wave device
JP2015216525A (en) 2014-05-12 2015-12-03 太陽誘電株式会社 Elastic wave device and method of manufacturing the same
US20190030648A1 (en) 2017-07-26 2019-01-31 Disco Corporation Method of processing a substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644088B2 (en) * 1985-05-22 1994-06-08 株式会社日立製作所 Polarization-maintaining optical fiber
JP2003218419A (en) * 2002-01-25 2003-07-31 Tama Tlo Kk Piezoelectric film, piezoelectric element, piezoelectric vibrator, piezoelectric filter, surface acoustic wave device, and optical elastic wave composite device using piezoelectric film
WO2013031651A1 (en) * 2011-09-02 2013-03-07 株式会社村田製作所 Elastic wave device and production method therefor
FR3053532B1 (en) * 2016-06-30 2018-11-16 Soitec HYBRID STRUCTURE FOR ACOUSTIC SURFACE WAVE DEVICE
JP6929565B2 (en) * 2016-11-25 2021-09-01 国立大学法人東北大学 Elastic wave device
WO2018154950A1 (en) * 2017-02-21 2018-08-30 株式会社村田製作所 Elastic wave device, high-frequency front end circuit, and communication device
WO2018163805A1 (en) * 2017-03-09 2018-09-13 株式会社村田製作所 Elastic wave device, high-frequency front end circuit, and communications device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074464A1 (en) 2009-12-15 2011-06-23 株式会社村田製作所 Boundary acoustic wave device
WO2013187410A1 (en) 2012-06-13 2013-12-19 日本碍子株式会社 Composite substrate
JP2014216451A (en) 2013-04-25 2014-11-17 株式会社リコー Multilayer substrate, piezo electric element, droplet discharge head, droplet discharge apparatus
JP2015115870A (en) 2013-12-13 2015-06-22 株式会社村田製作所 Acoustic wave device
JP2015216525A (en) 2014-05-12 2015-12-03 太陽誘電株式会社 Elastic wave device and method of manufacturing the same
US20190030648A1 (en) 2017-07-26 2019-01-31 Disco Corporation Method of processing a substrate

Also Published As

Publication number Publication date
JP2020150415A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP7169083B2 (en) Acoustic wave devices and multiplexers
KR102140089B1 (en) Acoustic wave resonator, filter, and multiplexer
US10938372B2 (en) Acoustic wave resonator, acoustic wave device, and filter
US20190326878A1 (en) Acoustic wave resonator, filter, and multiplexer
JP7433873B2 (en) Acoustic wave resonators, filters, and multiplexers
KR101913933B1 (en) Acoustic wave device
JP7553622B2 (en) Acoustic Wave Resonators, Filters and Multiplexers
JP7397573B2 (en) Acoustic wave devices, filters and multiplexers
JP7485478B2 (en) Acoustic Wave Devices, Filters and Multiplexers
JP2019201345A (en) Acoustic wave resonator, filter and multiplexer
JP7406305B2 (en) Acoustic wave devices and their manufacturing methods, filters and multiplexers
JP7458700B2 (en) Acoustic wave resonators, filters and multiplexers
JP2020182130A (en) Filter and multiplexer
JP7403960B2 (en) Acoustic wave devices and their manufacturing methods, filters and multiplexers
JP2022176790A (en) Elastic wave device, wafer, filter and multiplexer
CN114070257A (en) Acoustic wave device, filter and multiplexer
JP7441010B2 (en) Acoustic wave devices, filters and multiplexers
JP6886264B2 (en) Elastic wave devices and composite substrates and their manufacturing methods
JP7551318B2 (en) Acoustic wave device and manufacturing method thereof, filter, and multiplexer
JP2021027401A (en) Acoustic wave device, filter, and multiplexer
JP7509598B2 (en) Acoustic Wave Devices, Filters and Multiplexers
JP2024003636A (en) Acoustic wave device, filter, multiplexer, and wafer
US20230208395A1 (en) Acoustic wave device, wafer, and method of manufacturing wafer
WO2023033032A1 (en) Elastic wave element, demultiplexer, and communication device
WO2022224470A1 (en) Resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231213

R150 Certificate of patent or registration of utility model

Ref document number: 7403960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150