JP7402378B1 - Resin composition for three-dimensional modeling device, filament for three-dimensional modeling device, modeled object, pellet for three-dimensional modeling device, and resin composition for injection molding - Google Patents
Resin composition for three-dimensional modeling device, filament for three-dimensional modeling device, modeled object, pellet for three-dimensional modeling device, and resin composition for injection molding Download PDFInfo
- Publication number
- JP7402378B1 JP7402378B1 JP2023144977A JP2023144977A JP7402378B1 JP 7402378 B1 JP7402378 B1 JP 7402378B1 JP 2023144977 A JP2023144977 A JP 2023144977A JP 2023144977 A JP2023144977 A JP 2023144977A JP 7402378 B1 JP7402378 B1 JP 7402378B1
- Authority
- JP
- Japan
- Prior art keywords
- dimensional modeling
- resin composition
- resin
- modeling device
- modified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 143
- 238000001746 injection moulding Methods 0.000 title claims abstract description 14
- 239000008188 pellet Substances 0.000 title claims abstract description 13
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 37
- 229920000098 polyolefin Polymers 0.000 claims abstract description 27
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 claims abstract description 22
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000004743 Polypropylene Substances 0.000 claims description 58
- 229920001155 polypropylene Polymers 0.000 claims description 58
- 238000002425 crystallisation Methods 0.000 claims description 38
- 230000008025 crystallization Effects 0.000 claims description 38
- -1 polypropylene Polymers 0.000 claims description 32
- 229920001577 copolymer Polymers 0.000 claims description 24
- 238000002156 mixing Methods 0.000 claims description 13
- 239000004594 Masterbatch (MB) Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 abstract description 53
- 239000011347 resin Substances 0.000 abstract description 53
- 230000001070 adhesive effect Effects 0.000 abstract description 44
- 239000000853 adhesive Substances 0.000 abstract description 42
- 229920000642 polymer Polymers 0.000 abstract description 23
- 229920006113 non-polar polymer Polymers 0.000 abstract description 16
- 238000010586 diagram Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 22
- 230000002829 reductive effect Effects 0.000 description 22
- 230000001681 protective effect Effects 0.000 description 15
- 239000000126 substance Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 12
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 10
- 239000011976 maleic acid Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 10
- 229920001971 elastomer Polymers 0.000 description 8
- 229920005672 polyolefin resin Polymers 0.000 description 8
- 229920000178 Acrylic resin Polymers 0.000 description 7
- 239000004925 Acrylic resin Substances 0.000 description 7
- 239000000806 elastomer Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000012778 molding material Substances 0.000 description 7
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 5
- 229920006026 co-polymeric resin Polymers 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 229920005629 polypropylene homopolymer Polymers 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 229920000578 graft copolymer Polymers 0.000 description 4
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- 229920002725 thermoplastic elastomer Polymers 0.000 description 4
- 239000004711 α-olefin Substances 0.000 description 4
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 229920001935 styrene-ethylene-butadiene-styrene Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229920006038 crystalline resin Polymers 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical group O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229920003232 aliphatic polyester Polymers 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920005630 polypropylene random copolymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical group O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229920006259 thermoplastic polyimide Polymers 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
【課題】造形時に所定のシートや接着剤を用いずともエッジのある造形物等の反りを低減できる立体造形装置用樹脂組成物、立体造形装置用フィラメント、造形物、立体造形装置用ペレット、及び射出成型用樹脂組成物を提供する。【解決手段】立体造形装置用樹脂組成物は、(A)熱可塑性樹脂と、(B)ブテン系ポリオレフィンを骨格に含む変性熱可塑性樹脂とを含み、(B)ブテン系ポリオレフィンを骨格に含む変性熱可塑性樹脂が、(C)反応性基を有し、分子鎖が無極性高分子である高分子による変性樹脂である。【選択図】図1[Object] A resin composition for a three-dimensional modeling device, a filament for a three-dimensional modeling device, a modeled object, a pellet for a three-dimensional modeling device, which can reduce warping of objects with edges without using a predetermined sheet or adhesive during modeling, and A resin composition for injection molding is provided. [Solution] A resin composition for a three-dimensional modeling device includes (A) a thermoplastic resin, (B) a modified thermoplastic resin containing a butene-based polyolefin in its skeleton, and (B) a modified thermoplastic resin containing a butene-based polyolefin in its skeleton. The thermoplastic resin is (C) a modified resin with a polymer having a reactive group and whose molecular chain is a nonpolar polymer. [Selection diagram] Figure 1
Description
本発明は、立体造形装置用樹脂組成物、立体造形装置用フィラメント、造形物、立体造形装置用ペレット、及び射出成型用樹脂組成物に関する。特に、本発明は、ブテン系ポリオレフィンを含む立体造形装置用樹脂組成物、立体造形装置用フィラメント、造形物、立体造形装置用ペレット、及び射出成型用樹脂組成物に関する。 The present invention relates to a resin composition for a three-dimensional modeling device, a filament for a three-dimensional modeling device, a shaped article, a pellet for a three-dimensional modeling device, and a resin composition for injection molding. In particular, the present invention relates to a resin composition for a three-dimensional modeling device, a filament for a three-dimensional modeling device, a shaped article, a pellet for a three-dimensional modeling device, and a resin composition for injection molding containing a butene-based polyolefin.
従来、成形材料中に、30~80質量%含有する熱可塑性樹脂(A)と、1~45質量%含有する熱可塑性エラストマー(B)と、0.5~15質量%含有する改質剤(C)と、5~35質量%含有する粘着性付与樹脂(D)とを含有する(ただし、前記熱可塑性エラストマー(B)が、官能基が付与された官能基付与熱可塑性エラストマーである場合、改質剤(C)は含まなくてもよい。)立体造形装置用樹脂成形材料が知られている(例えば、特許文献1参照。)。特許文献1に係る立体造形装置用樹脂成形材料によれば、ポリプロピレン樹脂のような汎用樹脂を利用でき、低密度、耐熱性、耐久性、耐衝撃性、成形適性、低収縮性を有する立体造形装置に用いられる立体造形装置用樹脂成形材料を提供できる。 Conventionally, a molding material contains a thermoplastic resin (A) containing 30 to 80% by mass, a thermoplastic elastomer (B) containing 1 to 45% by mass, and a modifier (containing 0.5 to 15% by mass). C) and a tackifying resin (D) containing 5 to 35% by mass (provided that when the thermoplastic elastomer (B) is a functional group-added thermoplastic elastomer to which a functional group has been added, The modifier (C) may not be included.) Resin molding materials for three-dimensional modeling devices are known (see, for example, Patent Document 1). According to the resin molding material for a three-dimensional modeling device according to Patent Document 1, a general-purpose resin such as polypropylene resin can be used, and three-dimensional modeling has low density, heat resistance, durability, impact resistance, moldability, and low shrinkage. It is possible to provide a resin molding material for a three-dimensional modeling device used in the device.
ここで、特許文献1に記載されている立体造形装置用樹脂成形材料を含む従来技術においては、エラストマーやゴムを立体造形装置用樹脂成形材料に添加することで造形物の反りの低減を図っている。しかし、例えば特許文献1に記載の立体造形装置用樹脂成形材料においては、造形する立体物は厚さが2mmの平板に過ぎないにもかかわらず、立体造形装置のステージ上にポリイミドフィルムを貼り付け、更にポリイミドフィルム上に3Dステージシーラント(水溶性の接着剤)を塗布することが反りを低減するための必須要件となっている(特許文献1の段落0075参照。)。 Here, in the conventional technology including a resin molding material for a three-dimensional modeling device described in Patent Document 1, warpage of the modeled object is reduced by adding an elastomer or rubber to the resin molding material for a three-dimensional modeling device. There is. However, for example, in the resin molding material for a three-dimensional modeling device described in Patent Document 1, although the three-dimensional object to be modeled is only a flat plate with a thickness of 2 mm, a polyimide film is pasted on the stage of the three-dimensional modeling device. Furthermore, applying a 3D stage sealant (water-soluble adhesive) on the polyimide film is an essential requirement for reducing warpage (see paragraph 0075 of Patent Document 1).
これは、立体造形装置を用いて製造される造形物は積層数が増大するにしたがって底面の反りが大きくなることから、特許文献1を含む従来技術においては立体造形装置用樹脂成形材料のステージ(造形装置のステージ)に対する接着性を確保できないことによる。そのため、従来技術ではステージやフィルムに対する接着剤塗布工程を省略できない。例えば、ポリプロピレン等の結晶性樹脂を用いて造形物を製造する場合、平板等の積層数が少ない造形物であれば反りがある程度少ない造形物を造形できたとしても、箱等の積層数が多い造形物を造形すると反りが発生して造形物が製造できないことから接着剤塗布工程は必須工程となっている。 This is because, as the number of layers of a modeled object manufactured using a three-dimensional modeling apparatus increases, the warpage of the bottom surface increases. This is due to the inability to secure adhesion to the stage of the modeling device. Therefore, in the conventional technology, the step of applying adhesive to the stage and film cannot be omitted. For example, when manufacturing a model using a crystalline resin such as polypropylene, even if a model with a small number of laminated layers such as a flat plate can be manufactured with a certain degree of warping, if the number of layers such as a box is large. The adhesive application process is an essential step because when a modeled object is modeled, warpage occurs and the modeled object cannot be manufactured.
したがって、本発明の目的は、造形時に所定のシートや接着剤を用いずともエッジのある造形物等の反りを低減できる立体造形装置用樹脂組成物、立体造形装置用フィラメント、造形物、立体造形装置用ペレット、及び射出成型用樹脂組成物を提供することにある。 Therefore, an object of the present invention is to provide a resin composition for a three-dimensional modeling device, a filament for a three-dimensional modeling device, a three-dimensional modeling device, a three-dimensional modeling device, a filament for a three-dimensional modeling device, a three-dimensional modeling device, which can reduce warping of objects with edges without using a predetermined sheet or adhesive during modeling. The object of the present invention is to provide pellets for equipment and resin compositions for injection molding.
本発明は、上記目的を達成するため、(A)熱可塑性樹脂と、反応性基を有し分子鎖が無極性高分子である高分子により変性されてなり、ブテン系ポリオレフィンを骨格に含む(B)変性熱可塑性樹脂とを含有する立体造形装置用樹脂組成物が提供される。 In order to achieve the above object, the present invention is made by modifying (A) a thermoplastic resin with a polymer having a reactive group and a non-polar molecular chain, and containing a butene-based polyolefin in its skeleton ( B) A resin composition for a three-dimensional modeling device containing a modified thermoplastic resin is provided.
また、本発明は上記目的を達成するため、上記の立体造形装置用樹脂組成物を含んでなる立体造形装置用フィラメント、上記の立体造形装置用樹脂組成物を含んでなる造形物、上記の立体造形装置用樹脂組成物を含んでなる立体造形装置用ペレット、及び(A)熱可塑性樹脂と、反応性基を有し分子鎖が無極性高分子である高分子により変性されてなり、ブテン系ポリオレフィンを骨格に含む(B)変性熱可塑性樹脂とを含有する射出成型用樹脂組成物が提供される。 In order to achieve the above object, the present invention also provides a filament for a three-dimensional modeling device comprising the above-mentioned resin composition for a three-dimensional modeling device, a shaped object comprising the above-mentioned resin composition for a three-dimensional modeling device, A pellet for a three-dimensional modeling device comprising a resin composition for a modeling device, and (A) a thermoplastic resin modified with a polymer having a reactive group and a non-polar polymer in the molecular chain, and a butene-based pellet. There is provided an injection molding resin composition containing (B) a modified thermoplastic resin containing a polyolefin in its skeleton.
本発明に係る立体造形装置用樹脂組成物、立体造形装置用フィラメント、造形物、立体造形装置用ペレット、及び射出成型用樹脂組成物によれば、造形時に所定のシートや接着剤を用いずともエッジのある造形物等の反りを低減できる立体造形装置用樹脂組成物、立体造形装置用フィラメント、造形物、立体造形装置用ペレット、及び射出成型用樹脂組成物を提供できる。 According to the resin composition for a three-dimensional modeling device, the filament for a three-dimensional modeling device, the modeled object, the pellet for a three-dimensional modeling device, and the resin composition for injection molding according to the present invention, there is no need to use a predetermined sheet or adhesive during modeling. It is possible to provide a resin composition for a three-dimensional modeling device, a filament for a three-dimensional modeling device, a shaped object, a pellet for a three-dimensional modeling device, and a resin composition for injection molding that can reduce warpage of objects with edges.
[実施の形態]
一般に立体造形装置(3Dプリンタ)を用いて製造される造形物は、積層数の増大に伴って底面の反り(造形物の高さ方向への反り)が増大する。これは、初めに射出されて固化した樹脂組成物の底面の上部に溶融樹脂が新たに積層されると、この新たに積層された溶融樹脂が固化するときに収縮することで、造形物の上部側において造形物の内側方向への引っ張り力が発生することによる。この引っ張り力が発生すると、造形物の底面が高さ方向へと引っ張られて反りが発生する(つまり、造形装置のステージ上に造形物が積層されていくと、積層された各層がそれぞれ収縮するので、造形物の底面を造形物の高さ方向上側へ引っ張る力が発生し、反りが発生すると考えられる。)。この反りは、立体物、例えば、直方体形状の箱等のようにエッジを有する立体物において顕著に発生する。これは、エッジを有する立体物においてはエッジ部分(つまり、角部分)に引っ張り力による応力が集中し、大きな反りが発生しやすいことが原因と考えられる。
[Embodiment]
Generally, in a modeled object manufactured using a three-dimensional modeling apparatus (3D printer), the warpage of the bottom surface (warpage in the height direction of the model) increases as the number of stacked layers increases. This is because when molten resin is newly layered on top of the bottom of the resin composition that was initially injected and solidified, the newly layered molten resin contracts as it solidifies, causing the upper part of the model to This is due to the generation of a pulling force inward toward the inside of the model. When this tensile force is generated, the bottom of the model is pulled in the height direction, causing warping (in other words, as the model is stacked on the stage of the printer, each stacked layer shrinks). Therefore, it is thought that a force is generated that pulls the bottom of the model upward in the height direction of the model, causing warping.) This warping occurs significantly in three-dimensional objects, for example, three-dimensional objects having edges such as rectangular parallelepiped boxes. This is thought to be due to the fact that in three-dimensional objects having edges, stress due to tensile force is concentrated at the edge portions (that is, corner portions), and large warpage is likely to occur.
ここで、立体造形装置に用いる立体造形装置用樹脂組成物に、吸水性が極めて低く、後加工性が良好で、耐衝撃性、耐薬品性、及び耐熱性に優れ、様々な用途に応用可能なポリプロピレン(PP)等の汎用の樹脂を採用することが望まれている。しかしながら、例えばPPは結晶性樹脂であり、収縮率が1%~2.5%と大きいことから造形時に収縮による大きな反りが発生しやすい(成形性が低い)。そのため、従来、立体造形装置のステージに接着剤を塗布することや当該ステージ上に専用のPPシート等を載置することでステージと立体造形装置用樹脂組成物からなる造形物との密着性を維持して物理的に反りの発生を抑制している。しかしながら、PPは、載置されるシート(保護シート、プラットフォームテープ等)に対する接着性が極めて弱いことからステージ上に造形してもステージから剥がれてしまい、PPをそのまま立体造形装置用樹脂組成物として用いたとしても実用に耐えることはできない。また、大型の造形物やエッジのある形状の造形物を造形する場合、主としてPPからなる従来の立体造形装置用樹脂組成物を用いると、所定のシートや接着剤を用いたとしても発生した反りを抑えきれなくなる場合がある。 Here, the resin composition for 3D modeling equipment used for 3D modeling equipment has extremely low water absorption, good post-processability, excellent impact resistance, chemical resistance, and heat resistance, and can be applied to various uses. It is desired to use a general-purpose resin such as polypropylene (PP). However, for example, PP is a crystalline resin and has a large shrinkage rate of 1% to 2.5%, so that large warpage due to shrinkage tends to occur during modeling (low moldability). Therefore, conventionally, the adhesion between the stage and the modeled object made of the resin composition for the 3D printer has been improved by applying adhesive to the stage of the 3D printer or by placing a special PP sheet or the like on the stage. It is maintained to physically suppress the occurrence of warping. However, PP has extremely weak adhesion to sheets placed on it (protective sheets, platform tapes, etc.), so even if it is modeled on a stage, it will peel off from the stage. Even if it were used, it would not be practical. In addition, when printing large objects or objects with edges, when using conventional resin compositions for three-dimensional modeling devices mainly made of PP, warping occurs even if a specified sheet or adhesive is used. You may become unable to suppress it.
なお、上記の通りPPの接着性が極めて弱いことから、立体造形装置のステージ若しくは当該ステージを保護するシート上に造形物を製造する場合、ステージ上若しくはシート上に所定の接着剤を塗布することで造形物をステージ及びシートに固定することを要する。仮に接着剤を塗布せずに造形すると、PPの接着力不足や反りにより、造形物がステージ若しくはシートから剥がれて造形ができない。そして、ステージ上やシート上に接着剤を塗布する場合、塗布後に接着剤を乾燥する工程を要するだけでなく、造形後の造形物の底面及びステージやシート表面を洗浄する手間が発生する。更に、造形を実施するたびにステージやシート表面を洗浄して接着剤を塗布する工程が発生することから、造形物の連続生産には不向きである。 As mentioned above, the adhesiveness of PP is extremely weak, so when manufacturing a modeled object on the stage of a three-dimensional modeling device or a sheet that protects the stage, it is necessary to apply a specified adhesive on the stage or sheet. It is necessary to fix the modeled object to the stage and sheet. If the object is modeled without applying an adhesive, the object will peel off from the stage or sheet due to insufficient adhesive strength or warpage of the PP, making it impossible to model. When applying an adhesive onto a stage or sheet, not only is a step of drying the adhesive after application required, but also the effort of cleaning the bottom surface of the modeled object and the surface of the stage or sheet is required. Furthermore, since a process of cleaning the stage and sheet surface and applying adhesive every time modeling is performed, it is not suitable for continuous production of molded objects.
また、シートとして専用のPP製のシート(PPシート)を用いることで造形物をシートに接着させる手法もある。しかし、PPシートを用いる場合、造形物の底面とPPシートとが融着し、造形物の底面にPPシートの成分が残存する。また、造形物の底面にPPシートが融着した場合はPPシートを交換することを要する。そのため、市販のPPシートは高価であることから造形に要する費用がかさむ。更には、ステージ上のPPシートを貼り代える場合にステージ上に残存したPPシートの成分(粘着成分)の清掃の手間が大きい。なお、ポリ乳酸(PLA)等の造形において用いられる保護シートはステージに対する接着効果はないものの、破れにくく複数回用いることができ、ステージに粘着成分が残存せず、造形物と保護シートとが融着することがなく、造形物に保護シートの粘着成分が残ることがない。しかし、当該保護シートは接着効果がないことから、PPからなる樹脂フィラメントを用いて立体造形装置で造形を実行すると、1層目の造形による造形物が保護シートから剥がれてしまい、そもそも造形できない。 There is also a method in which a special PP sheet (PP sheet) is used as the sheet and the shaped object is adhered to the sheet. However, when using a PP sheet, the bottom surface of the modeled object and the PP sheet are fused together, and components of the PP sheet remain on the bottom surface of the modeled object. Furthermore, if the PP sheet is fused to the bottom of the modeled object, it is necessary to replace the PP sheet. Therefore, since commercially available PP sheets are expensive, the cost required for modeling increases. Furthermore, when replacing the PP sheet on the stage, it takes a lot of effort to clean the components (adhesive components) of the PP sheet remaining on the stage. Although the protective sheets used in modeling, such as polylactic acid (PLA), do not have an adhesive effect on the stage, they do not tear easily and can be used multiple times, no adhesive components remain on the stage, and the molded object and the protective sheet are fused. The adhesive component of the protective sheet will not remain on the object. However, since the protective sheet has no adhesive effect, when modeling is performed using a three-dimensional modeling apparatus using a resin filament made of PP, the object formed by the first layer peels off from the protective sheet, making it impossible to print in the first place.
すなわち、一般的に接着剤及びシートを繰り返し用いることはできないので、造形のたびにシートの貼り直し及び接着剤の再塗付を要することになり、製造の手間やシートの交換の手間が発生するのみならず、接着剤及びシートという資源を廃棄せざるを得なくなる。そのため、立体造形装置用樹脂組成物としてPP等の汎用樹脂を用いる場合、少なくとも成形性を改善すること(なお、反りや収縮率が改善されることが成形性の改善に対応する。)、及び接着性を改善することが要求される。 In other words, since adhesives and sheets generally cannot be used repeatedly, it is necessary to reapply the sheet and reapply the adhesive each time a model is created, resulting in the hassle of manufacturing and replacing the sheet. Not only that, but resources such as adhesives and sheets have to be discarded. Therefore, when using a general-purpose resin such as PP as a resin composition for a three-dimensional modeling device, it is necessary to at least improve moldability (improvement in warpage and shrinkage rate corresponds to improvement in moldability); Improved adhesion is required.
ここで、本発明者は、PPシートや専用の接着剤を用いずとも立体造形装置を用いて直方体等のエッジを有する立体物の造形ができ、造形物の反りを低減できる立体造形装置用樹脂組成物を得るため、これまで開発した立体造形装置用樹脂組成物を更に改良することを試みた。そして、本発明者は、様々な樹脂組成物の配合を種々検討した結果、造形物の反りを大幅に低減でき、エッジを有する形状の立体物を造形できる立体造形装置用樹脂組成物を発見した。すなわち、本発明者は、熱可塑性樹脂に特定の変性樹脂を含有させた立体造形装置用樹脂組成物を用いることで、ステージへの適切な接着性の確保(及び/又はステージ上に載置されるシートを破損させない範囲での適切な接着性の確保)ができると共に、箱等のエッジを有する造形物であっても造形物の反りを大幅に低減できることを発見した。特定の変性樹脂とは、ブテン系ポリオレフィンを骨格に含む変性熱可塑性樹脂である。ブテン系ポリオレフィンを骨格に含む変性熱可塑性樹脂は、ブテン系ポリオレフィンを骨格に含む熱可塑性樹脂を、反応性基を有し分子鎖が無極性高分子である高分子により変性することで得られる変性樹脂である。本発明は係る知見に基づいて創出された。 Here, the present inventor has developed a resin for a three-dimensional modeling device that can create a three-dimensional object with edges such as a rectangular parallelepiped using a three-dimensional modeling device without using a PP sheet or a special adhesive, and that can reduce warping of the object. In order to obtain a composition, we attempted to further improve the resin composition for three-dimensional modeling apparatus that we had developed so far. As a result of various studies on the formulation of various resin compositions, the present inventors have discovered a resin composition for a three-dimensional modeling device that can significantly reduce the warpage of a model and can produce a three-dimensional object with an edge. . That is, the present inventors have found that by using a resin composition for a three-dimensional modeling device in which a thermoplastic resin contains a specific modified resin, appropriate adhesion to the stage can be ensured (and/or the composition can be easily placed on the stage). The inventors have discovered that it is possible to ensure appropriate adhesion (without damaging the sheet) and to significantly reduce the warping of shaped objects, even for objects with edges such as boxes. The specific modified resin is a modified thermoplastic resin containing a butene-based polyolefin in its skeleton. A modified thermoplastic resin containing a butene-based polyolefin in its skeleton is obtained by modifying a thermoplastic resin containing a butene-based polyolefin in its skeleton with a polymer having a reactive group and a non-polar molecular chain. It is resin. The present invention was created based on this knowledge.
なお、立体造形装置用樹脂組成物のベースとなる樹脂(熱可塑性樹脂)に、親水性を発揮する反応性基を有する高分子を特定の割合の範囲で配合することで、成形性を改善でき、かつ、適切な接着力が発揮される。ここで、成形性の改善とは、造形物に発生する反りや収縮を低減でき、所定層数からなる造形物を造形できることを指す。また、適切な接着力とは、立体造形装置のステージ及び/又は保護シートに対する立体造形装置用樹脂組成物の接着力が、当該ステージ及び/又は当該保護シートに当該立体造形装置用樹脂組成物からなる造形物が固定され、造形後において当該保護シート及び造形物に損傷を発生させずに造形物を当該ステージ及び/又は当該保護シートから取り外すことができる範囲の接着力を指す。 In addition, moldability can be improved by blending a polymer with a reactive group that exhibits hydrophilicity in a specific ratio range into the resin (thermoplastic resin) that is the base of the resin composition for three-dimensional modeling equipment. , and appropriate adhesive strength is exhibited. Here, improvement in moldability refers to being able to reduce warpage and shrinkage occurring in a modeled object, and to be able to model a modeled object consisting of a predetermined number of layers. In addition, appropriate adhesive strength means that the adhesive strength of the resin composition for a stereolithography device to the stage and/or the protective sheet of the stereolithography device is such that the adhesive strength of the resin composition for the stereolithography device to the stage and/or the protection sheet of the stereolithography device is This refers to the adhesive strength within the range that allows a molded object to be fixed and removed from the stage and/or the protective sheet without causing damage to the protective sheet and the molded object after modeling.
<立体造形装置用樹脂組成物の概要>
本発明の実施の形態に係る立体造形装置用樹脂組成物は、反応性基を有し分子鎖が無極性高分子である高分子により変性されてなり、ブテン系ポリオレフィンを骨格に含む変性熱可塑性樹脂を含有する立体造形装置用材料を含んで構成される。具体的に、本実施形態に係る立体造形装置用樹脂組成物は、(A)熱可塑性樹脂と、反応性基を有し分子鎖が無極性高分子である高分子により変性されてなり、ブテン系ポリオレフィンを骨格に含む(B)変性熱可塑性樹脂とを含有する。この立体造形装置用樹脂組成物は、立体造形装置に用いる保護シート(PPシートやプラットフォームテープ等)や接着剤を用いなくてもステージに対する密着性を確保できるので、エッジを有する立体物等の造形物(例えば、箱型形状の造形物等)であっても、底面における反りを大幅に抑制して造形できる。
<Summary of resin composition for three-dimensional modeling device>
The resin composition for a three-dimensional modeling device according to an embodiment of the present invention is a modified thermoplastic resin composition that is modified with a polymer having a reactive group and whose molecular chain is a nonpolar polymer, and containing a butene-based polyolefin in its skeleton. Contains a resin-containing material for a three-dimensional modeling device. Specifically, the resin composition for a three-dimensional modeling device according to the present embodiment is modified with (A) a thermoplastic resin and a polymer having a reactive group and a non-polar polymer in the molecular chain, and includes butene. (B) modified thermoplastic resin containing polyolefin-based polyolefin in its skeleton. This resin composition for three-dimensional modeling equipment can ensure adhesion to the stage without using a protective sheet (PP sheet, platform tape, etc.) or adhesive used in the three-dimensional modeling equipment, so it can be used for modeling three-dimensional objects with edges. Even objects (for example, box-shaped objects) can be formed with greatly suppressed warpage on the bottom surface.
なお、本実施形態において「分子鎖」とは、末端基、分岐点、若しくは高分子特有の境界構成単位間に、線状又は分岐状に連なった構成単位で構成される高分子、オリゴマー分子、又はブロックの全部又は一部を含む構成を指す。 In this embodiment, "molecular chain" refers to a polymer, oligomer molecule, or oligomer molecule that is composed of structural units connected in a linear or branched manner between terminal groups, branch points, or boundary structural units specific to polymers. Or refers to a configuration that includes all or part of a block.
<立体造形装置用樹脂組成物の詳細>
[(A)熱可塑性樹脂]
(A)熱可塑性樹脂(以下、「(A)成分」という場合がある。)としては、スチレン系樹脂、アクリル系樹脂、芳香族ポリカーボネート系樹脂、脂肪族ポリカーボネート系樹脂、芳香族ポリエステル系樹脂、脂肪族ポリエステル系樹脂、オレフィン系樹脂(例えば、脂肪族ポリオレフィン系樹脂、環状オレフィン系樹脂)、ポリアミド系樹脂、ポリフェニレンエーテル系樹脂、熱可塑性ポリイミド系樹脂、ポリアセタール系樹脂、ポリスルホン系樹脂、及び非晶性フッ素系樹脂等が挙げられる。
<Details of resin composition for three-dimensional modeling device>
[(A) Thermoplastic resin]
(A) Thermoplastic resin (hereinafter sometimes referred to as "component (A)") includes styrene resin, acrylic resin, aromatic polycarbonate resin, aliphatic polycarbonate resin, aromatic polyester resin, Aliphatic polyester resins, olefin resins (e.g. aliphatic polyolefin resins, cyclic olefin resins), polyamide resins, polyphenylene ether resins, thermoplastic polyimide resins, polyacetal resins, polysulfone resins, and amorphous resins. Examples include fluorine-based resins.
本実施形態において(A)熱可塑性樹脂は、吸水性、後加工性、耐衝撃性、耐薬品性、及び/又は耐熱性等の特性の観点からオレフィン系樹脂が好ましく、ポリプロピレンが更に好ましい。また、ポリプロピレンとしてはホモポリプロピレンとランダムポリプロピレンのいずれを用いることもできる。ホモポリプロピレンより結晶化しにくく、造形物の反りをより低減させ得る観点から、ポリプロピレンはランダムポリプロピレン(ランダムコポリマー)であることが好ましい。 In this embodiment, the thermoplastic resin (A) is preferably an olefin resin from the viewpoint of properties such as water absorption, post-processability, impact resistance, chemical resistance, and/or heat resistance, and more preferably polypropylene. Further, as the polypropylene, either homopolypropylene or random polypropylene can be used. The polypropylene is preferably random polypropylene (random copolymer), since it is less likely to crystallize than homopolypropylene and can further reduce warping of the shaped object.
((A)成分の配合量)
(A)成分の配合量は、40wt%以上であり、50wt%以上であってよく、60wt%以上であってよく、90wt%以下であり、80wt%以下であってよく、70wt%以下であってもよい。
(Amount of component (A))
The blending amount of component (A) is 40 wt% or more, may be 50 wt% or more, may be 60 wt% or more, is 90 wt% or less, may be 80 wt% or less, and may be 70 wt% or less. It's okay.
[(B)変性熱可塑性樹脂]
反応性基を有し分子鎖が無極性高分子である高分子により変性されてなり、ブテン系ポリオレフィンを骨格に含む(B)変性熱可塑性樹脂(以下、「(B)成分」という場合がある。)としては、ブテン系ポリオレフィンを骨格に含む熱可塑性樹脂を、後述の(C)反応性基を有し、分子鎖が無極性高分子である高分子(以下、「(C)成分」という場合がある。)によって変性して得られる変性樹脂が挙げられる。具体的に(B)成分としては、変性されたエチレン‐プロピレン‐ブテン共重合体、及び/又は変性されたプロピレン‐ブテン共重合体が挙げられる。
[(B) Modified thermoplastic resin]
(B) modified thermoplastic resin that is modified with a polymer having a reactive group and whose molecular chain is a nonpolar polymer, and contains a butene-based polyolefin in its skeleton (hereinafter sometimes referred to as "component (B)") ), a thermoplastic resin containing a butene-based polyolefin in its skeleton is used as a polymer (hereinafter referred to as "component (C)") which has a reactive group (C) and whose molecular chain is a non-polar polymer. In some cases, modified resins obtained by modification may be mentioned. Specifically, component (B) includes a modified ethylene-propylene-butene copolymer and/or a modified propylene-butene copolymer.
本実施形態において(B)成分は、(C)成分が無水マレイン酸変性ポリプロピレン(MAPP)である場合の変性樹脂であることが好ましい。すなわち、(B)成分としては、MAPPにより変性されてなるエチレン‐プロピレン‐ブテン共重合体(以下、「マレイン酸変性エチレン‐プロピレン‐ブテン共重合体」という場合がある。)、及び/又はMAPPにより変性されてなるプロピレン‐ブテン共重合体(以下、「マレイン酸変性プロピレン‐ブテン共重合体」という場合がある。)であることが好ましい。 In this embodiment, component (B) is preferably a modified resin in which component (C) is maleic anhydride-modified polypropylene (MAPP). That is, as component (B), an ethylene-propylene-butene copolymer modified with MAPP (hereinafter sometimes referred to as "maleic acid-modified ethylene-propylene-butene copolymer"), and/or MAPP A propylene-butene copolymer modified by (hereinafter sometimes referred to as "maleic acid-modified propylene-butene copolymer") is preferable.
((B)成分の分子量)
(B)成分の分子量(重量平均分子量)としては、造形物の反りを低減させ、接着性を確保する観点から、50,000以上であり、60,000以上が好ましく、100,000以下であり、95,000以下が好ましい。なお、重量平均分子量は、高温ゲル浸透クロマトグラフィー(高温GPC)を用いて、ポリスチレン換算により求めた後、Qファクターを用いてポリプロピレン換算として算出できる。
(Molecular weight of component (B))
The molecular weight (weight average molecular weight) of component (B) is 50,000 or more, preferably 60,000 or more, and 100,000 or less, from the viewpoint of reducing warpage of the shaped object and ensuring adhesiveness. , 95,000 or less is preferable. The weight average molecular weight can be determined in terms of polystyrene using high-temperature gel permeation chromatography (high-temperature GPC), and then calculated in terms of polypropylene using a Q factor.
((B)成分の配合量)
(B)成分の配合量は、造形物の反りを低減させ、接着性を確保する観点から、2.0wt%以上が好ましく、5.0wt%以上も好ましく、8.0wt%以上も好ましく、20wt%以下が好ましく、18wt%以下も好ましく、15wt%以下も好ましい。
(Amount of component (B))
The blending amount of component (B) is preferably 2.0 wt% or more, preferably 5.0 wt% or more, preferably 8.0 wt% or more, and 20 wt% or more, from the viewpoint of reducing warpage of the modeled object and ensuring adhesiveness. % or less, 18 wt% or less is also preferable, and 15 wt% or less is also preferable.
[(C)反応性基を有し、分子鎖が無極性高分子である高分子]
(C)成分は、他の置換基と反応可能な反応性基を有し、分子鎖が実質的に無極性若しくは疎水性の高分子である。(C)成分は、分子鎖が反応性基を有していればよく、反応性基の鎖長を制御しなくてもよい。また、分子鎖中の一部に他の構造単位が含まれていてもよい。更に、分子鎖の無極性高分子は、反応性基とは異なる他の基を有していてもよい。また、(C)成分は、グラフト型高分子であることが特に好ましい。
[(C) Polymer having a reactive group and whose molecular chain is a nonpolar polymer]
Component (C) is a polymer having a reactive group capable of reacting with other substituents and having a substantially nonpolar or hydrophobic molecular chain. Component (C) only needs to have a reactive group in its molecular chain, and the chain length of the reactive group does not need to be controlled. Moreover, other structural units may be included in a part of the molecular chain. Furthermore, the nonpolar polymer in the molecular chain may have other groups different from the reactive groups. Moreover, it is particularly preferable that the component (C) is a graft type polymer.
(反応性基)
反応性基としては、無水コハク酸基、カルボニル基(例えば、メトキシカルボニル基)、及びカルボキシル基からなる群から選択される少なくとも1つの親水性を示す基が挙げられる。
(reactive group)
Examples of the reactive group include at least one hydrophilic group selected from the group consisting of a succinic anhydride group, a carbonyl group (for example, a methoxycarbonyl group), and a carboxyl group.
(無極性高分子)
無極性高分子とは、永久双極子を有さない高分子物質であり、通常の使用状況において混入する不純物や、通常添加される添加剤等に由来する永久双極子を含んだ場合であっても無極性高分子とする。無極性高分子としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、テトラフルオロエチレン樹脂等が挙げられる。
(Nonpolar polymer)
A non-polar polymer is a polymer substance that does not have a permanent dipole, and does not contain permanent dipoles that come from impurities mixed in under normal usage conditions or additives that are normally added. It is also assumed that the polymer is non-polar. Examples of the nonpolar polymer include polyethylene resin, polypropylene resin, and tetrafluoroethylene resin.
本実施形態において分子鎖である無極性高分子としては、実質的に無極性若しくは疎水性のオレフィン系樹脂が挙げられる。オレフィン系樹脂としては、ポリプロピレン、ポリエチレン、αオレフィン(例えば、プロピレン、1-ブテン、1-ペンテン等)を単独重合若しくは2種類以上共重合させた樹脂、エチレン・α-オレフィン共重合体、エチレン・酢酸ビニル共重合樹脂、プロピレン・αオレフィン共重合体等が挙げられる。 In the present embodiment, the nonpolar polymer that is a molecular chain includes a substantially nonpolar or hydrophobic olefin resin. Examples of olefin resins include polypropylene, polyethylene, resins obtained by homopolymerizing or copolymerizing two or more types of α-olefins (for example, propylene, 1-butene, 1-pentene, etc.), ethylene/α-olefin copolymers, and ethylene/α-olefin copolymers. Examples include vinyl acetate copolymer resin, propylene/α-olefin copolymer, and the like.
なお、分子鎖がエチレン・酢酸ビニル共重合樹脂や(メタ)アクリル樹脂等である場合、反応性基は分子鎖に含まれるメトキシカルボニル基等であってよい。この場合、本実施形態における無極性高分子は、メトキシカルボニル基等を含んだ部分の分子構造を指すものとする(この場合、分子鎖とは、分子鎖自身に反応性基が含まれた構造を指すことになる。そして、この場合、反応性基を除く分子鎖部分が無極性であれば、無極性高分子であるものとする。)。また、エチレン・酢酸ビニル共重合樹脂や(メタ)アクリル樹脂等に、別途、グラフト重合等で他の反応性基(メトキシカルボニル基とは異なる反応性基)を導入してもよい。 Note that when the molecular chain is an ethylene/vinyl acetate copolymer resin, (meth)acrylic resin, or the like, the reactive group may be a methoxycarbonyl group or the like contained in the molecular chain. In this case, the nonpolar polymer in this embodiment refers to the molecular structure of a portion containing a methoxycarbonyl group, etc. (In this case, a molecular chain is a structure in which the molecular chain itself contains a reactive group. (In this case, if the molecular chain portion excluding the reactive group is nonpolar, it is considered a nonpolar polymer.) Further, other reactive groups (reactive groups different from the methoxycarbonyl group) may be separately introduced into the ethylene/vinyl acetate copolymer resin, (meth)acrylic resin, etc. by graft polymerization or the like.
無極性高分子としては、入手の容易さ、低比重、汎用性、物性、及び/又は加工性の観点から、ポリプロピレン、エチレン・酢酸ビニル共重合樹脂、及びアクリル樹脂からなる群から選択される少なくとも1つの無極性高分子であることが好ましい。これらのうち、物性の観点からポリプロピレンがより好ましい。なお、これらのオレフィン系樹脂に、共重合可能な他の単位が含まれていてもよい。また、これらのオレフィン系樹脂は、1種類単独で用いることも2種以上を併用することもできる。 The non-polar polymer is at least selected from the group consisting of polypropylene, ethylene/vinyl acetate copolymer resin, and acrylic resin from the viewpoint of easy availability, low specific gravity, versatility, physical properties, and/or processability. Preferably, it is one non-polar polymer. Among these, polypropylene is more preferred from the viewpoint of physical properties. Note that these olefin resins may contain other copolymerizable units. Further, these olefin resins can be used alone or in combination of two or more.
(高分子)
上記の分子鎖及び反応性基を含んでなる高分子としては、上記の分子鎖と上記の反応性基とを組み合わせた種々の高分子が挙げられる。例えば、上記の反応性基のうち少なくとも1種の反応性基を有するポリプロピレン、エチレン・酢酸ビニル共重合樹脂、及びアクリル樹脂が挙げられる。高分子としては、反応性基がペンダント基のように分子鎖に結合した高分子がより好ましく、例えば、グラフト共重合体が好ましい。上記の高分子の中では、立体造形装置用樹脂組成物に親水性を付与させる観点から、反応性基として無水マレイン酸基を有し、分子鎖がポリプロピレンである無水マレイン酸変性ポリプロピレン(MAPP)を用いることが最も好ましい。
(High molecular)
Examples of the polymer containing the above-mentioned molecular chain and reactive group include various polymers in which the above-mentioned molecular chain and the above-described reactive group are combined. Examples include polypropylene, ethylene/vinyl acetate copolymer resin, and acrylic resin, each having at least one reactive group among the above-mentioned reactive groups. As the polymer, a polymer in which a reactive group is bonded to a molecular chain like a pendant group is more preferable, and for example, a graft copolymer is preferable. Among the above polymers, maleic anhydride-modified polypropylene (MAPP), which has a maleic anhydride group as a reactive group and whose molecular chain is polypropylene, is preferred from the viewpoint of imparting hydrophilicity to the resin composition for three-dimensional modeling equipment. It is most preferable to use
(分子量)
(C)成分の重量平均分子量は、取扱いの容易性等の観点から(A)成分の重量平均分子量より低分子量であればよい。造形物の反りを増加させずに低減させる観点から(C)成分の重量平均分子量は100,000以下であることが好ましく、90,000以下であることも好ましく、70,000以下であることも好ましく、65,000以下であることがより好ましく、60,000以下であることが更に好ましい。また、造形物の反りの低減効果を確保する観点から(C)成分の重量平均分子量は20,000以上であることが好ましく、25,000以上であることも好ましく、30,000以上であることも好ましく、40,000以上であることがより好ましく、50,000以上であることが更に好ましい。なお、重量平均分子量は、高温ゲル浸透クロマトグラフィー(高温GPC)を用いて、ポリスチレン換算により求めた後、Qファクターを用いてポリプロピレン換算として算出できる。
(molecular weight)
The weight average molecular weight of component (C) may be lower than that of component (A) from the viewpoint of ease of handling. From the viewpoint of reducing warpage of the modeled object without increasing it, the weight average molecular weight of component (C) is preferably 100,000 or less, preferably 90,000 or less, and also 70,000 or less. It is preferably 65,000 or less, more preferably 60,000 or less. Further, from the viewpoint of ensuring the effect of reducing warpage of the modeled object, the weight average molecular weight of component (C) is preferably 20,000 or more, preferably 25,000 or more, and 30,000 or more. is also preferable, more preferably 40,000 or more, and still more preferably 50,000 or more. The weight average molecular weight can be determined in terms of polystyrene using high-temperature gel permeation chromatography (high-temperature GPC), and then calculated in terms of polypropylene using a Q factor.
((B)成分におけるグラフト率)
(C)成分がグラフト型高分子(つまり、グラフト共重合体)である場合、反応性基を有していることで立体造形装置用樹脂組成物の接着力は向上する。ただし、立体造形装置用樹脂組成物の接着力をより向上させる観点から、(B)成分におけるグラフト率は高くすることが好ましい。つまり、グラフト率が低い場合でも当該接着力は向上するものの、グラフト率を高くすると当該接着力がより向上する傾向がある。また、立体造形装置用樹脂組成物を用いて形成される造形物の反りも(C)成分が反応性基を有していることで低減する傾向がある。これは、反応性基の存在により接着力が向上することが一因である。ただし、立体造形装置用樹脂組成物の反りをより低減させる観点から、グラフト率は高くすることが好ましい。つまり、グラフト率が低い場合でも反りは低減するものの、グラフト率を高くすると反りがより低減する傾向がある。ただし、接着力が向上しすぎると、立体造形装置用樹脂組成物からなる造形物と立体造形装置のステージ若しくは当該ステージに載置する樹脂シートとが強固に接着し、造形物をステージ若しくは樹脂シートから取り外すことが困難になる場合がある。そのため、グラフト率は、造形物のステージ若しくは樹脂シートからの取り外しを容易にする観点から、上限及び下限を設けることが好ましい。
(Graft rate in component (B))
When component (C) is a graft type polymer (that is, a graft copolymer), the adhesive force of the resin composition for a three-dimensional modeling device is improved by having a reactive group. However, from the viewpoint of further improving the adhesive strength of the resin composition for a three-dimensional modeling device, it is preferable to increase the grafting rate in the component (B). That is, although the adhesive strength is improved even when the grafting ratio is low, the adhesive strength tends to be further improved when the grafting ratio is increased. Moreover, the warping of a model formed using the resin composition for a three-dimensional modeling apparatus also tends to be reduced because the component (C) has a reactive group. One reason for this is that the presence of reactive groups improves adhesive strength. However, from the viewpoint of further reducing warpage of the resin composition for three-dimensional modeling apparatus, it is preferable to increase the grafting rate. That is, although warpage is reduced even when the grafting ratio is low, warping tends to be further reduced when the grafting ratio is increased. However, if the adhesive strength increases too much, the modeled object made of the resin composition for 3D modeling equipment and the stage of the 3D modeling equipment or the resin sheet placed on the stage will be firmly adhered, and the modeled object will be attached to the stage or the resin sheet. It may be difficult to remove it from the Therefore, it is preferable to set an upper limit and a lower limit for the grafting rate from the viewpoint of facilitating the removal of the shaped object from the stage or resin sheet.
本実施形態においては、(C)成分がグラフト共重合体の場合(例えば、MAPPの場合)、接着力の向上及び/又は反りの低減の観点、並びにエッジを有する立体物の造形のし易さの観点から、(B)成分におけるグラフト率は1.0%以上であり、1.1%以上が好ましく、2.5%以下であり、2.0%以下が好ましい。 In this embodiment, when component (C) is a graft copolymer (for example, in the case of MAPP), the viewpoints of improving adhesive strength and/or reducing warpage, and ease of modeling a three-dimensional object having edges From this viewpoint, the grafting rate in component (B) is 1.0% or more, preferably 1.1% or more, and 2.5% or less, preferably 2.0% or less.
(反応性基導入量)
(C)成分((B)成分に導入された(C)成分)を(A)成分に所定割合で含ませることで立体造形装置用樹脂組成物の接着力が向上し、かつ、立体造形装置用樹脂組成物(及び/又は造形物)の反りが低減する。更に、(B)成分に導入された(C)成分の反応性基の立体造形装置用樹脂組成物に含まれる割合を所定の範囲の割合にすることによって、立体造形装置用樹脂組成物の接着力が向上すると共に反りが低減する。本発明者は、(B)成分としてブテン系ポリオレフィンを骨格に含む変性樹脂を用いた場合、反応性基導入量が少量であっても立体造形装置用樹脂組成物の接着力の向上と反りの低減とを両立させて造形できることを見出した。
(Amount of reactive group introduced)
By including component (C) (component (C) introduced into component (B)) in component (A) at a predetermined ratio, the adhesive strength of the resin composition for three-dimensional modeling apparatus is improved, and Warpage of the resin composition (and/or shaped object) is reduced. Furthermore, by adjusting the proportion of the reactive group of component (C) introduced into component (B) in the resin composition for three-dimensional modeling apparatus to a predetermined range, the adhesion of the resin composition for three-dimensional modeling apparatus can be improved. Increased force and reduced warpage. The present inventor has found that when a modified resin containing a butene-based polyolefin in its skeleton is used as component (B), the adhesive strength of the resin composition for three-dimensional modeling equipment can be improved and the warpage can be reduced even if the amount of reactive group introduced is small. We have discovered that it is possible to create a model that achieves both reduction and reduction.
すなわち、(C)成分がグラフト共重合体である場合において、立体造形装置用樹脂組成物の全体の質量に対する(B)成分の質量の割合に、(B)成分におけるグラフト率を乗じた値(以下、「反応性基導入量」と称する場合がある。)を所定の範囲にすることで、立体造形装置用樹脂組成物の接着力の向上と反りの低減とを両立させ得る。例えば、立体造形装置用樹脂組成物の全体の質量に対する(B)成分の質量の割合が10wt%であり、(B)成分における(C)成分によるグラフト率が2.0%である場合、反応性基導入量は、10×2.0/100=0.200(%)として算出される。具体的に、反応性基導入量は、ブテン系ポリオレフィンを骨格に含む変性熱可塑性樹脂、つまり本実施形態に係る(B)成分を用いる場合、0.020%以上であり、0.022%以上であってよく、0.030%以上であってもよく、0.3%以下であり、0.2%以下であってよい。本実施形態では(B)成分がブテン系ポリオレフィンを骨格に含んでいることから、反応性基導入量が0.020%以上0.3%以下と少量であっても、立体造形装置用樹脂組成物の接着力の向上と反りの低減とを良好に両立させた上で造形することができる。なお、反応性基導入量は少なくとも0.57%未満であることを要し、0.51%以下である場合、立体造形装置用樹脂組成物の接着力の向上と反りの低減とを良好に両立させ得る。 That is, when component (C) is a graft copolymer, the ratio of the mass of component (B) to the entire mass of the resin composition for three-dimensional modeling apparatus is multiplied by the graft ratio in component (B) ( By setting the amount (hereinafter sometimes referred to as "the amount of reactive group introduced") within a predetermined range, it is possible to both improve the adhesive strength and reduce warpage of the resin composition for a three-dimensional modeling device. For example, when the mass ratio of component (B) to the entire mass of the resin composition for three-dimensional modeling apparatus is 10 wt%, and the grafting rate of component (C) in component (B) is 2.0%, the reaction The amount of introduced sexual group is calculated as 10×2.0/100=0.200 (%). Specifically, the amount of reactive group introduced is 0.020% or more, and 0.022% or more when using a modified thermoplastic resin containing a butene-based polyolefin in its skeleton, that is, component (B) according to the present embodiment. It may be 0.030% or more, 0.3% or less, and 0.2% or less. In this embodiment, since the component (B) contains a butene-based polyolefin in its skeleton, even if the amount of reactive group introduced is as small as 0.020% or more and 0.3% or less, the resin composition for three-dimensional modeling equipment It is possible to improve the adhesion of objects and reduce warping while modeling the object. In addition, the amount of reactive group introduced must be at least less than 0.57%, and when it is 0.51% or less, the adhesive strength of the resin composition for three-dimensional modeling apparatus can be improved and the warpage can be reduced. It is possible to achieve both.
[(D)低結晶性ポリプロピレン]
本実施形態に係る立体造形装置用樹脂組成物は、(D)低結晶性ポリプロピレン(以下、「(D)成分」と称する場合がある。)を更に含むことができる。(D)成分を含むことで立体造形装置用樹脂組成物の反りをより低減できる。(D)成分は、低結晶性ホモポリプロピレンであることが好ましい。
[(D) Low crystallinity polypropylene]
The resin composition for a three-dimensional modeling device according to the present embodiment can further include (D) low crystalline polypropylene (hereinafter sometimes referred to as "component (D)"). By including component (D), warping of the resin composition for three-dimensional modeling apparatus can be further reduced. Component (D) is preferably a low-crystalline homopolypropylene.
(D)低結晶性ポリプロピレンは、示差走査型熱量計(DSC)を用い、窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させて測定した融解吸熱カーブの最も高温側に観測されるピークのピークトップで定義される融点(Tm)が0℃以上120℃以下であるホモポリプロピレンである。また、(D)成分の重量平均分子量は、10,000以上が好ましく、30,000以上がより好ましく、50,000以上が更に好ましく、200,000以下が好ましく、150,000以下がより好ましい。なお、重量平均分子量は、高温ゲル浸透クロマトグラフィー(高温GPC)を用いて、ポリスチレン換算により求めた後、Qファクターを用いてポリプロピレン換算として算出できる。 (D) Low-crystalline polypropylene was measured using a differential scanning calorimeter (DSC) at -10°C for 5 minutes under a nitrogen atmosphere, and then heated at a rate of 10°C/min. It is a homopolypropylene whose melting point (T m ) defined by the top of the peak observed on the side is 0° C. or more and 120° C. or less. The weight average molecular weight of component (D) is preferably 10,000 or more, more preferably 30,000 or more, even more preferably 50,000 or more, preferably 200,000 or less, and more preferably 150,000 or less. The weight average molecular weight can be determined in terms of polystyrene using high-temperature gel permeation chromatography (high-temperature GPC), and then calculated in terms of polypropylene using a Q factor.
(D)成分としては低弾性・低分子量ポリオレフィンが挙げられ、例えば、メルトフローレート(MFR)が500(g/10min)(230℃、2.16kg)以下である低弾性・低分子量ポリオレフィン(商品名:L-MODU S600、L-MODU S901、出光興産株式会社製)や、メルトフローレート(MFR)が100(g/10min)(230℃、2.16kg)以下である低弾性・低分子量ポリオレフィン(商品名:L-MODU S901、出光興産株式会社製)を用いることができる。また、(D)成分としては、170℃での溶融粘度が5000~7000mPa・sである低弾性・低分子量ポリオレフィン(商品名:Licocene、クラリアント社製)を用いることができる。 Component (D) includes low elasticity, low molecular weight polyolefins, such as low elasticity, low molecular weight polyolefins (products) with a melt flow rate (MFR) of 500 (g/10 min) (230°C, 2.16 kg) or less. Name: L-MODU S600, L-MODU S901, manufactured by Idemitsu Kosan Co., Ltd.) and low elasticity, low molecular weight polyolefins with a melt flow rate (MFR) of 100 (g/10 min) (230°C, 2.16 kg) or less. (Product name: L-MODU S901, manufactured by Idemitsu Kosan Co., Ltd.) can be used. Furthermore, as component (D), a low elasticity, low molecular weight polyolefin (trade name: Licocene, manufactured by Clariant) having a melt viscosity of 5000 to 7000 mPa·s at 170° C. can be used.
((D)成分の配合量)
(D)成分の配合量が多くなると造形物の反りが低減する傾向があり、更に多くなると立体造形装置用樹脂組成物の剛性が低下する可能性がある。したがって、(D)成分の配合量は、1wt%以上であってよく、3wt%以上であってよく、5wt%以上であってよく、10wt%未満であってよく、7wt%以下であってよい。(B)成分を用いた場合において(D)成分の配合量を1wt%以上10wt%未満にすることで、立体造形装置用樹脂組成物及び/又は造形物の反り抑制効果が良好になる。
(Amount of component (D))
When the amount of component (D) is increased, the warpage of the modeled object tends to be reduced, and when the amount is further increased, the rigidity of the resin composition for a three-dimensional modeling apparatus may be reduced. Therefore, the blending amount of component (D) may be 1 wt% or more, 3 wt% or more, 5 wt% or more, less than 10 wt%, and 7 wt% or less. . When component (B) is used, by setting the blending amount of component (D) to 1 wt% or more and less than 10 wt%, the resin composition for a three-dimensional modeling device and/or the effect of suppressing warpage of a shaped object becomes good.
[フィラー]
本実施形態に係る立体造形装置用樹脂組成物は、強度を向上させる観点からフィラーを含んでいてもよい。フィラーは、立体造形装置のノズルを通過可能なサイズであれば特に限定はない。フィラーとしては、例えば、ガラス繊維、カーボン繊維、炭酸カルシウム、及び/又はタルク等が挙げられる。
[Filler]
The resin composition for a three-dimensional modeling device according to the present embodiment may contain a filler from the viewpoint of improving strength. The filler is not particularly limited as long as it has a size that allows it to pass through the nozzle of the three-dimensional modeling device. Examples of the filler include glass fiber, carbon fiber, calcium carbonate, and/or talc.
<その他の配合物質>
本実施形態に係る立体造形装置用樹脂組成物に、立体造形装置用樹脂組成物の物性等を損なわない範囲で必要に応じ、増量剤、可塑剤、水分吸収剤、物性調整剤、補強剤、着色剤、難燃剤、酸化防止剤、老化防止剤、導電剤、帯電防止剤、紫外線吸収剤、紫外線分散剤、溶剤、香料、消臭剤、顔料、染料、希釈剤等の各種の配合物質を加えてもよい。
<Other compounded substances>
The resin composition for a three-dimensional modeling device according to the present embodiment may optionally include an extender, a plasticizer, a water absorbent, a physical property regulator, a reinforcing agent, etc., within a range that does not impair the physical properties of the resin composition for a three-dimensional modeling device. Various compounded substances such as colorants, flame retardants, antioxidants, anti-aging agents, conductive agents, antistatic agents, ultraviolet absorbers, ultraviolet dispersants, solvents, fragrances, deodorants, pigments, dyes, diluents, etc. May be added.
<立体造形装置用樹脂組成物の結晶化温度、及び結晶化発熱量>
立体造形装置用樹脂組成物において容易な造形の実現、及び/又は反りを低減させる観点から、本発明者は樹脂の結晶化温度、及び結晶化発熱量に着目した。すなわち、結晶化温度が低い方が溶融後に樹脂を保温する温度を低くすることができる。また、結晶化温度が高く、結晶化発熱量が大きいことは結晶化する樹脂が多いことを意味する。そして、樹脂が結晶化した場合、結晶化前に比べて樹脂は密にパッキング(樹脂分子同士の接触)することになり、体積が収縮する。その結果、結晶化した樹脂による造形物に反りが発生し、結晶化の度合いが大きいと発生する反りも大きくなると考えられる。
<Crystallization temperature and crystallization calorific value of resin composition for three-dimensional modeling device>
From the viewpoint of realizing easy modeling and/or reducing warpage in a resin composition for a three-dimensional modeling device, the present inventors focused on the crystallization temperature and crystallization calorific value of the resin. That is, the lower the crystallization temperature, the lower the temperature at which the resin is kept warm after melting. Further, a high crystallization temperature and a large amount of crystallization heat generation mean that a large amount of resin crystallizes. When the resin crystallizes, the resin is packed more densely (resin molecules come into contact with each other) than before crystallization, and its volume shrinks. As a result, warping occurs in the shaped object made of the crystallized resin, and it is thought that the greater the degree of crystallization, the greater the warping that occurs.
係る観点から本発明者は、立体造形装置用樹脂組成物の組成を調整して結晶化温度を種々検討し、結晶化温度が110℃以下が好ましく、107℃以下がより好ましいという知見を得た。 From this point of view, the present inventor adjusted the composition of the resin composition for three-dimensional modeling equipment and variously examined the crystallization temperature, and obtained the knowledge that the crystallization temperature is preferably 110 ° C. or lower, and more preferably 107 ° C. or lower. .
また、本発明者は、立体造形装置用樹脂組成物のベースとなる(A)成分の結晶化による樹脂の結晶のパッキングを密になりにくくするため、本実施形態に係る(B)成分を用いることが好ましいことを見出した。すなわち(B)成分としては、(A)成分に比べて分子構造がかさ高く、密度が低いことによって結晶化しにくい特性を有する樹脂が好ましい。また、(A)成分との相溶性を良好にする観点から、ベース構造(つまり、骨格構造)に(A)成分と同一の構造を少なくとも一部に含む(B)成分を用いることが好ましいことを見出した。例えば、(A)成分としてPPを用いる場合、(B)成分としてはブテン系ポリオレフィンであって骨格にプロピレンを含む樹脂を用いることが好ましい。このような(B)成分を用いることで、(B)成分が(A)成分内に均一に分散し、結晶化による体積収縮を抑制できる。その結果、造形物の反りも低減できると考えられる。 In addition, the present inventor uses the component (B) according to the present embodiment in order to prevent the resin crystals from becoming densely packed due to the crystallization of the component (A), which is the base of the resin composition for a three-dimensional modeling device. We found that this is preferable. That is, as component (B), it is preferable to use a resin that has a bulkier molecular structure and lower density than component (A), so that it is less likely to crystallize. In addition, from the viewpoint of improving compatibility with component (A), it is preferable to use component (B) whose base structure (that is, skeleton structure) includes at least a portion of the same structure as component (A). I found out. For example, when PP is used as the component (A), it is preferable to use a resin that is a butene-based polyolefin and contains propylene in its skeleton as the component (B). By using such component (B), component (B) is uniformly dispersed within component (A), and volume shrinkage due to crystallization can be suppressed. As a result, it is thought that warpage of the shaped object can also be reduced.
上記の観点から、本発明者は、本実施形態に係る立体造形装置用樹脂組成物の結晶化発熱量は、示差走査熱量計(DSC)による測定で20℃/minで降温した場合において、40mJ/mg以下であることが好ましいという知見を得た。 From the above viewpoint, the present inventor has determined that the crystallization calorific value of the resin composition for a three-dimensional modeling apparatus according to the present embodiment is 40 mJ when the temperature is lowered at a rate of 20°C/min as measured by a differential scanning calorimeter (DSC). It was found that it is preferable that the amount is less than /mg.
<応用分野>
本実施形態に係る立体造形装置用樹脂組成物は、様々な用途に利用できる。具体的に、各種構造体、各種部品(電気・電子部品、自動車用部品等)、家電、住宅・建材、包装材等の様々な製品に利用できる。そして、本実施形態に係る立体造形装置用樹脂組成物は、立体造形装置のステージ及び/又は当該ステージ上に載置する樹脂シートに対して適切な接着力を有するので、従来用いられていた接着剤を用いることを要さない立体造形装置用フィラメントとして用いることができる。そして、この立体造形装置用フィラメントを用い、立体造形装置によって所望の形状の造形物を製造することができる。
<Application field>
The resin composition for a three-dimensional modeling device according to this embodiment can be used for various purposes. Specifically, it can be used for various products such as various structures, various parts (electrical/electronic parts, automobile parts, etc.), home appliances, housing/building materials, packaging materials, etc. The resin composition for a three-dimensional modeling device according to the present embodiment has an appropriate adhesive force for the stage of the three-dimensional modeling device and/or the resin sheet placed on the stage, so It can be used as a filament for three-dimensional modeling devices that do not require the use of agents. Then, using this filament for a three-dimensional modeling device, a modeled object of a desired shape can be manufactured by the three-dimensional modeling device.
また、本実施形態に係る立体造形装置用樹脂組成物は、ペレット形状に成形して立体造形装置用ペレットとして用いることもできる。立体造形装置用ペレットも立体造形装置用フィラメントと同様に、ペレット形状の材料を投入して造形する態様の立体造形装置に用いることができる。更に、本実施形態に係る立体造形装置用樹脂組成物は、溶融後、硬化した場合における造形物の反りを大幅に低減できるので、熱溶解積層方式(FDM方式)の造形装置用の樹脂組成物として用いることもできる。 Further, the resin composition for a three-dimensional modeling device according to the present embodiment can also be molded into a pellet shape and used as a pellet for a three-dimensional modeling device. Similar to the filament for a three-dimensional modeling device, the pellet for a three-dimensional modeling device can also be used in a three-dimensional modeling device in which a pellet-shaped material is charged and modeled. Furthermore, the resin composition for a three-dimensional modeling device according to the present embodiment can significantly reduce the warping of a modeled object when it is cured after being melted, so it can be used as a resin composition for a modeling device using a fused deposition modeling method (FDM method). It can also be used as
更に、本実施形態に係る立体造形装置用樹脂組成物は、射出成型用樹脂組成物としても用いることができる。通常、射出成形においては樹脂組成物の結晶化による体積収縮により成形体に収縮が生じる。一方、本実施形態に係る立体造形装置用樹脂は、(A)成分の結晶化を抑制し、造形物の反りを低減することができるので射出成形用の樹脂組成物として用いることができる。射出成型用樹脂組成物を本実施形態に係る立体造形装置用樹脂を用いて構成することで、射出成型において成形品の体積収縮や変形の低減等の効果が得られ、高精度な寸法の成形品を得ることができる。 Furthermore, the resin composition for a three-dimensional modeling apparatus according to this embodiment can also be used as a resin composition for injection molding. Usually, in injection molding, the molded article shrinks due to volumetric shrinkage due to crystallization of the resin composition. On the other hand, the resin for a three-dimensional modeling device according to the present embodiment can suppress crystallization of the component (A) and reduce warpage of a modeled object, so it can be used as a resin composition for injection molding. By configuring the resin composition for injection molding using the resin for three-dimensional modeling equipment according to this embodiment, effects such as reduction in volumetric shrinkage and deformation of the molded product can be obtained in injection molding, and molding with highly accurate dimensions can be achieved. You can get the goods.
<立体造形装置用樹脂組成物の製造方法>
本実施形態に係る立体造形装置用樹脂組成物の製造方法には特に制限はなく、例えば、(A)成分及び(B)成分を所定量配合し、更に必要に応じて(D)成分や他の配合物質を配合し、撹拌すること等により製造できる。各成分及び他の配合物質の配合順は特に制限はなく、適宜決定できる。また、本実施形態に係る立体造形装置用樹脂組成物は、ブテン系ポリオレフィンを骨格に含む(B)変性熱可塑性樹脂の添加量が2.0wt%程度でも造形性を向上させることができる。したがって、(A)成分及び(B)成分を所定量配合し、更に必要に応じて(D)成分や他の配合物質を配合して混錬することで得られる本実施形態に係る立体造形装置用樹脂組成物をマスターバッチとし、このマスターバッチを様々なベース材料に添加して得られる組成物を用いて造形物を造形することもできる。
<Method for producing resin composition for three-dimensional modeling device>
There are no particular restrictions on the method for producing the resin composition for a three-dimensional modeling device according to the present embodiment. For example, component (A) and component (B) are blended in predetermined amounts, and component (D) or other components are added as necessary. It can be manufactured by blending and stirring the blended substances. The mixing order of each component and other compounding substances is not particularly limited and can be determined as appropriate. Moreover, the resin composition for a three-dimensional modeling apparatus according to the present embodiment can improve the moldability even when the amount of the modified thermoplastic resin (B) containing a butene-based polyolefin in its skeleton is about 2.0 wt%. Therefore, the three-dimensional modeling device according to the present embodiment is obtained by blending predetermined amounts of component (A) and component (B), and further blending and kneading component (D) and other blended substances as necessary. It is also possible to form a shaped object using a composition obtained by using a resin composition for use as a masterbatch and adding this masterbatch to various base materials.
<造形物の製造方法>
本実施形態に係る立体造形装置用樹脂組成物を用い、公知の技術を用いて立体造形装置(3Dプリンタ)に用いる樹脂フィラメントを作製する。そして、作製した樹脂フィラメントを立体造形装置にセットし、所定条件で造形することで造形物が製造される。造形物の製造において、立体造形装置のステージに直接、本実施形態に係る立体造形装置用樹脂組成物を用いてなる樹脂フィラメントを使用して造形してもよい。ただし、ステージの摩耗等を防止する観点から、ステージには保護シートを載置することが好ましい。保護シートはステージに貼り付け可能である限り、特に限定はない。例えば、保護シートは、ポリイミドシート、アクリル樹脂系シート、PPシート、マスキングテープ、養生テープ、及び/又はセロハンテープ等を用いることができる。なお、これらの保護シートであれば、反応性基導入量は上記で説明した範囲が好ましい点は同様である。また、(A)成分としてランダムポリマー(例えば、ランダムポリプロピレン)を用いた場合、保護シートなしでも造形物を製造することができる。
<Manufacturing method of modeled object>
Using the resin composition for a three-dimensional modeling device according to this embodiment, a resin filament for use in a three-dimensional modeling device (3D printer) is produced using a known technique. Then, the produced resin filament is set in a three-dimensional modeling device and modeled under predetermined conditions to produce a modeled object. In manufacturing a modeled object, a resin filament made of the resin composition for a three-dimensional modeler according to this embodiment may be used directly on the stage of a three-dimensional modeler to model the object. However, from the viewpoint of preventing wear of the stage, it is preferable to place a protective sheet on the stage. There is no particular limitation on the protective sheet as long as it can be attached to the stage. For example, the protective sheet may be a polyimide sheet, an acrylic resin sheet, a PP sheet, a masking tape, a curing tape, and/or a cellophane tape. Note that in the case of these protective sheets, the amount of reactive groups introduced is preferably within the range described above. Moreover, when a random polymer (for example, random polypropylene) is used as the component (A), a shaped article can be manufactured without a protective sheet.
<実施の形態の効果>
本実施形態に係る立体造形装置用樹脂組成物は、(A)成分と、(A)成分の結晶化を抑制し得る変性樹脂であってブテン系ポリオレフィンを骨格に含む(B)成分とを含むので、立体造形装置のステージに専用のPPシートを載置せずとも、また、接着剤によって造形物とステージとの密着性を向上させずとも当該ステージに対する密着性を確保できる。そして、本実施形態に係る立体造形装置用樹脂組成物は、エッジを有する箱型形状等の立体物であっても、底面の反りを大幅に低減させた造形物を造形できる。
<Effects of the embodiment>
The resin composition for a three-dimensional modeling device according to the present embodiment includes component (A) and component (B), which is a modified resin capable of suppressing crystallization of component (A) and contains a butene-based polyolefin in its skeleton. Therefore, the adhesion to the stage of the three-dimensional modeling apparatus can be ensured without placing a dedicated PP sheet on the stage of the three-dimensional modeling apparatus, or without using an adhesive to improve the adhesion between the model and the stage. The resin composition for a three-dimensional modeling apparatus according to the present embodiment can produce a three-dimensional object with significantly reduced warpage on the bottom surface, even if it is a three-dimensional object such as a box shape having an edge.
また、本実施形態に係る立体造形装置用樹脂組成物は、接着性が良好であると共に造形物に発生する反りを大幅に低減できるので、PPとの密着性が悪い素材で構成された造形装置のステージ上においても造形物を造形することができる。例えば、造形装置において、xyzプラットフォームシート、シートを載置しないxyzプラットフォームプレート、ガラス製プレート、及び/又はポリイミドシート等のPPとの密着性が悪い基材上においても造形物を造形できる。 In addition, the resin composition for a three-dimensional modeling device according to the present embodiment has good adhesion and can significantly reduce warping that occurs in a modeled object, so it can be used in a modeling device made of a material that has poor adhesion to PP. It is also possible to create objects on the stage. For example, in a modeling apparatus, a model can be formed even on a base material that has poor adhesion to PP, such as an xyz platform sheet, an xyz platform plate on which no sheet is placed, a glass plate, and/or a polyimide sheet.
<実験例>
以下に実験例を挙げて更に具体的に説明する。なお、これらの実験例は例示であり、限定的に解釈されるべきでないことはいうまでもない。
<Experiment example>
A more specific explanation will be given below using experimental examples. It goes without saying that these experimental examples are merely illustrative and should not be construed as limiting.
(実験例1~20、比較例1~13の調製)
表1に示す配合割合で各配合物質をそれぞれ配合し、混合撹拌して実験例1~20に係る立体造形装置用樹脂組成物を調製した。また、表2に示す配合割合で各配合物質をそれぞれ配合し、混合撹拌して比較例1~13に係る樹脂組成物を調製した。
(Preparation of Experimental Examples 1 to 20 and Comparative Examples 1 to 13)
Each compounding substance was blended in the proportions shown in Table 1, and mixed and stirred to prepare resin compositions for three-dimensional modeling devices according to Experimental Examples 1 to 20. In addition, each compounding substance was blended in the proportions shown in Table 2, mixed and stirred to prepare resin compositions according to Comparative Examples 1 to 13.
表1~表2の配合物質の詳細は下記の通りである。
(A成分:熱可塑性樹脂)
・PM940M(サンアロマー株式会社製、ランダムポリプロピレン)
・PM731M(サンアロマー株式会社製、ランダムポリプロピレン)
(B成分:変性熱可塑性樹脂)
・PMA-F2(東洋紡エムシー株式会社製、無水マレイン酸変性エチレン-プロピレン-ブテン共重合体、重量平均分子量70,000、グラフト率1.5%)
・PMA-F6(東洋紡エムシー株式会社製、無水マレイン酸変性エチレン-プロピレン-ブテン共重合体、重量平均分子量60,000、グラフト率2.0%)
・PMA-T(東洋紡エムシー株式会社製、無水マレイン酸変性プロピレン-ブテン共重合体、重量平均分子量75,000、グラフト率1.5%)
・PMA-TE(東洋紡エムシー株式会社製、無水マレイン酸変性プロピレン-ブテン共重合体、重量平均分子量60,000、グラフト率1.8%)
・PMA-TH(東洋紡エムシー株式会社製、無水マレイン酸変性プロピレン-ブテン共重合体、重量平均分子量95,000、グラフト率1.1%)
(B’成分:変性熱可塑性樹脂)
MG250P(理研ビタミン株式会社製、無水マレイン酸変性ポリプロピレン、重量平均分子量:58,000、グラフト率:1.1%)
(D成分:低結晶性ホモポリプロピレン)
・L-MODU(出光興産株式会社製、L-MODU S901、低結晶性ポリプロピレン、MFR(g/10min)(230℃、2.16kg)=50)
・LICOCENE(クラリアント社製、LICOCENE PP 1602)
(タルク)
・タルク(竹原化学工業株式会社製、Pタルク)
(エラストマー)
・DF605(三井化学社製、タフマー(登録商標)DF605、エチレン-ブテン共重合体)
・DF640(三井化学社製、タフマー(登録商標)DF640、エチレン-ブテン共重合体)
・H1221(旭化成社製、タフテック(登録商標)H1221、水添スチレン系熱可塑性エラストマー(SEBS))
・C5025(旭化成社製、タフテック(登録商標)C5025、無水マレイン酸変性SEBS(SEBS-MA変性))
Details of the compounded substances in Tables 1 and 2 are as follows.
(Component A: thermoplastic resin)
・PM940M (manufactured by Sun Allomer Co., Ltd., random polypropylene)
・PM731M (manufactured by Sun Allomer Co., Ltd., random polypropylene)
(Component B: modified thermoplastic resin)
・PMA-F2 (manufactured by Toyobo MC Co., Ltd., maleic anhydride-modified ethylene-propylene-butene copolymer, weight average molecular weight 70,000, graft rate 1.5%)
・PMA-F6 (manufactured by Toyobo MC Co., Ltd., maleic anhydride-modified ethylene-propylene-butene copolymer, weight average molecular weight 60,000, graft rate 2.0%)
・PMA-T (manufactured by Toyobo MC Co., Ltd., maleic anhydride-modified propylene-butene copolymer, weight average molecular weight 75,000, graft rate 1.5%)
・PMA-TE (manufactured by Toyobo MC Co., Ltd., maleic anhydride-modified propylene-butene copolymer, weight average molecular weight 60,000, graft rate 1.8%)
・PMA-TH (manufactured by Toyobo MC Co., Ltd., maleic anhydride-modified propylene-butene copolymer, weight average molecular weight 95,000, grafting rate 1.1%)
(B' component: modified thermoplastic resin)
MG250P (manufactured by Riken Vitamin Co., Ltd., maleic anhydride-modified polypropylene, weight average molecular weight: 58,000, graft ratio: 1.1%)
(Component D: low crystalline homopolypropylene)
・L-MODU (manufactured by Idemitsu Kosan Co., Ltd., L-MODU S901, low crystallinity polypropylene, MFR (g/10min) (230°C, 2.16kg) = 50)
・LICOCENE (manufactured by Clariant, LICOCENE PP 1602)
(talc)
・Talc (manufactured by Takehara Chemical Industry Co., Ltd., P Talc)
(elastomer)
・DF605 (manufactured by Mitsui Chemicals, Tafmer (registered trademark) DF605, ethylene-butene copolymer)
・DF640 (manufactured by Mitsui Chemicals, Tafmer (registered trademark) DF640, ethylene-butene copolymer)
・H1221 (manufactured by Asahi Kasei Corporation, Tuftec (registered trademark) H1221, hydrogenated styrene thermoplastic elastomer (SEBS))
・C5025 (manufactured by Asahi Kasei Corporation, Tuftec (registered trademark) C5025, maleic anhydride modified SEBS (SEBS-MA modified))
[造形性評価]
実験例1~20に係る立体造形装置用樹脂組成物、及び比較例1~13に係る樹脂組成物の造形性評価は以下の条件で実施した。
<造形性評価に用いた3Dプリンタ>
3Dプリンタ:ダヴィンチJr.Pro.X+(xyzプリンティング社製)
<造形条件>
・造形ステージ:xyzプリンティング純正プラットフォームプレート
造形ステージには、xyzプリンティングダヴィンチProシリーズ専用プラットフォームテープ(アクリル樹脂系シート)を貼り付けた。
・ノズル温度:220℃
・ステージ温度:80℃
・造形性評価項目:反り
[Moldability evaluation]
Evaluation of the moldability of the resin compositions for three-dimensional modeling devices according to Experimental Examples 1 to 20 and the resin compositions according to Comparative Examples 1 to 13 was carried out under the following conditions.
<3D printer used for moldability evaluation>
3D printer: da Vinci Jr. Pro. X+ (manufactured by xyz printing)
<Building conditions>
- Modeling stage: XYZ Printing genuine platform plate A platform tape (acrylic resin sheet) exclusively for the XYZ Printing da Vinci Pro series was attached to the model stage.
・Nozzle temperature: 220℃
・Stage temperature: 80℃
・Formability evaluation item: Warpage
[反りの測定手順]
実験例1~20に係る立体造形装置用樹脂組成物、及び比較例1~13に係る樹脂組成物について、以下の形状及び条件で造形を実施した。
・形状:直方体の箱型形状
底面厚さ:1mm
横幅×奥行き×高さ:50mm×50mm×30mm
箱の壁面部分の厚さ:2mm
・造形速度:15mm/s
[Warpage measurement procedure]
Molding was carried out using the resin compositions for three-dimensional modeling devices according to Experimental Examples 1 to 20 and the resin compositions according to Comparative Examples 1 to 13 in the following shapes and conditions.
・Shape: Rectangular box shape Bottom thickness: 1mm
Width x depth x height: 50mm x 50mm x 30mm
Box wall thickness: 2mm
・Building speed: 15mm/s
(反り評価方法)
上記形状、つまり、箱型形状を造形し、底面の4つの角の反りを測定した。具体的に、造形を停止した時点から立体造形装置のステージから造形物を剥がさずに24時間、23℃で静置した。その後、箱型形状の造形物の底面を上側にして載置し、3Dスキャナー(キーエンス社製、3DスキャナーVL-500))で造形物をスキャンし、造形物の四隅の最小高さを測定した。そして、四隅の対角線上の最も高い点と、両端の最も低い点の高さの平均値の差を2つの対角線で測定し、その平均値を反りの値とした。すなわち、3Dスキャナーの測定データにおいてステージの高さを0とし、造形物の四隅の50mm×50mmの範囲内で高さが最小となる点を測定した。そして、この測定で得られた4点で対角線を引いた。続いて、対角線上の高さが最も高い点をCとし、対角線を引くために用いた2点をそれぞれA、Bとして以下の計算式で反りを算出した。
(Warpage evaluation method)
The above shape, that is, a box shape, was modeled, and the warpage at the four corners of the bottom surface was measured. Specifically, from the time when modeling was stopped, the modeled object was allowed to stand still at 23° C. for 24 hours without being removed from the stage of the three-dimensional modeling apparatus. After that, the box-shaped object was placed with the bottom side facing up, and the object was scanned with a 3D scanner (manufactured by Keyence Corporation, 3D Scanner VL-500), and the minimum height of the four corners of the object was measured. . Then, the difference between the average heights of the highest point on the diagonal line at the four corners and the lowest point at both ends was measured on the two diagonal lines, and the average value was taken as the warp value. That is, in the measurement data of the 3D scanner, the height of the stage was set to 0, and the points at which the height was minimum within a range of 50 mm x 50 mm at the four corners of the model were measured. Then, a diagonal line was drawn at the four points obtained through this measurement. Next, the warp was calculated using the following formula, with the highest point on the diagonal as C and the two points used to draw the diagonal as A and B, respectively.
(計算式)反り=C-(A+B)/2 (Calculation formula) Warp = C-(A+B)/2
反りについて2つの対角線でそれぞれ算出し、その平均値を造形物の反りとした。なお、反りの算出においては、N3の平均値を算出した。各実験例及び各比較例における反り(mm)の値を表1及び表2に示す。 The warpage was calculated using two diagonal lines, and the average value was taken as the warpage of the modeled object. In addition, in calculating the warpage, the average value of N3 was calculated. Tables 1 and 2 show the values of warpage (mm) in each experimental example and each comparative example.
(結晶化温度及び結晶化発熱量の測定)
実験例1~20に係る立体造形装置用樹脂組成物、及び比較例1~13に係る樹脂組成物それぞれについて、示差走査熱量計(DSC)(株式会社日立ハイテク製、DSC7000X)を用い、結晶化温度(℃)、及び20℃/minで260℃から30℃に降温したときの結晶化発熱量(mJ/mg)を測定した。各実験例及び各比較例における結晶化温度、及び結晶化発熱量を表1及び表2に示す。なお、測定条件は以下の通りである。
1)試料:約5mgの試料をアルミパンに入れ、試験機に投入。
2)温度条件(昇温後、降温させる)
昇温:30℃から260℃に20℃/minの速度で昇温。
降温:260℃から30℃に20℃/minの速度で降温。
3)測定データのうち、降温時に得られる発熱ピークの面積とピーク最高点の温度とをそれぞれ結晶化発熱量、結晶化温度として測定。
(Measurement of crystallization temperature and crystallization calorific value)
The resin compositions for three-dimensional modeling devices according to Experimental Examples 1 to 20 and the resin compositions according to Comparative Examples 1 to 13 were crystallized using a differential scanning calorimeter (DSC) (DSC7000X, manufactured by Hitachi High-Tech Corporation). The temperature (°C) and the amount of heat of crystallization (mJ/mg) when the temperature was lowered from 260°C to 30°C at 20°C/min were measured. Tables 1 and 2 show the crystallization temperature and crystallization calorific value in each experimental example and each comparative example. Note that the measurement conditions are as follows.
1) Sample: Put about 5 mg of sample into an aluminum pan and put it into the test machine.
2) Temperature conditions (after increasing temperature, lowering temperature)
Temperature increase: Temperature increase from 30°C to 260°C at a rate of 20°C/min.
Temperature reduction: Temperature reduction from 260°C to 30°C at a rate of 20°C/min.
3) Among the measurement data, the area of the exothermic peak obtained when the temperature is lowered and the temperature at the highest point of the peak are measured as the crystallization calorific value and crystallization temperature, respectively.
図1は、各実験例及び各比較例に係る立体造形装置用樹脂組成物の結晶化温度と反りとの関係を示す。 FIG. 1 shows the relationship between crystallization temperature and warpage of resin compositions for three-dimensional modeling apparatuses according to each experimental example and each comparative example.
図1においては、横軸にDSCを用いた測定において、20℃/minで260℃から30℃に降温したときに得られる結晶化発熱ピークの面積(つまり、結晶化発熱量[mJ/mg])を示し、縦軸に、上記箱形状を造形したときにおける底面の反りの測定結果(上記説明における反りの値)を示す。各実験例においては、結晶化発熱量が小さくなるにつれて反りも小さくなる傾向が観察された。 In FIG. 1, the horizontal axis is the area of the crystallization exothermic peak obtained when the temperature is lowered from 260°C to 30°C at 20°C/min (i.e., the crystallization exothermic amount [mJ/mg]) in the measurement using DSC. ), and the vertical axis shows the measurement results of the warpage of the bottom surface (the warpage value in the above description) when the box shape is formed. In each experimental example, it was observed that as the crystallization heat value decreased, the warpage also decreased.
ここで、実験例1~8に係る立体造形装置用樹脂組成物(マレイン酸変性エチレン‐プロピレン‐ブテン共重合体を含む樹脂組成物)及び実験例9~20に係る立体造形装置用樹脂組成物(マレイン酸変性プロピレン‐ブテン共重合体を含む樹脂組成物)においては、比較例1~13に係る樹脂組成物に比べ、反りが大幅に低減される傾向が認められた。この結果から、ベースである(A)成分(実験例においてはポリプロピレン)の結晶のパッキングが(B)成分を添加することで密になりにくくなっていると想定される。 Here, the resin compositions for stereolithography apparatuses according to Experimental Examples 1 to 8 (resin compositions containing a maleic acid-modified ethylene-propylene-butene copolymer) and the resin compositions for stereolithography apparatuses according to Experimental Examples 9 to 20. (Resin composition containing a maleic acid-modified propylene-butene copolymer) showed a tendency for warpage to be significantly reduced compared to the resin compositions of Comparative Examples 1 to 13. From this result, it is assumed that the crystal packing of the base component (A) (polypropylene in the experimental example) becomes difficult to become dense by adding the component (B).
更に図1を参照すると、比較例1~6に係る樹脂組成物(MAPPを添加しただけの組成物)、及び比較例11~13に係る樹脂組成物(SEBSエラストマーを添加した組成物)においては反りが1.5mmより大きい結果が示された。なお、比較例10においては反りが1.35mmであったものの、結晶化発熱量が40.0(mJ/mg)を超える結果が示された。 Further referring to FIG. 1, in the resin compositions according to Comparative Examples 1 to 6 (compositions to which only MAPP was added) and the resin compositions to Comparative Examples 11 to 13 (compositions to which SEBS elastomer was added), The results showed that the warpage was greater than 1.5 mm. In Comparative Example 10, although the warpage was 1.35 mm, the crystallization calorific value exceeded 40.0 (mJ/mg).
ここで、比較例7及び比較例8に係る樹脂組成物(エチレン‐ブテン共重合体含有ポリオレフィンにMAPPを添加した組成物)においては、反り自体は1.0mmから1.5mmであることが示された。しかしながら、比較例7及び比較例8に係る樹脂組成物においてはエラストマーを含有することから樹脂組成物としての剛性が低減し、(A)成分の特性が損なわれることが確認された。つまり、エラストマーを含有することで立体造形用途としては不向きであることが確認された。この点は比較例9(図1に図示していない)、及び比較例10~13においても同様であった。 Here, in the resin compositions according to Comparative Examples 7 and 8 (compositions in which MAPP was added to polyolefin containing an ethylene-butene copolymer), the warpage itself was shown to be 1.0 mm to 1.5 mm. It was done. However, it was confirmed that in the resin compositions according to Comparative Examples 7 and 8, since the resin compositions contained an elastomer, the rigidity of the resin compositions was reduced, and the properties of component (A) were impaired. In other words, it was confirmed that the elastomer content made it unsuitable for three-dimensional modeling. This point was also the same in Comparative Example 9 (not shown in FIG. 1) and Comparative Examples 10 to 13.
また、実験例1~20に係る立体造形装置用樹脂組成物においてはいずれも、結晶化温度が107℃以下であり、かつ、結晶化発熱量が40.0mJ/mg以下であった。つまり、実験例1~20に係る立体造形装置用樹脂組成物においては、造形の容易さの確保ができると共に、立体造形装置用樹脂組成物の溶融後の硬化における体積収縮を低減でき、その結果、反りを効果的に低減できることが示された。一方、比較例1~6に係る樹脂組成物(エラストマー未添加の系)においては、結晶化温度が107℃以下であり、かつ、結晶化発熱量が40.0mJ/mg以下である組成物は実現できなかった。比較例7~13に係る樹脂組成物においては、結晶化温度が107℃以下であり、かつ、結晶化発熱量が40.0mJ/mg以下である組成物(比較例11~13)が存在するものの、これらの組成物は(B)成分又は(B’)成分が添加されていない系なので、各実験例に係る立体造形装置用樹脂組成物のような効果((A)成分の特性を維持したまま、良好な接着性を発揮し、反りを大幅に低減できる効果)は得られない。 Furthermore, in all of the resin compositions for three-dimensional modeling apparatuses according to Experimental Examples 1 to 20, the crystallization temperature was 107° C. or lower, and the crystallization heat value was 40.0 mJ/mg or lower. In other words, in the resin compositions for three-dimensional modeling devices according to Experimental Examples 1 to 20, ease of modeling can be ensured, and volume shrinkage during curing after melting of the resin compositions for three-dimensional modeling devices can be reduced, and as a result, It was shown that warping can be effectively reduced. On the other hand, in the resin compositions according to Comparative Examples 1 to 6 (systems without elastomer added), the compositions had a crystallization temperature of 107°C or less and a crystallization heat value of 40.0 mJ/mg or less. I couldn't make it happen. Among the resin compositions according to Comparative Examples 7 to 13, there are compositions (Comparative Examples 11 to 13) in which the crystallization temperature is 107 ° C. or less and the crystallization calorific value is 40.0 mJ / mg or less. However, since these compositions do not contain component (B) or component (B'), they do not have the same effect as the resin composition for stereolithography equipment in each experimental example (maintaining the characteristics of component (A)). However, the effect of exhibiting good adhesion and significantly reducing warping cannot be obtained.
なお、比較例1~10においては(B’)成分を15wt%と高い添加量を要する一方で、実験例1、実験例5、実験例9、実験例13、及び実験例17においては(B)成分の配合量が2.0wt%と低添加量でも反りの低減効果が表れることが確認された。そのため、実験例1~20に係る立体造形装置用樹脂組成物においては、ベースである(A)成分の特性を最大限維持しつつ、反りを低減可能な立体造形装置用樹脂組成物を提供できることが示された。 In addition, while Comparative Examples 1 to 10 require a high addition amount of component (B') of 15 wt%, in Experimental Example 1, Experimental Example 5, Experimental Example 9, Experimental Example 13, and Experimental Example 17, ) It was confirmed that the effect of reducing warpage was exhibited even when the addition amount of the component was as low as 2.0 wt%. Therefore, in the resin compositions for three-dimensional modeling devices according to Experimental Examples 1 to 20, it is possible to provide resin compositions for three-dimensional modeling devices that can reduce warpage while maintaining the properties of the base component (A) to the maximum extent. It has been shown.
図2は、各実験例に係る立体造形装置用樹脂組成物のマレイン酸導入量と反りとの関係を示す。また、図3は、各実験例に係る立体造形装置用樹脂組成物の(B)成分添加量と反りとの関係を示す。 FIG. 2 shows the relationship between the amount of maleic acid introduced into the resin composition for a three-dimensional modeling apparatus and warpage according to each experimental example. Moreover, FIG. 3 shows the relationship between the amount of component (B) added and warpage of the resin composition for a three-dimensional modeling apparatus according to each experimental example.
図2においては、実験例1~実験例20に係る立体造形装置用樹脂組成物において、横軸にマレイン酸導入量を示し、縦軸に、箱形状を造形したときにおける底面の反りの測定結果(上記説明における反りの値)を示す。また図3においては、実験例1~実験例20に係る立体造形装置用樹脂組成物において、横軸に(B)成分添加量を示し、縦軸に、箱形状を造形したときにおける底面の反りの測定結果(上記説明における反りの値)を示す。なお、図2及び図3においては、(B)成分のグレードごとにマーカーを規定している。 In FIG. 2, the horizontal axis shows the amount of maleic acid introduced in the resin compositions for three-dimensional modeling apparatuses according to Experimental Examples 1 to 20, and the vertical axis shows the measurement results of the warpage of the bottom surface when a box shape was formed. (value of warpage in the above description). In addition, in FIG. 3, in the resin compositions for three-dimensional modeling apparatuses according to Experimental Examples 1 to 20, the horizontal axis shows the amount of component (B) added, and the vertical axis shows the warpage of the bottom surface when a box shape is formed. The measurement results (warpage values in the above description) are shown. Note that in FIGS. 2 and 3, markers are defined for each grade of component (B).
図2及び図3を参照すると、実験例1~20に係る立体造形装置用樹脂組成物においては、例えば、比較例6(MG250Pを15wt%添加した組成物で、反りが1.84mm)よりも反りが小さいことが示された。マレイン酸導入量若しくは(B)成分の添加量が増加するほど反りが小さくなる傾向があるものの、マレイン酸導入量及び(B)成分の添加量が少なくても十分に反りを低減できることが示された。なお、各実験例においてはエラストマーを含まず、かつ、反りの低減効果が認められ、各実験例に係る立体造形装置用樹脂組成物を実用に供することができることが示された。 Referring to FIGS. 2 and 3, in the resin compositions for three-dimensional modeling apparatuses according to Experimental Examples 1 to 20, for example, compared to Comparative Example 6 (a composition containing 15 wt% of MG250P, the warpage was 1.84 mm). It was shown that the warpage was small. Although warpage tends to decrease as the amount of maleic acid introduced or the amount of component (B) added increases, it has been shown that warpage can be sufficiently reduced even if the amount of maleic acid introduced and the amount of component (B) added are small. Ta. In addition, each experimental example did not contain an elastomer, and the effect of reducing warpage was observed, indicating that the resin composition for a three-dimensional modeling apparatus according to each experimental example can be put to practical use.
なお、実験例1~実験例20においてはマレイン酸導入量が0.20%以下であるものの、反りが低減された造形物を造形できることが示された。ここで、造形装置のステージから造形物が剥がれる原因としては主として以下の2つが挙げられる。
(1)ステージと樹脂組成物との相性が悪く、密着性が得られないこと。これは、疎水性樹脂のPPは本質的に親水性の材料と相性が悪く、密着性が得られないことに起因する。
(2)造形に用いる樹脂組成物の体積収縮による反りに基づいて、ステージから造形物が剥がれること。
In addition, in Experimental Examples 1 to 20, although the amount of maleic acid introduced was 0.20% or less, it was shown that a shaped article with reduced warpage could be formed. Here, there are two main reasons why the modeled object comes off from the stage of the modeler.
(1) The stage and the resin composition are not compatible with each other, and adhesion cannot be obtained. This is because PP, which is a hydrophobic resin, is essentially incompatible with hydrophilic materials, and adhesion cannot be obtained.
(2) The modeled object peels off from the stage due to warping due to volumetric shrinkage of the resin composition used for modeling.
実験例1~実験例20に係る立体造形装置用樹脂組成物においては、反りを大幅に低減することができる。これにより、上記(2)に基づく反りによるステージからの剥がれを防止でき、マレイン酸導入量を低減することが可能であることも示された。なお、実験例1~実験例20に係る立体造形装置用樹脂組成物におけるマレイン酸導入量よりもマレイン酸を高添加にすることで更に反りを低減し得る。しかし、立体造形装置用樹脂組成物の接着力の向上と反りの低減とを良好に両立させる観点から、マレイン酸導入量は0.51%以下であることが好ましい。また、図3を参照すると(B)成分の添加量が10wt%付近を超えると反りはほぼ一定値に近づいていくことが確認された。したがって、(B)成分の添加量を更に増加させたとしても反りの低減効果は劇的には増加しない可能性があり、また、ベースである(A)成分の割合が減少することから立体造形装置用樹脂組成物としての強度が低下する可能性がある。例えば、エッジを有する立体物やサイズが所定サイズ以上の立体物を造形する場合には反りが発生しやすくなることから、(B)成分の添加量は20wt%以下程度であることが好ましいことが示された。 In the resin compositions for three-dimensional modeling devices according to Experimental Examples 1 to 20, warpage can be significantly reduced. It was also shown that this makes it possible to prevent peeling from the stage due to warping based on (2) above, and to reduce the amount of maleic acid introduced. Note that warpage can be further reduced by adding a higher amount of maleic acid than the amount of maleic acid introduced in the resin compositions for three-dimensional modeling apparatuses according to Experimental Examples 1 to 20. However, from the viewpoint of achieving both improvement in adhesive strength and reduction in warpage of the resin composition for a three-dimensional modeling device, the amount of maleic acid introduced is preferably 0.51% or less. Further, referring to FIG. 3, it was confirmed that when the amount of component (B) added exceeds around 10 wt%, the warpage approaches a substantially constant value. Therefore, even if the amount of component (B) added is further increased, the effect of reducing warpage may not increase dramatically, and since the proportion of component (A), which is the base, decreases, three-dimensional modeling The strength of the resin composition for devices may decrease. For example, when modeling a three-dimensional object that has edges or a three-dimensional object that is larger than a predetermined size, warping is likely to occur, so it is preferable that the amount of component (B) added is about 20 wt% or less. Shown.
なお、実験例1~実験例20に係る立体造形装置用樹脂組成物を用い、150mm×150mm×2mmのサイズの平板を反りなく造形可能であることも確認した。 It was also confirmed that using the resin compositions for three-dimensional modeling devices according to Experimental Examples 1 to 20, it was possible to model a flat plate with a size of 150 mm x 150 mm x 2 mm without warping.
以上より、実験例1~実験例20に係る立体造形装置用樹脂組成物によれば、造形時に所定のシートや接着剤を用いずともエッジのある造形物等の反りを低減できることが示された。すなわち、実験例1~実験例20に係る立体造形装置用樹脂組成物は、ブテン系ポリオレフィンを骨格に含む(B)変性熱可塑性樹脂を含むことから密着性に優れ、また、反りの低減効果も大きいことから、エッジのある造形物等も反りを低減して造型できることが示された。 From the above, it was shown that the resin compositions for three-dimensional modeling devices according to Experimental Examples 1 to 20 can reduce warping of objects with edges, etc., without using a predetermined sheet or adhesive during modeling. . That is, the resin compositions for three-dimensional modeling devices according to Experimental Examples 1 to 20 have excellent adhesion because they contain (B) a modified thermoplastic resin containing a butene-based polyolefin in the skeleton, and also have an effect of reducing warpage. Because of the large size, it was shown that objects with edges can be formed with reduced warpage.
以上、本発明の実施の形態及び実験例を説明したが、上記に記載した実施の形態及び実験例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実験例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 Although the embodiments and experimental examples of the present invention have been described above, the embodiments and experimental examples described above do not limit the invention according to the claims. Furthermore, it should be noted that not all combinations of features described in the embodiments and experimental examples are essential for solving the problems of the invention.
Claims (10)
無水マレイン酸変性ポリプロピレン(MAPP)により変性されてなり、ブテン系ポリオレフィンを骨格に含む(B)変性熱可塑性樹脂であるマレイン酸変性エチレン‐プロピレン‐ブテン共重合体若しくはマレイン酸変性プロピレン‐ブテン共重合体と
を含有し、
前記(A)熱可塑性樹脂の配合量が、40wt%以上70wt%以下であり、
前記(B)変性熱可塑性樹脂の配合量が、2.0wt%以上20wt%以下である立体造形装置用樹脂組成物。 (A) polypropylene which is a thermoplastic resin;
(B) Maleic acid-modified ethylene-propylene-butene copolymer or maleic acid-modified propylene-butene copolymer, which is a modified thermoplastic resin modified with maleic anhydride-modified polypropylene (MAPP) and containing a butene-based polyolefin in the skeleton. Contains a combination of
The blending amount of the thermoplastic resin (A) is 40 wt% or more and 70 wt% or less,
A resin composition for a three-dimensional modeling device , wherein the blending amount of the modified thermoplastic resin (B) is 2.0 wt% or more and 20 wt% or less .
前記マレイン酸変性エチレン‐プロピレン‐ブテン共重合体のグラフト率若しくはマレイン酸変性プロピレン‐ブテン共重合体のグラフト率が1.1%以上2.0%以下である請求項1に記載の立体造形装置用樹脂組成物。 The weight average molecular weight of the maleic acid-modified ethylene-propylene-butene copolymer or the weight average molecular weight of the maleic acid-modified propylene-butene copolymer is 60,000 or more and 95,000 or less,
The three-dimensional modeling apparatus according to claim 1, wherein the grafting ratio of the maleic acid-modified ethylene-propylene-butene copolymer or the grafting ratio of the maleic acid-modified propylene-butene copolymer is 1.1% or more and 2.0% or less. Resin composition for use.
を更に含む請求項1に記載の立体造形装置用樹脂組成物。 The resin composition for a three-dimensional modeling apparatus according to claim 1, further comprising (D) low crystalline polypropylene.
無水マレイン酸変性ポリプロピレン(MAPP)により変性されてなり、ブテン系ポリオレフィンを骨格に含む(B)変性熱可塑性樹脂であるマレイン酸変性エチレン‐プロピレン‐ブテン共重合体若しくはマレイン酸変性プロピレン‐ブテン共重合体と
を含有し、
前記(A)熱可塑性樹脂の配合量が、40wt%以上70wt%以下であり、
前記(B)変性熱可塑性樹脂の配合量が、2.0wt%以上20wt%以下である射出成型用樹脂組成物。 (A) polypropylene which is a thermoplastic resin;
(B) Maleic acid-modified ethylene-propylene-butene copolymer or maleic acid-modified propylene-butene copolymer, which is a modified thermoplastic resin modified with maleic anhydride-modified polypropylene (MAPP) and containing a butene-based polyolefin in the skeleton. Contains a combination of
The blending amount of the thermoplastic resin (A) is 40 wt% or more and 70 wt% or less,
A resin composition for injection molding, wherein the blending amount of the modified thermoplastic resin (B) is 2.0 wt% or more and 20 wt% or less .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023144977A JP7402378B1 (en) | 2023-09-07 | 2023-09-07 | Resin composition for three-dimensional modeling device, filament for three-dimensional modeling device, modeled object, pellet for three-dimensional modeling device, and resin composition for injection molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023144977A JP7402378B1 (en) | 2023-09-07 | 2023-09-07 | Resin composition for three-dimensional modeling device, filament for three-dimensional modeling device, modeled object, pellet for three-dimensional modeling device, and resin composition for injection molding |
Publications (1)
Publication Number | Publication Date |
---|---|
JP7402378B1 true JP7402378B1 (en) | 2023-12-20 |
Family
ID=89190326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023144977A Active JP7402378B1 (en) | 2023-09-07 | 2023-09-07 | Resin composition for three-dimensional modeling device, filament for three-dimensional modeling device, modeled object, pellet for three-dimensional modeling device, and resin composition for injection molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7402378B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018193922A1 (en) * | 2017-04-19 | 2018-10-25 | トヨタ紡織株式会社 | Thermoplastic resin composition, molded object, and production methods therefor |
WO2019044864A1 (en) * | 2017-09-04 | 2019-03-07 | 大塚化学株式会社 | Shaped article and method for producing same |
JP2021521021A (en) * | 2018-04-06 | 2021-08-26 | デュポン ポリマーズ インコーポレイテッド | Additional production composition |
JP7176155B1 (en) * | 2022-09-21 | 2022-11-21 | 城東テクノ株式会社 | Resin composition for stereolithography apparatus, filament for stereolithography apparatus, and modeled object |
-
2023
- 2023-09-07 JP JP2023144977A patent/JP7402378B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018193922A1 (en) * | 2017-04-19 | 2018-10-25 | トヨタ紡織株式会社 | Thermoplastic resin composition, molded object, and production methods therefor |
WO2019044864A1 (en) * | 2017-09-04 | 2019-03-07 | 大塚化学株式会社 | Shaped article and method for producing same |
JP2021521021A (en) * | 2018-04-06 | 2021-08-26 | デュポン ポリマーズ インコーポレイテッド | Additional production composition |
JP7176155B1 (en) * | 2022-09-21 | 2022-11-21 | 城東テクノ株式会社 | Resin composition for stereolithography apparatus, filament for stereolithography apparatus, and modeled object |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220282132A1 (en) | Adhesive compositions, articles including the adhesive compositions, and methods thereof | |
US20090110855A1 (en) | Filled Polystyrene Compositions and Uses Thereof | |
TWI335350B (en) | ||
JPH07276584A (en) | Laminated sheet | |
JP6760265B2 (en) | Polyethylene film | |
CN101909887A (en) | Surface protection film | |
JP2020192811A (en) | Polyethylene film | |
WO2024062693A1 (en) | Resin composition for 3d printing device, filament for 3d printing device, fabricated object, and pellet for 3d printing device | |
CN102470652A (en) | Surface protective film | |
WO2016140322A1 (en) | Thermoplastic resin composition, cover member and easily openable container | |
JP7402378B1 (en) | Resin composition for three-dimensional modeling device, filament for three-dimensional modeling device, modeled object, pellet for three-dimensional modeling device, and resin composition for injection molding | |
JP2019156484A (en) | Easily peelable film | |
JP2007196558A (en) | White multi-layer polyethylenic film and packaging bag | |
JP2012153775A (en) | Film, method for producing the same, and method for producing led package using the same | |
JPS5938976B2 (en) | improved composition | |
KR101871072B1 (en) | Polypropylene resin composition for easy peel film and article produced with the same | |
JP5581015B2 (en) | Propylene surface protective film | |
JP2009196334A (en) | Film for surface protection | |
JP6588293B2 (en) | SEALANT RESIN COMPOSITION AND LAMINATE CONTAINING THE SAME | |
CN116490360A (en) | Propylene-based multilayer film for soft battery cell packaging having excellent adhesion and moldability | |
JP7011925B2 (en) | Easy-to-open heat-sealing resin composition, easy-to-open heat-sealing material, packaging material and packaging | |
JP2001138448A (en) | Easily releasable film | |
JP2001162743A (en) | Surface-conductive polyolefin sheet | |
JP2009000984A (en) | Polyolefin multilayer sheet | |
JP2007283710A (en) | Composite sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230907 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20230907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7402378 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |