JP7400233B2 - Welding method and welding system - Google Patents

Welding method and welding system Download PDF

Info

Publication number
JP7400233B2
JP7400233B2 JP2019131206A JP2019131206A JP7400233B2 JP 7400233 B2 JP7400233 B2 JP 7400233B2 JP 2019131206 A JP2019131206 A JP 2019131206A JP 2019131206 A JP2019131206 A JP 2019131206A JP 7400233 B2 JP7400233 B2 JP 7400233B2
Authority
JP
Japan
Prior art keywords
welding method
laser
welding
aluminum
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019131206A
Other languages
Japanese (ja)
Other versions
JP2021013954A (en
Inventor
正規 中井
克典 高橋
幹文 森脇
紘次朗 山口
浩一郎 市原
直樹 氏平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2019131206A priority Critical patent/JP7400233B2/en
Publication of JP2021013954A publication Critical patent/JP2021013954A/en
Application granted granted Critical
Publication of JP7400233B2 publication Critical patent/JP7400233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、溶接方法及び溶接システムに関する。 The present invention relates to a welding method and a welding system.

機械的強度の低い金属材料から作られた部品は補強を要求されることがある。この要求に応えるために、レーザ溶接が用いられる。レーザ溶接は、機械的強度の低い材料に機械的強度の高い材料を接合することで、補強を行う。金属材料においては、軽量材料として知られるアルミニウムなど、その機能に応じた最適な使用を行うため、機能に応じた材料の選択を実施する必要があり、適材適所の配置を実施することにより自動車軽量化と安全性能を両立させることができる。 Components made from metal materials with low mechanical strength may require reinforcement. Laser welding is used to meet this demand. Laser welding performs reinforcement by joining a material with high mechanical strength to a material with low mechanical strength. In order to use metal materials optimally according to their functions, such as aluminum, which is known as a lightweight material, it is necessary to select materials according to their functions. It is possible to achieve both safety and safety performance.

しかし、材料の組み合わせによっては、脆弱な金属間化合物が接合界面に生成されるおそれがある。この問題に対して、高融点材料にのみ熱量を与え、与える熱量を制御することで、低融点材料のみを溶かすようにして接合させる方法が提案されている(特許文献1参照)。この提案された方法によれば、脆弱な金属間化合物の生成を抑えることができる。 However, depending on the combination of materials, a fragile intermetallic compound may be generated at the bonding interface. To solve this problem, a method has been proposed in which heat is applied only to the high melting point material and the amount of heat applied is controlled so that only the low melting point material is melted and bonded (see Patent Document 1). According to this proposed method, the formation of brittle intermetallic compounds can be suppressed.

特開2005-279744号公報Japanese Patent Application Publication No. 2005-279744

ただ、接合させる金属材料が鉄とアルミニウムの場合、一度アルミニウムの溶融が始まると、アルミニウムの溶融は入熱した箇所から周囲へ素早く拡がる。また、図9に示すように、アルミニウムの溶融量が増え、接合界面におけるアルミニウムの濃度が75%付近まで増えると、FeAl又はFeAlなどのアルミニウムを多く含む脆弱な金属間化合物が生成されるおそれがある。この問題は、接合界面の内、アルミニウムに近い領域で起こる。また、脆弱な金属間化合物をより多く含む領域は、機械的強度の劣る部位となり、想定されている荷重で変形してしまうおそれがある。 However, when the metal materials to be joined are iron and aluminum, once the aluminum begins to melt, the melting of the aluminum quickly spreads from the point where the heat is input to the surrounding area. Additionally, as shown in Figure 9, when the amount of melted aluminum increases and the concentration of aluminum at the bonding interface increases to around 75%, fragile intermetallic compounds containing a large amount of aluminum such as Fe 2 Al 5 or FeAl 2 are formed. There is a risk that This problem occurs in the region of the bonding interface that is close to the aluminum. Further, a region containing a larger amount of brittle intermetallic compounds becomes a region with poor mechanical strength, and there is a possibility that it will deform under an assumed load.

これに対して、接合界面において溶融した鉄とアルミニウムを撹拌すると、接合界面における金属間化合物が均一に分散され、機械的強度が改善される。しかし、鉄の融点に相当する温度でアルミニウムを加熱すると、突沸が起こり、安定して撹拌することが難しい。 On the other hand, when molten iron and aluminum are stirred at the joint interface, the intermetallic compounds at the joint interface are uniformly dispersed and the mechanical strength is improved. However, when aluminum is heated to a temperature corresponding to the melting point of iron, bumping occurs, making stable stirring difficult.

そこで、本発明は、材料の融点よりも低い温度で軟化した材料を撹拌することで、材料を均一に拡散し、より機械的強度の大きい金属間化合物を生成するように、接合界面を制御する溶接方法及び溶接システムを提供する。 Therefore, the present invention aims to control the bonding interface by stirring the softened material at a temperature lower than the melting point of the material to uniformly diffuse the material and generate an intermetallic compound with greater mechanical strength. A welding method and a welding system are provided.

この目的を達成するために、第1の融点を有する第1の材料からなる第1の部材と第2の融点を有する第2の材料からなる第2の部材とを溶接する溶接方法は、
前記第1の部材と前記第2の部材を突き合せた状態で、前記第1の部材において前記第2の部材に隣接する第1の領域と、前記第2の部材において前記第1の部材に隣接する第2の領域とにそれぞれ第1のレーザと第2のレーザを照射して、前記第1の材料と前記第2の材料をそれぞれ軟化させる加熱工程と、
前記加熱工程で軟化された前記第1の材料を撹拌し、前記加熱工程で軟化された前記第2の材料に混合して、金属間化合物を生成する撹拌工程と、を含み、
前記第1の部材における前記第1のレーザの照射領域は、斜めに開先加工された斜面で形成されており、
前記第2の部材の端部は、対向方向に直交する垂直面で構成されていることを特徴とする。


To achieve this objective, a welding method for welding a first member made of a first material having a first melting point and a second member made of a second material having a second melting point is as follows:
When the first member and the second member are butted together, a first region of the first member adjacent to the second member, and a region of the second member adjacent to the first member. a heating step of softening the first material and the second material by respectively irradiating a first laser and a second laser to an adjacent second region;
a stirring step of stirring the first material softened in the heating step and mixing it with the second material softened in the heating step to generate an intermetallic compound;
The irradiation area of the first laser on the first member is formed by an obliquely beveled slope,
The end portion of the second member is characterized in that it is constituted by a vertical plane orthogonal to the opposing direction.


本発明によれば、軟化された第1の材料と第2の材料を攪拌することで、より機械的強度の大きい金属間化合物を生成し、均一に拡散させる溶接方法を提供できる。この方法により形成される部材は優れた靭性を有する。 According to the present invention, it is possible to provide a welding method in which an intermetallic compound with higher mechanical strength is generated and uniformly diffused by stirring the softened first material and second material. Components formed by this method have excellent toughness.

実施形態1に係る溶接システムの概略構成を示す正面図である。1 is a front view showing a schematic configuration of a welding system according to Embodiment 1. FIG. 図1に示す溶接システムのブロック図である。2 is a block diagram of the welding system shown in FIG. 1. FIG. 図1に示す溶接システムの概略構成を示す斜視図である。2 is a perspective view showing a schematic configuration of the welding system shown in FIG. 1. FIG. 第1の部材と第2の部材の溶融池を示す断面図である。FIG. 3 is a cross-sectional view showing a molten pool of a first member and a second member. 実施形態2に係る溶接システムの概略構成を示す斜視図である。FIG. 2 is a perspective view showing a schematic configuration of a welding system according to a second embodiment. 実施形態3に係る溶接システムの概略構成を示す斜視図である。FIG. 3 is a perspective view showing a schematic configuration of a welding system according to a third embodiment. 鉄-炭素の状態図である。It is an iron-carbon phase diagram. アルミニウム-マグネシウムの状態図である。FIG. 2 is a phase diagram of aluminum-magnesium. 鉄-アルミニウムの状態図である。It is a phase diagram of iron-aluminum.

以下、添付図面を参照して本発明に係る溶接方法の実施形態を説明する。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a welding method according to the present invention will be described with reference to the accompanying drawings.

[溶接システム]
図1は実施形態1に係る溶接方法を実施するための溶接システムの概要を示す。図示する溶接システム10は、溶接対象12を支持する下部構造14と、2つの金属部材からなる溶接対象12にレーザを照射する上部構造16を有する。
[Welding system]
FIG. 1 shows an outline of a welding system for carrying out the welding method according to the first embodiment. The illustrated welding system 10 has a lower structure 14 that supports a welding object 12 and an upper structure 16 that irradiates a laser beam onto the welding object 12 made of two metal members.

下部構造14は、建物の床等に固定された基台18と、基台18の上に配置された移動テーブル20と、移動テーブル20の上に配置された支持テーブル22を有する。支持テーブル22は、溶接対象12を支持する水平支持面24を備えている。支持テーブル22はまた、水平支持面24に支持されている溶接対象12を固定するための治具26を備えている。移動テーブル20は、テーブル移動モータ28に連結されており、モータ28の駆動に基づいて、支持テーブル22を水平支持面24に平行で図の左右方向に伸びる方向(x方向)に移動させることができるように構成されている。 The lower structure 14 includes a base 18 fixed to the floor of a building or the like, a movable table 20 disposed on the base 18, and a support table 22 disposed on the movable table 20. The support table 22 includes a horizontal support surface 24 that supports the object 12 to be welded. The support table 22 also includes a jig 26 for fixing the welding object 12 supported on the horizontal support surface 24. The moving table 20 is connected to a table moving motor 28, and based on the drive of the motor 28, the supporting table 22 can be moved in a direction parallel to the horizontal supporting surface 24 and extending in the left-right direction in the figure (x direction). It is configured so that it can be done.

実施形態では、支持テーブル22は、その内部に冷媒を輸送する空間の冷媒輸送路30が形成されている。冷媒は、空気又は適当な液体のいずれかであってもよい。冷媒輸送路30は冷媒循環路(管路)32を介して冷却器34に接続されている。冷却器34は、冷媒循環路32を介して冷媒輸送路30に冷媒を輸送し、また、冷媒輸送路30から冷媒循環路32を介して冷媒を回収するためのポンプ36と、回収された冷媒を再び冷却する熱交換器38を備えている。 In the embodiment, the support table 22 has a refrigerant transport path 30 formed therein as a space for transporting refrigerant. The coolant may be either air or a suitable liquid. The refrigerant transport path 30 is connected to a cooler 34 via a refrigerant circulation path (pipe) 32. The cooler 34 includes a pump 36 for transporting the refrigerant to the refrigerant transport path 30 via the refrigerant circulation path 32, and a pump 36 for recovering the refrigerant from the refrigerant transport path 30 via the refrigerant circulation path 32, and a pump 36 for transporting the refrigerant to the refrigerant transport path 30 via the refrigerant circulation path 32, and a pump 36 for transporting the refrigerant to the refrigerant transport path 30 via the refrigerant circulation path 32. A heat exchanger 38 is provided to cool the water again.

上部構造16は、図1の手前側から奥側に向かう方向(y方向)に並んで配置されている2つの加熱装置を有する。加熱装置はそれぞれレーザ加工機40A,40Bを有する。レーザ加工機40A,40Bはそれぞれ加工用レーザ発振器42A,42Bを有する。レーザ発振器42A,42Bから出力されるレーザ44A,44Bは、YAGレーザ、CO2レーザ、その他のレーザのいずれであってもよい。レーザ加工機40Bとそれに関連する構成は図3にのみ示す。 The upper structure 16 has two heating devices arranged side by side in the direction from the front side to the back side (y direction) in FIG. The heating devices each have laser processing machines 40A and 40B. The laser processing machines 40A and 40B have processing laser oscillators 42A and 42B, respectively. Lasers 44A and 44B output from laser oscillators 42A and 42B may be YAG lasers, CO2 lasers, or other lasers. Laser processing machine 40B and its related configuration are shown only in FIG.

上部構造16は、2つの金属部材を含む溶接対象12を摩擦撹拌接合(Frictio Stir Welding)するための撹拌装置46を有する。撹拌装置46は、上方から下方に(z方向に)向かって伸びる棒状の撹拌回転工具48を有する。撹拌回転工具48は、例えば、SKD(合金工具鋼)、ニッケル合金、コバルト合金、タングステンカーバイドで形成されており、z方向に伸びる軸を中心に回転するように工具回転モータ50に連結される。工具回転モータ50は、撹拌回転工具48と共に、z方向に移動できるように、工具移動モータ52に連結されている。したがって、撹拌回転工具48は、上述のレーザ照射により軟化する溶接対象12に上方から挿入され、溶接対象12内において回転するように構成されている。 The superstructure 16 has a stirring device 46 for performing friction stir welding on the welding object 12 including two metal members. The stirring device 46 has a rod-shaped stirring rotary tool 48 that extends downward (in the z direction) from above. The stirring rotary tool 48 is made of, for example, SKD (alloy tool steel), nickel alloy, cobalt alloy, or tungsten carbide, and is connected to the tool rotation motor 50 so as to rotate about an axis extending in the z direction. The tool rotation motor 50 is coupled to a tool movement motor 52 so as to be able to move in the z direction together with the stirring rotation tool 48 . Therefore, the stirring rotary tool 48 is inserted from above into the welding object 12 that is softened by the above-described laser irradiation, and is configured to rotate within the welding object 12.

実施形態では、移動テーブル20は、+x方向(図1における右側)に移動するように構成されている。したがって、溶接システム10は、テーブル移動モータ28の駆動に基づいて、レーザ44A,44Bと撹拌回転工具48に対して溶接対象12を図上右側から左側に移動させ、これにより、レーザ44A,44Bの照射位置と撹拌回転工具48の撹拌位置を溶接対象12に対して移動させるように構成されている。 In the embodiment, the moving table 20 is configured to move in the +x direction (to the right in FIG. 1). Therefore, the welding system 10 moves the welding target 12 from the right side to the left side in the figure with respect to the lasers 44A, 44B and the stirring rotary tool 48 based on the drive of the table moving motor 28. The irradiation position and the stirring position of the stirring rotary tool 48 are configured to be moved relative to the welding object 12.

上述したテーブル移動モータ28、ポンプ36、レーザ発振器42A,42B、工具回転モータ50、及び工具移動モータ52は、コントローラ54に接続されている。コントローラ54はまた、記憶部56に接続されている(図2参照)。したがって、コントローラ54は、記憶部56に記憶されているプログラム又はデータに基づいて上述の機器を駆動し、所定の溶接加工を行うことができる。具体的に、溶接システム10で行うことができる種々の溶接加工について説明する。 The table moving motor 28, pump 36, laser oscillators 42A, 42B, tool rotating motor 50, and tool moving motor 52 described above are connected to a controller 54. The controller 54 is also connected to a storage unit 56 (see FIG. 2). Therefore, the controller 54 can drive the above-mentioned equipment based on the program or data stored in the storage unit 56 to perform a predetermined welding process. Specifically, various welding processes that can be performed with the welding system 10 will be explained.

[実施形態1]
実施形態1において、溶接対象12は、図3に示すように、y方向に突き合わせた2つの部材、すなわち第1の部材62Aと第2の部材62Bを含む。図面上、第1の部材62Aと第2の部材62Bは共に四角形の板状部材であるが、その組み合わせに限るものではない。
[Embodiment 1]
In Embodiment 1, the welding target 12 includes two members abutted against each other in the y direction, ie, a first member 62A and a second member 62B, as shown in FIG. In the drawings, both the first member 62A and the second member 62B are rectangular plate-like members, but the combination is not limited to this.

実施形態1では、第1の部材62Aは炭素鋼(鉄)で形成されている。第2の部材62Bはアルミマグネシウム合金(アルミニウム)で形成されている。 In the first embodiment, the first member 62A is made of carbon steel (iron). The second member 62B is made of aluminum magnesium alloy (aluminum).

第1の部材62Aと第2の部材62Bは、第1の部材62Aを右、第2の部材62Bを左に配置し、第1の部材62Aの直線状端面(第1の端面)と第2の部材62Bの直線状端面(第2の端面)を突き合せ、突き合せた直線状端面をx方向に沿って配置した状態で、適当な治具26によって固定されている(図1参照)。 The first member 62A and the second member 62B are arranged such that the first member 62A is arranged on the right and the second member 62B is arranged on the left. The linear end surfaces (second end surfaces) of the members 62B are butted against each other, and the abutted linear end surfaces are fixed by an appropriate jig 26 with the abutted linear end surfaces arranged along the x direction (see FIG. 1).

第1の部材62Aと第2の部材62Bは、突き合せた端面に隣接し且つこれに沿って延在する第1のレーザ照射領域64Aと第2のレーザ照射領域64Bを有する。第1と第2のレーザ照射領域64A,64Bは、レーザ44A,44Bがそれぞれ照射される領域である。 The first member 62A and the second member 62B have a first laser irradiation area 64A and a second laser irradiation area 64B adjacent to and extending along the abutted end surfaces. The first and second laser irradiation areas 64A and 64B are areas that are irradiated with lasers 44A and 44B, respectively.

溶接時、コントローラ54は記憶部56に記憶されている溶接プログラムを読み出し、そのプログラムにしたがってテーブル移動モータ28、レーザ発振器42A,42B、工具回転モータ50、及び工具移動モータ52を駆動する。これにより、レーザ発振器42A,42Bから出力されたレーザ44A,44Bは、z方向から第1のレーザ照射領域64Aと第2のレーザ照射領域64Bにそれぞれ照射される。レーザ44A,44Bの照射位置66A,66Bは、テーブル移動モータ28の駆動に基づいて第1の部材62Aと第2の部材62Bを含む溶接対象12が+x方向に移動することにより、溶接対象12に対して相対的に-x方向に移動する。 During welding, the controller 54 reads the welding program stored in the storage section 56, and drives the table movement motor 28, laser oscillators 42A, 42B, tool rotation motor 50, and tool movement motor 52 according to the program. Thereby, the lasers 44A and 44B output from the laser oscillators 42A and 42B are irradiated from the z direction onto the first laser irradiation area 64A and the second laser irradiation area 64B, respectively. The irradiation positions 66A and 66B of the lasers 44A and 44B are set to the welding target 12 by moving the welding target 12 including the first member 62A and the second member 62B in the +x direction based on the drive of the table moving motor 28. It moves in the −x direction relative to the object.

レーザ発振器42A,42Bが発するレーザ44A,44Bの光強度は第1の部材62Aと第2の部材62Bの材質に応じて決まり、第1の部材62Aと第2の部材62Bのレーザ照射領域64A,64Bはそれぞれ所定の温度まで加熱される。この温度は、部材を構成している原子が熱的な活性化過程によって拡散することによりそれぞれのレーザ照射領域の材料が軟化する温度である。 The light intensity of the lasers 44A and 44B emitted by the laser oscillators 42A and 42B is determined depending on the materials of the first member 62A and the second member 62B, and the laser irradiation areas 64A and 44B of the first member 62A and the second member 62B are 64B are each heated to a predetermined temperature. This temperature is the temperature at which the material in each laser irradiation area softens as atoms constituting the member diffuse through a thermal activation process.

例えば、第1の部材62Aが鉄(鉄の融点は摂氏1538度である。)の場合、第1の部材62は約摂氏900度まで加熱される。また、第2の部材62Bがアルミニウム(アルミニウムの融点は摂氏660度である。)の場合、第2の部材62Bは約摂氏500度まで加熱される。 For example, if the first member 62A is made of iron (the melting point of iron is 1538 degrees Celsius), the first member 62 is heated to about 900 degrees Celsius. Further, when the second member 62B is made of aluminum (the melting point of aluminum is 660 degrees Celsius), the second member 62B is heated to about 500 degrees Celsius.

図7は、第1の部材62Aの材質である炭素鋼の状態図である。炭素鋼は、温度や炭素の比率に応じて、フェライト(α鉄)やオーステナイト(γ鉄)などの形態になることが知られている。フェライトは鉄原子で形成される体心立方格子構造を有している。一方、オーステナイトは鉄原子で形成される面心立方格子構造を有している。オーステナイトにおける鉄原子同士の間隔がフェライトに比べて広いため、他の原子(例えば炭素原子)の侵入が起こり易い。すなわち、オーステナイトに変化した第1の部材62Aは、第2の部材62Bの材質であるアルミマグネシウム合金とも混ざり易い。 FIG. 7 is a state diagram of carbon steel, which is the material of the first member 62A. Carbon steel is known to take forms such as ferrite (α iron) and austenite (γ iron) depending on the temperature and carbon ratio. Ferrite has a body-centered cubic lattice structure formed of iron atoms. On the other hand, austenite has a face-centered cubic lattice structure formed by iron atoms. Since the spacing between iron atoms in austenite is wider than that in ferrite, other atoms (for example, carbon atoms) are likely to penetrate into the austenite. In other words, the first member 62A that has changed to austenite easily mixes with the aluminum-magnesium alloy that is the material of the second member 62B.

図7に示す領域72は、炭素鋼がオーステナイトになることを示す。一方、領域74は、フェライトとオーステナイトが混在していることを示す。実施例として、第1の部材62Aの材質である炭素鋼の炭素含有量が約0.2%であるとき、炭素鋼が、加熱されることにより領域74から領域72に移り、オーステナイトに完全に変化する(オーステナイト変態が開始する)温度は約900℃である。したがって、レーザ発振器42Aが発するレーザ44Aの光強度を、この温度に応じて決めることにより、第1の部材62Aは第2の部材62Bと混ざり易くなる。 Region 72 shown in FIG. 7 indicates that the carbon steel becomes austenitic. On the other hand, region 74 shows a mixture of ferrite and austenite. As an example, when the carbon content of the carbon steel that is the material of the first member 62A is about 0.2%, the carbon steel moves from the region 74 to the region 72 by being heated, and completely changes to austenite. The temperature of change (at which austenitic transformation begins) is approximately 900°C. Therefore, by determining the light intensity of the laser 44A emitted by the laser oscillator 42A according to this temperature, the first member 62A can be easily mixed with the second member 62B.

図8は、第2の部材62Bの材質であるアルミマグネシウム合金の状態図である。アルミマグネシウム合金は、温度やマグネシウムの比率に応じて、アルミニウムの固溶体になることが知られている。このとき、他の原子(例えばマグネシウム原子)の侵入が起こり易い。すなわち、アルミニウムの固溶体に変化した第2の部材62Bは、第1の部材62Aの材質である炭素鋼とも混ざり易い。 FIG. 8 is a state diagram of the aluminum magnesium alloy that is the material of the second member 62B. It is known that aluminum-magnesium alloys become solid solutions of aluminum depending on the temperature and magnesium ratio. At this time, other atoms (for example, magnesium atoms) are likely to enter. That is, the second member 62B that has changed into a solid solution of aluminum easily mixes with the carbon steel that is the material of the first member 62A.

図8に示す領域76は、アルミマグネシウム合金が固溶体になることを示す。実施例として、第2の部材62Bの材質であるアルミマグネシウム合金のマグネシウム含有量が約5.6%であるとき、温度が約300~550℃である限り、アルミマグネシウム合金は固溶体である。したがって、例えばアルミマグネシウム合金の温度が500℃になるように、レーザ発振器42Bが発するレーザ44Bの光強度を決めることにより、第2の部材62Bは第1の部材62Aと混ざり易くなる。 Region 76 shown in FIG. 8 indicates that the aluminum-magnesium alloy becomes a solid solution. As an example, when the magnesium content of the aluminum-magnesium alloy that is the material of the second member 62B is about 5.6%, the aluminum-magnesium alloy is a solid solution as long as the temperature is about 300-550°C. Therefore, for example, by determining the light intensity of the laser 44B emitted by the laser oscillator 42B so that the temperature of the aluminum-magnesium alloy is 500° C., the second member 62B can be easily mixed with the first member 62A.

第1の部材62Aと第2の部材62Bは、上述の温度までそれぞれ加熱されることにより混ざり易くなる、すなわち軟化した状態になる。 When the first member 62A and the second member 62B are heated to the above-mentioned temperatures, they become easier to mix, that is, are in a softened state.

この状態で、撹拌装置46の撹拌回転工具48は、工具回転モータ50の駆動に基づいて回転しながら、工具移動モータ52の駆動に基づいて、軟化した第1の部材62Aの第1のレーザ照射領域64Aに上方から挿入される。回転数は、好ましくは約2000rpmである。これにより、軟化した第1の部材62Aが撹拌され、この撹拌された第1の部材62Aが、軟化した隣接する第2の部材62Bと混合されて、第1の部材62Aと第2の部材62Bの境界に図4に示す溶融池78が形成される。 In this state, the stirring rotary tool 48 of the stirring device 46 rotates based on the drive of the tool rotation motor 50 and, based on the drive of the tool moving motor 52, irradiates the softened first member 62A with the first laser. It is inserted into the region 64A from above. The rotation speed is preferably about 2000 rpm. As a result, the softened first member 62A is stirred, and the stirred first member 62A is mixed with the softened adjacent second member 62B, thereby forming the first member 62A and the second member 62B. A molten pool 78 shown in FIG. 4 is formed at the boundary.

上述のように、撹拌回転工具48は第1のレーザ照射領域64Aに挿入されて第1の部材62Aを撹拌する。したがって、第1のレーザ照射領域64Aにおいて軟化した第1の部材62Aに第2のレーザ照射領域64Bにおいて軟化した第2の部材62Bが混じり、鉄原子の割合がアルミニウム原子の割合よりも多い金属間化合物(例えば、図9に示すFeAl、FeAl、FeAlなど)が生成される。当業者に知られているように、FeAl、FeAl、FeAlなどの金属間化合物は、FeAl、FeAlなどの金属間化合物に比べて機械的強度が大きい。また、機械的強度が小さい金属間化合物FeAl、FeAlが一部に生成されたとしても、撹拌回転工具48が溶融池78を撹拌することにより、それらの金属間化合物は均一に分散されるため、接合界面に脆い領域が生じることがない。 As described above, the stirring rotary tool 48 is inserted into the first laser irradiation area 64A and stirs the first member 62A. Therefore, the first member 62A softened in the first laser irradiation region 64A is mixed with the second member 62B softened in the second laser irradiation region 64B, resulting in an intermetallic structure in which the proportion of iron atoms is higher than the proportion of aluminum atoms. Compounds (eg, FeAl, FeAl 2 , Fe 3 Al, etc. shown in FIG. 9) are produced. As known to those skilled in the art, intermetallic compounds such as FeAl, FeAl2 , Fe3Al have greater mechanical strength compared to intermetallic compounds such as Fe2Al5 , FeAl3 . Furthermore, even if intermetallic compounds Fe 2 Al 5 and FeAl 3 with low mechanical strength are partially generated, the stirring rotary tool 48 stirs the molten pool 78, so that these intermetallic compounds are uniformly dispersed. Therefore, no brittle region is created at the bonding interface.

上述のレーザ溶接中、冷却器34のポンプ36が連続的に駆動され、冷媒が、冷媒循環路32を介して、冷媒輸送路30に供給される(図1参照)。これにより、支持テーブル22を介して溶接対象12がその下面から冷却され、特に第2の部材62Bが過度に加熱されないように制御される。 During the laser welding described above, the pump 36 of the cooler 34 is continuously driven and coolant is supplied to the coolant transport path 30 via the coolant circulation path 32 (see FIG. 1). Thereby, the welding target 12 is cooled from its lower surface via the support table 22, and in particular, the second member 62B is controlled so as not to be excessively heated.

[実施形態2]
図5に示す実施形態2の溶接システム110において、溶接対象の第1の部材と第2の部材は、同一又はほぼ同一の外径を有する略円柱状の第1の部材162Aと第2の部材162Bである。第1の部材162Aと第2の部材162Bの材質はそれぞれ、実施形態1の第1の部材と第2の部材と同じ、炭素鋼とアルミマグネシウム合金である。
[Embodiment 2]
In the welding system 110 of the second embodiment shown in FIG. 5, the first member and the second member to be welded are a substantially cylindrical first member 162A and a second member having the same or almost the same outer diameter. It is 162B. The materials of the first member 162A and the second member 162B are carbon steel and aluminum magnesium alloy, respectively, which are the same as the first member and the second member of the first embodiment.

第1の部材162Aと第2の部材162Bはそれぞれ、中心軸を同一直線上に整列させて端面を合わせた状態で適当な手段によって中心軸の周りを回転可能に支持される。第1の部材162Aと第2の部材162Bはまた、第1のモータ168Aと第2のモータ168Bにそれぞれ連結されており、同一方向に同一速度で、又は同一方向に異なる速度で、若しくは異なる方向に同一速度又は異なる速度で回転するようにしてある。 The first member 162A and the second member 162B are each rotatably supported around the central axis by appropriate means with their central axes aligned on the same straight line and their end surfaces aligned. The first member 162A and the second member 162B are also coupled to a first motor 168A and a second motor 168B, respectively, and may be coupled in the same direction and at the same speed, or in the same direction and at different speeds, or in different directions. They are designed to rotate at the same speed or at different speeds.

レーザ加工機140A,140Bは、第1の部材162Aと第2の部材162Bの突き合せ面を挟んでその両側に配置されており、レーザ加工機140A,140Bのレーザ発振器142A,142Bから出射されるレーザ144A,144Bがそれぞれ、第1の部材162Aにおいて第2の部材162Bに隣接する領域(第1のレーザ照射領域164A)内の第1のレーザ照射位置166Aと、第2の部材162Bにおいて第1の部材162Aに隣接する領域(第2のレーザ照射領域164B)内の第2のレーザ照射位置166Bとに照射されるように設定されている。 The laser processing machines 140A, 140B are arranged on both sides of the abutting surface of the first member 162A and the second member 162B, and the laser beams are emitted from the laser oscillators 142A, 142B of the laser processing machines 140A, 140B. The lasers 144A and 144B respectively target a first laser irradiation position 166A in a region (first laser irradiation area 164A) adjacent to the second member 162B in the first member 162A, and a first laser irradiation position in the second member 162B. The second laser irradiation position 166B in the area (second laser irradiation area 164B) adjacent to the member 162A is set to be irradiated with the second laser irradiation position 166B.

撹拌装置146は、撹拌回転工具148と、これに連結された工具回転モータ150を備えており、撹拌回転工具148の先端を第1のレーザ照射領域164Aに対向させた状態で支持されている。撹拌装置146はまた、撹拌回転工具148を第1のレーザ照射領域164Aに向けて進退させる工具移動モータ152を備えている。 The stirring device 146 includes a stirring rotary tool 148 and a tool rotation motor 150 connected thereto, and is supported with the tip of the stirring rotary tool 148 facing the first laser irradiation area 164A. The stirring device 146 also includes a tool moving motor 152 that moves the stirring rotary tool 148 forward and backward toward the first laser irradiation area 164A.

このように構成された実施形態2において、溶接時、第1のモータ168Aと第2のモータ168Bの駆動に基づいて、第1の部材162Aと第2の部材162Bは、それらの中心軸を中心に同一方向又は異なる方向に回転される。この状態で、レーザ加工機140A,140Bは、第1の部材162Aと第2の部材162Bの第1のレーザ照射領域164Aと第2のレーザ照射領域164Bに第1のレーザ144Aと第2のレーザ144Bをそれぞれ照射し、第1のレーザ照射領域164Aと第2のレーザ照射領域164Bの材料を加熱して軟化させる。この状態で、工具回転モータ150と工具移動モータ152を駆動し、回転する撹拌回転工具148の先端を、軟化した第1のレーザ照射領域164Aの材料に挿入してこれを回転撹拌する。また、第1の部材162Aの材料の回転撹拌に、軟化した第2の部材162Bの材料が引き込まれ、これにより、第1の部材162Aと第2の部材162Bの境界領域において第1の部材162Aの材料に第2の部材162Bの材料が混じり、鉄原子の割合がアルミニウム原子の割合よりも多い金属間化合物(例えば、FeAl、FeAl、FeAlなど)が生成される。 In the second embodiment configured in this way, during welding, the first member 162A and the second member 162B are rotated about their central axes based on the driving of the first motor 168A and the second motor 168B. rotated in the same direction or in different directions. In this state, the laser processing machines 140A and 140B apply the first laser 144A and the second laser to the first laser irradiation area 164A and the second laser irradiation area 164B of the first member 162A and the second member 162B. 144B, and the materials of the first laser irradiation area 164A and the second laser irradiation area 164B are heated and softened. In this state, the tool rotation motor 150 and the tool movement motor 152 are driven, and the tip of the rotating stirring rotary tool 148 is inserted into the softened material in the first laser irradiation area 164A to rotationally stir it. Furthermore, the softened material of the second member 162B is drawn into the rotational agitation of the material of the first member 162A, so that the material of the first member 162A in the boundary area between the first member 162A and the second member 162B The material of the second member 162B is mixed with the material of the second member 162B, and an intermetallic compound in which the proportion of iron atoms is higher than the proportion of aluminum atoms (for example, FeAl, FeAl 2 , Fe 3 Al, etc.) is generated.

このように、実施形態2によれば、第1のレーザ144Aと第2のレーザ144Bは、第1の部材162Aと第2の部材162Bの第1のレーザ照射領域164Aと第2のレーザ照射領域164Bを繰り返し加熱し、この繰り返し加熱された材料が撹拌回転工具148によって撹拌される。そのため、第1の部材162Aと第2の部材162Bが素早くかつ効率良く加熱されて撹拌される。また、第1の部材162Aと第2の部材162Bの回転速度を変えることにより、また、両者を逆方向に回転することによって、軟化した第1の部材162Aと第2の部材162Bが効率良く撹拌される。 Thus, according to the second embodiment, the first laser 144A and the second laser 144B are applied to the first laser irradiation area 164A and the second laser irradiation area of the first member 162A and the second member 162B. 164B is repeatedly heated, and the repeatedly heated material is stirred by the stirring rotary tool 148. Therefore, the first member 162A and the second member 162B are quickly and efficiently heated and stirred. Furthermore, by changing the rotational speed of the first member 162A and the second member 162B, or by rotating them in opposite directions, the softened first member 162A and second member 162B can be efficiently stirred. be done.

[実施形態3]
図6に示す実施形態3の溶接システム210は、実施形態1の溶接システムの変形例で、そこでは、第1の部材262Aにおける第1のレーザ照射領域264Aの端部(第2の部材262Bに対向する部分)は斜めに開先加工された斜面280Aで形成されており、第2の部材262Bの端部(第1の部材262Aに対向する端部)は対向方向に直交する垂直面280Bで構成されている。その他の構成は実施形態1と同じである。したがって、実施形態1の装置又は箇所と同じ又は対応する装置又は箇所には、実施形態1の符号に「200」を加えた符号を付して、説明を省略する。
[Embodiment 3]
Welding system 210 of Embodiment 3 shown in FIG. 6 is a modification of the welding system of Embodiment 1. The opposing portion) is formed by an obliquely beveled slope 280A, and the end of the second member 262B (the end facing the first member 262A) is formed by a vertical surface 280B orthogonal to the opposing direction. It is configured. The other configurations are the same as in the first embodiment. Therefore, devices or locations that are the same as or correspond to the devices or locations in Embodiment 1 are given the reference numerals with "200" added to the reference numerals in Embodiment 1, and their descriptions are omitted.

このように構成された実施形態3によれば、第1の部材262Aの第1のレーザ照射領域264A(斜面280A)に照射されたレーザ244Aは、第1のレーザ照射領域264A(斜面280A)で反射してこれに対向する第2の部材262Bの第2のレーザ照射領域264B(垂直面280B)に入射されて該第2のレーザ照射領域264Bを加熱する。また、第2のレーザ照射領域264B(垂直面280B)で反射したレーザ244Aは再び第1のレーザ照射領域264A(斜面280A)に入射して該第1のレーザ照射領域264Aを加熱する。したがって、実施形態3によれば、第1のレーザ照射領域264Aと第2のレーザ照射領域264Bが共に効率良く加熱される。したがって、第1の部材の斜面280Aの傾斜角度は、そこに照射されたレーザが第2の部材に向けて反射される角度(例えば、45度)とすることが好ましい。 According to the third embodiment configured in this way, the laser 244A irradiated to the first laser irradiation area 264A (slope 280A) of the first member 262A is The reflected light is incident on the second laser irradiation area 264B (vertical surface 280B) of the second member 262B facing thereto, thereby heating the second laser irradiation area 264B. Further, the laser 244A reflected by the second laser irradiation area 264B (vertical surface 280B) enters the first laser irradiation area 264A (slope 280A) again and heats the first laser irradiation area 264A. Therefore, according to the third embodiment, both the first laser irradiation area 264A and the second laser irradiation area 264B are efficiently heated. Therefore, the inclination angle of the slope 280A of the first member is preferably an angle (for example, 45 degrees) at which the laser irradiated thereon is reflected toward the second member.

上述した実施形態3は実施形態1に適用し、実施形態1における第1の部材の第1のレーザ照射領域を斜面で形成し、この斜面に第1のレーザを照射してもよい。この場合も、実施形態3と同様の効果が得られる。 Embodiment 3 described above may be applied to Embodiment 1, and the first laser irradiation area of the first member in Embodiment 1 may be formed by a slope, and the first laser may be irradiated onto this slope. In this case as well, the same effects as in the third embodiment can be obtained.

上述した実施形態1~3では、第1の部材が炭素鋼(鉄)、第2の部材がアルミマグネシウム合金(アルミニウム)であったが、本発明の適用はその組み合わせに限るものでない。例えば、第1の部材と第2の部材が共に鉄又はアルミニウムであってもよく、他の金属であってもよい。 In the first to third embodiments described above, the first member was made of carbon steel (iron) and the second member was made of aluminum magnesium alloy (aluminum), but the application of the present invention is not limited to these combinations. For example, both the first member and the second member may be made of iron or aluminum, or may be made of other metals.

10:溶接システム
40A,40B:加熱装置(レーザ加工機)
44A,44B:レーザ
46:撹拌装置
62A:第1の部材
62B:第2の部材
64A:第1のレーザ照射領域
64B:第2のレーザ照射領域
10: Welding system 40A, 40B: Heating device (laser processing machine)
44A, 44B: Laser 46: Stirring device 62A: First member 62B: Second member 64A: First laser irradiation area 64B: Second laser irradiation area

Claims (12)

第1の融点を有する第1の材料からなる第1の部材と第2の融点を有する第2の材料からなる第2の部材とを溶接する溶接方法であって、 A welding method for welding a first member made of a first material having a first melting point and a second member made of a second material having a second melting point, the welding method comprising:
前記第1の部材と前記第2の部材を突き合せた状態で、前記第1の部材において前記第2の部材に隣接する第1の領域と、前記第2の部材において前記第1の部材に隣接する第2の領域とにそれぞれ第1のレーザと第2のレーザを照射して、前記第1の材料と前記第2の材料をそれぞれ軟化させる加熱工程と、 When the first member and the second member are butted together, a first region of the first member adjacent to the second member, and a region of the second member adjacent to the first member. a heating step of softening the first material and the second material by respectively irradiating a first laser and a second laser to an adjacent second region;
前記加熱工程で軟化された前記第1の材料を撹拌し、前記加熱工程で軟化された前記第2の材料に混合して、金属間化合物を生成する撹拌工程と、を含み、 a stirring step of stirring the first material softened in the heating step and mixing it with the second material softened in the heating step to generate an intermetallic compound;
前記第1の部材における前記第1のレーザの照射領域は、斜めに開先加工された斜面で形成されており、 The irradiation area of the first laser on the first member is formed by an obliquely beveled slope,
前記第2の部材の端部は、対向方向に直交する垂直面で構成されていることを特徴とする、溶接方法。 A welding method, characterized in that the end of the second member is constituted by a vertical plane orthogonal to the opposing direction.
前記攪拌工程は、軟化された前記第1の材料にのみ工具を挿入し、工具挿入方向の軸を中心に前記工具を回転することを特徴とする請求項1に記載の溶接方法。 2. The welding method according to claim 1, wherein in the stirring step, a tool is inserted only into the softened first material, and the tool is rotated about an axis in the tool insertion direction. 前記第1の部材は第1の円筒部材からなり、
前記第2の部材は第2の円筒部材からなり、
前記第1の円筒部材と前記第2の円筒部材はそれらの中心軸を同一直線上に整列して同軸上に配置され、
前記第1の円筒部材の端面と前記第2の円筒部材の端面が突き合わされ、
前記加熱工程と前記撹拌工程において、前記第1の円筒部材と前記第2の円筒部材が同一方向に又は逆方向に回転されることを特徴とする請求項1又は2に記載の溶接方法。
the first member comprises a first cylindrical member;
the second member comprises a second cylindrical member;
The first cylindrical member and the second cylindrical member are coaxially arranged with their central axes aligned on the same straight line,
an end surface of the first cylindrical member and an end surface of the second cylindrical member are butted against each other,
3. The welding method according to claim 1, wherein in the heating step and the stirring step, the first cylindrical member and the second cylindrical member are rotated in the same direction or in opposite directions.
前記第1の円筒部材と前記第2の円筒部材が同一速度又は異なる速度で回転されることを特徴とする請求項3に記載の溶接方法。 4. The welding method according to claim 3, wherein the first cylindrical member and the second cylindrical member are rotated at the same speed or different speeds. 前記第1の部材は直線状の第1の端面を有し、
前記第2の部材は直線状の第2の端面を有し、
前記第1の端面と前記第2の端面が突き合わされることを特徴とする請求項1又は2に記載の溶接方法。
The first member has a linear first end surface,
The second member has a linear second end surface,
3. The welding method according to claim 1, wherein the first end surface and the second end surface are butted against each other.
前記第1の材料の前記第1の融点が前記第2の材料の前記第2の融点と同じであることを特徴とする請求項1~5のいずれかに記載の溶接方法。 6. The welding method according to claim 1, wherein the first melting point of the first material is the same as the second melting point of the second material. 前記第1の材料の前記第1の融点が前記第2の材料の前記第2の融点よりも高いことを特徴とする請求項1~5のいずれかに記載の溶接方法。 6. The welding method according to claim 1, wherein the first melting point of the first material is higher than the second melting point of the second material. 前記第1の材料は鉄で、前記第2の材料はアルミニウムであることを特徴とする請求項1~5のいずれかに記載の溶接方法。 6. The welding method according to claim 1, wherein the first material is iron and the second material is aluminum. 前記第1の部材と前記第2の部材は共に鉄であることを特徴とする請求項1~5のいずれかに記載の溶接方法。 The welding method according to any one of claims 1 to 5, wherein the first member and the second member are both made of iron. 前記第1の部材と前記第2の部材は共にアルミニウムであることを特徴とする請求項1~5のいずれかに記載の溶接方法。 The welding method according to any one of claims 1 to 5, wherein the first member and the second member are both made of aluminum. 前記加熱工程で、前記鉄は、オーステナイト変態が開始する温度まで加熱されることを特徴とする請求項8又は9に記載の溶接方法。 10. The welding method according to claim 8, wherein in the heating step, the iron is heated to a temperature at which austenite transformation begins. 前記加熱工程で、前記アルミニウムは固溶体になる状態まで加熱されることを特徴とする請求項8又は10に記載の溶接方法。 The welding method according to claim 8 or 10, wherein in the heating step, the aluminum is heated to a state where it becomes a solid solution.
JP2019131206A 2019-07-16 2019-07-16 Welding method and welding system Active JP7400233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019131206A JP7400233B2 (en) 2019-07-16 2019-07-16 Welding method and welding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019131206A JP7400233B2 (en) 2019-07-16 2019-07-16 Welding method and welding system

Publications (2)

Publication Number Publication Date
JP2021013954A JP2021013954A (en) 2021-02-12
JP7400233B2 true JP7400233B2 (en) 2023-12-19

Family

ID=74531195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019131206A Active JP7400233B2 (en) 2019-07-16 2019-07-16 Welding method and welding system

Country Status (1)

Country Link
JP (1) JP7400233B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329463A (en) 2004-04-19 2005-12-02 Showa Denko Kk Friction stirring and joining apparatus and friction stirring and joining method
US20060231595A1 (en) 2005-04-14 2006-10-19 James Florian Quinn Method for friction stir welding of dissimilar materials
WO2017022184A1 (en) 2015-07-31 2017-02-09 国立大学法人大阪大学 Friction bonding method
JP2019034313A (en) 2017-08-10 2019-03-07 新日鐵住金株式会社 Bonded joint

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3081817B2 (en) * 1997-08-19 2000-08-28 昭和アルミニウム株式会社 Friction stir welding between dissimilar metal workpieces

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329463A (en) 2004-04-19 2005-12-02 Showa Denko Kk Friction stirring and joining apparatus and friction stirring and joining method
US20060231595A1 (en) 2005-04-14 2006-10-19 James Florian Quinn Method for friction stir welding of dissimilar materials
WO2017022184A1 (en) 2015-07-31 2017-02-09 国立大学法人大阪大学 Friction bonding method
JP2019034313A (en) 2017-08-10 2019-03-07 新日鐵住金株式会社 Bonded joint

Also Published As

Publication number Publication date
JP2021013954A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP6799755B2 (en) Laser welding method
CN108367386B (en) Method for joining two blanks, blank and product obtained
CN109202287B (en) Laser welding method and laser welding device
CN110023026B (en) Laser welding of overlapping metal workpieces assisted by oscillating laser beam focal position
JP7068051B2 (en) Laser welding method
KR20130056302A (en) System for using high rotary speed for minimizing the load during friction stir welding
JP7192363B2 (en) LASER WELDING METHOD AND LASER WELDING APPARATUS
Franco et al. Analysis of copper sheets welded by fiber laser with beam oscillation
JP2007136489A (en) Method for welding different materials
JP2022522482A (en) A method for laser bonding two blanks made of aluminum material
Xiao et al. Dissimilar laser spot welding of aluminum alloy to steel in keyhole mode
JP7400233B2 (en) Welding method and welding system
JP4335819B2 (en) Metal processing method
JP2005288474A (en) Friction stir welding device and method
JP4865830B2 (en) Metal surface modification method
JP2006297452A (en) Laser welding method
WO2021230070A1 (en) Laser welding method and laser welding device
JPH08206838A (en) Welding method of aluminum alloy casting
JP2002096182A (en) Bonding method, revolving tool and joining body by friction heating
KR101276332B1 (en) Method For Welding Magnesium Alloy and Structural Steel By Hybrid Friction Stir Welding with Tungsten Inert Gas Welding
Mathivanan et al. Welding of Copper to Aluminium with Laser Beam Wavelength of 515 nm
JP2008188660A (en) Laser beam welding method
JP3082468B2 (en) Laser welding method of aluminum alloy
JP7213440B2 (en) LASER WELDING METHOD AND LASER WELDING APPARATUS
WO2022075209A1 (en) Laser welding method and laser welding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R150 Certificate of patent or registration of utility model

Ref document number: 7400233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150