JP7400189B2 - How to regenerate adsorbent - Google Patents
How to regenerate adsorbent Download PDFInfo
- Publication number
- JP7400189B2 JP7400189B2 JP2019015825A JP2019015825A JP7400189B2 JP 7400189 B2 JP7400189 B2 JP 7400189B2 JP 2019015825 A JP2019015825 A JP 2019015825A JP 2019015825 A JP2019015825 A JP 2019015825A JP 7400189 B2 JP7400189 B2 JP 7400189B2
- Authority
- JP
- Japan
- Prior art keywords
- adsorbent
- activated carbon
- regenerating
- organic
- adsorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003463 adsorbent Substances 0.000 title claims description 83
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 128
- 238000001179 sorption measurement Methods 0.000 claims description 52
- 238000010438 heat treatment Methods 0.000 claims description 40
- 239000007789 gas Substances 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 32
- 239000011148 porous material Substances 0.000 claims description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 27
- 229910052760 oxygen Inorganic materials 0.000 claims description 27
- 239000001301 oxygen Substances 0.000 claims description 27
- 230000001172 regenerating effect Effects 0.000 claims description 23
- 238000002485 combustion reaction Methods 0.000 claims description 22
- 239000000126 substance Substances 0.000 claims description 20
- 238000005259 measurement Methods 0.000 claims description 18
- 239000012855 volatile organic compound Substances 0.000 claims description 13
- 239000005416 organic matter Substances 0.000 claims description 9
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 claims description 8
- 230000003247 decreasing effect Effects 0.000 claims description 7
- 238000003860 storage Methods 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 51
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- 230000004580 weight loss Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 230000035508 accumulation Effects 0.000 description 7
- 238000009825 accumulation Methods 0.000 description 7
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 238000003795 desorption Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- -1 Calix-Ti/UCB-4 Chemical compound 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 238000000045 pyrolysis gas chromatography Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000002076 thermal analysis method Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明は吸着材の再生方法に係り、特に有機物を吸着することにより吸着能力が低下した、活性炭等の細孔を有する吸着材を、効果的に再生して吸着能力を回復させる方法に関する。 The present invention relates to a method for regenerating an adsorbent, and in particular to a method for effectively regenerating an adsorbent having pores such as activated carbon, which has lost its adsorption capacity due to adsorption of organic substances, to restore its adsorption capacity.
石油化学コンビナートで原油から石油化学製品を製造するまでの工程では、原油精製工程で得られたナフサや、ナフサの分解工程で得られたベンゼン等の液体をタンクに貯留し、更に次工程へ送給することが行われている。ナフサやベンゼン等のナフサ分解生成物の貯留タンクでは、VOC(揮発性有機化合物:Volatile Organic Compounds)を含むベントガスが排出されるため、これを処理する必要がある。 In the process of manufacturing petrochemical products from crude oil at a petrochemical complex, liquids such as naphtha obtained in the crude oil refining process and benzene obtained in the naphtha cracking process are stored in tanks and sent to the next process. It is being done. Storage tanks for naphtha decomposition products such as naphtha and benzene emit vent gas containing VOCs (Volatile Organic Compounds), which must be treated.
VOCの処理方法としては、従来、吸着材による吸着法、直接燃焼法、触媒燃焼法、蓄熱燃焼法などが一般的な方法として知られているが、このうち、吸着法は低濃度ガスから高濃度ガスまで幅広い濃度の排ガスに適用することができると共に、吸着材フィルターに貯留タンクのベントガスを通すのみでよく、付帯設備も少なく、実機適応性に優れたものである。 Conventionally, conventional methods for treating VOCs include adsorption using adsorbents, direct combustion, catalytic combustion, and thermal storage combustion. It can be applied to exhaust gases with a wide range of concentrations, including concentrated gases, requires only passing the vent gas from the storage tank through an adsorbent filter, requires little incidental equipment, and is highly adaptable to actual equipment.
一方で、吸着方式ではVOC等の吸着により吸着材の吸着能力が低下し、使用不可能となるため、新品の吸着材と交換する必要があることが問題となっている。 On the other hand, in the adsorption method, the adsorption capacity of the adsorbent decreases due to the adsorption of VOCs and the like, making it unusable, and the problem is that it is necessary to replace the adsorbent with a new one.
例えば活性炭フィルターの場合、VOCの吸着工程とスチームによる脱着工程とを繰り返して使用しているが(例えば、特許文献1)、吸脱着を繰り返すことにより徐々に活性炭の細孔内にスチームでは脱着し得ない吸着成分や吸着成分の重合物など(以下、これらを「細孔内蓄積物」と称す場合がある。)などが蓄積し、吸着能力が低下してゆく。
即ち、活性炭等の細孔が吸着能に有効に機能する吸着材にあっては、この細孔が細孔内蓄積物の蓄積で閉塞してしまうと、もはや吸着に寄与し得なくなり吸着能力は格段に低下すると共に、単なる脱着操作では吸着能力を回復し得なくなる。
For example, in the case of an activated carbon filter, a VOC adsorption process and a steam desorption process are repeated (for example, Patent Document 1). Unobtainable adsorbed components and polymers of adsorbed components (hereinafter, these may be referred to as "pore accumulations") accumulate, and the adsorption capacity decreases.
In other words, in the case of an adsorbent such as activated carbon in which pores function effectively for adsorption capacity, if these pores become clogged with accumulation of pores, they will no longer be able to contribute to adsorption and the adsorption capacity will decrease. At the same time, the adsorption capacity can no longer be recovered by a simple desorption operation.
本発明は、有機物を吸着することにより吸着能力が低下した、細孔を有する吸着材を効果的に再生して、その吸着能力を新品における吸着能力と同程度にまで回復させることができる吸着材の再生方法を提供することを課題とする。 The present invention is an adsorbent that can effectively regenerate an adsorbent with pores whose adsorption capacity has decreased due to adsorption of organic matter, and restore the adsorption capacity to the same level as that of a new product. The objective is to provide a method for reproducing.
本発明者は、上記課題を解決すべく検討を重ねた結果、有機物を吸着することにより吸着能力が低下した、細孔を有する吸着材を、酸素含有ガスの存在下に熱処理することにより、吸着材の細孔内に蓄積した細孔内蓄積物を燃焼除去することができ、吸着材の細孔を回復させて吸着に寄与できるようにし、これにより吸着材の吸着能力を新品と同程度にまで回復させることができることを見出した。
本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
As a result of repeated studies to solve the above problems, the inventors of the present invention have discovered that an adsorbent material with pores whose adsorption capacity has decreased due to adsorption of organic substances can be adsorbed by heat-treating it in the presence of an oxygen-containing gas. Pore deposits accumulated in the pores of the material can be removed by combustion, allowing the pores of the adsorbent to recover and contribute to adsorption, thereby increasing the adsorption capacity of the adsorbent to the same level as new. We have discovered that it is possible to recover up to
The present invention has been achieved based on such knowledge, and its gist is as follows.
[1] 有機物を吸着することにより吸着能力が低下した、細孔を有する吸着材を、酸素含有ガスの存在下に熱処理することにより再生する方法であって、該熱処理温度が、該吸着材を、TG-DTA測定した際に、最初に出現する発熱ピーク温度TH1(℃)に対して、TH1-70℃~TH1+70℃の範囲であることを特徴とする吸着材の再生方法。 [1] A method of regenerating an adsorbent having pores whose adsorption capacity has decreased due to adsorption of organic matter by heat-treating it in the presence of an oxygen-containing gas, the heat treatment temperature being such that the adsorbent is , a method for regenerating an adsorbent, characterized in that the exothermic peak temperature T H1 (°C) that first appears when measured by TG-DTA is in the range of T H1 -70°C to T H1 +70°C.
[2] [1]において、前記酸素含有ガスの酸素濃度が3~21体積%であることを特徴とする吸着材の再生方法。 [2] The method for regenerating an adsorbent according to [1], wherein the oxygen concentration of the oxygen-containing gas is 3 to 21% by volume.
[3] [1]又は[2]において、前記吸着材が有機物を含むことを特徴とする吸着材の再生方法。 [3] The method for regenerating an adsorbent according to [1] or [2], wherein the adsorbent contains an organic substance.
[4] [1]ないし[3]のいずれかにおいて、前記吸着材が活性炭を含むことを特徴とする吸着材の再生方法。 [4] The method for regenerating an adsorbent according to any one of [1] to [3], wherein the adsorbent contains activated carbon.
[5] [4]において、前記吸着材の熱処理温度が200~450℃であることを特徴とする吸着材の再生方法。 [5] The method for regenerating an adsorbent according to [4], characterized in that the heat treatment temperature of the adsorbent is 200 to 450°C.
本発明によれば、有機物を吸着することにより吸着能力が低下した、細孔を有する吸着材を効果的に再生して、その吸着能力を新品における吸着能力と同程度にまで回復させることができる。
本発明によれば、従来、廃棄処理されていた劣化吸着材を再生して再利用することができ、吸着材コストを大幅に低減することができる。
According to the present invention, it is possible to effectively regenerate an adsorbent having pores whose adsorption capacity has decreased due to adsorption of organic matter, and to restore its adsorption capacity to the same level as that of a new product. .
According to the present invention, deteriorated adsorbent that has conventionally been discarded can be regenerated and reused, and the cost of the adsorbent can be significantly reduced.
以下に本発明の実施の形態を詳細に説明する。 Embodiments of the present invention will be described in detail below.
本発明の吸着材の再生方法は、有機物を吸着することにより吸着能力が低下した、細孔を有する吸着材を、酸素含有ガスの存在下に熱処理することにより再生する方法であって、該熱処理温度が、該吸着材を、TG-DTA測定した際に、最初に出現する発熱ピーク温度TH1(℃)に対して、TH1-70℃~TH1+70℃の範囲であることを特徴とする吸着材の再生方法である。
なお、TG-DTA測定の測定条件は以下の通りである。
<TG-DTA測定条件>
METTLER製TGA/DSCI型装置を用いて、キャリアーガスとして空気(酸素濃度21体積%)を50ml/min流通させ、温度を30℃から800℃まで昇温速度5℃/minで昇温させることでTG-DTA測定を実施する。試料は約20mgを精秤したものを使用する。
The method for regenerating an adsorbent of the present invention is a method for regenerating an adsorbent having pores whose adsorption capacity has decreased due to adsorption of organic matter by heat-treating the adsorbent in the presence of an oxygen-containing gas, the method comprising: The temperature is in the range of T H1 -70°C to T H1 +70°C with respect to the exothermic peak temperature T H1 (°C) that first appears when the adsorbent is measured by TG-DTA. This is a method for regenerating adsorbents.
Note that the measurement conditions for the TG-DTA measurement are as follows.
<TG-DTA measurement conditions>
Using a TGA/DSCI type device manufactured by METTLER, air (oxygen concentration 21% by volume) was passed as a carrier gas at a rate of 50 ml/min, and the temperature was raised from 30°C to 800°C at a rate of 5°C/min. Perform TG-DTA measurements. Approximately 20 mg of the sample is accurately weighed.
<用語の説明>
本発明において発熱ピークとは、TG-DTA測定により得られるチャートにおける熱量変化プロファイルにおいて、熱量変化曲線の傾きがプラスからマイナスに変化する上向きのピークをさす。
「最初に出現する発熱ピーク」とは、TG-DTA測定における昇温過程で最初に熱量変化曲線の傾きがプラスからマイナスに変化するピークをさし、以下、この最初の発熱ピークを「第1発熱ピーク」と称す場合がある。
最初に出現する発熱ピーク温度TH1(℃)とは、この第1発熱ピークの温度である。
また、TG-DTA測定における昇温過程で、この第1発熱ピーク後に再び熱量変化曲線の傾きがプラスとなり、このプラスの傾きがマイナスに変化するピークを「第2発熱ピーク」と称し、この第2発熱ピークの温度を「第2発熱ピーク温度TH2(℃)」と称す場合がある。
<Explanation of terms>
In the present invention, the exothermic peak refers to an upward peak at which the slope of the calorific value change curve changes from positive to negative in the calorific value change profile in the chart obtained by TG-DTA measurement.
The "first exothermic peak that appears" refers to the peak at which the slope of the heat change curve changes from positive to negative during the temperature increase process in TG-DTA measurement. Sometimes referred to as "exothermic peak".
The first exothermic peak temperature T H1 (°C) is the temperature of this first exothermic peak.
In addition, during the temperature increase process in TG-DTA measurement, the slope of the heat value change curve becomes positive again after this first exothermic peak, and the peak where this positive slope changes to negative is called the "second exothermic peak". The temperature of the second exothermic peak may be referred to as "second exothermic peak temperature T H2 (°C)".
<メカニズム>
細孔を有する吸着材として、代表的なものに活性炭があるが、通常、有機物を吸着させた活性炭を酸素含有ガス中で熱処理すると、活性炭は燃焼により消失してしまう。したがって、酸素含有ガス中で活性炭を熱処理して再生することは従来行われていない。
本発明者は、有機物を吸着させた活性炭などの物質を再生する方法についてTG-DTA測定や熱分解GC/MS測定などの熱分析を用いて詳細に検討した結果、活性炭等の母材は残したままで、吸着した有機物を選択的に燃焼除去する温度条件が存在することを見出し、酸素含有ガス存在下での熱処理での再生を可能とした。
即ち、本発明者は、以下のような検討を行った。
<Mechanism>
Activated carbon is a typical example of an adsorbent having pores; however, when activated carbon adsorbed with organic matter is heat-treated in an oxygen-containing gas, the activated carbon disappears by combustion. Therefore, regeneration of activated carbon by heat treatment in an oxygen-containing gas has not been done in the past.
As a result of detailed study using thermal analysis such as TG-DTA measurement and pyrolysis GC/MS measurement on methods for regenerating substances such as activated carbon that have adsorbed organic matter, the present inventor found that the base material such as activated carbon is left behind. It was discovered that there exists a temperature condition that selectively burns off the adsorbed organic matter while leaving it as it is, and made it possible to regenerate it by heat treatment in the presence of oxygen-containing gas.
That is, the present inventor conducted the following study.
(I) 実機ベントガスのFID-GC測定の結果、ベントガス中にシクロペンタジエン(以下、「CPD」と略記することがある。)の存在が確認された。また、実機における吸着処理で劣化した活性炭の熱分析GC/MS測定を行ったところ、CPDおよびCPD骨格を有する化合物が多く確認された。
この結果から、劣化活性炭の細孔内の細孔内蓄積物としては、CPD由来の物質が主体であることが確認された。
(I) As a result of FID-GC measurement of the actual vent gas, the presence of cyclopentadiene (hereinafter sometimes abbreviated as "CPD") was confirmed in the vent gas. Furthermore, when thermal analysis GC/MS measurement of activated carbon deteriorated by adsorption treatment in an actual machine was performed, many CPD and compounds having a CPD skeleton were confirmed.
From this result, it was confirmed that substances derived from CPD were the main substance accumulated in the pores of the degraded activated carbon.
(II) 活性炭にCPDを吸着させて後掲の実施例の項に記載されるトルエン吸着試験により吸着能を調べたところ、CPDの吸着で活性炭1g当たり0.2gの重量増加を起こした活性炭は吸着能力が失われ、スチームによる脱着処理では回復し得ないことが確認された。 (II) When CPD was adsorbed onto activated carbon and the adsorption capacity was investigated using a toluene adsorption test described in the Examples section below, the activated carbon showed a weight increase of 0.2 g per 1 g of activated carbon due to CPD adsorption. It was confirmed that the adsorption capacity was lost and could not be recovered by steam desorption treatment.
(III) CPD吸着で劣化した活性炭と、新品活性炭について、それぞれ空気中にて室温から780℃まで昇温しながらTG-DTA(熱重量・示差熱同時)測定を行ったところ、図1に示す結果が得られた。 (III) TG-DTA (simultaneous thermogravimetric and differential thermal) measurements were performed on activated carbon that had deteriorated due to CPD adsorption and on new activated carbon while raising the temperature from room temperature to 780°C in air, as shown in Figure 1. The results were obtained.
即ち、新品活性炭では、まず、熱処理による水分減少で約25%の重量減と水の脱離による吸熱があり、その後、昇温してゆくと活性炭の燃焼による重量減及び発熱が認められる。即ち、発熱ピークは、約580℃付近に活性炭自体の燃焼によるものが1つのみ出現する。
一方、CPDを吸着して劣化した活性炭では、水分減少による重量減と水の脱離によるわずかな吸熱を示した後、CPD由来の細孔内蓄積物の燃焼で更なる重量減と発熱があり、その後、活性炭の燃焼による重量減と発熱がある。図1において、劣化活性炭における水分と細孔内蓄積物に起因する重量減は20%程度であった。
That is, in new activated carbon, first, there is a weight loss of about 25% due to water reduction due to heat treatment and heat absorption due to water elimination, and then as the temperature increases, weight loss and heat generation due to combustion of the activated carbon are observed. That is, only one exothermic peak appears around 580° C. due to the combustion of the activated carbon itself.
On the other hand, activated carbon that has deteriorated by adsorbing CPD shows a weight loss due to water loss and a slight heat absorption due to water desorption, and then further weight loss and heat generation due to combustion of CPD-derived pore accumulations. , then there is weight loss and heat generation due to the combustion of activated carbon. In FIG. 1, the weight loss due to moisture and pore accumulation in the deteriorated activated carbon was about 20%.
図1の劣化活性炭の熱量変化プロファイルにおいて、熱量変化曲線は温度上昇と共に約250℃付近からプラスの傾きを示し、320℃付近でマイナスの傾きに転じる。この傾きがプラスからマイナスに転じる点が第1発熱ピークであり、第1発熱ピーク温度TH1は約320℃程度である。この第1発熱ピークは細孔内蓄積物の燃焼によるものである。
この熱量変化曲線は更なる温度上昇と共に350℃付近で再びプラスの傾きに転じ、約510℃付近で傾きはマイナスに転じる。この約510℃付近が第2発熱ピークであり、第2発熱ピーク温度TH2は約510℃程度である。この第2発熱ピークは活性炭自体の燃焼によるものである。
In the calorific value change profile of the deteriorated activated carbon in FIG. 1, the calorific value change curve shows a positive slope from around 250°C as the temperature rises, and turns to a negative slope around 320°C. The point at which this slope changes from positive to negative is the first exothermic peak, and the first exothermic peak temperature T H1 is about 320°C. This first exothermic peak is due to the combustion of the deposits in the pores.
As the temperature rises further, this heat amount change curve turns to a positive slope again at around 350°C, and turns to a negative slope at around 510°C. The second exothermic peak is around 510°C, and the second exothermic peak temperature T H2 is about 510°C. This second exothermic peak is due to combustion of the activated carbon itself.
なお、新品活性炭と劣化活性炭とで活性炭の燃焼による発熱ピークが若干ずれるのは、劣化活性炭においては、細孔内蓄積物の燃焼によって昇温により与えられる熱量以上の熱量を生じるため母材である活性炭が燃焼し始める温度が第1発熱ピーク側にずれることによる。 The reason why the heat generation peak due to combustion of activated carbon differs slightly between new activated carbon and deteriorated activated carbon is that in deteriorated activated carbon, the combustion of the accumulated material in the pores generates a heat amount that exceeds the amount of heat given by raising the temperature of the base material. This is because the temperature at which activated carbon starts to burn shifts toward the first exothermic peak.
このようなTG-DTA測定結果から、250℃程度以上、好ましくは劣化活性炭の第1発熱ピーク温度TH1程度以上、第2発熱ピーク温度TH2未満の温度であれば、活性炭を燃焼させずに活性炭に吸着した細孔内蓄積物を選択的に燃焼除去できると考えられる。 From such TG-DTA measurement results, activated carbon can be heated without burning if the temperature is about 250°C or higher, preferably about 1st exothermic peak temperature TH1 or higher and lower than 2nd exothermic peak temperature TH2 of degraded activated carbon. It is thought that the accumulated substances in the pores adsorbed on the activated carbon can be selectively burned and removed.
<吸着材>
本発明で処理する吸着材としては、細孔を有する吸着材であればよく、特に制限はなく、ゼオライト、メタロシリケート、メソポーラスシリカ等の無機多孔体などであってもよいが、本発明は、酸素含有ガス中での熱処理によりそれ自体が燃焼してしまうことで、一般的な技術常識では酸素含有ガス中での熱処理の適用が避けられるような有機物を含む吸着材や、活性炭を含む吸着材などについても適用することができる。
<Adsorbent>
The adsorbent to be treated in the present invention may be any adsorbent having pores, and is not particularly limited, and may be an inorganic porous material such as zeolite, metallosilicate, mesoporous silica, etc. Adsorbents containing organic substances and activated carbon that can be avoided by heat treatment in oxygen-containing gas according to general technical knowledge because they themselves burn when heat-treated in oxygen-containing gas. It can also be applied to other matters.
有機物を含む吸着材としては、メソポーラス有機シリカ等の有機無機ハイブリッド型吸着材(例えば、カリックス-Ti/UCB-4、カリックス-Ti/MCM-41、カリックス-Ti/SiO2など)や、表面コーティング吸着材(内部が無機物で表面が有機物のもの、或いは、内部が有機物で表面が無機物のもの)等が挙げられる。 Adsorbents containing organic substances include organic-inorganic hybrid adsorbents such as mesoporous organic silica (e.g., Calix-Ti/UCB-4, Calix-Ti/MCM-41, Calix-Ti/SiO2 , etc.), and surface coatings. Examples include adsorbents (those with an inorganic inside and an organic surface, or ones with an organic inside and an inorganic surface), and the like.
特に、本発明は、TG-DTA測定による熱量変化プロファイルにおいて、細孔内蓄積物の燃焼による第1発熱ピークと、当該吸着材自体の燃焼による第2発熱ピークとを示し、第1発熱ピーク温度TH1<第2発熱ピーク温度TH2であるものに好適に適用される。 In particular, the present invention shows, in a heat quantity change profile measured by TG-DTA, a first exothermic peak due to the combustion of the accumulated material in the pores and a second exothermic peak due to the combustion of the adsorbent itself, and the first exothermic peak temperature It is suitably applied to those in which T H1 <second exothermic peak temperature T H2 .
とりわけ本発明はナフサ等の貯留タンクにおけるベントガスの吸着処理に多用されている活性炭吸着材の再生に有効である。 In particular, the present invention is effective for regenerating activated carbon adsorbents that are often used for adsorption treatment of vent gas in storage tanks for naphtha and the like.
<熱処理条件>
本発明における熱処理は、酸素含有ガス中で行う。酸素含有ガスとしては酸素含有窒素ガス等の不活性ガスに酸素を添加したガスでもよいが、空気を用いるのが取り扱い性、コスト等の面で最も有利である。空気以外の酸素含有ガスの場合の酸素濃度としては、取り扱い性、細孔内蓄積物の燃焼除去効果の面から、酸素濃度は3~21体積%程度であることが好ましい。
<Heat treatment conditions>
The heat treatment in the present invention is performed in an oxygen-containing gas. The oxygen-containing gas may be a gas obtained by adding oxygen to an inert gas such as oxygen-containing nitrogen gas, but it is most advantageous to use air in terms of ease of handling, cost, etc. In the case of an oxygen-containing gas other than air, the oxygen concentration is preferably about 3 to 21% by volume from the viewpoint of ease of handling and the effect of combustion and removal of substances accumulated in pores.
なお、前述の特許文献1では、スチームによる脱着処理を行っているが、この特許文献1では、活性炭の吸着物質をスチームによって脱離させて流出させており、酸素含有ガス存在下での熱処理で燃焼除去する本発明とは異なる。 In addition, in the above-mentioned Patent Document 1, a desorption treatment using steam is performed, but in this Patent Document 1, the adsorbed substances of activated carbon are desorbed by steam and flowed out, and heat treatment in the presence of oxygen-containing gas This is different from the present invention, which removes it by combustion.
本発明における熱処理温度は、細孔内蓄積物を選択的に燃焼除去するために、第1発熱ピーク温度TH1(℃)に対してTH1-70℃~TH1+70℃の範囲とする。熱処理温度が上記下限よりも低いと、細孔内蓄積物を十分に燃焼除去することができない。熱処理温度が上記上限よりも高いと、吸着材自体が燃焼して焼失するおそれがある。熱処理温度は、好ましくはTH1-50℃~TH1+50℃であり、より好ましくはTH1-40℃~TH1+40℃であり、更に好ましくはTH1-30℃~TH1+30℃である。 The heat treatment temperature in the present invention is set in the range of T H1 -70°C to T H1 +70°C with respect to the first exothermic peak temperature T H1 (°C) in order to selectively burn off the deposits in the pores. If the heat treatment temperature is lower than the above lower limit, the deposits in the pores cannot be sufficiently burned and removed. If the heat treatment temperature is higher than the above upper limit, there is a risk that the adsorbent itself will burn and be destroyed. The heat treatment temperature is preferably T H1 -50°C to T H1 +50°C, more preferably T H1 -40°C to T H1 +40°C, even more preferably T H1 -30°C to T H1 +30°C. .
また、吸着材自体の燃焼による焼失を防止するために、第1発熱ピーク温度TH1と第2発熱ピーク温度TH2を示す吸着材の場合、第2発熱ピーク温度TH2に対して、熱処理温度をTH2-70℃より低くすることが好ましく、吸着材毎に熱処理温度を制御して、熱処理による吸着材自体の重量減少率を10%以下に抑えることが好ましい。 In addition, in order to prevent burnout due to combustion of the adsorbent itself, in the case of an adsorbent exhibiting a first exothermic peak temperature T H1 and a second exothermic peak temperature T H2 , the heat treatment temperature is is preferably lower than T H2 -70°C, and it is preferable to control the heat treatment temperature for each adsorbent to suppress the weight loss rate of the adsorbent itself due to heat treatment to 10% or less.
具体的な熱処理温度としては、活性炭や有機物含有吸着材では、450℃以下、特に200~400℃程度とすることが好ましい。また、吸着材が活性炭の場合、熱処理温度は400℃以下、特に200~360℃程度、とりわけ250~350℃程度とすることが好ましい。
熱処理温度が上記上限以下であれば、吸着材自体が熱処理により燃焼して消失したり劣化したり、或いは細孔が閉塞したりすることが防止され、一方、上記下限以上であれば、細孔内蓄積物を効率的に燃焼除去して高い再生効果を得ることができる。
The specific heat treatment temperature is preferably 450°C or less, particularly about 200 to 400°C, for activated carbon and organic matter-containing adsorbents. Further, when the adsorbent is activated carbon, the heat treatment temperature is preferably 400°C or less, particularly about 200 to 360°C, particularly about 250 to 350°C.
If the heat treatment temperature is below the above upper limit, the adsorbent itself will be prevented from burning and disappearing or deteriorating due to the heat treatment, or the pores will be prevented from being blocked.On the other hand, if the heat treatment temperature is above the above lower limit, the pores will be prevented from being blocked. A high regeneration effect can be obtained by efficiently burning and removing internal accumulations.
熱処理を行う際の雰囲気ガスにおける具体的な酸素濃度は、21体積%(これは空気の酸素濃度に該当する)以下が好ましい。また、酸素濃度は空気および/または酸素と窒素を混合することで任意に調整することができ、3~21体積%とすることが好ましく、特に10~21体積%とすることが好ましい。 The specific oxygen concentration in the atmospheric gas during the heat treatment is preferably 21% by volume or less (this corresponds to the oxygen concentration of air). Further, the oxygen concentration can be arbitrarily adjusted by mixing air and/or oxygen with nitrogen, and is preferably 3 to 21% by volume, particularly preferably 10 to 21% by volume.
従って、本発明により吸着材を再生する際、再生のための熱処理に先立ち、予め吸着材のTG-DTA測定を行い、第1発熱ピーク温度TH1と第2発熱ピーク温度TH2とを求めておくことは好ましい態様である。 Therefore, when regenerating an adsorbent according to the present invention, prior to heat treatment for regeneration, TG-DTA measurement of the adsorbent is performed in advance to determine the first exothermic peak temperature T H1 and the second exothermic peak temperature T H2 . It is a preferable embodiment to leave it in place.
熱処理時間については、吸着材の種類、吸着材の劣化の程度(細孔内蓄積物の蓄積量)、熱処理温度によっても異なるが、通常0.5~24時間、好ましくは1~6時間程度の範囲で適宜設定される。熱処理時間が上記下限以上であれば、細孔内蓄積物を高度に燃焼除去して高い再生効果を得ることができ、上記上限以下であれば吸着材自体の消失、劣化を防止することができる。 The heat treatment time varies depending on the type of adsorbent, the degree of deterioration of the adsorbent (the amount of accumulated material in the pores), and the heat treatment temperature, but it is usually 0.5 to 24 hours, preferably about 1 to 6 hours. It is set appropriately within the range. If the heat treatment time is at least the above lower limit, it is possible to achieve a high regeneration effect by highly burning off the deposits in the pores, and if it is below the above upper limit, it is possible to prevent the disappearance and deterioration of the adsorbent itself. .
このような熱処理により、例えば、ナフサやその分解生成物の蓄積タンクのベントガスの吸着処理に使用された活性炭等の吸着材であれば、後述の実施例に示されるように、ベンゼン、トルエン、キシレン、シクロペンタジエン等の環状炭化水素化合物やイソプレン、2-ジメチルブタン、ヘキサン等の鎖状炭化水素化合物、その他、SO2等の硫黄含有化合物を含有するガスが発生する。
即ち、これらの有機物は、劣化した吸着材の細孔内に蓄積しており、熱処理により燃焼除去されるが、一部燃焼せずに吸着材より脱離し揮散することで、熱処理時に発生するガス中に含まれる。
Through such heat treatment, for example, if an adsorbent such as activated carbon used for the adsorption treatment of vent gas in an accumulation tank of naphtha or its decomposition products, benzene, toluene, and xylene are , cyclic hydrocarbon compounds such as cyclopentadiene, linear hydrocarbon compounds such as isoprene, 2-dimethylbutane, hexane, and other sulfur-containing compounds such as SO 2 are generated.
In other words, these organic substances accumulate in the pores of the deteriorated adsorbent and are removed by combustion during heat treatment, but some of them do not burn and are desorbed from the adsorbent and volatilized, resulting in gases generated during heat treatment. contained within.
<適用分野>
本発明の吸着材の再生方法は、特に、ナフサやその分解生成物の蓄積タンクのベントガス中のVOCの吸着処理に使用された活性炭等の吸着材の再生に有効であるが、このような吸着材に限らず、その他のVOCの貯留施設、塗装施設及び塗装後の乾燥・焼付施設、化学製品製造における乾燥施設、工業用洗浄施設及び洗浄後の乾燥設備、印刷設備及び印刷後の乾燥・焼付設備、接着剤使用設備及び使用後の乾燥・焼付施設等において、VOC等の有機物を吸着処理した吸着材の再生に有効に適用することができ、再生した吸着材を有機物の吸着に再使用することができる。
<Application field>
The method for regenerating an adsorbent of the present invention is particularly effective for regenerating adsorbents such as activated carbon used in the adsorption treatment of VOCs in the vent gas of an accumulation tank for naphtha and its decomposition products. Storage facilities for not only materials but also other VOCs, painting facilities and post-painting drying and baking facilities, drying facilities for chemical product manufacturing, industrial cleaning facilities and post-washing drying facilities, printing facilities and post-printing drying and baking facilities. It can be effectively applied to regenerate adsorbents that have been treated to adsorb organic substances such as VOCs in equipment, adhesive equipment, drying/baking facilities after use, etc., and the regenerated adsorbents can be reused to adsorb organic substances. be able to.
以下に実施例を挙げて本発明をより具体的に説明する。 EXAMPLES The present invention will be explained in more detail with reference to Examples below.
なお、以下において、被処理活性炭としては、実機にてVOCの吸着処理に長期間使用したことで、以下のトルエン吸着試験で測定されるトルエン吸着率が1.4~1.5%にまで低下した劣化活性炭を用いた。 In addition, as for the activated carbon to be treated, the toluene adsorption rate measured in the following toluene adsorption test has decreased to 1.4 to 1.5% due to long-term use in actual equipment for VOC adsorption treatment. We used degraded activated carbon.
活性炭の吸着能は以下のトルエン吸着試験により評価した。 The adsorption capacity of activated carbon was evaluated by the following toluene adsorption test.
<トルエン吸着試験>
円柱形(直径:20mm、高さ:500mm)に成形した活性炭フィルターに、トルエン含有ガス(トルエン含有量:500体積ppm、残部:窒素)を、入口ガスと出口ガスのトルエン濃度が同等となるまで通過させてトルエンを飽和吸着させ、このトルエン吸着前後の活性炭フィルターの重量から、トルエン吸着量を求め、この値を活性炭重量で除して、活性炭量に対するトルエンの飽和吸着量の百分率をトルエン吸着率として算出した。
なお、新品の活性炭について、上記の方法で求めたトルエン吸着率は約20%であった。
<Toluene adsorption test>
Toluene-containing gas (toluene content: 500 volume ppm, remainder: nitrogen) was applied to an activated carbon filter formed into a cylindrical shape (diameter: 20 mm, height: 500 mm) until the toluene concentration of the inlet gas and outlet gas became equal. The amount of toluene adsorbed is calculated from the weight of the activated carbon filter before and after adsorption of toluene, and this value is divided by the weight of activated carbon to calculate the percentage of the saturated adsorption amount of toluene relative to the amount of activated carbon. It was calculated as
Note that the toluene adsorption rate determined by the above method for new activated carbon was about 20%.
[実施例1]
劣化活性炭試料を空気雰囲気中にて350℃で2時間熱処理した。
この熱処理温度は、第1発熱ピーク温度(TH1)を320℃とすると、TH1+30℃で、TH1-70℃~TH1+70℃の範囲であり、第2発熱ピーク温度TH2(510℃)-160℃に該当する。
熱処理により再生した活性炭のトルエン吸着率を調べたところ19.7%であり、新品(トルエン吸着率約20%)と同程度にまで再生されたことが確認された。
また、この熱処理で一部の活性炭は燃焼により焼失したが90%以上の活性炭は残存しており、空気下の熱処理で母体の活性炭の十分量を残存させた状態で、活性炭の細孔内の吸着物質を選択的に燃焼させて除去することができることが確認された。
[Example 1]
The degraded activated carbon sample was heat treated at 350° C. for 2 hours in an air atmosphere.
When the first exothermic peak temperature (T H1 ) is 320°C, the heat treatment temperature is T H1 +30°C, which is in the range of T H1 -70°C to T H1 +70°C, and the second exothermic peak temperature T H2 (510°C ℃) corresponds to -160℃.
When the toluene adsorption rate of activated carbon regenerated by heat treatment was examined, it was found to be 19.7%, confirming that it was regenerated to the same level as new (toluene adsorption rate of about 20%).
In addition, although some of the activated carbon was burned out by combustion during this heat treatment, more than 90% of the activated carbon remained. It was confirmed that adsorbed substances can be selectively burned and removed.
なお、劣化活性炭の熱処理において発生するガスを熱分解GC/MS測定により分析したところ、ベンゼン、トルエン、キシレン、シクロペンタジエン等の環状炭化水素化合物やイソプレン、2-ジメチルブタン、ヘキサン、その他、SO2等の硫黄含有化合物が含まれていることが確認された。 In addition, when the gases generated during the heat treatment of degraded activated carbon were analyzed by pyrolysis GC/MS measurement, it was found that cyclic hydrocarbon compounds such as benzene, toluene, xylene, and cyclopentadiene, isoprene, 2-dimethylbutane, hexane, and others, SO 2 It was confirmed that sulfur-containing compounds such as
[比較例1]
劣化活性炭試料を窒素雰囲気中にて500℃で3時間熱処理した。
熱処理により再生した活性炭のトルエン吸着率を調べたところ8.9%であり、再生効果は低かった。
[Comparative example 1]
The degraded activated carbon sample was heat treated at 500° C. for 3 hours in a nitrogen atmosphere.
When the toluene adsorption rate of activated carbon regenerated by heat treatment was examined, it was 8.9%, indicating that the regeneration effect was low.
[比較例2]
劣化活性炭試料を酸素を2%含む窒素雰囲気中にて500℃で3時間熱処理したところ、熱処理により73.8%の重量減があり、活性炭そのものが燃焼により大部分焼失してしまうことが確認された。
[Comparative example 2]
When a sample of degraded activated carbon was heat-treated at 500°C for 3 hours in a nitrogen atmosphere containing 2% oxygen, there was a weight loss of 73.8% due to the heat treatment, confirming that most of the activated carbon itself was burned away by combustion. Ta.
[比較例3]
劣化活性炭試料を空気雰囲気中にて500℃で3時間熱処理したところ、熱処理により90%以上の重量減があり、活性炭そのものが燃焼により殆ど焼失してしまうことが確認された。
[Comparative example 3]
When the degraded activated carbon sample was heat-treated at 500° C. for 3 hours in an air atmosphere, it was confirmed that the heat treatment resulted in a weight loss of more than 90%, and that the activated carbon itself was almost completely burned away by combustion.
これらの結果を表1にまとめて示す。 These results are summarized in Table 1.
以上の結果から、本発明によれば、酸素含有ガスの存在下に、所定の温度範囲で熱処理することにより、活性炭自体の焼失を抑えて、劣化活性炭の吸着能力を新品と同程度にまで回復させて再生できることが分かる。 From the above results, according to the present invention, heat treatment in the presence of oxygen-containing gas at a predetermined temperature range suppresses the burnout of activated carbon itself and restores the adsorption capacity of deteriorated activated carbon to the same level as new. You can see that it can be played back.
Claims (6)
前記有機物(1)が、シクロペンタジエンを含み、
該熱処理温度が、該吸着材を、以下の条件でTG-DTA測定した際に、最初に出現する前記有機物(1)の燃焼による発熱ピーク温度TH1(℃)に対して、TH1-70℃~TH1+70℃の範囲であり、
前記吸着材が活性炭を含むことを特徴とする吸着材の再生方法。
<TG-DTA測定条件>
空気を50ml/min流通させ、試料約20mgを昇温速度5℃/minで30℃から800℃まで昇温し、最初に出現する発熱ピークの温度を求め、これをTH1(℃)とする。 An adsorbent having pores whose adsorption capacity has decreased due to adsorption of organic matter (1) is heat-treated in the presence of an oxygen-containing gas based on the exothermic peak temperature obtained by TG-DTA measurement of the adsorbent. In the method of regenerating by
the organic substance (1) contains cyclopentadiene,
The heat treatment temperature is T H1 -70 with respect to the exothermic peak temperature T H1 (°C) due to combustion of the organic substance (1) that first appears when the adsorbent is measured by TG-DTA under the following conditions. ℃ to T H1 +70℃ ,
A method for regenerating an adsorbent, characterized in that the adsorbent contains activated carbon .
<TG-DTA measurement conditions>
Air is circulated at 50 ml/min, and about 20 mg of the sample is heated from 30°C to 800°C at a heating rate of 5°C/min. The temperature of the first exothermic peak that appears is determined, and this is defined as T H1 (°C). .
前記有機物(2)を含む吸着材が、有機無機ハイブリッド型吸着材又は表面コーティング吸着材であることを特徴とする吸着材の再生方法。
但し、前記表面コーティング吸着材は、内部が無機物で表面が有機物の吸着材、又は、内部が有機物で表面が無機物の吸着材である。 3. The adsorbent according to claim 1 or 2, further comprising an organic substance (2),
A method for regenerating an adsorbent, characterized in that the adsorbent containing the organic substance (2) is an organic-inorganic hybrid adsorbent or a surface-coated adsorbent.
However, the surface coating adsorbent is an adsorbent that has an inorganic inside and an organic surface, or an adsorbent that has an organic inside and an inorganic surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019015825A JP7400189B2 (en) | 2019-01-31 | 2019-01-31 | How to regenerate adsorbent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019015825A JP7400189B2 (en) | 2019-01-31 | 2019-01-31 | How to regenerate adsorbent |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020121286A JP2020121286A (en) | 2020-08-13 |
JP7400189B2 true JP7400189B2 (en) | 2023-12-19 |
Family
ID=71993280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019015825A Active JP7400189B2 (en) | 2019-01-31 | 2019-01-31 | How to regenerate adsorbent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7400189B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001294415A (en) | 2000-04-13 | 2001-10-23 | Cosmo Engineering Co Ltd | Method of removing residue in liquefied gas and regenerating method of activated carbon |
JP2006068643A (en) | 2004-09-02 | 2006-03-16 | Cataler Corp | Adsorbent, volatile organic compound recovery apparatus and volatile organic compound recovery system |
JP2012530663A (en) | 2009-06-17 | 2012-12-06 | マサチューセッツ インスティテュート オブ テクノロジー | Growth of carbon nanostructures assisted by alkynes |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52117545U (en) * | 1977-03-07 | 1977-09-06 | ||
JPS5467592A (en) * | 1977-11-10 | 1979-05-31 | Unitika Ltd | Regeneration of active carbon |
JPS5621624A (en) * | 1979-07-27 | 1981-02-28 | Mitsubishi Heavy Ind Ltd | Method and apparatus for treatment of hydrocarbon- containing exhaust gas |
JP2823835B2 (en) * | 1995-12-06 | 1998-11-11 | 有限会社川井技術研究所 | Method for recovering hydrocarbons from waste gas containing gaseous hydrocarbons |
-
2019
- 2019-01-31 JP JP2019015825A patent/JP7400189B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001294415A (en) | 2000-04-13 | 2001-10-23 | Cosmo Engineering Co Ltd | Method of removing residue in liquefied gas and regenerating method of activated carbon |
JP2006068643A (en) | 2004-09-02 | 2006-03-16 | Cataler Corp | Adsorbent, volatile organic compound recovery apparatus and volatile organic compound recovery system |
JP2012530663A (en) | 2009-06-17 | 2012-12-06 | マサチューセッツ インスティテュート オブ テクノロジー | Growth of carbon nanostructures assisted by alkynes |
Also Published As
Publication number | Publication date |
---|---|
JP2020121286A (en) | 2020-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8426336B2 (en) | Composition and process for the removal of sulfur from middle distillate fuels | |
JP2009297711A (en) | Reactivation system for adsorbent | |
JPH09239265A (en) | Mercury adsorbent | |
KR101715826B1 (en) | Method for removing organic solvent, and removal device | |
EP2003186A1 (en) | Method And Apparatus For Regenerating Adsorbents Used In The Purification Of Fuel | |
JP7400189B2 (en) | How to regenerate adsorbent | |
CN112892484B (en) | VOCs adsorbent and preparation method thereof | |
JP2008100186A (en) | Gas adsorption apparatus | |
KR100347720B1 (en) | A Method for Recovery of Organic Solvents Using a Multiple Adsorption-desorption Reactor, An Appliance thereof, and Zeolite Adsorbent packed at the above appliance | |
JP6332586B2 (en) | Water treatment device and water treatment system | |
US2877176A (en) | Process for removing sulfur and aromatics from hydrocarbons using active carbon impregnated with alkali metals or oxides thereof as adsorbent | |
JP2017501869A (en) | Improved adsorption of acid gases | |
JP5303123B2 (en) | Adsorbent and combustible gas treatment method | |
JP2004098014A (en) | Method for treating gas containing volatile organic compound | |
CN109569502B (en) | Waste gas adsorbent for petrochemical plant and preparation method thereof | |
JP2008537758A (en) | Method for removing colored bodies from hydrocarbon fuels using activated carbon | |
JP2001294415A (en) | Method of removing residue in liquefied gas and regenerating method of activated carbon | |
JP2017192429A (en) | Catalyst filter, deodorization device and air cleaning device | |
JP5049995B2 (en) | Adsorbent regeneration method | |
JP4263829B2 (en) | Catalyst regeneration method | |
JP2005270855A (en) | Adsorbent of sulfur compound in hydrocarbon oil and method for removing sulfur compound in hydrocarbon oil | |
JPH0670222B2 (en) | Purification process of cracked light fraction | |
JPH0248597B2 (en) | ||
JP6772470B2 (en) | Organic solvent processing equipment | |
JPH07313874A (en) | Method for drying hydrous activated carbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210716 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220524 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220722 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221129 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230328 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230627 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231120 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7400189 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |