JP6772470B2 - Organic solvent processing equipment - Google Patents

Organic solvent processing equipment Download PDF

Info

Publication number
JP6772470B2
JP6772470B2 JP2016015383A JP2016015383A JP6772470B2 JP 6772470 B2 JP6772470 B2 JP 6772470B2 JP 2016015383 A JP2016015383 A JP 2016015383A JP 2016015383 A JP2016015383 A JP 2016015383A JP 6772470 B2 JP6772470 B2 JP 6772470B2
Authority
JP
Japan
Prior art keywords
organic solvent
gas
adsorbent
adsorption
adsorption tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016015383A
Other languages
Japanese (ja)
Other versions
JP2017131859A (en
Inventor
瞬 坂口
瞬 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2016015383A priority Critical patent/JP6772470B2/en
Publication of JP2017131859A publication Critical patent/JP2017131859A/en
Application granted granted Critical
Publication of JP6772470B2 publication Critical patent/JP6772470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Description

本発明は、有機溶剤含有ガスの処理に好適な有機溶剤処理装置に関するものである。 The present invention relates to an organic solvent treatment apparatus suitable for treating an organic solvent-containing gas.

有機溶剤含有ガスから有機溶剤を回収して処理済ガスを排出する装置として、従来次のような装置が知られている。吸着材として粒状活性炭或いは繊維状活性炭を充填させた吸着槽へ有機溶剤含有ガスを供給し吸着材にて吸着させて処理済ガスを排出する吸着処理を行う吸着工程と、吸着槽へ水蒸気を導入して有機溶剤を吸着材から脱着する脱着工程とを交互に繰り返す有機溶剤処理装置である。ここで有機溶剤の脱着に使用される水蒸気の温度は、一般的に100℃〜130℃である(例えば、特許文献1、2参照)。 Conventionally, the following devices are known as devices for recovering an organic solvent from a gas containing an organic solvent and discharging the treated gas. An adsorption process in which an organic solvent-containing gas is supplied to an adsorption tank filled with granular activated carbon or fibrous activated carbon as an adsorbent and adsorbed by the adsorbent to discharge the treated gas, and water vapor is introduced into the adsorption tank. This is an organic solvent treatment device that alternately repeats the desorption step of desorbing the organic solvent from the adsorbent. Here, the temperature of the water vapor used for desorption of the organic solvent is generally 100 ° C. to 130 ° C. (see, for example, Patent Documents 1 and 2).

ところが、有機溶剤含有ガス中に微量でも有機シリコンが含まれている場合、活性炭を吸着材とした水蒸気脱着式の有機溶剤処理装置で処理を行うと、吸着材の吸着性能が徐々に低下していく。そして、有機溶剤の回収率低下及び有機溶剤処理装置からの排出ガス中への有機溶剤の混入という事態が発生する。これは、有機シリコンは沸点が高く難脱着性を示すために、100〜130℃の水蒸気では吸着材から完全に脱着することができず、吸着材に蓄積していくことによるものである。 However, when the organic solvent-containing gas contains even a small amount of organic silicon, the adsorption performance of the adsorbent gradually deteriorates when the treatment is performed with a steam desorption type organic solvent treatment device using activated carbon as an adsorbent. I will go. Then, a situation occurs in which the recovery rate of the organic solvent is lowered and the organic solvent is mixed in the exhaust gas from the organic solvent treatment apparatus. This is because organic silicon has a high boiling point and exhibits resistance to desorption, so that it cannot be completely desorbed from the adsorbent with water vapor at 100 to 130 ° C. and accumulates in the adsorbent.

上述の問題を解決する為に、有機溶剤処理装置の脱着用水蒸気をヒーターにて加熱し、150℃〜300℃の過熱水蒸気を用いて吸着材から難脱着性成分を脱着させる技術が提唱されている(例えば、特許文献3、4参照)。 In order to solve the above-mentioned problems, a technique has been proposed in which the desorption steam of the organic solvent treatment device is heated by a heater and the non-detachable component is desorbed from the adsorbent using superheated steam at 150 ° C to 300 ° C. (See, for example, Patent Documents 3 and 4).

特公昭64−11326号公報Special Publication No. 64-1-1326 特開2001−179041号公報Japanese Unexamined Patent Publication No. 2001-179041 特開平3−193113号公報Japanese Unexamined Patent Publication No. 3-193113 特開2011−125800号公報Japanese Unexamined Patent Publication No. 2011-125800

しかし、有機溶剤含有ガス中に含まれる有機シリコンが環状有機シリコン(例えばヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサンなど)である場合、過熱水蒸気により吸着材上で重合されて、より難脱着な成分(物質)に変化する。よって、常時過熱水蒸気による脱着を行うことは得策ではない。また、脱着のために水蒸気を昇温させることは処理装置のランニングコスト増加に繋がる。
そこで、本発明は、かかる課題に鑑みなされたものである。すなわち、本発明の目的は、吸着材が充填された吸着槽を備えた有機溶剤処理装置が、より効率よく吸着物質を脱着でき、ランニングコストに優れた運転をできるようにすることにある。
However, when the organic silicon contained in the organic solvent-containing gas is cyclic organic silicon (for example, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, etc.), it is polymerized on the adsorbent by superheated steam and is more difficult to desorb. It changes into a component (substance). Therefore, it is not a good idea to constantly perform desorption with superheated steam. Further, raising the temperature of water vapor for desorption leads to an increase in the running cost of the processing apparatus.
Therefore, the present invention has been made in view of such a problem. That is, an object of the present invention is to enable an organic solvent treatment apparatus provided with an adsorbent tank filled with an adsorbent to more efficiently desorb and desorb adsorbent substances and to perform operation with excellent running cost.

本発明者は鋭意検討した結果、環状有機シリコンが含まれる有機溶剤含有ガスを吸着材を用いた水蒸気脱着式の有機溶剤処理装置にて処理を行う場合において、過熱水蒸気を導入するタイミングを計ることで環状有機シリコンを効率よく脱着できることを見出し、本発明を完成させた。
すなわち、本発明は、以下に示す構成により上記課題を解決できることができる。
1.吸着材が充填された吸着槽を備え、前記吸着槽に有機溶剤含有ガスを導入して前記有機溶剤を前記吸着材に吸着させて処理済ガスを排出し、前記吸着槽に脱着用ガスを導入して前記吸着材から前記有機溶剤を脱着する有機溶剤処理装置において、前記排出された処理済ガス中の有機溶剤濃度が設定値以下の場合には、前記吸着槽への前記有機溶剤含有ガスの導入と前記脱着用ガスの導入とを交互に繰り返し、前記排出された処理済ガス中の有機溶剤濃度が前記設定値を超えた場合には、前記吸着槽に前記脱着用ガスよりも温度が高い再生用ガスを導入することを特徴とする有機溶剤処理装置。
なお、有機溶剤処理装置が備えている吸着槽は単数でも複数でもよい。複数であるとより多くの被処理ガスを処理できる。
2.前記再生用ガスは180〜250℃の過熱水蒸気であり、前記脱着用ガスは当該再生用ガスの温度以下の温度の水蒸気である前記1に記載の有機溶剤処理装置。
3.前記有機溶剤含有ガスは、有機シリコンを含むことを特徴とする前記1または2に記載の有機溶剤処理装置。
4.前記有機シリコンは、環状有機シリコンであることを特徴とする前記3に記載の有機溶剤処理装置。
5.前記排出された処理済ガス中の有機溶剤濃度が前記設定値以下の場合には、前記脱着用ガスの導入後、ガスを導入しない期間を空けてから前記有機溶剤含有ガスを導入する、ことを特徴とする前記1から4のいずれか1つに記載の有機溶剤処理装置。
6.前記吸着槽を複数備え、前記排出された処理済ガス中の有機溶剤濃度が前記設定値を超えた場合には、複数のうちの一部の前記吸着槽に対しては前記再生用ガスを導入し、かつ、残りの前記吸着槽に対しては前記有機溶剤含有ガスの導入と前記脱着用ガスの導入とを交互に繰り返すことを、前記再生用ガスを導入する前記一部の前記吸着槽を順次選択しながら前記複数の吸着槽の全てが選択されるまで実行する、ことを特徴とする前記1から5のいずれか1つに記載の有機溶剤処理装置。
7.前記吸着材は、繊維状活性炭であることを特徴とする前記1から6のいずれか1つに記載の有機溶剤処理装置。
8.前記1〜7のいずれか1つに記載の有機溶剤処理装置が備えた吸着槽に対する、前記被処理ガス、前記脱着用ガスおよび前記再生用ガスの供給を制御することを特徴とする制御装置。
9.吸着材が充填された吸着槽に有機溶剤含有ガスを導入して前記有機溶剤を前記吸着材に吸着させて処理済ガスを排出し、前記吸着槽に脱着用ガスを導入して前記吸着材から前記有機溶剤を脱着する有機溶剤処理装置へのガスの供給方法であって、前記排出された処理済ガス中の有機溶剤濃度が設定値以下の場合には、前記吸着槽に前記有機溶剤含有ガスと前記脱着用ガスとを交互に供給し、前記排出された処理済ガス中の有機溶剤濃度が前記設定値を超えると、前記吸着槽に前記脱着用ガスよりも温度が高い再生用ガスを供給することを特徴とする供給方法。
As a result of diligent studies, the present inventor has determined the timing of introducing superheated steam when treating an organic solvent-containing gas containing cyclic organic silicon with a steam desorption type organic solvent treatment apparatus using an adsorbent. The present invention was completed by finding that the cyclic organic silicon can be efficiently attached and detached.
That is, the present invention can solve the above problems by the configuration shown below.
1. 1. A suction tank filled with an adsorbent is provided, an organic solvent-containing gas is introduced into the adsorption tank, the organic solvent is adsorbed on the adsorbent, the treated gas is discharged, and a desorption gas is introduced into the adsorption tank. Then, in the organic solvent treatment apparatus for desorbing the organic solvent from the adsorbent, when the concentration of the organic solvent in the discharged treated gas is equal to or less than the set value, the organic solvent-containing gas to the adsorption tank is charged. When the introduction and the introduction of the desorption gas are alternately repeated and the concentration of the organic solvent in the discharged treated gas exceeds the set value, the temperature of the adsorption tank is higher than that of the desorption gas. An organic solvent treatment device characterized by introducing a recycling gas.
The number of adsorption tanks provided in the organic solvent treatment apparatus may be one or more. If there are a plurality of gases to be processed, a larger amount of gas can be processed.
2. The organic solvent treatment apparatus according to 1 above, wherein the regeneration gas is superheated steam at 180 to 250 ° C., and the desorption gas is steam at a temperature equal to or lower than the temperature of the regeneration gas.
3. 3. The organic solvent treatment apparatus according to 1 or 2, wherein the organic solvent-containing gas contains organic silicon.
4. The organic solvent treatment apparatus according to 3, wherein the organic silicon is cyclic organic silicon.
5. When the concentration of the organic solvent in the discharged treated gas is equal to or less than the set value, the organic solvent-containing gas is introduced after a period during which the gas is not introduced after the introduction of the detachable gas. The organic solvent treatment apparatus according to any one of 1 to 4 above.
6. When a plurality of the adsorption tanks are provided and the concentration of the organic solvent in the discharged treated gas exceeds the set value, the regeneration gas is introduced into some of the adsorption tanks. In addition, the introduction of the organic solvent-containing gas and the introduction of the desorption gas are alternately repeated for the remaining adsorption tanks of the part of the adsorption tanks into which the regeneration gas is introduced. The organic solvent treatment apparatus according to any one of 1 to 5, wherein the operation is performed until all of the plurality of adsorption tanks are selected while sequentially selecting the gas.
7. The organic solvent treatment apparatus according to any one of 1 to 6 above, wherein the adsorbent is a fibrous activated carbon.
8. A control device for controlling the supply of the gas to be treated, the desorption gas, and the regeneration gas to the adsorption tank provided with the organic solvent treatment device according to any one of 1 to 7.
9. An organic solvent-containing gas is introduced into an adsorbent tank filled with an adsorbent, the organic solvent is adsorbed on the adsorbent to discharge the treated gas, and a desorption gas is introduced into the adsorbent to be removed from the adsorbent. In the method of supplying gas to the organic solvent treatment apparatus for desorbing the organic solvent, when the concentration of the organic solvent in the discharged treated gas is equal to or less than the set value, the organic solvent-containing gas is supplied to the adsorption tank. And the desorption gas are alternately supplied, and when the concentration of the organic solvent in the discharged treated gas exceeds the set value, the adsorption tank is supplied with the regenerative gas having a temperature higher than that of the desorption gas. A supply method characterized by

本発明の上記構成により、吸着材を備えた有機溶剤処理装置が、より効率よく吸着物質を脱着でき、ランニングコストに優れた運転をできるようになる。よって、吸着材の寿命を大きく向上させることが可能となる。かつ常時過熱水蒸気による吸着材の脱着を行う場合と比較してランニングコストを小さくすることができる。特に、環状有機シリコンを含んだ有機溶剤含有ガス処理において、環状有機シリコンの重合を抑制しつつ吸着材の再生を行うことができる。 According to the above configuration of the present invention, the organic solvent treatment apparatus provided with the adsorbent can more efficiently desorb and desorb the adsorbed substance, and can operate with excellent running cost. Therefore, the life of the adsorbent can be greatly improved. Moreover, the running cost can be reduced as compared with the case where the adsorbent is always attached and detached by superheated steam. In particular, in the organic solvent-containing gas treatment containing cyclic organic silicon, the adsorbent can be regenerated while suppressing the polymerization of cyclic organic silicon.

本発明の実施形態1の有機溶剤処理装置の構成を示す概略図である。It is the schematic which shows the structure of the organic solvent processing apparatus of Embodiment 1 of this invention. 本発明の実施形態2の有機溶剤処理装置の構成を示す概略図である。It is the schematic which shows the structure of the organic solvent processing apparatus of Embodiment 2 of this invention. 本発明の実施形態2の有機溶剤処理装置における運転フローを示す図である。It is a figure which shows the operation flow in the organic solvent processing apparatus of Embodiment 2 of this invention.

〔実施形態1〕
本発明の一実施形態について図1を用いて説明する。本実施形態の有機溶剤処理装置1は、被処理ガス(有機溶剤含有ガス)を処理して清浄ガス(処理済ガス)を排出する装置であり、図1に示すように、それぞれ吸着材14が充填された吸着槽A13aおよび吸着槽B13bを備えている。吸着槽A13aと吸着槽B13bとを区別して説明する必要の無い場合には、総称として吸着槽13を用いる。本実施形態では2つの吸着槽13を備えているが、備える数に限定はなく、1つでも、3つ以上でもよい。
[Embodiment 1]
An embodiment of the present invention will be described with reference to FIG. The organic solvent treatment device 1 of the present embodiment is a device that treats a gas to be treated (gas containing an organic solvent) and discharges a clean gas (treated gas), and as shown in FIG. 1, each of the adsorbents 14 It includes a filled adsorption tank A13a and an adsorption tank B13b. When it is not necessary to distinguish between the adsorption tank A13a and the adsorption tank B13b, the adsorption tank 13 is used as a general term. In the present embodiment, two adsorption tanks 13 are provided, but the number of the adsorption tanks 13 is not limited, and may be one or three or more.

吸着材14は、粒状、粉体状、繊維状、ハニカム状の活性炭、ゼオライト、シリカゲルや活性アルミナなどを用いることができる。特に活性炭素繊維を用いることが好ましい。活性炭素繊維は表面にミクロ孔を有することと繊維状構造であることより、被吸着物質の吸着速度及び脱着速度が速い為、被処理ガスを効率よく処理することができる為である。なお、本実施形態では、吸着槽13aおよび吸着槽13bには同じ材料の吸着材14が充填されているが、異なる材料の吸着材が充填されていてもよい。 As the adsorbent 14, granular, powdery, fibrous, honeycomb-shaped activated carbon, zeolite, silica gel, activated alumina, or the like can be used. In particular, it is preferable to use activated carbon fiber. This is because the activated carbon fiber has micropores on its surface and has a fibrous structure, so that the adsorption speed and the desorption rate of the substance to be adsorbed are high, so that the gas to be treated can be treated efficiently. In the present embodiment, the adsorption tank 13a and the adsorption tank 13b are filled with the adsorbent 14 made of the same material, but the adsorbents made of different materials may be filled.

有機溶剤処理装置1は、吸着槽13に被処理ガスを導入して有機溶剤を吸着材14に吸着させて清浄ガスを排出する吸着処理を実施する。また、吸着槽13に脱着用ガスを導入して吸着材14から有機溶剤を脱着する脱着処理を実施する。本実施形態では、脱着用ガスとして水蒸気を用いる。なお、図1は、吸着槽13aにて吸着処理、吸着槽13bにて脱着処理を実施している状態を示している。 The organic solvent treatment apparatus 1 carries out an adsorption treatment in which the gas to be treated is introduced into the adsorption tank 13 and the organic solvent is adsorbed on the adsorbent 14 to discharge the clean gas. Further, a desorption treatment is carried out in which a desorption gas is introduced into the adsorption tank 13 to desorb the organic solvent from the adsorbent 14. In this embodiment, water vapor is used as the desorption gas. Note that FIG. 1 shows a state in which the adsorption tank 13a is performing the adsorption treatment and the adsorption tank 13b is performing the desorption treatment.

吸着槽13には上ダンパー16および下ダンパー15が取付けられており、これらダンパーの開閉によりガスの流路を切替えることができる。 An upper damper 16 and a lower damper 15 are attached to the adsorption tank 13, and the gas flow path can be switched by opening and closing these dampers.

被処理ガスは、本実施形態では有機シリコンを含む有機溶剤含有ガスであり、被処理ガス供給ダクト11より原ガス送風機12へ送り込まれ、下ダンパー15及び上ダンパー16が開いて吸着処理できる状態となっている吸着槽13に導入される。吸着槽13での吸着処理により、被処理ガスは、有機シリコンおよび有機溶剤が吸着槽13の吸着材14にて吸着されて、清浄ガスとなって清浄ガス排出ダクト17より排出される。 In the present embodiment, the gas to be treated is an organic solvent-containing gas containing organic silicon, which is sent from the gas supply duct 11 to be treated to the raw gas blower 12, and the lower damper 15 and the upper damper 16 are opened so that the gas to be treated can be adsorbed. It is introduced into the adsorption tank 13 which has become. By the adsorption treatment in the adsorption tank 13, the organic silicon and the organic solvent are adsorbed by the adsorbent 14 in the adsorption tank 13 to become clean gas, which is discharged from the clean gas discharge duct 17.

本実施形態では、有機溶剤含有ガスに含まれる有機シリコンは、環状有機シリコンである。環状有機シリコンとは、シロキサン結合による環状分子構造骨格を有する環式有機化合物を指す、例えば、ヘキサメチルシクロトリシロキサン(D3)、オクタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)などが挙げられるが、これらに限定されるものではない。 In the present embodiment, the organic silicon contained in the organic solvent-containing gas is cyclic organic silicon. Cyclic organic silicon refers to a cyclic organic compound having a cyclic molecular structure skeleton due to a siloxane bond, for example, hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5). However, it is not limited to these.

本実施形態では、有機溶剤処理装置1の処理対象(被処理ガス)を、環状有機シリコンを含む有機溶剤含有ガスとするが、有機溶剤処理装置1は、過熱水蒸気によって難脱着な成分に変化する成分を含む有機溶剤含有ガスにも適用できる。過熱水蒸気については後述する。 In the present embodiment, the treatment target (treatment gas) of the organic solvent treatment device 1 is an organic solvent-containing gas containing cyclic organic silicon, but the organic solvent treatment device 1 changes to a component that is difficult to desorb due to superheated steam. It can also be applied to organic solvent-containing gas containing components. Superheated steam will be described later.

一方、下ダンパー15及び上ダンパー16か閉じられて脱着処理できる状態となっている吸着槽13には、その吸着槽13に設けられた水蒸気供給口18から脱着用ガスとして水蒸気が導入される。この水蒸気は、水蒸気供給ライン21より水蒸気ライン切替弁22を経由して水蒸気供給口18bへ供給される。吸着槽13への水蒸気の導入により吸着材14に吸着された有機溶剤の脱着処理が行われる。 On the other hand, water vapor is introduced as a desorption gas from the water vapor supply port 18 provided in the adsorption tank 13 into the adsorption tank 13 in which the lower damper 15 and the upper damper 16 are closed and ready for desorption treatment. This steam is supplied from the steam supply line 21 to the steam supply port 18b via the steam line switching valve 22. By introducing water vapor into the adsorption tank 13, the organic solvent adsorbed on the adsorbent 14 is desorbed.

脱着された有機溶剤を含む水蒸気は、吸着槽13に接続した脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、凝縮器32にて有機溶剤と水とに液化凝縮される。その後に、回収液タンク33にて回収される。 The steam containing the desorbed organic solvent is supplied to the condenser 32 from the desorption steam discharge port 19 connected to the adsorption tank 13 via the desorption steam line 31, and is liquefied and condensed into the organic solvent and water by the condenser 32. Will be done. After that, it is collected in the recovery liquid tank 33.

吸着槽13にて吸着処理した後に清浄ガス排出ダクト17より排出される清浄ガスは、清浄ガス排出ダクト17に設けられたVOC濃度計(有機溶剤濃度計)25にてモニタリングされる。そして、有機溶剤処理装置1は、VOC濃度計25による測定値が設定値以下の場合、すなわち、吸着槽13から排出された清浄ガス中の有機溶剤濃度が設定値以下の場合には、吸着槽13への被処理ガスの導入と脱着用ガスの導入とを交互に繰り返す。これにより、吸着槽13での吸着処理と脱着処理とを交互に繰り返す。ここで、2つの吸着槽13、すなわち吸着槽A13aおよび吸着槽B13bには、一方に被処理ガスを導入している間に他方に脱着用ガスを導入する。つまり、吸着槽A13aでの吸着処理の間に吸着槽B13bでは脱着処理が実施され、吸着槽B13bでの吸着処理の間に吸着槽A13aでは脱着処理が実施され、これが繰り返される。このような運転動作により、有機溶剤処理装置1にて大量の被処理ガスの処理を効率的に行うことができる。なお、脱着処理後の吸着槽13は次の吸着処理の実施に移行するまでの期間、ガスを導入しない待機状態にされてもよい。本実施形態では、VOC濃度計25による測定値が設定値以下の場合の有機溶剤処理装置1の上記動作を通常運転と称する。 The clean gas discharged from the clean gas discharge duct 17 after the adsorption treatment in the adsorption tank 13 is monitored by a VOC densitometer (organic solvent densitometer) 25 provided in the clean gas discharge duct 17. Then, the organic solvent treatment apparatus 1 is an adsorption tank when the value measured by the VOC concentration meter 25 is less than or equal to the set value, that is, when the concentration of the organic solvent in the clean gas discharged from the adsorption tank 13 is less than or equal to the set value. The introduction of the gas to be treated and the introduction of the desorption gas into 13 are alternately repeated. As a result, the adsorption process and the desorption process in the adsorption tank 13 are alternately repeated. Here, in the two adsorption tanks 13, that is, the adsorption tank A13a and the adsorption tank B13b, the desorption gas is introduced into the other while the gas to be treated is introduced into one. That is, the desorption treatment is carried out in the adsorption tank B13b during the adsorption treatment in the adsorption tank A13a, and the desorption treatment is carried out in the adsorption tank A13a during the adsorption treatment in the adsorption tank B13b, and this is repeated. By such an operation operation, the organic solvent treatment apparatus 1 can efficiently treat a large amount of the gas to be treated. The adsorption tank 13 after the desorption treatment may be put in a standby state in which no gas is introduced until the next adsorption treatment is carried out. In the present embodiment, the above operation of the organic solvent treatment apparatus 1 when the value measured by the VOC concentration meter 25 is equal to or less than the set value is referred to as normal operation.

また、有機溶剤処理装置1は、VOC濃度計25による測定値が前記設定値を上回る場合、すなわち、吸着槽13から排出された清浄ガス中の有機溶剤濃度が前記設定値を超えた場合には、次の処理を行う。原ガス送風機12を停止させ、被処理ガスの供給を停止し、水蒸気供給ライン21において水蒸気ライン切替弁23を切り替え、水蒸気をヒーター25にて所定の温度まで加熱した過熱水蒸気(再生用ガス)を吸着槽13へ導入する。過熱水蒸気は、ヒーター25によって、脱着処理に用いる水蒸気よりも高い温度に加熱された水蒸気である。 Further, in the organic solvent treatment apparatus 1, when the value measured by the VOC concentration meter 25 exceeds the set value, that is, when the concentration of the organic solvent in the clean gas discharged from the adsorption tank 13 exceeds the set value. , Performs the following processing. The raw gas blower 12 is stopped, the supply of the gas to be processed is stopped, the steam line switching valve 23 is switched in the steam supply line 21, and the superheated steam (regeneration gas) in which the steam is heated to a predetermined temperature by the heater 25 is used. It is introduced into the adsorption tank 13. The superheated steam is steam heated by the heater 25 to a temperature higher than the steam used for the desorption treatment.

吸着槽13への過熱水蒸気の導入により、吸着槽13内の吸着材14の過熱水蒸気による脱着処理である再生処理が実施される。ここで、本実施形態では、水蒸気による脱着処理を単に脱着処理と称し、加熱水蒸気による脱着処理を、水蒸気による脱着処理と区別するため再生処理と称する。これらは区別のために用いているだけであり、水蒸気による脱着処理でも吸着材14の再生(の一部)は行われている。区別のための文言であるため、例えば、過熱水蒸気による脱着処理を追脱着処理と称してもよい。 By introducing superheated steam into the adsorption tank 13, a regeneration process, which is a desorption treatment of the adsorbent 14 in the adsorption tank 13 with superheated steam, is carried out. Here, in the present embodiment, the desorption treatment with steam is simply referred to as a desorption treatment, and the desorption treatment with heated steam is referred to as a regeneration treatment to distinguish it from the desorption treatment with steam. These are only used for distinction, and (a part of) the adsorbent 14 is regenerated even in the desorption treatment with water vapor. Since it is a wording for distinction, for example, the desorption treatment by superheated steam may be referred to as the additional desorption treatment.

再生処理では、本実施形態では被処理ガスに環状有機シリコンが含有されているため、環状有機シリコンが脱着されるが、吸着材14に有機溶剤が残留している(水蒸気を用いた脱着処理で残っている)場合にはこれも脱着される。脱着された環状有機シリコンおよび有機溶剤を含む過熱水蒸気は、吸着槽13に接続した脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、凝縮器32にて凝縮される。その後に、回収液タンク33にて回収される。 In the regeneration treatment, since the cyclic organic silicon is contained in the gas to be treated in the present embodiment, the cyclic organic silicon is desorbed, but the organic solvent remains in the adsorbent 14 (in the desorption treatment using water vapor). If it remains), it is also detached. The desorbed cyclic organic silicon and the superheated steam containing the organic solvent are supplied to the condenser 32 from the desorption steam discharge port 19 connected to the adsorption tank 13 via the desorption steam line 31 and condensed in the condenser 32. .. After that, it is collected in the recovery liquid tank 33.

本実施形態では、有機溶剤処理装置1は2つの吸着槽を備えているため、水蒸気ライン切替弁22を切り替え、吸着槽A13aおよび吸着槽B13bそれぞれに過熱水蒸気を導入し、それぞれ再生処理を実施する。どちらを先に再生処理するかの順は問わない。 In the present embodiment, since the organic solvent treatment device 1 includes two adsorption tanks, the steam line switching valve 22 is switched, superheated steam is introduced into each of the adsorption tank A13a and the adsorption tank B13b, and the regeneration treatment is carried out respectively. .. It does not matter which one is regenerated first.

本実施形態では、VOC濃度計25による測定値が設定値を上回る場合の有機溶剤処理装置1の上記動作を再生運転と称する。 In the present embodiment, the operation of the organic solvent treatment apparatus 1 when the value measured by the VOC concentration meter 25 exceeds the set value is referred to as a regeneration operation.

有機溶剤処理装置1において、再生処理で使用する過熱水蒸気の温度は180〜250℃にすることが好ましい。過熱水蒸気の温度が180℃以下であると吸着材14より効率よく環状有機シリコンを除去することができず再生効率が低下してしまう。また過熱水蒸気の温度が250℃以上となると環状有機シリコンの重合が促進されてしまい、吸着材14の再生効率が大きく向上することなくランニングコストが増大化してしまうからである。 In the organic solvent treatment apparatus 1, the temperature of the superheated steam used in the regeneration treatment is preferably 180 to 250 ° C. If the temperature of the superheated steam is 180 ° C. or lower, the cyclic organic silicon cannot be removed more efficiently than the adsorbent 14, and the regeneration efficiency is lowered. Further, when the temperature of the superheated steam is 250 ° C. or higher, the polymerization of the cyclic organic silicon is promoted, and the running cost is increased without significantly improving the regeneration efficiency of the adsorbent 14.

吸着槽13に過熱水蒸気を導入する時間(再生時間)は、特に限定はされないが、1時間以上とするのが好ましい。再生時間が1時間以内であると充分な再生を行うことができないからである。 The time (regeneration time) for introducing superheated steam into the adsorption tank 13 is not particularly limited, but is preferably 1 hour or more. This is because if the reproduction time is less than one hour, sufficient reproduction cannot be performed.

有機溶剤処理装置1は、全ての吸着槽13での再生処理が終了すると(再生運転が終了すると)、再度、排ガス送風機12を稼働し、吸着槽13へ被処理ガスを導入して吸着処理を実施する。そして、清浄ガス排出ダクト17より排出される清浄ガスのVOC濃度計25による測定値が設定した濃度値以下の場合、通常運転に移行し、濃度値を未だ上回っていた場合には再度、再生各吸着槽13にそれぞれ再生処理を実施する(再生運転を行う)。 When the regeneration treatment in all the adsorption tanks 13 is completed (when the regeneration operation is completed), the organic solvent treatment apparatus 1 operates the exhaust gas blower 12 again, introduces the gas to be treated into the adsorption tank 13, and performs the adsorption treatment. carry out. Then, when the measured value of the clean gas discharged from the clean gas discharge duct 17 by the VOC concentration meter 25 is equal to or less than the set concentration value, the normal operation is started, and when the concentration value is still exceeded, the reproduction is performed again. Regeneration processing is performed on each of the adsorption tanks 13 (regeneration operation is performed).

(実施例)
以下に本実施形態の有機溶剤処理装置1を用いた実施例を示して本発明を具体的に説明するが、本発明は以下の内容に限定されるものではない。
(Example)
Hereinafter, the present invention will be specifically described with reference to examples using the organic solvent treatment apparatus 1 of the present embodiment, but the present invention is not limited to the following contents.

(実施例1−1)
トルエン2000ppmとオクタメチルシクロテトラシロキサン1ppmとを含む45℃の混合ガス(被処理ガス)を、風量4.0Nm/分で原ガス送風機12にて吸着槽13に導入し、吸着槽13の吸着材14にて10分間吸着処理を行った。この際清浄ガス排出ダクト17に設置したVOC濃度計25の数値(清浄ガスのVOC濃度)は、1ppm以下であった。また、有機溶剤を吸着した吸着材14に水蒸気を用いて8分間脱着処理を行った。有機溶剤を含んだ脱着ガスは、脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33にて回収された。脱着処理を終えた吸着槽13を次の吸着処理に供されるまで2分間待機状態にした。
(Example 1-1)
A mixed gas (processed gas) at 45 ° C. containing 2000 ppm of toluene and 1 ppm of octamethylcyclotetrasiloxane was introduced into the adsorption tank 13 by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and was adsorbed by the adsorption tank 13. Adsorption treatment was performed on the material 14 for 10 minutes. At this time, the numerical value (VOC concentration of clean gas) of the VOC concentration meter 25 installed in the clean gas discharge duct 17 was 1 ppm or less. Further, the adsorbent 14 adsorbed with the organic solvent was desorbed for 8 minutes using water vapor. The desorbed gas containing the organic solvent was supplied from the desorbed steam discharge port 19 to the condenser 32 via the desorbed steam line 31, liquefied and condensed in the organic solvent and water, and then recovered in the recovery liquid tank 33. .. The adsorption tank 13 after the desorption treatment was put into a standby state for 2 minutes until it was subjected to the next adsorption treatment.

前記の各状態(吸着処理、脱着処理、待機状態)を順に吸着槽13を切替えながら繰り返す(通常運転を行う)ことで、トルエン及びオクタメチルシクロテトラシロキサンを含む混合ガスを170時間連続処理したところ、VOC濃度計25の数値が100ppmを超えた。そこで、混合ガスの供給を停止し、各吸着槽13に対して200℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。各吸着槽13の過熱水蒸気による再生処理を行った後に、再度、混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値が1ppm以下となったことを確認し、吸着材14をサンプリングしてオクタメチルシクロテトラシロキサン及びその重合物の残存量を測定した。 A mixed gas containing toluene and octamethylcyclotetrasiloxane was continuously treated for 170 hours by repeating each of the above states (adsorption treatment, desorption treatment, standby state) while switching the adsorption tank 13 in order (normal operation is performed). , The value of the VOC densitometer 25 exceeded 100 ppm. Therefore, the supply of the mixed gas was stopped, and superheated steam at 200 ° C. was introduced into each adsorption tank 13 for 1 hour to regenerate the adsorbent 14. After the regeneration treatment with superheated steam of each adsorption tank 13, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. It was confirmed that the value of the VOC concentration meter 25 at this time was 1 ppm or less, and the adsorbent 14 was sampled to measure the residual amount of octamethylcyclotetrasiloxane and its polymer.

(実施例1−2)
トルエン2000ppmとデカメチルシクロペンタシロキサン1.5ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽13に導入し、吸着材14により10分間吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸着材14に水蒸気を用いて8分間脱着処理を行った。有機溶剤を含んだ脱着ガスは、脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽13を次の吸着処理に供されるまで2分間待機状態にした。
(Example 1-2)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1.5 ppm of decamethylcyclopentasiloxane was introduced into the adsorption tank 13 by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. Was done. At this time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, the adsorbent 14 adsorbed with the organic solvent was desorbed for 8 minutes using water vapor. The desorption gas containing the organic solvent was supplied from the desorption steam discharge port 19 to the condenser 32 via the desorption steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank 13 after the desorption treatment was put into a standby state for 2 minutes until it was subjected to the next adsorption treatment.

前記の各運転状態を順に吸着槽13を切替えながら繰り返すことで、混合ガスを90時間連続処理したところ、VOC濃度計25の数値が100ppmを超えた。そのため、混合ガスの供給を停止し、各吸着槽13へ200℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。各吸着槽13の過熱水蒸気による再生処理を行った後に、再度混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計の数値が1ppm以下となったことを確認し、吸着材14をサンプリングしてデカメチルシクロペンタシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 90 hours by repeating each of the above operating states while switching the adsorption tank 13 in order, the value of the VOC concentration meter 25 exceeded 100 ppm. Therefore, the supply of the mixed gas was stopped, and superheated steam at 200 ° C. was introduced into each adsorption tank 13 for 1 hour to regenerate the adsorbent 14. After the regeneration treatment with superheated steam of each adsorption tank 13, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. After confirming that the value of the VOC densitometer at this time was 1 ppm or less, the adsorbent 14 was sampled to measure the residual amount of decamethylcyclopentasiloxane and its polymer.

(比較例1−1)
トルエン2000ppmとオクタメチルシクロテトラシロキサン1ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽13に導入し、吸着材14により10分間吸着処理を行った。この際の清浄ガス排出口に設置したVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸着材14に水蒸気を用いて8分間脱着処理を行った。有機溶剤を含んだ脱着ガスは、脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽13を次の吸着処理に供されるまで2分間待機状態にした。
(Comparative Example 1-1)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1 ppm of octamethylcyclotetrasiloxane was introduced into the adsorption tank 13 by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. It was. At this time, the value of the VOC concentration meter 25 installed at the clean gas discharge port was 1 ppm or less. Further, the adsorbent 14 adsorbed with the organic solvent was desorbed for 8 minutes using water vapor. The desorption gas containing the organic solvent was supplied from the desorption steam discharge port 19 to the condenser 32 via the desorption steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank 13 after the desorption treatment was put into a standby state for 2 minutes until it was subjected to the next adsorption treatment.

前記の各運転状態を順に吸着槽を切替えながら繰り返すことで、混合ガスを170時間連続処理したところ、VOC濃度計25の数値が100ppmを超えた。そのため、混合ガスの供給を停止し、各吸着槽13へ200℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。各吸着槽13の過熱水蒸気による再生処理を行った後に、再度混合ガスの供給を開始し吸着材14による吸着処理を行った。この際のVOC濃度計25の数値は25ppmであり、吸着材14をサンプリングしてオクタメチルシクロテトラシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 170 hours by repeating each of the above operating states while switching the adsorption tank in order, the value of the VOC concentration meter 25 exceeded 100 ppm. Therefore, the supply of the mixed gas was stopped, and superheated steam at 200 ° C. was introduced into each adsorption tank 13 for 1 hour to regenerate the adsorbent 14. After the regeneration treatment with superheated steam of each adsorption tank 13, the supply of the mixed gas was started again and the adsorption treatment with the adsorbent 14 was performed. At this time, the value of the VOC concentration meter 25 was 25 ppm, and the adsorbent 14 was sampled to measure the residual amount of octamethylcyclotetrasiloxane and its polymer.

(比較例1−2)
トルエン2000ppmとデカメチルシクロペンタシロキサン1.5ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽13に導入し、吸着材14により10分間吸着処理を行った。この際の清浄ガス排出口に設置したVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸着材14に水蒸気を用いて8分間脱着処理を行った。有機溶剤を含んだ脱着ガスは、脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽13を次の吸着処理に供されるまで2分間待機状態にした。
(Comparative Example 1-2)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1.5 ppm of decamethylcyclopentasiloxane was introduced into the adsorption tank 13 by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. Was done. At this time, the value of the VOC concentration meter 25 installed at the clean gas discharge port was 1 ppm or less. Further, the adsorbent 14 adsorbed with the organic solvent was desorbed for 8 minutes using water vapor. The desorption gas containing the organic solvent was supplied from the desorption steam discharge port 19 to the condenser 32 via the desorption steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank 13 after the desorption treatment was put into a standby state for 2 minutes until it was subjected to the next adsorption treatment.

前記の各運転状態を順に吸着槽を切替えながら繰り返すことで、混合ガスを90時間連続処理したところ、VOC濃度計25の数値が100ppmを超えた。そのため、混合ガスの供給を停止し、各吸着槽13へ200℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。各吸着槽13の過熱水蒸気による再生処理を行った後に、再度混合ガスの供給を開始し吸着材14による吸着処理を行った。この際のVOC濃度計25の数値は35ppmであり、吸着材14をサンプリングしてデカメチルシクロペンタシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 90 hours by repeating each of the above operating states while switching the adsorption tank in order, the value of the VOC concentration meter 25 exceeded 100 ppm. Therefore, the supply of the mixed gas was stopped, and superheated steam at 200 ° C. was introduced into each adsorption tank 13 for 1 hour to regenerate the adsorbent 14. After the regeneration treatment with superheated steam of each adsorption tank 13, the supply of the mixed gas was started again and the adsorption treatment with the adsorbent 14 was performed. At this time, the value of the VOC concentration meter 25 was 35 ppm, and the adsorbent 14 was sampled to measure the residual amount of decamethylcyclopentasiloxane and its polymer.

(比較例1−3)
トルエン2000ppmとオクタメチルシクロテトラシロキサン1ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽13に導入し、吸着材14により10分間吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸着材14に水蒸気を用いて8分間脱着処理を行った。有機溶剤を含んだ脱着ガスは、脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽13を次の吸着処理に供されるまで2分間待機状態にした。
(Comparative Example 1-3)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1 ppm of octamethylcyclotetrasiloxane was introduced into the adsorption tank 13 by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. It was. At this time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, the adsorbent 14 adsorbed with the organic solvent was desorbed for 8 minutes using water vapor. The desorption gas containing the organic solvent was supplied from the desorption steam discharge port 19 to the condenser 32 via the desorption steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank 13 after the desorption treatment was put into a standby state for 2 minutes until it was subjected to the next adsorption treatment.

前記の各運転状態を順に吸着槽を切替えながら繰り返すことで、混合ガスを170時間連続処理したところ、VOC濃度計25の数値が100ppmを超えた。そこで、混合ガスの供給を停止し、各吸着槽13へ300℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。各吸着槽13の過熱水蒸気による再生処理を行った後に、再度混合ガスの供給を開始し吸着材14による吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であり、吸着材14をサンプリングしてオクタメチルシクロテトラシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 170 hours by repeating each of the above operating states while switching the adsorption tank in order, the value of the VOC concentration meter 25 exceeded 100 ppm. Therefore, the supply of the mixed gas was stopped, and superheated steam at 300 ° C. was introduced into each adsorption tank 13 for 1 hour to regenerate the adsorbent 14. After the regeneration treatment with superheated steam of each adsorption tank 13, the supply of the mixed gas was started again and the adsorption treatment with the adsorbent 14 was performed. At this time, the value of the VOC concentration meter 25 was 1 ppm or less, and the adsorbent 14 was sampled to measure the residual amount of octamethylcyclotetrasiloxane and its polymer.

(比較例1−4)
トルエン2000ppmとデカメチルシクロペンタシロキサン1.5ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽13に導入し、吸着材14により10分間吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸着材14に水蒸気を用いて8分間脱着処理を行った。有機溶剤を含んだ脱着ガスは、脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽13を次の吸着処理に供されるまで2分間待機状態にした。
(Comparative Example 1-4)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1.5 ppm of decamethylcyclopentasiloxane was introduced into the adsorption tank 13 by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. Was done. At this time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, the adsorbent 14 adsorbed with the organic solvent was desorbed for 8 minutes using water vapor. The desorption gas containing the organic solvent was supplied from the desorption steam discharge port 19 to the condenser 32 via the desorption steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank 13 after the desorption treatment was put into a standby state for 2 minutes until it was subjected to the next adsorption treatment.

前記の各運転状態を順に吸着槽を切替えながら繰り返すことで、混合ガスを90時間連続処理したところ、VOC濃度計25の数値が100ppmを超えた。そこで、混合ガスの供給を停止し、各吸着槽13へ300℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。各吸着槽13の過熱水蒸気による再生処理を行った後に、再度混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計の数値は1ppm以下であり、吸着材14をサンプリングしてデカメチルシクロペンタシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 90 hours by repeating each of the above operating states while switching the adsorption tank in order, the value of the VOC concentration meter 25 exceeded 100 ppm. Therefore, the supply of the mixed gas was stopped, and superheated steam at 300 ° C. was introduced into each adsorption tank 13 for 1 hour to regenerate the adsorbent 14. After the regeneration treatment with superheated steam of each adsorption tank 13, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. The value of the VOC densitometer at this time was 1 ppm or less, and the adsorbent 14 was sampled to measure the residual amount of decamethylcyclopentasiloxane and its polymer.

実施例1−1〜1−2、比較例1−1〜1−4の結果を表1に示す。 The results of Examples 1-1 to 1-2 and Comparative Examples 1-1 to 1-4 are shown in Table 1.

表1が示すように、実施例1−1及び1−2の清浄ガスのVOC濃度は1ppm以下であり、環状有機シリコン及びその重合物の残存量は1mg/g−KFである。実施例1−1及び1−2は、比較例1−1及び1−2と比べて、非常に高効率に環状有機シリコンを脱着でき、吸着材を再生できていることがわかる。また、比較例1−3及び1−4は、清浄空気VOC濃度と環状有機シリコン及びその重合物の残存量とは実施例1及び2と殆ど同程度であるが、過熱水蒸気を高温(300℃)にするため電気使用量が高くなってしまい、エネルギー効率が悪い。このことから、実施例1−1及び1−2の方がランニングコストを小さくすることができることが分かる。 As shown in Table 1, the VOC concentration of the clean gas of Examples 1-1 and 1-2 is 1 ppm or less, and the residual amount of cyclic organic silicon and its polymer is 1 mg / g-KF. It can be seen that in Examples 1-1 and 1-2, the cyclic organic silicon can be desorbed and desorbed with extremely high efficiency as compared with Comparative Examples 1-1 and 1-2, and the adsorbent can be regenerated. Further, in Comparative Examples 1-3 and 1-4, the clean air VOC concentration and the residual amount of the cyclic organic silicon and its polymer are almost the same as those of Examples 1 and 2, but the superheated steam is heated to a high temperature (300 ° C.). ), The amount of electricity used becomes high, and energy efficiency is poor. From this, it can be seen that the running costs can be reduced in Examples 1-1 and 1-2.

〔実施形態2〕
本発明の別の実施形態について図2,3を用いて詳細に説明する。
図2に示すように、本実施形態の有機溶剤処理装置1Aは、吸着槽13を3つ備えた構成であり、実施形態1で図1を用いて説明した有機溶剤処理装置1の構成に加え、吸着材14を充填した吸着槽C13cを備えた構成である。本実施形態では、吸着槽A13a、吸着槽B13b、および吸着槽C13cには同じ材料の吸着材14が充填されているが、異なる材料の吸着材が充填されていてもよい。また、本実施形態では2つの吸着槽13を備えているが、備える数に限定はなく、4つ以上でもよい。
[Embodiment 2]
Another embodiment of the present invention will be described in detail with reference to FIGS.
As shown in FIG. 2, the organic solvent treatment device 1A of the present embodiment has a configuration including three adsorption tanks 13, and is in addition to the configuration of the organic solvent treatment device 1 described with reference to FIG. 1 in the first embodiment. , The structure is provided with an adsorption tank C13c filled with the adsorbent 14. In the present embodiment, the adsorption tank A13a, the adsorption tank B13b, and the adsorption tank C13c are filled with the adsorbent 14 of the same material, but the adsorbents of different materials may be filled. Further, although the present embodiment includes two adsorption tanks 13, the number of the adsorption tanks 13 is not limited, and may be four or more.

吸着槽C13cには、吸着槽A13aおよび吸着槽B13bと同様に、上ダンパー16および下ダンパー15が取付けられており、水蒸気供給口18および脱着水蒸気排出口19が設けられている。また、水蒸気ライン切替弁22は、水蒸気供給ライン22から各吸着槽13(吸着槽A13a、吸着槽B13b、吸着槽C13c)への流路の切り替えができるように設けられている。これら以外の構成は、有機溶剤処理装置1と同じであるため、同じ構成部材には同じ符号を付し、説明は省略する。 Similar to the adsorption tank A13a and the adsorption tank B13b, the adsorption tank C13c is provided with an upper damper 16 and a lower damper 15, and is provided with a steam supply port 18 and a desorption steam discharge port 19. Further, the steam line switching valve 22 is provided so that the flow path can be switched from the steam supply line 22 to each adsorption tank 13 (adsorption tank A13a, adsorption tank B13b, adsorption tank C13c). Since the configurations other than these are the same as those of the organic solvent treatment apparatus 1, the same components are designated by the same reference numerals, and the description thereof will be omitted.

有機溶剤処理装置1Aでの通常運転時のフローを図3の(a)に、再生運転時のフローを図3の(b)に示す。図3の(a)に示すように、有機溶剤処理装置1Aは、通常運転時は、通常運転における各吸着槽13において、吸着処理、脱着処理、待機、を繰り返す。
また、3つのうちの1つに被処理ガスを導入している間に、別の1つに脱着用ガスを導入し、さらに別の1つは待機状態とする。具体的には、吸着槽A13aでの吸着処理の間に吸着槽B13bでは脱着処理が実施され、かつ、吸着槽C13cは待機状態とされる。同様に、吸着槽B13bでの吸着処理の間に、吸着槽C13bでは脱着処理が実施され、かつ、吸着槽A13aは待機状態とされる。同様に、吸着槽C13cでの吸着処理の間に、吸着槽A13aでは脱着処理が実施され、かつ、吸着槽B13bは待機状態とされる。これが繰り返される。
The flow during normal operation in the organic solvent treatment apparatus 1A is shown in FIG. 3A, and the flow during regeneration operation is shown in FIG. 3B. As shown in FIG. 3A, the organic solvent treatment apparatus 1A repeats the adsorption treatment, the desorption treatment, and the standby in each adsorption tank 13 in the normal operation during the normal operation.
Further, while the gas to be treated is introduced into one of the three, the desorption gas is introduced into the other one, and the other one is in the standby state. Specifically, during the adsorption process in the adsorption tank A13a, the desorption treatment is performed in the adsorption tank B13b, and the adsorption tank C13c is put into a standby state. Similarly, during the adsorption treatment in the adsorption tank B13b, the desorption treatment is carried out in the adsorption tank C13b, and the adsorption tank A13a is put into a standby state. Similarly, during the adsorption treatment in the adsorption tank C13c, the desorption treatment is carried out in the adsorption tank A13a, and the adsorption tank B13b is put into a standby state. This is repeated.

図3の(b)に示すように、有機溶剤処理装置1Aは、1つの吸着槽C13cが再生処理を実施している間に、他の2つの吸着槽A13aおよび吸着槽B13bにて被処理ガスの吸脱着処理を交互に実施することで、連続して有機溶剤を含む被処理ガスの清浄化を行うことができる。この場合、有機溶剤処理装置1Aには、水蒸気ライン22が2つあり、そのうち1つが吸着槽C13cの再生処理のために過熱水蒸気を導入するのに用いられ、別の1つが吸着槽A13aおよび吸着槽B13bでの脱着処理のために水蒸気を導入するのに用いられる。 As shown in FIG. 3B, in the organic solvent treatment apparatus 1A, the gas to be treated is used in the other two adsorption tanks A13a and the adsorption tank B13b while one adsorption tank C13c is performing the regeneration treatment. By alternately carrying out the adsorption / desorption treatments, the gas to be treated containing the organic solvent can be continuously cleaned. In this case, the organic solvent treatment apparatus 1A has two steam lines 22, one of which is used to introduce superheated steam for the regeneration treatment of the adsorption tank C13c, and the other one is the adsorption tank A13a and adsorption. It is used to introduce water vapor for desorption treatment in tank B13b.

なお、図3の(b)では、吸着槽C13cにて再生処理を実施し、吸着槽A13aおよび吸着槽B13bが吸脱着処理を繰り返している状態を例として示している。同様に、吸着槽A13aが再生処理を実施している間には吸着槽B13bおよび吸着槽C13cが吸脱着処理を繰り返し、吸着槽B13bが再生処理を実施している間には吸着槽C13cおよび吸着槽A13aが吸脱着処理繰り返す。 Note that FIG. 3B shows, as an example, a state in which the adsorption tank C13c is subjected to the regeneration treatment, and the adsorption tank A13a and the adsorption tank B13b are repeatedly subjected to the adsorption / desorption treatment. Similarly, the adsorption tank B13b and the adsorption tank C13c repeat the adsorption / desorption treatment while the adsorption tank A13a is performing the regeneration treatment, and the adsorption tank C13c and the adsorption tank C13c and the adsorption tank C13c are performing the adsorption treatment while the adsorption tank B13b is performing the regeneration treatment. The tank A13a repeats the adsorption / desorption process.

1つの吸着槽C13cでの再生処理が終了した時点で、他の2つの吸着槽A13aおよび吸着槽B13bのうち脱着処理にある吸着槽13から順に、再生処理に移行させる。このようにして、全ての吸着槽13(吸着槽A13a、吸着槽B13b、および吸着槽C13c)での再生処理を継続する。 When the regeneration process in one adsorption tank C13c is completed, the regeneration process is started in order from the adsorption tank 13 in the desorption treatment among the other two adsorption tanks A13a and the adsorption tank B13b. In this way, the regeneration process in all the adsorption tanks 13 (adsorption tank A13a, adsorption tank B13b, and adsorption tank C13c) is continued.

有機溶剤処理装置1Aは、3つ全ての吸着槽13での再生処理が終了すると(再生運転が終了すると)、再度、排ガス送風機12を稼働し、吸着槽13へ被処理ガスを導入して吸着処理を実施する。そして、清浄ガス排出ダクト17より排出される清浄ガスのVOC濃度計25による測定値が設定した濃度値以下の場合、通常運転に移行し、濃度値を未だ上回っていた場合には再度、3つ全ての吸着槽13にそれぞれ再生処理を実施する(再生運転を行う)。 When the regeneration treatment in all three adsorption tanks 13 is completed (when the regeneration operation is completed), the organic solvent treatment apparatus 1A operates the exhaust gas blower 12 again to introduce the gas to be treated into the adsorption tank 13 and adsorb it. Carry out the process. Then, when the measured value of the clean gas discharged from the clean gas discharge duct 17 by the VOC concentration meter 25 is less than or equal to the set concentration value, the normal operation is started, and when the concentration value is still exceeded, three again. Regeneration processing is performed on all the adsorption tanks 13 (regeneration operation is performed).

(実施例)
以下に本実施形態の有機溶剤処理装置1Aを用いた実施例を示して本発明を具体的に説明するが、本発明は以下の内容に限定されるものではない。
(Example)
Hereinafter, the present invention will be specifically described with reference to examples using the organic solvent treatment apparatus 1A of the present embodiment, but the present invention is not limited to the following contents.

(実施例2−1)
トルエン2000ppmとオクタメチルシクロテトラシロキサン1ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽A13aに導入し、吸着槽A13aの吸着材14により10分間吸着処理を行った。この際のVOC濃度計25の数値(清浄ガスのVOC濃度)は1ppm以下であった。また、有機溶剤を吸着した吸着槽B13bに水蒸気を導入して10分間脱着処理を行った。有機溶剤を含んだ脱着ガスは脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽C13cを次の吸着処理に供されるまで10分間待機状態にした。
(Example 2-1)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1 ppm of octamethylcyclotetrasiloxane was introduced into the adsorption tank A13a by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and the adsorbent 14 of the adsorption tank A13a was used for 10 minutes. Adsorption treatment was performed. At this time, the numerical value of the VOC concentration meter 25 (VOC concentration of the clean gas) was 1 ppm or less. Further, water vapor was introduced into the adsorption tank B13b that adsorbed the organic solvent, and the desorption treatment was performed for 10 minutes. The desorbed gas containing the organic solvent was supplied from the desorbed steam discharge port 19 to the condenser 32 via the desorbed steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank C13c that had been desorbed was placed in a standby state for 10 minutes until it was subjected to the next adsorption treatment.

前記3つの状態(吸着処理、脱着処理、待機状態)を順に吸着槽13を切替えながら繰り返すことで、トルエン及びオクタメチルシクロテトラシロキサンを含む混合ガスを170時間連続処理した。 By repeating the above three states (adsorption treatment, desorption treatment, standby state) in order while switching the adsorption tank 13, the mixed gas containing toluene and octamethylcyclotetrasiloxane was continuously treated for 170 hours.

混合ガスを170時間連続処理したところ、VOC濃度計25の数値が100ppmを超えた。そこで、待機状態となっている吸着槽13へ180℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。3つの吸着槽13全てにて過熱水蒸気による再生処理を行った後に、再度、混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値が1ppm以下となったことを確認し、吸着材14をサンプリングしてオクタメチルシクロテトラシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 170 hours, the value of the VOC concentration meter 25 exceeded 100 ppm. Therefore, superheated steam at 180 ° C. was introduced into the adsorbent tank 13 in the standby state for 1 hour to regenerate the adsorbent 14. After the regeneration treatment with superheated steam was performed in all three adsorption tanks 13, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. It was confirmed that the value of the VOC concentration meter 25 at this time was 1 ppm or less, and the adsorbent 14 was sampled to measure the residual amount of octamethylcyclotetrasiloxane and its polymer.

(実施例2−2)
トルエン2000ppmとオクタメチルシクロテトラシロキサン1ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽A13aに導入し、吸着材14により10分間吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸吸着槽B13bに水蒸気を導入して10分間脱着処理を行った。有機溶剤を含んだ脱着ガスは脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽C13cを次の吸着処理に供されるまで10分間待機状態にした。
(Example 2-2)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1 ppm of octamethylcyclotetrasiloxane was introduced into the adsorption tank A13a by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. It was. At this time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, water vapor was introduced into the absorption / adsorption tank B13b that adsorbed the organic solvent, and the desorption treatment was performed for 10 minutes. The desorbed gas containing the organic solvent was supplied from the desorbed steam discharge port 19 to the condenser 32 via the desorbed steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank C13c that had been desorbed was placed in a standby state for 10 minutes until it was subjected to the next adsorption treatment.

前記3つの状態を順に吸着槽13を切替えながら繰り返すことで、混合ガスを170時間連続処理したところ、VOC濃度計25の数値が100ppmを超えた。そこで、待機状態となっている吸着槽13へ200℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。3つの吸着槽13全てにて過熱水蒸気による再生処理を行った後に、再度、混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値が1ppm以下となったことを確認し、吸着材14をサンプリングしてオクタメチルシクロテトラシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 170 hours by repeating the above three states while switching the adsorption tank 13 in order, the value of the VOC concentration meter 25 exceeded 100 ppm. Therefore, superheated steam at 200 ° C. was introduced into the adsorbent tank 13 in the standby state for 1 hour to regenerate the adsorbent 14. After the regeneration treatment with superheated steam was performed in all three adsorption tanks 13, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. After confirming that the value of the VOC concentration meter 25 at this time was 1 ppm or less, the adsorbent 14 was sampled and the residual amount of octamethylcyclotetrasiloxane and its polymer was measured.

(実施例2−3)
トルエン2000ppmとオクタメチルシクロテトラシロキサン1ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽A13aに導入し、吸着材14により10分間吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸着槽B13bに水蒸気を導入して10分間脱着処理を行った。有機溶剤を含んだ脱着ガスは脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽C13cを次の吸着処理に供されるまで10分間待機状態にした。
(Example 2-3)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1 ppm of octamethylcyclotetrasiloxane was introduced into the adsorption tank A13a by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. It was. At this time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, water vapor was introduced into the adsorption tank B13b that adsorbed the organic solvent, and the desorption treatment was performed for 10 minutes. The desorbed gas containing the organic solvent was supplied from the desorbed steam discharge port 19 to the condenser 32 via the desorbed steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank C13c that had been desorbed was placed in a standby state for 10 minutes until it was subjected to the next adsorption treatment.

前記3つの状態を順に吸着槽13を切替えながら繰り返すことで、混合ガスを170時間連続処理したところ、VOC濃度計25の数値が100ppmを超えた。そこで、待機状態となっている吸着槽13へ250℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。3つの吸着槽13全てにて過熱水蒸気による再生処理を行った後に、再度、混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値が1ppm以下となったことを確認し、吸着材14をサンプリングしてオクタメチルシクロテトラシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 170 hours by repeating the above three states while switching the adsorption tank 13 in order, the value of the VOC concentration meter 25 exceeded 100 ppm. Therefore, superheated steam at 250 ° C. was introduced into the adsorbent tank 13 in the standby state for 1 hour to regenerate the adsorbent 14. After the regeneration treatment with superheated steam was performed in all three adsorption tanks 13, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. After confirming that the value of the VOC concentration meter 25 at this time was 1 ppm or less, the adsorbent 14 was sampled and the residual amount of octamethylcyclotetrasiloxane and its polymer was measured.

(実施例2−4)
トルエン2000ppmとデカメチルシクロペンタシロキサン1.5ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽A13aに導入し、吸着材14により10分間吸着処理を行った。この際のVOC濃度計25の数値が1ppm以下であった。また、有機溶剤を吸着した吸着槽B13bに水蒸気を導入して10分間脱着処理を行った。有機溶剤を含んだ脱着ガスは脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽C13cを次の吸着処理に供されるまで10分間待機状態にした。
(Example 2-4)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1.5 ppm of decamethylcyclopentasiloxane was introduced into the adsorption tank A13a by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. Was done. At this time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, water vapor was introduced into the adsorption tank B13b that adsorbed the organic solvent, and the desorption treatment was performed for 10 minutes. The desorbed gas containing the organic solvent was supplied from the desorbed steam discharge port 19 to the condenser 32 via the desorbed steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank C13c that had been desorbed was placed in a standby state for 10 minutes until it was subjected to the next adsorption treatment.

前記3つの状態を順に吸着槽を切替えながら繰り返すことで、混合ガスを90時間連続処理したところ、清浄ガス排出ダクト17より排出される清浄ガスはVOC濃度計25の数値が100ppmを超えた。そこで、待機状態となっている吸着槽C13cへ180℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。3つの吸着槽13全てにて過熱水蒸気による再生処理を行った後に、再度、混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値が1ppm以下となったことを確認し、吸着材14をサンプリングしてオクタメチルシクロテトラシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 90 hours by repeating the above three states in order while switching the adsorption tank, the value of the VOC concentration meter 25 exceeded 100 ppm for the clean gas discharged from the clean gas discharge duct 17. Therefore, superheated steam at 180 ° C. was introduced into the adsorption tank C13c in the standby state for 1 hour to regenerate the adsorbent 14. After the regeneration treatment with superheated steam was performed in all three adsorption tanks 13, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. It was confirmed that the value of the VOC concentration meter 25 at this time was 1 ppm or less, and the adsorbent 14 was sampled to measure the residual amount of octamethylcyclotetrasiloxane and its polymer.

(実施例2−5)
トルエン2000ppmとデカメチルシクロペンタシロキサン1.5ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽A13aに導入し、吸着材14により10分間吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸着槽B13bに水蒸気を導入して10分間脱着処理を行った。有機溶剤を含んだ脱着ガスは、脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽C13cを次の吸着処理に供されるまで10分間待機状態にした。
(Example 2-5)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1.5 ppm of decamethylcyclopentasiloxane was introduced into the adsorption tank A13a by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. Was done. At this time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, water vapor was introduced into the adsorption tank B13b that adsorbed the organic solvent, and the desorption treatment was performed for 10 minutes. The desorption gas containing the organic solvent was supplied from the desorption steam discharge port 19 to the condenser 32 via the desorption steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank C13c that had been desorbed was placed in a standby state for 10 minutes until it was subjected to the next adsorption treatment.

前記3つの状態を順に吸着槽を切替えながら繰り返すことで、混合ガスを90時間連続処理したところ、VOC濃度計25の数値が100ppmを超えた。そこで、待機状態となっている吸着槽13へ200℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。3つの吸着槽13全てにて過熱水蒸気による再生処理を行った後に、再度、混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値が1ppm以下となったことを確認し、吸着材14をサンプリングしてオクタメチルシクロテトラシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 90 hours by repeating the above three states in order while switching the adsorption tank, the value of the VOC concentration meter 25 exceeded 100 ppm. Therefore, superheated steam at 200 ° C. was introduced into the adsorbent tank 13 in the standby state for 1 hour to regenerate the adsorbent 14. After the regeneration treatment with superheated steam was performed in all three adsorption tanks 13, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. It was confirmed that the value of the VOC concentration meter 25 at this time was 1 ppm or less, and the adsorbent 14 was sampled to measure the residual amount of octamethylcyclotetrasiloxane and its polymer.

(実施例2−6)
トルエン2000ppmとデカメチルシクロペンタシロキサン1.5ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽A13aに導入し、吸着材14により10分間吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸着槽B13bに水蒸気を導入して10分間脱着処理を行った。有機溶剤を含んだ脱着ガスは脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽C13cを次の吸着処理に供されるまで10分間待機状態にした。
(Example 2-6)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1.5 ppm of decamethylcyclopentasiloxane was introduced into the adsorption tank A13a by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. Was done. At this time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, water vapor was introduced into the adsorption tank B13b that adsorbed the organic solvent, and the desorption treatment was performed for 10 minutes. The desorbed gas containing the organic solvent was supplied from the desorbed steam discharge port 19 to the condenser 32 via the desorbed steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank C13c that had been desorbed was placed in a standby state for 10 minutes until it was subjected to the next adsorption treatment.

前記3つの状態を順に吸着槽を切替えながら繰り返すことで、混合ガスを90時間連続処理したところ、VOC濃度計25の数値が100ppmを超えた。そこで、待機状態となっている吸着槽13へ250℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。3つの吸着槽13全てにて過熱水蒸気による再生処理を行った後に、再度、混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値が1ppm以下となったことを確認し、吸着材14をサンプリングしてオクタメチルシクロテトラシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 90 hours by repeating the above three states in order while switching the adsorption tank, the value of the VOC concentration meter 25 exceeded 100 ppm. Therefore, superheated steam at 250 ° C. was introduced into the adsorbent tank 13 in the standby state for 1 hour to regenerate the adsorbent 14. After the regeneration treatment with superheated steam was performed in all three adsorption tanks 13, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. It was confirmed that the value of the VOC concentration meter 25 at this time was 1 ppm or less, and the adsorbent 14 was sampled to measure the residual amount of octamethylcyclotetrasiloxane and its polymer.

(比較例2−1)
トルエン2000ppmとオクタメチルシクロテトラシロキサン1ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽A13aに導入し、吸着材14により10分間吸着処理を行った。その際のVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸着槽B13bの吸着材14に水蒸気を用いて10分間脱着処理を行った。有機溶剤を含んだ脱着ガスは脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽C13cを次の吸着処理に供されるまで10分間待機状態にした。
(Comparative Example 2-1)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1 ppm of octamethylcyclotetrasiloxane was introduced into the adsorption tank A13a by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. It was. At that time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, the adsorbent 14 of the adsorption tank B13b adsorbing the organic solvent was desorbed for 10 minutes using water vapor. The desorbed gas containing the organic solvent was supplied from the desorbed steam discharge port 19 to the condenser 32 via the desorbed steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank C13c that had been desorbed was placed in a standby state for 10 minutes until it was subjected to the next adsorption treatment.

前記3つの状態を順に吸着槽を切替えながら繰り返すことで、混合ガスを170時間連続処理したところ、清浄ガス排出ダクト17より排出される清浄ガスはVOC濃度計25の数値が100ppmを超えた。そこで、待機状態となっている吸着槽13へ150℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。3つ全ての吸着槽13の過熱水蒸気による再生処理を行った後に、再度混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値は62ppmであり、吸着材14をサンプリングしてオクタメチルシクロテトラシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 170 hours by repeating the above three states in order while switching the adsorption tank, the value of the VOC concentration meter 25 exceeded 100 ppm for the clean gas discharged from the clean gas discharge duct 17. Therefore, superheated steam at 150 ° C. was introduced into the adsorbent tank 13 in the standby state for 1 hour to regenerate the adsorbent 14. After regenerating all three adsorption tanks 13 with superheated steam, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. At this time, the value of the VOC concentration meter 25 was 62 ppm, and the adsorbent 14 was sampled to measure the residual amount of octamethylcyclotetrasiloxane and its polymer.

(比較例2−2)
トルエン2000ppmとオクタメチルシクロテトラシロキサン1ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽A13aに導入し、吸着材14により10分間吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸着槽B13bの吸着材14に水蒸気を用いて10分間脱着処理を行った。有機溶剤を含んだ脱着ガスは脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽C13cを次の吸着処理に供されるまで10分間待機状態にした。
(Comparative Example 2-2)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1 ppm of octamethylcyclotetrasiloxane was introduced into the adsorption tank A13a by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. It was. At this time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, the adsorbent 14 of the adsorption tank B13b adsorbing the organic solvent was desorbed for 10 minutes using water vapor. The desorbed gas containing the organic solvent was supplied from the desorbed steam discharge port 19 to the condenser 32 via the desorbed steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank C13c that had been desorbed was placed in a standby state for 10 minutes until it was subjected to the next adsorption treatment.

前記3つの状態を順に吸着槽を切替えながら繰り返すことで、混合ガスを170時間連続処理したところ、清浄ガス排出ダクト17より排出される清浄ガスはVOC濃度計25の数値が100ppmを超えた。そこで、待機状態となっている吸着槽13へ170℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。3つ全ての吸着槽13の過熱水蒸気による再生処理を行った後に、再度混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値は31ppmであり、吸着材14をサンプリングしてオクタメチルシクロテトラシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 170 hours by repeating the above three states in order while switching the adsorption tank, the value of the VOC concentration meter 25 exceeded 100 ppm for the clean gas discharged from the clean gas discharge duct 17. Therefore, superheated steam at 170 ° C. was introduced into the adsorbent tank 13 in the standby state for 1 hour to regenerate the adsorbent 14. After regenerating all three adsorption tanks 13 with superheated steam, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. At this time, the value of the VOC concentration meter 25 was 31 ppm, and the adsorbent 14 was sampled to measure the residual amount of octamethylcyclotetrasiloxane and its polymer.

(比較例2−3)
トルエン2000ppmとオクタメチルシクロテトラシロキサン1ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽A13aに導入し、吸着材14により10分間吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸着槽B13bの吸着材14に水蒸気を用いて10分間脱着処理を行った。有機溶剤を含んだ脱着ガスは脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽C13cを次の吸着処理に供されるまで10分間待機状態にした。
(Comparative Example 2-3)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1 ppm of octamethylcyclotetrasiloxane was introduced into the adsorption tank A13a by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. It was. At this time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, the adsorbent 14 of the adsorption tank B13b adsorbing the organic solvent was desorbed for 10 minutes using water vapor. The desorbed gas containing the organic solvent was supplied from the desorbed steam discharge port 19 to the condenser 32 via the desorbed steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank C13c that had been desorbed was placed in a standby state for 10 minutes until it was subjected to the next adsorption treatment.

前記3つの状態を順に吸着槽を切替えながら繰り返すことで、混合ガスを170時間連続処理したところ、VOC濃度計25の数値が100ppmを超えた。そこで、待機状態となっている吸着槽13へ260℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。3つ全ての吸着槽13の過熱水蒸気による再生処理を行った後に、再度混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であり、吸着材14をサンプリングしてオクタメチルシクロテトラシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 170 hours by repeating the above three states in order while switching the adsorption tank, the value of the VOC concentration meter 25 exceeded 100 ppm. Therefore, superheated steam at 260 ° C. was introduced into the adsorption tank 13 in the standby state for 1 hour to regenerate the adsorbent 14. After regenerating all three adsorption tanks 13 with superheated steam, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. At this time, the value of the VOC concentration meter 25 was 1 ppm or less, and the adsorbent 14 was sampled to measure the residual amount of octamethylcyclotetrasiloxane and its polymer.

(比較例2−4)
トルエン2000ppmとオクタメチルシクロテトラシロキサン1ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽A13aに導入し、吸着材14により10分間吸着処理を行った。その際の清浄ガス排出口に設置したVOC濃度計25の数値が1ppm以下であった。また、有機溶剤を吸着した吸着槽B13bの吸着材14に水蒸気を用いて10分間脱着処理を行い、有機溶剤を含んだ脱着ガスは脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽C13cを次の吸着処理に供されるまで10分間待機状態にした。
(Comparative Example 2-4)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1 ppm of octamethylcyclotetrasiloxane was introduced into the adsorption tank A13a by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. It was. At that time, the value of the VOC concentration meter 25 installed at the clean gas discharge port was 1 ppm or less. Further, the adsorbent 14 of the adsorption tank B13b adsorbing the organic solvent is desorbed for 10 minutes using steam, and the desorbed gas containing the organic solvent is desorbed from the desorbed steam discharge port 19 via the desorbed steam line 31 to the condenser. It was supplied to 32, liquefied and condensed in an organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank C13c that had been desorbed was placed in a standby state for 10 minutes until it was subjected to the next adsorption treatment.

前記3つの状態を順に吸着槽を切替えながら繰り返すことで、混合ガスを170時間連続処理したところ、VOC濃度計25の数値が100ppmを超えた。そこで、待機状態となっている吸着槽13へ300℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。3つ全ての吸着槽13の過熱水蒸気による再生処理を行った後に、再度混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であり、吸着材14をサンプリングしてオクタメチルシクロテトラシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 170 hours by repeating the above three states in order while switching the adsorption tank, the value of the VOC concentration meter 25 exceeded 100 ppm. Therefore, superheated steam at 300 ° C. was introduced into the adsorbent tank 13 in the standby state for 1 hour to regenerate the adsorbent 14. After performing the regeneration treatment with superheated steam in all three adsorption tanks 13, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. At this time, the value of the VOC concentration meter 25 was 1 ppm or less, and the adsorbent 14 was sampled to measure the residual amount of octamethylcyclotetrasiloxane and its polymer.

(比較例2−5)
トルエン2000ppmとデカメチルシクロペンタシロキサン1.5ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽A13aに導入し、吸着材14により10分間吸着処理を行った。その際のVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸着槽B13bの吸着材14に水蒸気を用いて10分間脱着処理を行った。有機溶剤を含んだ脱着ガスは脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽C13cを次の吸着処理に供されるまで10分間待機状態にした。
(Comparative Example 2-5)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1.5 ppm of decamethylcyclopentasiloxane was introduced into the adsorption tank A13a by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. Was done. At that time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, the adsorbent 14 of the adsorption tank B13b adsorbing the organic solvent was desorbed for 10 minutes using water vapor. The desorbed gas containing the organic solvent was supplied from the desorbed steam discharge port 19 to the condenser 32 via the desorbed steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank C13c that had been desorbed was placed in a standby state for 10 minutes until it was subjected to the next adsorption treatment.

前記3つの状態を順に吸着槽を切替えながら繰り返すことで、混合ガスを90時間連続処理したところ、清浄ガス排出ダクト17より排出される清浄ガスはVOC濃度計25の数値が100ppmを超えた。そこで、待機状態となっている吸着槽13へ150℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。3つ全ての吸着槽13の過熱水蒸気による再生処理を行った後に、再度混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値は80ppmであり、吸着材14をサンプリングしてデカメチルシクロペンタシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 90 hours by repeating the above three states in order while switching the adsorption tank, the value of the VOC concentration meter 25 exceeded 100 ppm for the clean gas discharged from the clean gas discharge duct 17. Therefore, superheated steam at 150 ° C. was introduced into the adsorbent tank 13 in the standby state for 1 hour to regenerate the adsorbent 14. After regenerating all three adsorption tanks 13 with superheated steam, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. The numerical value of the VOC concentration meter 25 at this time was 80 ppm, and the adsorbent 14 was sampled to measure the residual amount of decamethylcyclopentasiloxane and its polymer.

(比較例2−6)
トルエン2000ppmとデカメチルシクロペンタシロキサン1.5ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽A13aに導入し、吸着材14により10分間吸着処理を行った。その際のVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸着槽B13bの吸着材14に水蒸気を用いて10分間脱着処理を行った。有機溶剤を含んだ脱着ガスは脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽C13cを次の吸着処理に供されるまで10分間待機状態にした。
(Comparative Example 2-6)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1.5 ppm of decamethylcyclopentasiloxane was introduced into the adsorption tank A13a by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. Was done. At that time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, the adsorbent 14 of the adsorption tank B13b adsorbing the organic solvent was desorbed for 10 minutes using water vapor. The desorbed gas containing the organic solvent was supplied from the desorbed steam discharge port 19 to the condenser 32 via the desorbed steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank C13c that had been desorbed was placed in a standby state for 10 minutes until it was subjected to the next adsorption treatment.

前記3つの状態を順に吸着槽を切替えながら繰り返すことで、混合ガスを90時間連続処理したところ、清浄ガス排出ダクト17より排出される清浄ガスはVOC濃度計25の数値が100ppmを超えた。そこで、待機状態となっている吸着槽13へ170℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。3つ全ての吸着槽13の過熱水蒸気による再生処理を行った後に、再度混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値は43ppmであり、吸着材14をサンプリングしてデカメチルシクロペンタシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 90 hours by repeating the above three states in order while switching the adsorption tank, the value of the VOC concentration meter 25 exceeded 100 ppm for the clean gas discharged from the clean gas discharge duct 17. Therefore, superheated steam at 170 ° C. was introduced into the adsorbent tank 13 in the standby state for 1 hour to regenerate the adsorbent 14. After regenerating all three adsorption tanks 13 with superheated steam, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. At this time, the value of the VOC concentration meter 25 was 43 ppm, and the adsorbent 14 was sampled to measure the residual amount of decamethylcyclopentasiloxane and its polymer.

(比較例2−7)
トルエン2000ppmとデカメチルシクロペンタシロキサン1.5ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽A13aに導入し、吸着材14により10分間吸着処理を行った。その際のVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸着槽B13bの吸着材14に水蒸気を用いて10分間脱着処理を行った。有機溶剤を含んだ脱着ガスは脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽C13cを次の吸着処理に供されるまで10分間待機状態にした。
(Comparative Example 2-7)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1.5 ppm of decamethylcyclopentasiloxane was introduced into the adsorption tank A13a by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. Was done. At that time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, the adsorbent 14 of the adsorption tank B13b adsorbing the organic solvent was desorbed for 10 minutes using water vapor. The desorbed gas containing the organic solvent was supplied from the desorbed steam discharge port 19 to the condenser 32 via the desorbed steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank C13c that had been desorbed was placed in a standby state for 10 minutes until it was subjected to the next adsorption treatment.

前記3つの状態を順に吸着槽を切替えながら繰り返すことで、混合ガスを90時間連続処理したところ、VOC濃度計25の数値が100ppmを超えた。そこで、待機状態となっている吸着槽13へ260℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。3つ全ての吸着槽13の過熱水蒸気による再生処理を行った後に、再度混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であり、吸着材14をサンプリングしてデカメチルシクロペンタシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 90 hours by repeating the above three states in order while switching the adsorption tank, the value of the VOC concentration meter 25 exceeded 100 ppm. Therefore, superheated steam at 260 ° C. was introduced into the adsorption tank 13 in the standby state for 1 hour to regenerate the adsorbent 14. After regenerating all three adsorption tanks 13 with superheated steam, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. At this time, the value of the VOC concentration meter 25 was 1 ppm or less, and the adsorbent 14 was sampled to measure the residual amount of decamethylcyclopentasiloxane and its polymer.

(比較例2−8)
トルエン2000ppmとデカメチルシクロペンタシロキサン1.5ppmを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽A13aに導入し、吸着材14により10分間吸着処理を行った。その際のVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸着槽B13bの吸着材14に水蒸気を用いて10分間脱着処理を行った。有機溶剤を含んだ脱着ガスは脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽C13cを次の吸着処理に供されるまで10分間待機状態にした。
(Comparative Example 2-8)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1.5 ppm of decamethylcyclopentasiloxane was introduced into the adsorption tank A13a by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. went. At that time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, the adsorbent 14 of the adsorption tank B13b adsorbing the organic solvent was desorbed for 10 minutes using water vapor. The desorbed gas containing the organic solvent was supplied from the desorbed steam discharge port 19 to the condenser 32 via the desorbed steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank C13c that had been desorbed was placed in a standby state for 10 minutes until it was subjected to the next adsorption treatment.

前記3つの状態を順に吸着槽を切替えながら繰り返すことで、混合ガスを90時間連続処理したところ、清浄ガス排出ダクト17より排出される清浄ガスはVOC濃度計25の数値が100ppmを超えた。そこで、待機状態となっている吸着槽13へ300℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。3つ全ての吸着槽13の過熱水蒸気による再生処理を行った後に、再度混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であり、吸着材14をサンプリングしてデカメチルシクロペンタシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 90 hours by repeating the above three states in order while switching the adsorption tank, the value of the VOC concentration meter 25 exceeded 100 ppm for the clean gas discharged from the clean gas discharge duct 17. Therefore, superheated steam at 300 ° C. was introduced into the adsorbent tank 13 in the standby state for 1 hour to regenerate the adsorbent 14. After regenerating all three adsorption tanks 13 with superheated steam, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. At this time, the value of the VOC concentration meter 25 was 1 ppm or less, and the adsorbent 14 was sampled to measure the residual amount of decamethylcyclopentasiloxane and its polymer.

有機溶剤処理装置1(図1)を用い、常時過熱水蒸気による再生処理を行った場合の例を比較例2−9及び2−10にて説明する。 Comparative Examples 2-9 and 2-10 will explain an example in which the organic solvent treatment apparatus 1 (FIG. 1) is used and the regeneration treatment is constantly performed with superheated steam.

(比較例2−9)
トルエン2000ppmとオクタメチルシクロテトラシロキサン1ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽13に導入し、吸着材14により10分間吸着処理を行った。この際のVOC濃度計25の数値が1ppm以下であった。また、有機溶剤を吸着した吸着材14に250℃の過熱水蒸気を用いて8分間脱着処理を行った。有機溶剤を含んだ脱着ガスは、脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽13を次の吸着処理に供されるまで2分間待機状態にした。
(Comparative Example 2-9)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1 ppm of octamethylcyclotetrasiloxane was introduced into the adsorption tank 13 by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. It was. At this time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, the adsorbent 14 adsorbed with the organic solvent was desorbed for 8 minutes using superheated steam at 250 ° C. The desorption gas containing the organic solvent was supplied from the desorption steam discharge port 19 to the condenser 32 via the desorption steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank 13 after the desorption treatment was put into a standby state for 2 minutes until it was subjected to the next adsorption treatment.

前記の状態を順に吸着槽13を切替えながら繰り返すことで、混合ガスを170時間連続処理したところ、VOC濃度計25の数値が100ppmを超えた。そこで、各吸着槽13へ200℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。全ての吸着槽13の過熱水蒸気による再生処理を行った後に、再度混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であり、吸着材14をサンプリングしてオクタメチルシクロテトラシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 170 hours by repeating the above state while switching the adsorption tank 13 in order, the value of the VOC concentration meter 25 exceeded 100 ppm. Therefore, superheated steam at 200 ° C. was introduced into each adsorption tank 13 for 1 hour to regenerate the adsorbent 14. After the regeneration treatment with superheated steam was performed in all the adsorption tanks 13, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. At this time, the value of the VOC concentration meter 25 was 1 ppm or less, and the adsorbent 14 was sampled to measure the residual amount of octamethylcyclotetrasiloxane and its polymer.

(比較例2−10)
トルエン2000ppmとデカメチルシクロペンタシロキサン1.5ppmとを含む45℃の混合ガスを、風量4.0Nm/分で原ガス送風機12にて吸着槽13に導入し、吸着材14により10分間吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であった。また、有機溶剤を吸着した吸着材14に250℃の過熱水蒸気を用いて8分間脱着処理を行った。有機溶剤を含んだ脱着ガスは、脱着水蒸気排出口19より脱着水蒸気ライン31を経由して凝縮器32へ供給され、有機溶剤と水とに液化凝縮された後に回収液タンク33へ供給された。脱着処理を終えた吸着槽13を次の吸着処理に供されるまで2分間待機状態にした。
(Comparative Example 2-10)
A mixed gas at 45 ° C. containing 2000 ppm of toluene and 1.5 ppm of decamethylcyclopentasiloxane was introduced into the adsorption tank 13 by the raw gas blower 12 at an air volume of 4.0 Nm 3 / min, and adsorbed by the adsorbent 14 for 10 minutes. Was done. At this time, the value of the VOC concentration meter 25 was 1 ppm or less. Further, the adsorbent 14 adsorbed with the organic solvent was desorbed for 8 minutes using superheated steam at 250 ° C. The desorption gas containing the organic solvent was supplied from the desorption steam discharge port 19 to the condenser 32 via the desorption steam line 31, liquefied and condensed in the organic solvent and water, and then supplied to the recovery liquid tank 33. The adsorption tank 13 after the desorption treatment was put into a standby state for 2 minutes until it was subjected to the next adsorption treatment.

前記状態を順に吸着槽13を切替えながら繰り返すことで、混合ガスを90時間連続処理したところ、VOC濃度計25の数値が100ppmを超えた。そこで、各吸着槽13へ300℃の過熱水蒸気を1時間導入し吸着材14の再生を行った。全ての吸着槽13の過熱水蒸気による再生処理を行った後に、再度混合ガスの供給を開始し、吸着材14による吸着処理を行った。この際のVOC濃度計25の数値は1ppm以下であり、吸着材14をサンプリングしてデカメチルシクロペンタシロキサン及びその重合物の残存量を測定した。 When the mixed gas was continuously treated for 90 hours by repeating the above state while switching the adsorption tank 13 in order, the value of the VOC concentration meter 25 exceeded 100 ppm. Therefore, superheated steam at 300 ° C. was introduced into each adsorption tank 13 for 1 hour to regenerate the adsorbent 14. After the regeneration treatment with superheated steam was performed in all the adsorption tanks 13, the supply of the mixed gas was started again, and the adsorption treatment with the adsorbent 14 was performed. At this time, the value of the VOC concentration meter 25 was 1 ppm or less, and the adsorbent 14 was sampled to measure the residual amount of decamethylcyclopentasiloxane and its polymer.

実施例2−1〜2−6の結果を表2に、比較例1〜10の結果を表3に示す。 The results of Examples 2-1 to 2-6 are shown in Table 2, and the results of Comparative Examples 1 to 10 are shown in Table 3.

表2が示すように、実施例2−1〜2−6において清浄空気VOC濃度は1ppm以下であり、非常に効率よく吸着材環状有機シリコンを除去できていることが分かる。 As shown in Table 2, in Examples 2-1 to 2-6, the clean air VOC concentration was 1 ppm or less, and it can be seen that the adsorbent cyclic organic silicon could be removed very efficiently.

表3が示すように、比較例2−1、2−2及び2−5、2−6では、過熱水蒸気温度が170℃以下のため、効率よく吸着材から環状有機シリコンを除去できておらず、清浄空気VOC濃度は高い値となっている。また、表3が示すように、比較例2−3、2−4及び2−7、2−8では過熱水蒸気温度が260℃以上であり、清浄ガスのVOC濃度は1ppm以下であるが、表2の示す実施例2−1〜2−6の結果と殆ど変化なく、過熱水蒸気を高温にするため電気使用量が高くなっている。よって、比較例2−3、2−4及び2−7、2−8では、エネルギー効率が悪いことがわかる。 As shown in Table 3, in Comparative Examples 2-1 and 2-2 and 2-5 and 2-6, the superheated steam temperature was 170 ° C. or lower, so that the cyclic organic silicon could not be efficiently removed from the adsorbent. , The clean air VOC concentration is a high value. Further, as shown in Table 3, in Comparative Examples 2-3, 2-4, 2-7, and 2-8, the superheated steam temperature was 260 ° C. or higher, and the VOC concentration of the clean gas was 1 ppm or lower. There is almost no difference from the results of Examples 2-1 to 2-6 shown in 2, and the amount of electricity used is high because the superheated steam is heated to a high temperature. Therefore, it can be seen that the energy efficiency is poor in Comparative Examples 2-3, 2-4 and 2-7, 2-8.

表3が示すように、比較例2−9、2−10は常時200℃の過熱水蒸気で吸着材を再生している。そのため、吸着材から環状有機シリコンは除去できているが、エネルギー効率が極端に悪くなってしまう。このことから、比較例2−9,2−10では、ランニングコストが大きいことがわかる。 As shown in Table 3, Comparative Examples 2-9 and 2-10 constantly regenerate the adsorbent with superheated steam at 200 ° C. Therefore, although the cyclic organic silicon can be removed from the adsorbent, the energy efficiency becomes extremely poor. From this, it can be seen that the running costs are high in Comparative Examples 2-9 and 2-10.

なお、上記開示した各実施形態および各実施例はすべて例示であり制限的なものではない。また、各実施形態および各実施例に開示された内容を組み合わせた実施形態および実施例も本発明の範囲に含まれる。本発明の技術的範囲は、特許請求の範囲によって有効であり、特許請求の範囲の記載と均等の意味および範囲内のすべての変更・修正・置き換え等を含むものである。 It should be noted that each of the above-disclosed embodiments and examples is merely an example and is not limiting. In addition, the scope of the present invention also includes embodiments and examples in which the contents disclosed in each embodiment and each embodiment are combined. The technical scope of the present invention is valid depending on the scope of claims, and includes the description of the claims and the meaning equivalent to the description and all changes, modifications, replacements, etc. within the scope.

本発明により、より効率よく脱着物質を脱着でき、かつランニングコストに優れた運転をできるため、産業界に大きく寄与することが可能である。 According to the present invention, the desorbable substance can be desorbed more efficiently, and the operation can be performed with excellent running cost, which can greatly contribute to the industrial world.

11 被処理ガス供給ダクト
12 原ガス送風機
13 吸着槽
13a 吸着槽A
13b 吸着槽B
13c 吸着槽C
14 吸着材
15 下ダンパー
16 上ダンパー
17 清浄ガス排出ダクト
18 水蒸気供給口
19 脱着水蒸気排出口
21 水蒸気供給ライン
22 水蒸気ライン切替弁
23 過熱水蒸気切替弁
24 ヒーター
25 VOC濃度計
31 脱着水蒸気排出ライン
32 凝縮器
33 回収液タンク
11 Gas supply duct to be treated 12 Raw gas blower 13 Adsorption tank 13a Adsorption tank A
13b Adsorption tank B
13c adsorption tank C
14 Adsorbent 15 Lower damper 16 Upper damper 17 Clean gas discharge duct 18 Steam supply port 19 Desorption steam discharge port 21 Steam supply line 22 Steam line switching valve 23 Superheated steam switching valve 24 Heater 25 VOC densitometer 31 Desorption steam discharge line 32 Condensation Vessel 33 Recovery liquid tank

Claims (7)

吸着材が充填された吸着槽を備え、前記吸着槽に有機溶剤含有ガスを導入して当該有機溶剤含有ガスに含有される有機溶剤を前記吸着材に吸着させて処理済ガスを排出し、前記吸着槽に脱着用ガスを導入して前記吸着材から前記有機溶剤を脱着する有機溶剤処理装置において、
前記排出された処理済ガス中の有機溶剤濃度が設定値以下の場合には、前記吸着槽への前記有機溶剤含有ガスの導入と前記脱着用ガスの導入とを交互に繰り返し、
前記排出された処理済ガス中の有機溶剤濃度が前記設定値を超えた場合には、前記吸着槽に前記脱着用ガスよりも温度が高い再生用ガスを導入し、
前記吸着槽を複数備え、
前記排出された処理済ガス中の有機溶剤濃度が前記設定値を超えた場合には、
複数のうちの一部の前記吸着槽に対しては前記再生用ガスを導入し、かつ、残りの前記吸着槽に対しては前記有機溶剤含有ガスの導入と前記脱着用ガスの導入とを交互に繰り返すことを、前記再生用ガスを導入する前記一部の前記吸着槽を順次選択しながら前記複数の吸着槽の全てが選択されるまで実行する、ことを特徴とする有機溶剤処理装置。
A suction tank filled with an adsorbent is provided, an organic solvent-containing gas is introduced into the adsorption tank, the organic solvent contained in the organic solvent-containing gas is adsorbed on the adsorbent, and the treated gas is discharged. In an organic solvent treatment apparatus that introduces a desorption gas into an adsorption tank to desorb the organic solvent from the adsorbent.
When the concentration of the organic solvent in the discharged treated gas is equal to or less than the set value, the introduction of the organic solvent-containing gas into the adsorption tank and the introduction of the desorption gas are alternately repeated.
When the concentration of the organic solvent in the discharged treated gas exceeds the set value, a regeneration gas having a temperature higher than that of the detachable gas is introduced into the adsorption tank.
A plurality of the adsorption tanks are provided.
When the concentration of the organic solvent in the discharged treated gas exceeds the set value,
The regeneration gas is introduced into a part of the adsorption tanks, and the organic solvent-containing gas and the desorption gas are alternately introduced into the remaining adsorption tanks. The organic solvent treatment apparatus is characterized in that the process of repeatedly selecting the above-mentioned part of the adsorption tanks into which the regenerating gas is introduced is sequentially selected until all of the plurality of adsorption tanks are selected.
前記再生用ガスは180〜250℃の過熱水蒸気であり、前記脱着用ガスは当該再生用ガスの温度以下の温度の水蒸気であることを特徴とする請求項1に記載の有機溶剤処理装置。 The organic solvent treatment apparatus according to claim 1, wherein the regenerating gas is superheated steam at 180 to 250 ° C., and the desorption gas is steam having a temperature equal to or lower than the temperature of the regenerating gas. 前記有機溶剤含有ガスは、有機シリコンを含んでいることを特徴とする請求項1または2に記載の有機溶剤処理装置。 The organic solvent processing apparatus according to claim 1 or 2, wherein the organic solvent-containing gas contains organic silicon. 前記有機シリコンは、環状有機シリコンであることを特徴とする請求項3に記載の有機溶剤処理装置。 The organic solvent treatment apparatus according to claim 3, wherein the organic silicon is cyclic organic silicon. 前記排出された処理済ガス中の有機溶剤濃度が前記設定値以下の場合には、
前記脱着用ガスの導入後、ガスを導入しない期間を空けてから前記有機溶剤含有ガスを導入する、ことを特徴とする請求項1から4のいずれか1項に記載の有機溶剤処理装置。
When the organic solvent concentration in the discharged treated gas is less than or equal to the set value,
The organic solvent treatment apparatus according to any one of claims 1 to 4, wherein the organic solvent-containing gas is introduced after a period during which the gas is not introduced after the introduction of the desorption gas.
前記吸着材は、繊維状活性炭であることを特徴とする請求項1から5のいずれか1項に記載の有機溶剤処理装置。 The organic solvent treatment apparatus according to any one of claims 1 to 5, wherein the adsorbent is a fibrous activated carbon. 吸着材が充填された吸着槽を複数備え、当該吸着槽に有機溶剤含有ガスを導入して当該有機溶剤含有ガスに含有される有機溶剤を前記吸着材に吸着させて処理済ガスを排出し、前記吸着槽に脱着用ガスを導入して前記吸着材から前記有機溶剤を脱着する有機溶剤処理装置へのガスの供給方法であって、
前記排出された処理済ガス中の有機溶剤濃度が設定値以下の場合には、前記吸着槽に前記有機溶剤含有ガスと前記脱着用ガスとを交互に供給し、
前記排出された処理済ガス中の有機溶剤濃度が前記設定値を超えると、前記吸着槽に前記脱着用ガスよりも温度が高い再生用ガスを供給し、
前記排出された処理済ガス中の有機溶剤濃度が前記設定値を超えた場合には、
複数のうちの一部の前記吸着槽に対しては前記再生用ガスを供給し、かつ、残りの前記吸着槽に対しては前記有機溶剤含有ガスの供給と前記脱着用ガスの供給とを交互に繰り返すことを、前記再生用ガスを供給する前記一部の前記吸着槽を順次選択しながら前記複数の吸着槽の全てが選択されるまで実行することを特徴とする供給方法。
A plurality of adsorption tanks filled with an adsorbent are provided, an organic solvent-containing gas is introduced into the adsorption tank, the organic solvent contained in the organic solvent-containing gas is adsorbed on the adsorbent, and the treated gas is discharged. A method of supplying gas to an organic solvent treatment apparatus that introduces a desorption gas into the adsorption tank to desorb the organic solvent from the adsorbent.
When the concentration of the organic solvent in the discharged treated gas is equal to or less than the set value, the organic solvent-containing gas and the desorption gas are alternately supplied to the adsorption tank.
When the concentration of the organic solvent in the discharged treated gas exceeds the set value, a regeneration gas having a temperature higher than that of the detachable gas is supplied to the adsorption tank.
When the concentration of the organic solvent in the discharged treated gas exceeds the set value,
The regeneration gas is supplied to a part of the adsorption tanks, and the organic solvent-containing gas and the desorption gas are alternately supplied to the remaining adsorption tanks. The supply method is characterized in that the process of repeatedly selecting the above-mentioned partial adsorption tanks for supplying the regeneration gas is sequentially selected until all of the plurality of adsorption tanks are selected.
JP2016015383A 2016-01-29 2016-01-29 Organic solvent processing equipment Active JP6772470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016015383A JP6772470B2 (en) 2016-01-29 2016-01-29 Organic solvent processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016015383A JP6772470B2 (en) 2016-01-29 2016-01-29 Organic solvent processing equipment

Publications (2)

Publication Number Publication Date
JP2017131859A JP2017131859A (en) 2017-08-03
JP6772470B2 true JP6772470B2 (en) 2020-10-21

Family

ID=59504663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015383A Active JP6772470B2 (en) 2016-01-29 2016-01-29 Organic solvent processing equipment

Country Status (1)

Country Link
JP (1) JP6772470B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH086488Y2 (en) * 1990-08-15 1996-02-28 大阪瓦斯株式会社 Solvent recovery device
JP2001113116A (en) * 1999-10-19 2001-04-24 Fujitsu Ltd Method and device for treating waste gas
JP4234496B2 (en) * 2003-05-29 2009-03-04 新菱冷熱工業株式会社 Method and apparatus for regenerating activated carbon and air purification system incorporating the same
EP2223730B1 (en) * 2007-09-12 2017-02-15 Munters Corporation Apparatus and method for in-situ high temperature regeneration of a rotor sorption concentrator
JP2010259983A (en) * 2009-04-30 2010-11-18 Canon Inc Gas cleaning apparatus
FR3010719B1 (en) * 2013-09-13 2017-02-24 Arol Energy REGENERATIVE PROCESS FOR REMOVING SILOXANE COMPOUNDS FROM BIOGAS

Also Published As

Publication number Publication date
JP2017131859A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP7103226B2 (en) Organic solvent recovery system and organic solvent recovery method
JP2015000381A (en) Organic solvent recovery system
JP5482776B2 (en) Organic solvent-containing gas treatment system
KR101715826B1 (en) Method for removing organic solvent, and removal device
WO1997044120A1 (en) Organic solvent recovering system and organic solvent recovering method
US9962643B2 (en) Regenerative method for removing siloxane compounds from biogas
JP7055556B2 (en) Activated carbon performance recovery possibility judgment method, activated carbon regeneration method, and activated carbon reuse system
CN109045926B (en) VOCs-containing waste gas treatment device and method
JP3776904B2 (en) Siloxane removal method
JP6772470B2 (en) Organic solvent processing equipment
JP6565357B2 (en) Concentrator and organic solvent recovery system
JP3994157B2 (en) Method and apparatus for purifying gases containing organic contaminants
CN110935281B (en) Adsorption and regeneration device and method for solid adsorbent for adsorbing volatile organic compounds
JP2009273975A (en) System for treatment of gas containing organic solvent
JP6332586B2 (en) Water treatment device and water treatment system
CN108745295B (en) Siloxane adsorption material and application thereof
JPS6320020A (en) Adsorbing and desorbing method by activated carbon
JP4548891B2 (en) Organic solvent recovery method
KR100347720B1 (en) A Method for Recovery of Organic Solvents Using a Multiple Adsorption-desorption Reactor, An Appliance thereof, and Zeolite Adsorbent packed at the above appliance
JP2002066246A (en) Digestion gas purifier
JP2000117048A (en) Adsorptive capturing device and adsorptive recovering device of volatile petroleum compound
JPH0584417A (en) Method and equipment for recovering solvent
JP5978808B2 (en) Wastewater treatment system
JP2004337745A (en) Gas purification apparatus
JPS58128124A (en) Desorption of organic gas in carrier gas adsorbed by adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200914

R151 Written notification of patent or utility model registration

Ref document number: 6772470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350