JP2001294415A - Method of removing residue in liquefied gas and regenerating method of activated carbon - Google Patents

Method of removing residue in liquefied gas and regenerating method of activated carbon

Info

Publication number
JP2001294415A
JP2001294415A JP2000112054A JP2000112054A JP2001294415A JP 2001294415 A JP2001294415 A JP 2001294415A JP 2000112054 A JP2000112054 A JP 2000112054A JP 2000112054 A JP2000112054 A JP 2000112054A JP 2001294415 A JP2001294415 A JP 2001294415A
Authority
JP
Japan
Prior art keywords
activated carbon
residue
platinum
liquefied gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000112054A
Other languages
Japanese (ja)
Other versions
JP3651881B2 (en
Inventor
Hideo Takeishi
秀夫 武石
Nobukazu Yodoya
遵一 淀谷
Yukinori Hataya
行徳 畑谷
Katsuhiro Kato
勝博 加藤
Yutaka Miyata
豊 宮田
Izumi Sho
泉 庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Engineering Co Ltd
Original Assignee
Cosmo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Engineering Co Ltd filed Critical Cosmo Engineering Co Ltd
Priority to JP2000112054A priority Critical patent/JP3651881B2/en
Publication of JP2001294415A publication Critical patent/JP2001294415A/en
Application granted granted Critical
Publication of JP3651881B2 publication Critical patent/JP3651881B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of removing residue in a liquefied gas using an adsorbent capable of being regenerated at a lower temperature compared to the conventional one and a method of regenerating the adsorbent. SOLUTION: The method of removing the residue in the liquefied gas, is performed by allowing the liquefied gas to contact with a packed layer, in which activated carbon carrying platinum is filled, to adsorb the residue to the activated carbon. In the regenerating method of the adsorbent, is performed by oxidize the residue in the liquefied gas, which is adsorbed by the activated carbon, with oxygen to regenerate the activated carbon. The removing method of the residue in the liquefied gas has a removing process of the residue in the liquefied gas to adsorb the residue to the activated carbon by allowing the liquefied gas to contact with a packed layer, in which activated carbon carrying platinum is filled, and an activated carbon regenerating process to regenerate the activated carbon by oxidizing the residue in the liquefied gas, which is adsorbed by the activated, with oxygen and the processes are continuously repeated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液化石油ガスなど
の液化ガス中の残渣分を吸着剤(白金を担持した活性
炭)に吸着させることによって除去する方法、および該
吸着剤を再生させる方法に関する。
The present invention relates to a method for removing residues in a liquefied gas such as a liquefied petroleum gas by adsorbing the residue on an adsorbent (activated carbon carrying platinum), and a method for regenerating the adsorbent. .

【0002】[0002]

【従来の技術】液化石油ガス(以下、「LPガス」とも
いう。)は、ブタンなどを主成分とするものである。L
Pガス中に残渣分(油分)が含まれると、例えば変成ガ
スを生成反応させる際に、ニッケル触媒表面にススが付
着し触媒を劣化させたり、タクシーのベーパーライザー
を閉塞させたり、発電用タービン等のノズルを閉塞させ
たりして配管、機器内でのトラブルの要因にもなってい
る。そのため、従来からLPガスをガス化し、残渣分を
分離してから再液化処理することにより、LPガス中の
残渣分を除去していた。
2. Description of the Related Art Liquefied petroleum gas (hereinafter also referred to as "LP gas") is mainly composed of butane or the like. L
If a residue (oil) is contained in the P gas, for example, when a metamorphic gas is generated and reacted, soot adheres to the nickel catalyst surface to deteriorate the catalyst, block the vaporizer of a taxi, or generate a turbine for power generation. This can cause troubles in piping and equipment by closing nozzles. Therefore, the LP gas has been conventionally gasified, the residue is separated, and then reliquefied to remove the residue in the LP gas.

【0003】かかる除去方法として、例えば、LPガス
などの液化ガスを液相で活性炭に接触させ、残渣分を活
性炭に吸着させて除去する方法が、経済的でかつ効率的
な方法として報告されている(例えば、特願平7−83
595号公報参照。)。
As such a removing method, for example, a method in which a liquefied gas such as LP gas is brought into contact with activated carbon in a liquid phase and a residue is adsorbed on activated carbon to remove the residue is reported as an economical and efficient method. (For example, Japanese Patent Application No. 7-83)
See No. 595. ).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、沸点3
50℃以上の残渣分を吸着した活性炭を再生するために
は、オンサイトあるいはオフサイトのどちらの方法を採
用するにしても、高温での再生処理が必要である。例え
ば、前記特願平7−83595号公報に記載のオフサイ
ト再生処理方法においては、300℃〜600℃、通常
500℃の再生ガスで再生処理を行っている。
However, a boiling point of 3
In order to regenerate the activated carbon adsorbing the residue at 50 ° C. or higher, a regenerating treatment at a high temperature is required regardless of whether the on-site method or the off-site method is adopted. For example, in the off-site regenerating method described in Japanese Patent Application No. 7-83595, the regenerating process is performed using a regenerating gas at 300 ° C. to 600 ° C., usually 500 ° C.

【0005】また、さらに活性炭の再賦活処理も行う必
要があるため、活性炭にかかる負担は大きく、吸着剤の
重量損失や強度低下、細孔径や細孔容積の変化に伴う吸
着量低下など、吸着剤の物性変化や吸着性能の低下ある
いは変化を引き起こす。
[0005] Further, since it is necessary to re-activate the activated carbon, the burden on the activated carbon is large, and the adsorption loss such as weight loss and strength of the adsorbent, and the amount of adsorption due to changes in the pore diameter and pore volume are reduced. This causes a change in the physical properties of the agent and a decrease or change in the adsorption performance.

【0006】例えば、通常の再生処理によって活性炭の
約10%重量分が損失し、その分の活性炭を再使用時に
追加する必要がある。また、この活性炭の追加に加え
て、高温再生を行うために、再生設備コストや再生運転
コストが嵩むことになる。
[0006] For example, about 10% by weight of activated carbon is lost by a normal regeneration treatment, and the activated carbon must be added when reused. Further, in addition to the addition of the activated carbon, high-temperature regeneration is performed, so that regeneration equipment costs and regeneration operation costs increase.

【0007】従って、本発明の目的は、上記課題を解決
するものであって、従来に比して低温で再生できる吸着
剤を開発し、この吸着剤を用いる液化ガス中の残渣分の
除去方法、および該吸着剤を再生する方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems, to develop an adsorbent which can be regenerated at a lower temperature than before, and to provide a method for removing a residue in a liquefied gas using the adsorbent. And a method for regenerating the adsorbent.

【0008】[0008]

【課題を解決するための手段】かかる実情において、本
発明者らは鋭意検討を行った結果、液化ガスを白金が担
持された活性炭を充填した充填層に接触させ、活性炭に
残渣分を吸着させれば、容易に液化ガス中の残渣分を除
去できること、更に、活性炭に吸着された残渣分を酸素
酸化すれば従来に比して低温で再生できることなどを見
出し、本発明を完成するに至った。
Under such circumstances, the inventors of the present invention have conducted intensive studies and as a result, the liquefied gas was brought into contact with a packed bed filled with activated carbon loaded with platinum, and the activated carbon was allowed to adsorb residues. Then, the present inventors have found that the residue in the liquefied gas can be easily removed, and that the residue adsorbed on the activated carbon can be regenerated at a lower temperature than the conventional one by oxidizing with oxygen, and the present invention has been completed. .

【0009】すなわち、本発明は、液化ガス中の残渣分
の除去方法であって、液化ガスを白金が担持された活性
炭を充填した充填層に接触させることにより、前記残渣
分を該活性炭に吸着させることを特徴とする液化ガス中
の残渣分の除去方法を提供するものである。
That is, the present invention relates to a method for removing a residue in a liquefied gas, wherein the residue is adsorbed to the activated carbon by contacting the liquefied gas with a packed bed filled with activated carbon carrying platinum. It is intended to provide a method for removing a residue in a liquefied gas.

【0010】また、本発明は、液化ガスを白金が担持さ
れた活性炭を充填した充填層に接触させることにより、
前記残渣分を該活性炭に吸着させ、前記活性炭に吸着し
た残渣分を酸素酸化させることで、前記活性炭を再生処
理することを特徴とする吸着剤の再生方法を提供するも
のである。
[0010] Further, the present invention provides a method wherein the liquefied gas is brought into contact with a packed bed filled with activated carbon carrying platinum.
An object of the present invention is to provide a method for regenerating an adsorbent, wherein the activated carbon is regenerated by adsorbing the residue on the activated carbon and oxidizing the residue adsorbed on the activated carbon with oxygen.

【0011】また、本発明は、液化ガスを白金が担持さ
れた活性炭を充填した充填層と接触させることにより、
該液化ガス中の残渣分を前記活性炭に吸着させる液化ガ
ス中の残渣分の除去工程と、前記活性炭に吸着した液化
ガス中の残渣分を酸素酸化させることで、前記活性炭を
再生処理する活性炭再生工程とを有し、これらの工程を
連続的に繰り返し行う液化ガス中の残渣分の除去方法を
提供するものである。
[0011] Further, the present invention provides a method for bringing a liquefied gas into contact with a packed bed filled with activated carbon carrying platinum,
A step of removing the residue in the liquefied gas in which the residue in the liquefied gas is adsorbed by the activated carbon; and a step of oxidizing the residue in the liquefied gas adsorbed in the activated carbon by oxygen to thereby regenerate the activated carbon. And a method for removing residues in the liquefied gas by continuously repeating these steps.

【0012】本発明によれば、従来に比して低温で再生
できる吸着剤を用いるLPガスなどの液化ガス中の残渣
分除去方法、および該吸着剤を再生する方法が提供され
る。
According to the present invention, there is provided a method for removing residues from a liquefied gas such as LP gas using an adsorbent which can be regenerated at a lower temperature than in the past, and a method for regenerating the adsorbent.

【0013】[0013]

【発明の実施の形態】本発明は、上述したように、
(1)吸着剤として活性炭に酸化触媒として白金を担持
したものを用いることを特徴とする液化ガス中の残渣分
除去方法、(2)該残渣分を吸着した吸着剤を酸素酸化
させて、吸着した残渣分のみを選択的に酸化反応で除去
することを特徴とする吸着剤の再生方法、並びに(3)
白金が担持された活性炭を用いて液化ガス中の残渣分を
吸着・除去する工程と、該残渣分が吸着した活性炭を再
生する工程を連続的に繰り返す液化ガス中の残渣分除去
方法である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention, as described above,
(1) A method for removing residues in a liquefied gas, wherein activated carbon is loaded with platinum as an oxidation catalyst as an adsorbent. (2) The adsorbent adsorbing the residues is oxidized with oxygen and adsorbed. (3) a method for regenerating an adsorbent, characterized by selectively removing only the residue by oxidation reaction.
This is a method of removing residues in a liquefied gas by repeatedly repeating a step of adsorbing and removing residues in a liquefied gas using activated carbon carrying platinum and a step of regenerating the activated carbon to which the residues have been adsorbed.

【0014】本発明を実施するための装置の一例を図1
に概念図として示す。図1中、中央部に描かれるのは、
吸着剤が充填された吸着塔1a、吸着塔1bを有する2
塔式吸着塔で残渣分除去工程と吸着剤再生工程を同時に
行うことができるものである。吸着塔1aにおいて、例
えば、残渣分を含有するLPガスを吸着剤(白金が担持
された活性炭)と接触させることにより、活性炭に残渣
分を吸着させ、残渣分が除去されたLPガスを得ること
ができる(残渣分除去工程)。この時、吸着塔1bにお
いて、残渣分を吸着した吸着剤に酸素混合ガスを所定温
度で通し、残渣分のみを選択的に酸化除去することによ
り、活性炭を再生することができる(吸着剤再生工
程)。即ち、この装置においては、上記の操作を互いに
繰り返すことにより連続的に運転することができる。
FIG. 1 shows an example of an apparatus for carrying out the present invention.
Is shown as a conceptual diagram. In FIG. 1, what is drawn in the center is
2 having an adsorption tower 1a and an adsorption tower 1b filled with an adsorbent
In the tower type adsorption tower, the residue removal step and the adsorbent regeneration step can be performed simultaneously. In the adsorption tower 1a, for example, by contacting LP gas containing the residue with an adsorbent (activated carbon carrying platinum), the residue is adsorbed on the activated carbon to obtain LP gas from which the residue is removed. (Residue removal step). At this time, in the adsorption tower 1b, the activated carbon can be regenerated by passing an oxygen mixed gas at a predetermined temperature through the adsorbent having adsorbed the residue and selectively oxidizing and removing only the residue (adsorbent regeneration step). ). That is, this apparatus can be operated continuously by repeating the above operations.

【0015】本発明に用いられる吸着剤としては、残渣
分を吸着し、酸素酸化によって再生可能なものであれば
よい。本発明においては、かかる吸着剤として白金を担
持した活性炭を用いる。活性炭の種類、大きさ、形状な
どは、白金を担持することができ、残渣分を吸着するこ
とできるならば、特に制限されるものではないが、吸着
塔に充填し、LPガスと接触させて、LPガス中の残渣
分を除去することを効率的に行うためには、残渣分の吸
着量が多いものが好ましい。
The adsorbent used in the present invention may be any adsorbent that adsorbs the residue and can be regenerated by oxygen oxidation. In the present invention, activated carbon carrying platinum is used as the adsorbent. The type, size, shape, etc. of the activated carbon are not particularly limited as long as they can support platinum and can adsorb the residue, but they are packed in an adsorption tower and brought into contact with LP gas. In order to efficiently remove the residue in the LP gas, it is preferable that the residue adsorb a large amount of the residue.

【0016】また、LPガスを円滑に通液させ、再生処
理によって複数回使用することから、粉末状態よりはあ
る程度破壊強度を持った固形物の方が好ましい。すなわ
ち、ある程度以上の残渣分吸着量を持ち、残渣分吸着操
作と活性炭再生操作に耐えられるのならば、その活性炭
の物性(表面積や細孔容積、細孔分布)は何ら制限され
るものではなく、一般に市販されている粒状あるいはペ
レット状などの活性炭を用いることができる。
Further, since the LP gas is passed smoothly and is used a plurality of times by the regeneration treatment, a solid having a certain degree of breaking strength is more preferable than a powder. That is, as long as it has a residue adsorption amount of a certain level or more and can withstand the residue adsorption operation and the activated carbon regeneration operation, the physical properties (surface area, pore volume, pore distribution) of the activated carbon are not limited at all. Activated carbon in the form of granules or pellets which are generally commercially available can be used.

【0017】活性炭への白金の担持方法や金属源は、白
金が担持されるならば、何ら制限されるものではない。
通常、金属担持方法の操作性、安全性、コスト、活性炭
への影響などを考慮すると、白金溶液(溶媒は水、ある
いは有機溶媒を問わない)による含浸法が好ましい。か
かる白金溶液としては、例えば、ビスアセチルアセトナ
ト白金などの白金錯体、硝酸白金〔Pt(NO3 4
などの白金塩の水溶液、あるいはアルコールなどの有機
溶媒の溶液が挙げられる。
The method of supporting platinum on activated carbon and the metal source are not limited as long as platinum is supported.
Generally, in consideration of the operability, safety, cost, and the effect on activated carbon of the metal supporting method, the impregnation method using a platinum solution (the solvent is not limited to water or an organic solvent) is preferable. Examples of such a platinum solution include platinum complexes such as bisacetylacetonatoplatinum and platinum nitrate [Pt (NO 3 ) 4 ).
And a solution of an organic solvent such as an alcohol.

【0018】白金を担持操作した後は乾燥処理が必要で
あるが、担体である活性炭に白金を担持するために用い
た溶媒が取り除かれ、残渣分の吸着能がある程度以上確
保されるならば、その方法は何ら制限されるものではな
い。また、白金を活性炭担体に固定化するための酸化処
理や還元処理もその方法等に制限はない。
After the operation of supporting platinum, a drying treatment is required. However, if the solvent used to support the platinum on the activated carbon as a carrier is removed, and the adsorbing ability of the residue can be secured to some extent, The method is not limited at all. In addition, the oxidation treatment and the reduction treatment for immobilizing platinum on the activated carbon carrier are not limited to a particular method.

【0019】白金の活性炭への担持量は、吸着した残渣
分が酸化反応によって除去されるならば、何ら制限され
るものではない。ただし、残渣分が活性炭に影響を与え
ないように低温で完全に除去されるには、ある程度十分
な量の白金が活性炭全体に分散している必要がある。そ
の反面、必要以上の白金担持は製造コストが嵩むこと
や、活性炭の表面積や残渣分吸着量の低下を引き起こす
場合がある。したがって、白金を金属換算で、担持後の
活性炭重量基準で0.01〜5質量%であるのが好まし
く、0.03〜1質量%がより好ましく、0.05〜
0.50 質量%がさらに好ましい。このような範囲の担
持量であれば、白金を担持したことによる活性炭の残渣
分吸着能力に影響は認められない。
The amount of platinum supported on activated carbon is not limited as long as the adsorbed residue is removed by an oxidation reaction. However, in order to completely remove the residue at a low temperature so as not to affect the activated carbon, it is necessary that a certain amount of platinum is dispersed throughout the activated carbon. On the other hand, if platinum is supported more than necessary, the production cost may increase, and the surface area of activated carbon or the amount of residue adsorbed may be reduced. Therefore, platinum is preferably 0.01 to 5% by mass, more preferably 0.03 to 1% by mass, and more preferably 0.05 to 1% by mass in terms of metal, based on the weight of activated carbon after loading.
0.50% by weight is more preferred. With the loading amount in such a range, the effect of supporting platinum on the residue adsorbing capacity of activated carbon is not recognized.

【0020】白金が担持された活性炭は、その表面積が
1000〜2000m2 /gであり、細孔容積が0.1
〜0.3Ncm3 /gであるのがそれぞれ好ましい。こ
のような物性を有する白金担持活性炭を用いることによ
り、活性炭に吸着した残渣分のみを選択的に酸化・除去
することができる。
Activated carbon loaded with platinum has a surface area of 1000 to 2000 m 2 / g and a pore volume of 0.1
〜0.3 Ncm 3 / g. By using the platinum-supported activated carbon having such properties, only the residue adsorbed on the activated carbon can be selectively oxidized and removed.

【0021】白金担持活性炭は吸着塔内に充填して用い
るのが好ましい。吸着塔内にLPガスを送り込み、吸着
塔内に充填した吸着剤と接触することにより、LPガス
中の残渣分が吸着・除去される。吸着塔の大きさや形状
には特に制限はない。
The platinum-supported activated carbon is preferably used by filling it in an adsorption tower. The LP gas is fed into the adsorption tower, and the residue in the LP gas is adsorbed and removed by contact with the adsorbent filled in the adsorption tower. The size and shape of the adsorption tower are not particularly limited.

【0022】LPガスと接触することによりLPガス中
の残渣分を所定量吸着した活性炭は、吸着成分(残渣
分)を選択的に酸素酸化することにより再生される。こ
のときの推定反応式を次式に示す。
Activated carbon that has adsorbed a predetermined amount of the residue in the LP gas by contact with the LP gas is regenerated by selectively oxidizing the adsorbed component (residue) with oxygen. The estimated reaction equation at this time is shown in the following equation.

【0023】Cn 2n+2+〔(3n +1)/2〕O2
n CO2 +(n +1)H2 O+ΔQ
C n H 2n + 2 + [(3n + 1) / 2] O 2
n CO 2 + (n + 1) H 2 O + ΔQ

【0024】再生ガスとして酸素混合ガスを用いる場合
には、吸着した残渣分の脱着あるいは分解温度は、従来
の再生ガスと同じく350℃以上、実質的には400℃
以上である。これに対し、活性炭の燃焼開始温度は45
0〜460℃である。したがって、残渣分を吸着した活
性炭を酸素混合ガスで再生することは、再生温度領域が
わずか50℃しかなく、残渣分のみを選択的に酸化・除
去することは困難である。
When an oxygen mixed gas is used as the regeneration gas, the desorption or decomposition temperature of the adsorbed residue is 350 ° C. or higher, substantially 400 ° C., as in the conventional regeneration gas.
That is all. On the other hand, the combustion start temperature of activated carbon is 45
0-460 ° C. Therefore, regenerating the activated carbon adsorbing the residue with the oxygen mixed gas has a regeneration temperature range of only 50 ° C., and it is difficult to selectively oxidize and remove only the residue.

【0025】一方、白金を担持した活性炭を酸素混合ガ
スで再生した場合においては、活性炭の燃焼開始温度は
450〜460℃で変わらない。一方、吸着した残渣分
は200℃〜400℃での酸化反応によって完全に取り
除くことができる。これは、担持した白金が酸化触媒と
して働くことによって、残渣分のみを選択的により低い
温度で酸化分解することができるものと考えられる。
On the other hand, when the activated carbon carrying platinum is regenerated with an oxygen mixed gas, the combustion start temperature of the activated carbon remains unchanged at 450 to 460 ° C. On the other hand, the adsorbed residue can be completely removed by an oxidation reaction at 200 ° C to 400 ° C. This is considered to be due to the fact that the carried platinum acts as an oxidation catalyst, whereby only the residue can be selectively oxidatively decomposed at a lower temperature.

【0026】活性炭を酸素酸化により再生処理を行う前
には、活性炭に吸着するなどにより吸着塔内に残存して
いるLPガスを窒素などの不活性ガスでパージし、事前
に除去するのが好ましい。このようにすることで、酸素
酸化の際の異常燃焼や異常発熱を防止し、塔内発熱量の
抑制、再生ガス量およびブロワー等の装置出力のを抑制
することができる。また、パージガスからLPガスを回
収することも好ましい。
Before the regeneration treatment of the activated carbon by oxygen oxidation, it is preferable to purge the LP gas remaining in the adsorption tower by adsorbing the activated carbon with an inert gas such as nitrogen and remove it in advance. . By doing so, abnormal combustion and abnormal heat generation during oxygen oxidation can be prevented, and the amount of heat generated in the tower, the amount of regeneration gas, and the output of equipment such as a blower can be suppressed. It is also preferable to recover the LP gas from the purge gas.

【0027】酸素酸化は酸素混合ガスで行うのが一般的
である。また、この反応は活性炭が充填された吸着塔で
も行うことができるので、酸素酸化による再生は、オフ
サイト再生はもちろん、オンサイト再生も可能である。
Oxygen oxidation is generally performed with an oxygen mixed gas. In addition, since this reaction can be performed in an adsorption tower filled with activated carbon, regeneration by oxygen oxidation can be performed not only off-site but also on-site.

【0028】酸素酸化に酸素混合ガスを用いる場合、酸
素混合ガスは、0℃、1気圧に換算した酸素含有量が
0.01〜25容量%であるのが好ましく、0℃、1気
圧の標準状態換算で0.1〜21(すなわち空気と同じ
酸素濃度)容量%がより好ましい。前記(1)式の反応
は発熱反応であるため、酸素が高濃度であると、局所的
に活性炭燃焼温度になってしまう。一方、酸素濃度が希
薄すぎると、再生時間が必要以上に要してしまうことに
なる。
When an oxygen mixed gas is used for oxygen oxidation, the oxygen mixed gas preferably has an oxygen content of 0.01 to 25% by volume in terms of 0 ° C. and 1 atm. It is more preferably 0.1 to 21 (ie, the same oxygen concentration as air) volume% in terms of state. Since the reaction of the formula (1) is an exothermic reaction, if the concentration of oxygen is high, the temperature of the activated carbon becomes locally high. On the other hand, if the oxygen concentration is too low, the regeneration time will be longer than necessary.

【0029】また酸素酸化の温度は、活性炭燃焼による
発熱量は酸素流量に依存するため、再生ガス流量は再生
ガス中の酸素濃度によって変化するが、200〜450
℃のが好ましく、250〜400℃の温度範囲がより好
ましい。このような酸素濃度、再生温度で行うことによ
り、活性炭に損失を与えることなく、吸着した残渣分の
みを選択的に酸化除去することができる。
The temperature of the oxygen oxidation depends on the oxygen flow rate because the amount of heat generated by the combustion of the activated carbon depends on the oxygen flow rate.
C. is preferred, and a temperature range of 250 to 400 C. is more preferred. By performing at such an oxygen concentration and a regeneration temperature, only the adsorbed residue can be selectively oxidized and removed without causing loss to the activated carbon.

【0030】さらに本発明では、活性炭をLPガスと接
触させてLPガス中の残渣分を除去する工程と、活性炭
に吸着した残渣分のみを選択的に酸化・除去する工程と
を繰り返すことにより、LPガス中の残渣分を連続的に
除去することが可能である。
Further, in the present invention, by repeating the step of contacting the activated carbon with the LP gas to remove the residue in the LP gas and the step of selectively oxidizing and removing only the residue adsorbed on the activated carbon, It is possible to continuously remove the residue in the LP gas.

【0031】この再生方法においては、活性炭にはいか
なる影響も見られない。最初の再生処理によって、活性
炭に含まれる水分や金属担持での残留分(有機白金塩の
有機分や無機白金塩の対イオン分)が除去されたり、活
性炭の粉末分が除かれたことによって、数%、通常5%
未満の少量の重量減少が起きる場合がある以外には、重
量損失や残渣分の吸着能や表面積や細孔容積などの活性
炭の物性低下は全く見られない。すなわち、物理的に化
学的に100%の吸着剤の再生を行うことができる。
In this regeneration method, no effect is seen on the activated carbon. By the first regeneration treatment, the moisture contained in the activated carbon and the residue on the metal support (the organic component of the organic platinum salt and the counter ion of the inorganic platinum salt) were removed, or the powder component of the activated carbon was removed. A few%, usually 5%
Except for the case where a small amount of weight loss may occur, no physical loss of the activated carbon such as weight loss, residue adsorption capacity, surface area and pore volume is observed at all. That is, it is possible to physically and chemically regenerate the adsorbent at 100%.

【0032】[0032]

【実施例】次に、実施例によって本発明をさらに詳細に
説明する。 (1)残渣分吸着能評価試験 (i)オートクレーブあるいは恒温振盪機を用いて、n−
ヘキサンまたはLPガス溶液での回分吸着による平衡吸
着能および吸着等温線を測定した。 (ii)活性炭を充填した固定床吸着塔へLPガス溶液を通
液して、残渣分吸着除去実験を行った。
Next, the present invention will be described in more detail by way of examples. (1) Residue adsorptive capacity evaluation test (i) Using an autoclave or a thermostatic shaker, n-
The equilibrium adsorption capacity and adsorption isotherm by batch adsorption with a hexane or LP gas solution were measured. (ii) An LP gas solution was passed through a fixed bed adsorption tower filled with activated carbon to perform an adsorption removal experiment on residues.

【0033】(2)活性炭再生評価試験 (i)上記吸着能評価試験 (i)の方法であらかじめ残渣分
を吸着させた活性炭の熱重量/示差熱分析(以下、「T
G/DTA」という。)による再生評価試験を行った。
指標にした残渣分吸着量は、残渣分平衡濃度がプロパン
で約8質量ppm、ブタンで約80質量ppmのときの
平衡吸着量である5質量(あるいは2.5質量)と
した。これはLPガス(プロパンガス)中の残渣分除去
をする際の想定値である。LPガスは常温では圧力が高
いため、常温・常圧で液体であり、取扱いがLPガスよ
り簡単なn−ヘキサン溶液で残渣分吸着処理を行った。
しかし、n−ヘキサン溶液では活性炭への残渣分吸着量
がLPガスに比べて減るので、各溶液の残渣分吸着等温
線を求めて、同じ残渣分吸着量になるように残渣分濃度
を調整した。例えば、n−ヘキサン溶液では、吸着前の
初濃度1000質量ppm強と、残渣分濃度を高くして
プロパン溶液と同量の残渣分を吸着するようにした。
(2) Activated carbon regeneration evaluation test (i) Adsorption capacity evaluation test The thermogravimetric / differential thermal analysis (hereinafter referred to as “T
G / DTA ". ) Was performed.
The residue adsorption amount used as an index was 5 mass % (or 2.5 mass % ), which is the equilibrium adsorption amount when the residue equilibrium concentration was about 8 mass ppm for propane and about 80 mass ppm for butane. This is an assumed value when removing the residue in LP gas (propane gas). Since LP gas has a high pressure at normal temperature, it is liquid at normal temperature and normal pressure, and the residue adsorption treatment was performed with an n-hexane solution that is easier to handle than LP gas.
However, in the n-hexane solution, the residue adsorption amount on the activated carbon is smaller than that of the LP gas. Therefore, the residue adsorption isotherm of each solution was obtained, and the residue concentration was adjusted so that the same residue adsorption amount was obtained. . For example, in the n-hexane solution, the initial concentration before adsorption was slightly higher than 1000 mass ppm, and the concentration of the residue was increased to adsorb the same amount of residue as the propane solution.

【0034】(ii)上記(1)の吸着能評価 (i)の方法
で、あらかじめ残渣分を吸着した活性炭を充填した固定
床吸着塔での再生実験を行った。 (iii) 上記(1)の吸着能評価(ii)の方法で残渣分を吸
着した活性炭の固定床吸着塔でのオンサイト再生実験を
行った。
(Ii) Adsorption capacity evaluation of the above (1) A regeneration experiment was carried out in a fixed bed adsorption tower previously filled with activated carbon to which the residue had been adsorbed by the method of (i). (iii) An on-site regeneration experiment was performed on a fixed bed adsorption tower of the activated carbon to which the residue was adsorbed by the method of (1) Evaluation of adsorption capacity (ii).

【0035】1.吸着能の評価方法 (1)残渣分の平衡吸着量の測定方法 オートクレーブに、所定量の活性炭又は金属担持活性炭
を入れ、任意の量の残渣分を含んだプロパン、ブタン、
n−ヘキサン等の有機溶液を活性炭1g当たり100c
3 加え、24時間攪拌した後、溶液中の潤滑油の濃度
変化量を測定することにより、平衡吸着量を測定した。
1. Evaluation method of adsorption capacity (1) Measurement method of equilibrium adsorption amount of residue Put a predetermined amount of activated carbon or metal-supported activated carbon in an autoclave, and add propane, butane, containing an arbitrary amount of residue.
100 g of organic solution such as n-hexane per 1 g of activated carbon
After adding m 3 and stirring for 24 hours, the equilibrium adsorption amount was measured by measuring the amount of change in the concentration of the lubricating oil in the solution.

【0036】(2)破過曲線の測定 吸着塔A(内径1.5cm、塔高さ70cm)、吸着塔
B(内径2.5cm、塔高さ70cm) 、又は吸着塔C
(内径5.3cm、塔高さ150cm) に吸着剤を充填
し、通液線速度4〜25cm/minで潤滑油濃度を所
定濃度に調製したプロパン又はブタンを用いて吸着塔に
流し、その吸着塔出口の潤滑油濃度を測定することによ
り破過曲線を測定した。なお、潤滑油の濃度測定方法は
上記方法と同様である。
(2) Measurement of breakthrough curve Adsorption tower A (inner diameter 1.5 cm, tower height 70 cm), adsorption tower B (inner diameter 2.5 cm, tower height 70 cm), or adsorption tower C
(An inner diameter of 5.3 cm and a tower height of 150 cm) are filled with an adsorbent, and the lubricating oil concentration is adjusted to a predetermined concentration using propane or butane at a flow linear velocity of 4 to 25 cm / min. The breakthrough curve was measured by measuring the lubricating oil concentration at the tower outlet. The method for measuring the concentration of the lubricating oil is the same as the above method.

【0037】2.再生能の評価方法 (1)TG/DTA測定による吸着剤の再生能評価 上記1の(1)の方法で潤滑油を吸着させた活性炭又は
金属担持活性炭を5〜10mgをサンプリングし、空気
100Ncm3 /min、ヘリウム200Ncm3 /m
in、昇温速度15℃/minでTG/DTAを測定
し、残渣分の分解、燃焼温度を比較することにより活性
炭の再生能を評価した。残渣分の分解、燃焼温度が低い
ほど、また残渣分除去による重量変化量が残渣分吸着量
と同じであるほど再生能は良いとして評価される。
2. Evaluation method of regenerative ability (1) Evaluation of regenerative ability of adsorbent by TG / DTA measurement 5 to 10 mg of activated carbon or metal-supported activated carbon to which lubricating oil was adsorbed by the method of (1) above was sampled, and 100 Ncm 3 of air was sampled. / Min, helium 200Ncm 3 / m
In, TG / DTA was measured at a heating rate of 15 ° C./min, and the regeneration ability of the activated carbon was evaluated by comparing the decomposition temperature of the residue and the combustion temperature. The lower the decomposition and combustion temperature of the residue, and the greater the change in weight due to the removal of the residue is the same as the amount of adsorption of the residue, the better the reproducibility is evaluated.

【0038】(2)活性炭の塔内再生温度測定による吸
着剤の再生能の評価 吸着塔A( 内径1.5cm、塔高さ70cm) 、吸着塔
B( 内径2.5cm、塔高さ70cm) 、吸着塔C( 内
径5.3cm、塔高さ150cm) 、又は吸着塔D( 内
径7.3cm、塔高さ100cm) に、上記1の(1)
の方法を用いて、予め残渣分を所定濃度吸着させた活性
炭を充填し、所定の再生温度、酸素濃度、ガス流量で塔
内温度上昇がなくなるまで再生を続けたあと、吸着剤を
抜き出し、上記1の(1)および2の(1)の方法で吸
着剤の吸着能、再生能の評価及び物性の測定を行った。
また、この工程を繰り返し行い、繰り返し再生による再
生能の評価を行った。
(2) Evaluation of adsorbent regeneration ability by measuring activated carbon regeneration temperature in tower Adsorption tower A (inner diameter 1.5 cm, tower height 70 cm), adsorption tower B (inner diameter 2.5 cm, tower height 70 cm) To the adsorption tower C (inner diameter 5.3 cm, tower height 150 cm) or the adsorption tower D (inner diameter 7.3 cm, tower height 100 cm).
Using the method described above, the residue was previously filled with activated carbon having been adsorbed at a predetermined concentration, and the regeneration was continued at a predetermined regeneration temperature, oxygen concentration, and gas flow until the temperature inside the column did not rise, and then the adsorbent was withdrawn. By the methods (1) and (1) of (1), evaluation of the adsorbing ability and regenerating ability of the adsorbent and measurement of physical properties were performed.
In addition, this step was repeated, and the regenerating ability by repeated regeneration was evaluated.

【0039】3.吸着剤物性の測定方法 (1)比表面積、平均細孔径、及び細孔容積等の測定方
法 活性炭及び金属担持活性炭(以下、「吸着剤」とい
う。)の多孔質物性(以下、「吸着剤物性」という。)
は、高純度窒素(純度99.99995%以上)をプロ
ーブ分子に用いて、自動表面積、細孔径、細孔容積測定
装置(Belsorp28、ベルジャパン社製)により
測定した。吸着剤物性の測定では、比表面積、細孔径、
及び細孔容積の測定に先立ち、まず前処理として試料吸
着剤の減圧加熱処理を行い、所望の物性を測定した。
3. Method for measuring physical properties of adsorbent (1) Method for measuring specific surface area, average pore diameter, pore volume, etc. The porous physical properties of activated carbon and metal-supported activated carbon (hereinafter, referred to as “adsorbent”) (hereinafter, “adsorbent physical properties”) ")
Was measured using a high purity nitrogen (purity of 99.99995% or more) probe molecule with an automatic surface area, pore diameter, and pore volume measuring device (Belsorp 28, manufactured by Bell Japan). In the measurement of physical properties of the adsorbent, specific surface area, pore diameter,
Prior to the measurement of the pore volume, the sample adsorbent was subjected to heat treatment under reduced pressure as a pretreatment, and desired physical properties were measured.

【0040】試料吸着剤の減圧加熱処理では、100m
gの試料を石英ガラス製試料管に入れて、10-1〜10
-2mmHgの減圧状態を維持しながら、昇温速度6℃/
minで室温から350℃まで昇温し、同温度で3時間
保持した。その後、高純度ヘリウムガスによって常圧+
5mmHgに保持しつつ、降温速度5℃/分で室温まで
冷却し、測定用の試料を得た。得た試料重量を正確に秤
量し、吸着剤物性の測定に供した。
In the heat treatment under reduced pressure of the sample adsorbent, 100 m
g sample in a quartz glass sample tube, 10 -1 to 10
While maintaining the reduced pressure of -2 mmHg, the heating rate was 6 ° C /
The temperature was raised from room temperature to 350 ° C. in 3 minutes and kept at the same temperature for 3 hours. Then, normal pressure + with high purity helium gas
While maintaining the pressure at 5 mmHg, the temperature was lowered to room temperature at a rate of 5 ° C./min to obtain a sample for measurement. The obtained sample weight was accurately weighed and used for measurement of physical properties of the adsorbent.

【0041】吸着剤物性の測定では、液化窒素温度(−
196℃)に保持し、使用を高純度ヘリウムにて3回以
上測定し、次いで減圧排気した後、プローブ分子(窒
素)を導入して試料吸着剤への吸着、脱着測定を行い、
その測定結果を基に吸着剤の比表面積、細孔容積、平均
細孔径を算出した。
In the measurement of the physical properties of the adsorbent, the liquefied nitrogen temperature (−
196 ° C.), the use was measured three or more times with high-purity helium, and after evacuation under reduced pressure, probe molecules (nitrogen) were introduced to perform adsorption and desorption measurement on the sample adsorbent.
The specific surface area, pore volume, and average pore diameter of the adsorbent were calculated based on the measurement results.

【0042】実施例1 110℃で乾燥処理した表面積1535m2 /g、細孔
容積0.247cm3/gの粒状市販活性炭(以下、
「AC」という。)20.0gを、0.04gのビス-
アセチルアセトナト白金Pt(acac)2 を溶かした
200cm3 のアセトン溶液に4時間含浸した。その
後、室温で減圧にしてアセトン溶媒を取り除き、さらに
室温での窒素パージ、150℃での窒素パージを行って
白金担持活性炭を乾燥させた。表面積1533m2
g、細孔容積0.246cm3 /gの粒状白金担持活性
炭20.2gを得た。ICP法(誘導結合プラズマ法)
による測定した結果、白金担持量は0.11質量%であ
った。以下、この白金担持活性炭をPt/AC−1とす
る。
Example 1 A granular activated carbon having a surface area of 1535 m 2 / g and a pore volume of 0.247 cm 3 / g dried at 110 ° C.
Called "AC". ) 20.0 g with 0.04 g of bis-
It was impregnated with a 200 cm 3 acetone solution of acetylacetonatoplatinum Pt (acac) 2 for 4 hours. Thereafter, the acetone solvent was removed at reduced pressure at room temperature, and nitrogen purge at room temperature and nitrogen purge at 150 ° C. were performed to dry the platinum-supported activated carbon. Surface area 1533 m 2 /
g, 20.2 g of granular platinum-supported activated carbon having a pore volume of 0.246 cm 3 / g. ICP method (Inductively coupled plasma method)
As a result, the amount of supported platinum was 0.11% by mass. Hereinafter, this platinum-supported activated carbon is referred to as Pt / AC-1.

【0043】3.00gのPt/AC−1を所定量の潤
滑油を溶かしたn−ヘキサン溶液300cm3 (活性炭
1g当たり100cm3 )に入れ、室温にて攪拌しなが
ら、24時間放置して平衡吸着状態にした。この回分吸
着処理後、減圧してn−ヘキサン溶媒を除去し、活性炭
を乾燥させた。溶液中の残渣分量の差から、Pt/AC
−1に吸着した残渣分量は2.5質量%であった。な
お、n−ヘキサン溶液の吸着前の残渣分濃度は、n−ヘ
キサン溶液の残渣分吸着等温線から求めた。
3.00 g of Pt / AC-1 was placed in 300 cm 3 of n-hexane solution (100 cm 3 per 1 g of activated carbon) in which a predetermined amount of lubricating oil was dissolved, and allowed to stand at room temperature with stirring for 24 hours to equilibrate. It was in the adsorption state. After the batch adsorption treatment, the pressure was reduced to remove the n-hexane solvent, and the activated carbon was dried. From the difference in the amount of the residue in the solution, Pt / AC
The residue amount adsorbed on -1 was 2.5% by mass. The concentration of the residue before the adsorption of the n-hexane solution was determined from the adsorption isotherm of the residue of the n-hexane solution.

【0044】TG/DTAで残渣分の除去挙動を調べ
た。残渣分を吸着させたPt/AC−1約5〜10mg
をヘリウムガス200Ncm3 /min、空気100N
cm3/minの混合ガス、すなわち酸素約7容量%の
酸素混合ガス気流300Ncm 3 /minで、15℃/
minの昇温速度で30℃から700℃まで昇温した。
図2にPt/AC−1のTG/DTA結果を示す。80
〜100℃で溶媒に用いたn−ヘキサンあるいは水が脱
離した後、残渣分は280℃をピークに250〜400
℃で脱着あるいは酸化分解することが示された。また、
約460℃以上で活性炭に帰属されるピークが現れた。
TG/DTAから求めた残渣分の重量減少量は2.5質
量%であり、吸着量と同じであった。
Investigation of residue removal behavior by TG / DTA
Was. About 5 to 10 mg of Pt / AC-1 with the residue adsorbed
Helium gas 200NcmThree/ Min, air 100N
cmThree/ Min mixed gas, ie about 7% by volume of oxygen
Oxygen mixed gas flow 300Ncm Three/ Min at 15 ° C /
The temperature was raised from 30 ° C. to 700 ° C. at a temperature rising rate of min.
FIG. 2 shows the TG / DTA results of Pt / AC-1. 80
N-Hexane or water used as a solvent is removed at
After separation, the residue content peaked at 280 ° C and was 250-400.
It was shown to desorb or oxidatively decompose at ℃. Also,
Above about 460 ° C., a peak attributed to activated carbon appeared.
Weight loss of residue determined by TG / DTA is 2.5
%, Which was the same as the adsorption amount.

【0045】実施例2 実施例1と同じ方法で、活性炭20.0gに、0.12
gのビス- アセチルアセトナト白金で白金を担持し、表
面積1520m2 /g、細孔容積0.235Ncm3
gの粒状白金担持活性炭20.2gを得た。ICP法か
ら求めた白金担持量は0.30質量%であった。以下、
この白金担持活性炭をPT/AC−2とする。
Example 2 In the same manner as in Example 1, 20.0 g of activated carbon was added to 0.12
g of bis-acetylacetonato platinum to support platinum, a surface area of 1520 m 2 / g, and a pore volume of 0.235 Ncm 3 / g.
g of granular platinum-supported activated carbon (20.2 g) were obtained. The supported amount of platinum determined by the ICP method was 0.30% by mass. Less than,
This platinum-supported activated carbon is designated as PT / AC-2.

【0046】実施例1と同じ方法で残渣分吸着処理を行
い、Pt/AC−2に残渣分2.4質量%を吸着させ
た。これを実施例1と同じ条件で、TG/DTAの測定
を行った。測定結果を図2に示す。残渣分は270℃を
ピークに240〜400℃で脱着あるいは酸化分解する
ことが示された。活性炭のピークは約460℃以上であ
った。TG/DTAから求めた残渣分の重量減少量は
2.4質量%であり、吸着量と同じであった。
The residue adsorption treatment was carried out in the same manner as in Example 1, and 2.4 mass% of the residue was adsorbed on Pt / AC-2. Under the same conditions as in Example 1, TG / DTA was measured. FIG. 2 shows the measurement results. The residue was shown to desorb or oxidatively decompose at 240-400 ° C., peaking at 270 ° C. The peak of activated carbon was about 460 ° C. or higher. The weight loss of the residue determined by TG / DTA was 2.4% by mass, which was the same as the amount of adsorption.

【0047】実施例3 実施例1と同じ方法で、活性炭20.0gに0.20g
のビス- アセチルアセトナト白金で白金を担持し、表面
積1582m2 /g、細孔容積0.255Ncm3 /g
の粒状白金担持活性炭20.2gを得た。ICP法から
求めた白金担持量は0.49質量%であった。以下、こ
の白金担持活性炭をPt/AC−3とする。
Example 3 In the same manner as in Example 1, 0.20 g of activated carbon was added to 20.0 g of activated carbon.
Of bis-acetylacetonatoplatinum having a surface area of 1582 m 2 / g and a pore volume of 0.255 Ncm 3 / g
20.2 g of granular platinum-supported activated carbon was obtained. The supported amount of platinum determined by the ICP method was 0.49% by mass. Hereinafter, this platinum-supported activated carbon is referred to as Pt / AC-3.

【0048】実施例1と同じ方法で、残渣分吸着処理を
行い、Pt/AC−3に残渣分2.5質量%を吸着させ
た。これを実施例1と同じ条件で、TG/DTAを行っ
た。測定結果を図2に示す。残渣分は270℃をピーク
に240〜350℃で脱着あるいは酸化分解することが
示された。活性炭のピークは約450℃以上であった。
TG/DTAから求めた残渣分の重量減少量は2.5質
量%であり、吸着量と同じであった。
The residue adsorption treatment was performed in the same manner as in Example 1 to adsorb 2.5% by mass of the residue on Pt / AC-3. TG / DTA was carried out under the same conditions as in Example 1. FIG. 2 shows the measurement results. The residue was shown to desorb or oxidatively decompose at 240-350 ° C with a peak at 270 ° C. The peak of activated carbon was about 450 ° C. or higher.
The weight loss of the residue determined by TG / DTA was 2.5% by mass, which was the same as the amount of adsorption.

【0049】実施例4 実施例1と同じ方法で活性炭20.0gに、0.41g
のビス- アセチルアセトナト白金で白金を担持し、表面
積1524m2 /g、細孔容積0.250Ncm3 /g
の粒状白金担持活性炭20.5gを得た。ICP法から
求めた白金担持量は1.01質量%であった。以下、こ
の白金担持活性炭をPt/AC−4とする。
Example 4 In the same manner as in Example 1, 0.41 g of activated carbon was added to 20.0 g of activated carbon.
Supported on platinum of bis-acetylacetonato platinum having a surface area of 1524 m 2 / g and a pore volume of 0.250 Ncm 3 / g.
20.5 g of granular platinum-carrying activated carbon was obtained. The amount of supported platinum determined by the ICP method was 1.01% by mass. Hereinafter, this platinum-supported activated carbon is referred to as Pt / AC-4.

【0050】実施例1と同じ方法で残渣分吸着処理を行
い、Pt/AC−4に残渣分2.6質量%を吸着させ
た。これを実施例1と同じ条件で、TG/DTAを行っ
た。実施例3と同じく、残渣分は270℃をピークに2
40〜350℃で脱着あるいは酸化分解することが示さ
れた。活性炭のピークは約460℃以上であった。TG
/DTAから求めた残渣分の重量減少量は2.6質量%
であり、吸着量と同じであった。
The residue adsorption treatment was performed in the same manner as in Example 1, and 2.6 mass% of the residue was adsorbed on Pt / AC-4. TG / DTA was carried out under the same conditions as in Example 1. As in Example 3, the residue peaked at 270 ° C.
It was shown to desorb or oxidatively decompose at 40-350 ° C. The peak of activated carbon was about 460 ° C. or higher. TG
/ Weight loss of residue determined from DTA is 2.6% by mass
And the same as the adsorption amount.

【0051】実施例5 実施例1と同じ方法で活性炭20.0gに、0.032
gのビス- アセチルアセトナト白金で白金を担持し、表
面積1554m2 /g、細孔容積0.255Ncm3
gの粒状白金担持活性炭20.0gを得た。ICP法か
ら求めた白金担持量は0.08質量%であった。以下、
この白金担持活性炭をPt/AC−5とする。
Example 5 In the same manner as in Example 1, 0.032 g of activated carbon was added to 20.0 g of activated carbon.
g of bis-acetylacetonatoplatinum, platinum is supported, surface area is 1554 m 2 / g, and pore volume is 0.255 Ncm 3 / g.
Thus, 20.0 g of granular platinum-supported activated carbon was obtained. The supported amount of platinum determined by the ICP method was 0.08% by mass. Less than,
This platinum-supported activated carbon is designated as Pt / AC-5.

【0052】実施例1と同じ方法で、残渣分吸着処理を
行い、Pt/AC−5に残渣分2.5質量%を吸着させ
た。これを実施例1と同じ条件で、TG/DTAを行っ
た。測定結果を図2に示す。残渣分は300℃をピーク
に、240〜450℃で脱着あるいは酸化分解すること
が示された。活性炭のピークは約460℃以上であっ
た。TG/DTAから求めた残渣分の重量減少量は2.
5質量%であり、吸着量と同じであった。
The residue adsorption treatment was performed in the same manner as in Example 1 to adsorb 2.5% by mass of the residue to Pt / AC-5. TG / DTA was carried out under the same conditions as in Example 1. FIG. 2 shows the measurement results. The residue was shown to desorb or oxidatively decompose at 240-450 ° C., peaking at 300 ° C. The peak of activated carbon was about 460 ° C. or higher. The weight loss of the residue determined from TG / DTA was 2.
5% by mass, which was the same as the amount of adsorption.

【0053】実施例6 実施例1と同じ方法で活性炭20.0gに、0.02g
のビス- アセチルアセトナト白金で白金を担持し、表面
積1501m2 /g、細孔容積0.236Ncm3 /g
の粒状白金担持活性炭19.9gを得た。ICP法から
求めた白金担持量は0.05質量%であった。以下、こ
の白金担持活性炭をPt/AC−6とする。
Example 6 In the same manner as in Example 1, 0.02 g of activated carbon was added to 20.0 g of activated carbon.
Supported on platinum of bis-acetylacetonato platinum having a surface area of 1501 m 2 / g and a pore volume of 0.236 Ncm 3 / g.
19.9 g of granular platinum-supported activated carbon was obtained. The amount of supported platinum determined by the ICP method was 0.05% by mass. Hereinafter, this platinum-supported activated carbon is referred to as Pt / AC-6.

【0054】実施例1と同じ方法で、残渣分吸着処理を
行い、Pt/AC−6に残渣分2.5質量%を吸着させ
た。これを実施例1と同じ条件で、TG/DTAを行っ
た。側結果を図2に示す。残渣分は340℃をピークに
250〜450℃で脱着あるいは酸化分解することが示
された。活性炭のピークは約460℃以上であった。T
G/DTAの測定から求めた残渣分の重量減少量は2.
4質量%であり、吸着量とほぼ同じであった。
In the same manner as in Example 1, a residue adsorption treatment was carried out to adsorb 2.5% by mass of the residue on Pt / AC-6. TG / DTA was carried out under the same conditions as in Example 1. The side results are shown in FIG. The residue was shown to desorb or oxidatively decompose at 250-450 ° C. with a peak at 340 ° C. The peak of activated carbon was about 460 ° C. or higher. T
The weight loss of the residue determined from the G / DTA measurement was 2.
4% by mass, which was almost the same as the adsorption amount.

【0055】実施例7 110℃で乾燥処理した実施例1の活性炭100.1g
に、金属換算で白金を10.01質量%含む硝酸白金P
t(NO3 4 水溶液1.000gを80.0gの水で
希釈した水溶液を少量ずつ滴下し、活性炭全体を十分に
湿らせて一晩放置した。その後、40℃の温水浴で窒素
パージして白金担持活性炭を乾燥させた後、空気気流下
で室温から300℃まで30分の昇温を経て、300℃
で3時間焼成することにより、表面積1480m2
g、細孔容積0.233Ncm3 /gの粒状白金担持活
性炭100.6gを得た。ICP法から求めた白金担持
量は0.10質量%であった。以下、この白金担持活性
炭をPt/AC−7とする。
Example 7 100.1 g of the activated carbon of Example 1 dried at 110 ° C.
Platinum nitrate P containing 10.01% by mass of platinum in metal conversion
An aqueous solution obtained by diluting 1.000 g of a t (NO 3 ) 4 aqueous solution with 80.0 g of water was added dropwise little by little, and the whole activated carbon was sufficiently moistened and allowed to stand overnight. Thereafter, the platinum-carrying activated carbon was dried by purging with nitrogen in a warm water bath at 40 ° C., and then heated from room temperature to 300 ° C. for 30 minutes under a stream of air.
Baking for 3 hours, the surface area is 1480 m 2 /
Thus, 100.6 g of granular platinum-supported activated carbon having a pore volume of 0.233 Ncm 3 / g was obtained. The supported amount of platinum determined by the ICP method was 0.10% by mass. Hereinafter, this platinum-supported activated carbon is referred to as Pt / AC-7.

【0056】実施例1と同じ方法で、残渣分吸着処理を
行い、Pt/AC−7に残渣分2.5質量%を吸着させ
た。これを実施例1と同じ条件で、TG/DTAを行
い、残渣分は310℃をピークに260〜400℃で脱
着あるいは酸化分解することが示された。活性炭のピー
クは約460℃以上であった。TG/DTA測定から求
めた残渣分の重量減少量は2.5質量%であり、吸着量
と同じであった。
The residue adsorption treatment was performed in the same manner as in Example 1 to adsorb 2.5% by mass of the residue to Pt / AC-7. This was subjected to TG / DTA under the same conditions as in Example 1, and it was shown that the residue was desorbed or oxidatively decomposed at 260 to 400 ° C with a peak at 310 ° C. The peak of activated carbon was about 460 ° C. or higher. The weight loss of the residue obtained from the TG / DTA measurement was 2.5% by mass, which was the same as the adsorption amount.

【0057】実施例8 実施例7と同じ方法で活性炭20.0gに、金属換算で
白金を10.01質量%含む硝酸白金Pt(NO3 4
水溶液2.000gを16.0gの水で希釈した水溶液
で白金を担持し、表面積1462m2 /g、細孔容積
0.229Ncm 3 /gの粒状白金担持活性炭20.8
gを得た。ICP法から求めた白金担持量は0.99質
量%であった。以下、この白金担持活性炭をPt/AC
−8とする。
Example 8 In the same manner as in Example 7, 20.0 g of activated carbon was converted into metal.
Platinum nitrate Pt containing 10.01% by mass of platinum (NOThree)Four
An aqueous solution obtained by diluting 2.000 g of an aqueous solution with 16.0 g of water
With platinum, surface area 1462mTwo/ G, pore volume
0.229Ncm Three/ G granular platinum-supported activated carbon 20.8
g was obtained. The amount of supported platinum determined by the ICP method is 0.99
%. Hereinafter, this platinum-supported activated carbon is referred to as Pt / AC
-8.

【0058】実施例1と同じ方法で、残渣分吸着処理を
行い、PT/AC−8に残渣分2.5質量%を吸着させ
た。これを実施例1と同じ条件で、TG/DTAを行っ
た。その結果、残渣分は280℃をピークに250〜3
70℃で脱着あるいは酸化分解することが示された。活
性炭のピークは約460℃以上であった。TG/DTA
から求めた残渣分の重量減少量は2.5質量%であり、
吸着量と同じであった。
The residue adsorption treatment was performed in the same manner as in Example 1 to adsorb 2.5% by mass of the residue to PT / AC-8. TG / DTA was carried out under the same conditions as in Example 1. As a result, the residue content peaked at 280 ° C and was 250 to 3
It was shown to desorb or oxidatively decompose at 70 ° C. The peak of activated carbon was about 460 ° C. or higher. TG / DTA
The weight loss of the residue determined from is 2.5% by mass,
It was the same as the adsorption amount.

【0059】実施例9 実施例7と同じ方法で活性炭20.0gに、金属換算で
白金を10.01質量%含む硝酸白金Pt(NO3 4
水溶液6.000gを16.0gの水で希釈した水溶液
で白金を担持し、表面積1455m2 /g、細孔容積
0.233Ncm 3 /gの粒状白金担持活性炭21.3
gを得た。ICP法から求めた白金担持量は3.02質
量%であった。以下、この白金担持活性炭をPt/AC
−9とする。
Example 9 In the same manner as in Example 7, 20.0 g of activated carbon was converted to metal.
Platinum nitrate Pt containing 10.01% by mass of platinum (NOThree)Four
An aqueous solution obtained by diluting 6.000 g of an aqueous solution with 16.0 g of water
With platinum, surface area 1455mTwo/ G, pore volume
0.233Ncm Three/ G granular platinum-supported activated carbon 21.3
g was obtained. The amount of platinum carried by the ICP method was 3.02
%. Hereinafter, this platinum-supported activated carbon is referred to as Pt / AC
−9.

【0060】実施例1と同じ方法で、残渣分吸着処理を
行い、Pt/AC−9に残渣分2.4質量%を吸着させ
た。これを実施例1と同じ条件で、TG/DTAを行っ
た。その結果、残渣分は270℃をピークに240〜3
70℃で脱着あるいは酸化分解することが示された。活
性炭のピークは約460℃以上であった。TG/DTA
の測定から求めた残渣分の重量減少量は2.5質量%で
あり、吸着量とほぼ同じであった。
The residue adsorption treatment was performed in the same manner as in Example 1, and 2.4 mass% of the residue was adsorbed on Pt / AC-9. TG / DTA was carried out under the same conditions as in Example 1. As a result, the residue content peaked at 270 ° C. and was 240 to 3
It was shown to desorb or oxidatively decompose at 70 ° C. The peak of activated carbon was about 460 ° C. or higher. TG / DTA
The weight loss of the residue obtained from the measurement was 2.5% by mass, which was almost the same as the adsorption amount.

【0061】実施例10 先に得たPt/AC−3の14.80gに実施例1と同
じ方法で5.20質量%の残渣分を吸着させ(残渣分吸
着後の質量15.57g)、内径1.5cm、塔高さ7
0cmの吸着塔(以下、「吸着塔A」という。)に充填
(充填層の高さ20cm)した。常圧で、流量200N
cm3 /minの窒素気流下で280℃までに昇温した
後、その温度で流量100Ncm3 /minの空気気流
に替えて、Pt/AC−3の酸素混合ガスによる1回目
の再生処理を開始した。酸化反応による発熱で、塔内の
温度は最高339℃まで上昇し、活性炭充填部の出口側
の末端部分の温度が280℃まで下がった時点を再生終
了とした。続けて、流量200Ncm3 /minの窒素
気流に替え、室温まで塔温度を下げた。酸素混合ガス
(空気)による再生所要時間は1.5時間で、1回目の
再生処理後の活性炭の重さは13.70gであった。
Example 10 A residue of 5.20% by mass was adsorbed on 14.80 g of Pt / AC-3 obtained above in the same manner as in Example 1 (mass after adsorption of residue: 15.57 g). Inner diameter 1.5cm, tower height 7
A 0 cm adsorption tower (hereinafter, referred to as “adsorption tower A”) was filled (the height of the packed bed was 20 cm). At normal pressure, flow rate 200N
After the temperature was raised to 280 ° C. under a nitrogen gas flow of cm 3 / min, the first regeneration treatment with an oxygen mixed gas of Pt / AC-3 was started at that temperature with the air flow having a flow rate of 100 Ncm 3 / min. did. Due to the heat generated by the oxidation reaction, the temperature in the tower rose to a maximum of 339 ° C., and the point in time when the temperature at the terminal end on the outlet side of the activated carbon packed portion dropped to 280 ° C. was regarded as the end of regeneration. Subsequently, the flow rate was changed to a nitrogen gas flow at a flow rate of 200 Ncm 3 / min, and the tower temperature was lowered to room temperature. The time required for regeneration with the oxygen mixed gas (air) was 1.5 hours, and the weight of the activated carbon after the first regeneration treatment was 13.70 g.

【0062】次いで、この活性炭13.70g全量に、
実施例1と同じ方法で5.00質量%の残渣分を吸着さ
せ、吸着塔Aに充填し、1回目の再生処理と同じ方法
で、酸素混合ガスによる2回目の再生処理を行った。再
生処理中の最高温度は338℃、再生所要時間は1.5
時間、2回目の再生処理後の活性炭の重さは13.56
gであった。
Then, to 13.70 g of the activated carbon,
The residue of 5.00% by mass was adsorbed in the same manner as in Example 1, filled in the adsorption tower A, and subjected to the second regeneration treatment with the oxygen-containing gas in the same manner as the first regeneration treatment. The maximum temperature during the regeneration process is 338 ° C and the regeneration time is 1.5
Time, the weight of activated carbon after the second regeneration treatment is 13.56
g.

【0063】以上のPt/AC−3の再生処理を、再生
ガスである空気流量を様々変えながら繰り返し6回行っ
た。その結果を表1にまとめた。
The Pt / AC-3 regeneration process described above was repeatedly performed six times while changing the flow rate of air as the regeneration gas. Table 1 summarizes the results.

【0064】[0064]

【表1】 [Table 1]

【0065】1回目の再生処理後の重量減少は、Pt/
AC−3の含まれていた水分、n−ヘキサン、白金塩の
対イオン(実施例10の場合、アセチルアセトナト)が
脱離したためであった。それ以外の再生回数では、重量
の変化、残渣分吸着量に大きな変化はなかった。
The weight loss after the first regeneration process is Pt /
This was because water, n-hexane, and a counter ion of platinum salt (acetylacetonate in Example 10) contained in AC-3 were eliminated. At other times of regeneration, there was no significant change in weight or residue adsorption amount.

【0066】実施例11 先に得られたPt/AC−1の750.0gに実施例1
と同じ方法で5.00質量%の残渣分を吸着させ(残渣
分吸着後の重量783.2g)、内径7.3cm、塔高
さ100cmの吸着塔(以下、「吸着塔B」という。)
に充填(充填層の高さ40cm)した。常圧下で、流量
15Nl/minの窒素気流下で280℃までに昇温し
た後、その温度で常圧下で酸素濃度1.0容量%、流量
8.0Nl/minの酸素混合ガスに替えて、Pt/A
C−1の酸素混合ガスによる1回目の再生処理を開始し
た。酸化反応による発熱で、塔内の温度は360℃まで
上昇した。360℃の塔内温度が、入口側から20cm
の活性炭充填部分に到達したとき、再生ガス圧力を常圧
から0.3MPaに、30cmに到達したとき、0.5
MPaにそれぞれ上げた。圧力を高くしても、塔内温度
はほぼ360℃で推移した。活性炭充填部の出口側の末
端部分の温度が280℃まで下がった時点を再生終了と
し、常圧下で流量15Nl/minの窒素気流に替え、
室温まで塔温度を下げた。1回目の再生処理後の活性炭
重量は685.2gであった。
Example 11 To 750.0 g of Pt / AC-1 obtained above, Example 1 was added.
A residue of 5.00% by mass is adsorbed by the same method as described above (the weight after adsorption of the residue is 783.2 g), and an adsorption tower having an inner diameter of 7.3 cm and a tower height of 100 cm (hereinafter, referred to as “adsorption tower B”).
(Filled layer height 40 cm). After the temperature was raised to 280 ° C. under a nitrogen stream at a flow rate of 15 Nl / min under normal pressure, an oxygen mixed gas having an oxygen concentration of 1.0% by volume and a flow rate of 8.0 Nl / min was changed at that temperature under normal pressure. Pt / A
The first regeneration process with the oxygen mixed gas of C-1 was started. Due to the heat generated by the oxidation reaction, the temperature in the tower rose to 360 ° C. The temperature in the tower of 360 ° C is 20 cm from the inlet side.
, The regeneration gas pressure from normal pressure to 0.3 MPa, when reaching 30 cm,
MPa. Even when the pressure was increased, the temperature in the column remained at approximately 360 ° C. When the temperature at the end of the activated carbon filling section on the outlet side has dropped to 280 ° C., the regeneration is terminated, and the nitrogen gas flow at a flow rate of 15 Nl / min is changed under normal pressure.
The tower temperature was lowered to room temperature. The activated carbon weight after the first regeneration treatment was 685.2 g.

【0067】この活性炭685.2g全量に、実施例1
と同じ方法で5.05質量%の残渣分を吸着させ、吸着
塔B に充填し、1回目の再生処理と同じ操作で、酸素混
合ガスによる2回目の再生処理を行った。再生条件を酸
素混合ガスの酸素濃度を2 容量% 、流量を6.0Nl/
minにし、圧力を活性炭充填部部分0〜20cmは常
圧、〜30cmは0.3MPa、〜40cmは0.5M
Paにして再生を行った。再生処理中の塔内温度は、圧
力に関係なく、ほぼ380℃で推移した。2回目の再生
処理後の活性炭重量は690.3gであった。
To 685.2 g of the activated carbon in total,
The residue of 5.05% by mass was adsorbed in the same manner as described above, filled in the adsorption tower B, and subjected to the second regeneration treatment with the oxygen mixed gas by the same operation as the first regeneration treatment. The regeneration conditions were as follows: the oxygen concentration of the oxygen mixed gas was 2% by volume,
min, and the pressure is 0 to 20 cm at normal pressure, activated pressure is 0.3 MPa for 3030 cm, and 0.5 M for 4040 cm.
Regeneration was performed at Pa. The temperature in the tower during the regeneration treatment fluctuated at about 380 ° C. regardless of the pressure. The activated carbon weight after the second regeneration treatment was 690.3 g.

【0068】この活性炭690.3g全量に、実施例1
と同じ方法で5.05質量%の残渣分を吸着させ、吸着
塔B に充填し、1回目の再生処理と同じ操作で、酸素混
合ガスによる3 回目の再生処理を行った。再生条件を酸
素混合ガスの酸素濃度を0.8容量%、流量を25.0
Nl/minにし、圧力は全て常圧で再生を行った。再
生処理中の塔内温度は、ほぼ340℃で推移した。3回
目の再生処理後の活性炭重量は695.1gであった。
To the total amount of 690.3 g of the activated carbon,
The residue of 5.05% by mass was adsorbed by the same method as described above, packed into the adsorption tower B, and subjected to the third regeneration treatment with the oxygen mixed gas by the same operation as the first regeneration treatment. The regeneration conditions were such that the oxygen concentration of the oxygen mixed gas was 0.8% by volume and the flow rate was 25.0.
Nl / min was set, and the pressure was all regenerated at normal pressure. The temperature in the tower during the regeneration treatment fluctuated at approximately 340 ° C. The activated carbon weight after the third regeneration treatment was 695.1 g.

【0069】この活性炭695.1g全量に、実施例1
と同じ方法で4.99質量%の残渣分を吸着させ、吸着
塔Bに充填し、1回目の再生処理と同じ操作で、酸素混
合ガスによる4回目の再生処理を行った。再生条件を酸
素混合ガスの酸素濃度を2容量%、圧力を常圧にし、流
量を活性炭充填部部分0〜20cmは6.0Nl/mi
n、〜40cmは8.0Nl/minで再生を行った。
再生処理中の塔内温度は、流量によって変わり、それぞ
れ380℃、420℃で推移した。4回目の再生処理後
の活性炭重量は694.8gであった。
To 695.1 g of the activated carbon in total,
A residue of 4.99% by mass was adsorbed in the same manner as in the above, filled in the adsorption tower B, and subjected to the fourth regeneration treatment with an oxygen mixed gas by the same operation as the first regeneration treatment. The regeneration conditions were as follows: the oxygen concentration of the oxygen mixed gas was 2% by volume, the pressure was normal pressure, and the flow rate was 6.0 Nl / mi for the activated carbon filled portion of 0 to 20 cm.
For n and 4040 cm, reproduction was performed at 8.0 Nl / min.
The temperature in the tower during the regeneration treatment varied depending on the flow rate, and was changed at 380 ° C and 420 ° C, respectively. The activated carbon weight after the fourth regeneration treatment was 694.8 g.

【0070】1回目の再生処理後の重量減少は、Pt/
AC−1の含まれていた水分、n−ヘキサン、白金塩の
対イオン(実施例11の場合、アセチルアセトナト)が
脱離したためであった。それ以外の再生回数では、重量
の変化、残渣分吸着量に大きな変化はなかった。
The weight loss after the first regeneration process is Pt /
This was because the water, n-hexane, and the counter ion of the platinum salt (acetylacetonate in Example 11) contained in AC-1 were eliminated. At other times of regeneration, there was no significant change in weight or residue adsorption amount.

【0071】実施例12 先に得られたPt/AC−1の31.60gを吸着塔A
に充填(充填層高40cm)し、常圧、室温、流量3
0.0Nl/hの窒素で吸着塔内を3時間パージした。
その後、残渣分を含まないLPガスで塔内を十分に置換
した後、90ppmの残渣分を含むLPガスを、11.
0cm3 /minの通液流量で上流方向に20時間通液
し、1回目のLPガス中の残渣分除去処理を行った。残
渣分の出口濃度を測定し、図3にその経時変化、すなわ
ち破過曲線を示す。残渣分の出口濃度/入口濃度が10
%になる破過時間は、13.1時間であった。
Example 12 31.60 g of the previously obtained Pt / AC-1 was adsorbed on the adsorption tower A.
(Filled bed height 40 cm), normal pressure, room temperature, flow rate 3
The inside of the adsorption tower was purged with 0.0Nl / h of nitrogen for 3 hours.
Then, after sufficiently replacing the inside of the tower with LP gas containing no residue, LP gas containing 90 ppm of residue was added to the column.
The liquid was passed in the upstream direction at a flow rate of 0 cm 3 / min for 20 hours, and the first residue removal treatment in the LP gas was performed. The outlet concentration of the residue was measured, and FIG. 3 shows the change over time, that is, a breakthrough curve. Outlet concentration / inlet concentration of residue is 10
% Breakthrough time was 13.1 hours.

【0072】この残渣分除去処理の後、下流方向に常圧
下で流量30.0Nl/hの窒素を流しながら室温から
250℃に昇温し、吸着塔内のLPガスを除去した。続
けて、250℃、常圧下で酸素濃度1容量%、流量3
0.0Nl/hの酸素混合ガスに切り替えて、酸素混合
ガスによるPt/AC−1の再生処理を開始した。酸化
反応による発熱で、塔内の温度は最高304℃まで上昇
し、活性炭充填部の出口側の末端部分の温度が250℃
まで下がった時点を再生終了とした。続けて、流量3
0.0Nl/hの窒素気流に切り替え、室温まで吸着塔
温度を下げた。
After the residue removal treatment, the temperature was raised from room temperature to 250 ° C. while flowing nitrogen at a flow rate of 30.0 Nl / h under normal pressure in the downstream direction to remove LP gas in the adsorption tower. Subsequently, at 250 ° C. under normal pressure, the oxygen concentration was 1% by volume, and the flow rate was 3
Switching to an oxygen mixed gas of 0.0Nl / h was performed to start the Pt / AC-1 regeneration process using the oxygen mixed gas. Due to the heat generated by the oxidation reaction, the temperature inside the tower rises to a maximum of 304 ° C, and the temperature at the end of the outlet of the activated carbon filling section becomes 250 ° C.
The point in time at which the playback time has decreased is regarded as the end of playback. Continue to flow 3
The nitrogen stream was switched to 0.0Nl / h, and the temperature of the adsorption tower was lowered to room temperature.

【0073】吸着塔内の活性炭を充填した状態で、再び
上記と同じLPガスと条件で、2回目のLPガス中の残
渣分除去処理を行い、破過曲線を図3に示す。破過時間
は13.0時間でであり、1回目と同じ残渣分吸着能を
示した。
With the activated carbon filled in the adsorption tower, a second residue removal treatment of the LP gas is performed again under the same LP gas conditions as described above, and the breakthrough curve is shown in FIG. The breakthrough time was 13.0 hours, showing the same residue adsorption capacity as the first time.

【0074】比較例1 実施例1と同じ方法で、残渣分吸着処理を行い、活性炭
に残渣分2.5質量%を吸着させた。これを実施例1と
同じ条件で、TG/DTAの測定を行った。その結果、
残渣分は390℃をピークに350〜450℃で脱着す
ることが示された。活性炭のピークは約460℃以上で
あった。TG/DTAの測定から求めた残渣分の重量減
少量は1.4質量%と、吸着量より少なく、完全に残渣
分が除去できなかった。
Comparative Example 1 Residue adsorption treatment was performed in the same manner as in Example 1 to adsorb 2.5% by mass of the residue on activated carbon. Under the same conditions as in Example 1, TG / DTA was measured. as a result,
The residue was shown to desorb at 350-450 ° C with a peak at 390 ° C. The peak of activated carbon was about 460 ° C. or higher. The weight loss of the residue determined from the TG / DTA measurement was 1.4% by mass, which was smaller than the adsorption amount, and the residue could not be completely removed.

【0075】比較例2 実施例1と同じ方法で、残渣分吸着処理を行い、Pt/
AC−3に残渣分2.5質量%を吸着させた。これをヘ
リウムガス、すなわち酸素0容量%のガス気流300N
cm3 /minで、15℃/minの昇温速度で30℃
から700℃まで昇温条件でTG/DTAを測定した。
その結果、残渣分は400℃をピークに350〜450
℃で脱着することが示された。活性炭のピークは約46
0℃以上であった。TG/DTAの測定から求めた残渣
分の重量減少量は1.5質量%と、吸着量より少なく、
完全に残渣分が除去できなかった。
Comparative Example 2 Residue adsorption treatment was performed in the same manner as in Example 1, and Pt /
AC-3 was allowed to adsorb 2.5% by mass of the residue. This is converted to a helium gas, that is, a gas flow of 300N with oxygen at 0% by volume.
30 ° C. at a rate of 15 ° C./min at a rate of cm 3 / min
TG / DTA was measured under conditions of elevated temperature from 700 ° C. to 700 ° C.
As a result, the residue content peaked at 400 ° C. and was 350 to 450
It was shown to desorb at ° C. The peak of activated carbon is about 46
It was 0 ° C or higher. The weight loss of the residue obtained from the TG / DTA measurement was 1.5% by mass, which was smaller than the adsorption amount.
The residue could not be completely removed.

【0076】比較例3 実施例1と同じ方法で活性炭20.0gに、0.002
gのビス- アセチルアセトナト白金で白金を担持し、表
面積1548m2 /g、細孔容積0.257Ncm3
gの粒状白金担持活性炭20.0gを得た。ICP法か
ら求めた白金担持量は0.005質量%であった。以
下、この白金担持活性炭をPt/AC−10とする。
Comparative Example 3 In the same manner as in Example 1, 20.0 g of activated carbon was added to 0.002
g of bis-acetylacetonatoplatinum, platinum is supported, surface area is 1548 m 2 / g, and pore volume is 0.257 Ncm 3 / g.
Thus, 20.0 g of granular platinum-supported activated carbon was obtained. The supported amount of platinum determined by the ICP method was 0.005% by mass. Hereinafter, this platinum-supported activated carbon is referred to as Pt / AC-10.

【0077】実施例1と同じ方法で、残渣分吸着処理を
行い、Pt/AC−10に残渣分2.5質量%を吸着さ
せた。これを実施例1と同じ条件で、TG/DTAの測
定を行った。その結果、残渣分は350℃をピークに2
50〜450℃で脱着あるいは酸化分解することが示さ
れた。活性炭のピークは約460℃以上であった。TG
/DTAの測定から求めた残渣分の重量減少量は2.0
質量%と、吸着量より少なく、完全に残渣分が除去でき
なかった。
The residue adsorption treatment was performed in the same manner as in Example 1 to adsorb 2.5% by mass of the residue on Pt / AC-10. Under the same conditions as in Example 1, TG / DTA was measured. As a result, the residue content peaked at 350 ° C and was 2
It was shown to desorb or oxidatively decompose at 50-450 ° C. The peak of activated carbon was about 460 ° C. or higher. TG
/ The weight loss of the residue obtained from the measurement of DTA is 2.0
% By mass, less than the adsorption amount, and the residue could not be completely removed.

【0078】比較例4 実施例1と同じ方法で活性炭20.0gに、2.80g
のビス- アセチルアセトナト白金で白金を担持し、表面
積1280m2 /g、細孔容積0.204Ncm3 /g
の粒状白金担持活性炭21.9gを得た。ICP法から
求めた白金担持量は6.40質量%であった。以下、こ
の白金担持活性炭をPt/AC−11とする。
Comparative Example 4 In the same manner as in Example 1, 2.80 g of activated carbon was added to 20.0 g of activated carbon.
Supported on platinum of bis-acetylacetonato platinum having a surface area of 1280 m 2 / g and a pore volume of 0.204 Ncm 3 / g.
Was obtained in an amount of 21.9 g. The supported amount of platinum determined by the ICP method was 6.40% by mass. Hereinafter, this platinum-supported activated carbon is referred to as Pt / AC-11.

【0079】実施例1と同じ方法で、残渣分吸着処理を
行い、Pt/AC−11に残渣分2.1質量%を吸着さ
せた。これを実施例1と同じ条件で、TG/DTAの測
定を行った。実施例3と同じく、残渣分は270℃をピ
ークに220〜330℃で脱着あるいは酸化分解するこ
とが示された。活性炭のピークは約460℃以上であっ
た。TG/DTAから求めた残渣分の重量減少量は2.
1質量%と、吸着量と同じであった。このとき、残渣分
は完全に除去されたが、白金担持量が多すぎるため、表
面積や細孔容積が低下し、残渣分吸着量も低下した。
The residue adsorption treatment was performed in the same manner as in Example 1, and Pt / AC-11 adsorbed 2.1% by mass of the residue. Under the same conditions as in Example 1, TG / DTA was measured. As in Example 3, the residue was shown to desorb or oxidatively decompose at 220-330 ° C. with a peak at 270 ° C. The peak of activated carbon was about 460 ° C. or higher. The weight loss of the residue determined from TG / DTA was 2.
1 mass%, which was the same as the amount of adsorption. At this time, the residue was completely removed, but since the amount of supported platinum was too large, the surface area and the pore volume were reduced, and the residue adsorption was also reduced.

【0080】比較例5 実施例1と同じ方法で、実施例1記載の活性炭15.0
0gに5.00質量%の残渣分を吸着させた後、吸着塔
Aに充填し、塔内圧力を減圧ポンプで1.3kPa(1
0Torr)に減圧しながら、250℃まで昇温した。
その後、1.3kPa、250℃で4時間保持した。こ
の再生処理後の活性炭重量は14.61gであった。再
生処理後の活性炭に再び残渣分吸着処理をし、吸着量は
1.02質量%であった。
Comparative Example 5 In the same manner as in Example 1, the activated carbon 15.0 described in Example 1 was used.
After adsorbing 5.00% by mass of the residue in 0 g, the mixture was charged into the adsorption tower A, and the pressure inside the tower was reduced to 1.3 kPa (1 kPa) using a vacuum pump.
The temperature was raised to 250 ° C. while reducing the pressure to 0 Torr.
Thereafter, the temperature was kept at 1.3 kPa and 250 ° C. for 4 hours. The activated carbon weight after the regeneration treatment was 14.61 g. The activated carbon after the regeneration treatment was again subjected to the residue adsorption treatment, and the adsorption amount was 1.02% by mass.

【0081】比較例6 実施例1と同じ方法で、実施例1記載の活性炭15.0
0gに、5.06質量%の残渣分を吸着させた後、吸着
塔Aに充填し、塔内圧力を減圧ポンプで1.3kPa
(10Torr)に減圧しながら、400℃まで昇温し
た。その後、1.3kPa、400℃で4時間保持し
た。この再生処理後の活性炭重量は14.33gであっ
た。再生処理後の活性炭に再び残渣分吸着処理をし、吸
着量は2.97質量%であった。
Comparative Example 6 In the same manner as in Example 1, activated carbon 15.0 described in Example 1
After adsorbing 5.06% by mass of the residue to 0 g, the mixture was charged into the adsorption tower A, and the pressure in the tower was reduced to 1.3 kPa by a vacuum pump.
The temperature was increased to 400 ° C. while reducing the pressure to (10 Torr). Thereafter, it was kept at 1.3 kPa and 400 ° C. for 4 hours. The activated carbon weight after the regeneration treatment was 14.33 g. The activated carbon after the regeneration treatment was again subjected to the residue adsorption treatment, and the adsorption amount was 2.97% by mass.

【0082】比較例7 実施例1と同じ方法で、実施例1記載の活性炭15.0
0gに、5.06質量%の残渣分を吸着させた後、吸着
塔Aに充填し、流量200Ncm3 /minの窒素気流
下で250℃までに昇温した後、その温度で流量100
Ncm3 /minのスチームパージに替えて、250℃
で4時間保持した。この再生処理後の活性炭重量は1
4.70gであった。再生処理後の活性炭に再び残渣分
吸着処理をし、吸着量は0.68質量%であった。
Comparative Example 7 In the same manner as in Example 1, activated carbon 15.0 described in Example 1
After adsorbing 5.06% by mass of the residue to 0 g, the mixture was packed in the adsorption tower A, heated to 250 ° C. under a nitrogen flow at a flow rate of 200 Ncm 3 / min, and then heated at a flow rate of 100 Ncm 3 / min.
250 ° C. instead of Ncm 3 / min steam purge
For 4 hours. The activated carbon weight after this regeneration treatment is 1
The weight was 4.70 g. The activated carbon after the regeneration treatment was again subjected to the residue adsorption treatment, and the adsorption amount was 0.68% by mass.

【0083】比較例8 再生温度を変更して、実施例10と同じ再生操作を行っ
た。14.90gのPt/AC−3に実施例1と同じ方
法で、5.18質量%の残渣分を吸着させ、吸着塔A に
充填した。流量200Ncm3 /minの窒素気流下で
180℃までに昇温した。その後、その温度で流量10
0Ncm3 /minの空気気流に替えて、酸素混合ガス
による再生処理を開始した。塔内の温度は最高187℃
まで上昇したが、温度上昇が小さく、活性炭充填部の出
口側の末端部分の温度が180℃に下がった時点を再生
終了とする見極めが不明確であったため、実施例10の
1回目の再生処理時間と同じ1.5時間とした。再生処
理後、流量200Ncm3/minの窒素気流に替え、
室温まで塔温度を下げた。再生処理後の活性炭の重さは
14.80gであった。この活性炭14.80g全量
に、実施例1と同じ方法で残渣分を吸着させたが、残渣
分吸着量はわずか0.20質量%であった。
Comparative Example 8 The same regenerating operation as in Example 10 was performed while changing the regenerating temperature. A residue of 5.18% by mass was adsorbed on 14.90 g of Pt / AC-3 in the same manner as in Example 1, and packed into adsorption tower A. The temperature was raised to 180 ° C. under a nitrogen flow at a flow rate of 200 Ncm 3 / min. Then, at that temperature, a flow rate of 10
The regeneration treatment with an oxygen mixed gas was started in place of the air flow of 0 Ncm 3 / min. The maximum temperature in the tower is 187 ° C
However, since the temperature rise was small and it was not clear when the temperature at the end portion on the outlet side of the activated carbon filling portion dropped to 180 ° C. to end regeneration was unclear, the first regeneration process of Example 10 was performed. 1.5 hours, the same as the time. After the regeneration treatment, the flow rate was changed to a nitrogen flow at a flow rate of 200 Ncm 3 / min.
The tower temperature was lowered to room temperature. The weight of the activated carbon after the regeneration treatment was 14.80 g. The residue was adsorbed on the entire amount of 14.80 g of this activated carbon in the same manner as in Example 1, but the residue adsorbed amount was only 0.20% by mass.

【0084】比較例9 再生温度を変更して、実施例10と同じ再生操作を行っ
た。14.90gのPt/AC−3に実施例1と同じ方
法で、5.10質量%の残渣分を吸着させ、吸着塔Aに
充填した。流量200Ncm3 /minの窒素気流下で
360℃までに昇温した後、その温度で流量200Nc
3 /minの空気気流に替えて、酸素混合ガスによる
再生処理を開始した。塔内の温度は最高493℃まで上
昇し、活性炭充填部の出口側の末端部分の温度が360
℃まで下がった時点を再生終了とした。流量200Nc
3 /minの窒素気流に替え、室温まで塔温度を下げ
た。酸素混合ガス(空気)による再生所要時間は0.9
時間で、再生処理後の活性炭の重さは12.56gであ
った。再生処理後のPt/AC−3の表面積は1250
2 /g、細孔容積は0.183cm3 /gであった。
活性炭の重量および物性は再生処理前に比べて大きく低
下した。
Comparative Example 9 The same regenerating operation as in Example 10 was performed while changing the regenerating temperature. A residue of 5.10% by mass was adsorbed on 14.90 g of Pt / AC-3 in the same manner as in Example 1, and packed into the adsorption tower A. After the temperature was raised to 360 ° C. under a nitrogen flow at a flow rate of 200 Ncm 3 / min, the flow rate was 200 Nc at that temperature.
The regeneration treatment with an oxygen mixed gas was started in place of the air flow of m 3 / min. The temperature in the column rises to a maximum of 493 ° C., and the temperature at the end of the outlet side of the activated carbon packing section becomes 360 °.
The point at which the temperature dropped to ℃ was regarded as the end of regeneration. Flow rate 200Nc
The tower temperature was lowered to room temperature by changing to a nitrogen stream of m 3 / min. The time required for regeneration with oxygen mixed gas (air) is 0.9
In time, the activated carbon after the regeneration treatment weighed 12.56 g. The surface area of Pt / AC-3 after the regeneration treatment is 1250
m 2 / g, and the pore volume was 0.183 cm 3 / g.
The weight and physical properties of the activated carbon were greatly reduced as compared with those before the regeneration treatment.

【0085】比較例10 実施例11の4回目の再生処理後の活性炭694.8g
全量に、実施例1と同じ方法で5.10質量%の残渣分
を吸着させ、吸着塔Bに充填し、1回目の再生処理と同
じ操作で、酸素混合ガスによる再生処理を行った。再生
条件を酸素混合ガスの酸素濃度を2容量%、圧力を常圧
にし、流量を活性炭充填部部分0〜20cmは10.0
Nl/min、〜40cmは12.0Nl/minで再
生を行った。再生処理中の塔内温度は、流量によって変
わり、それぞれ約460℃、約500℃で推移した。5
回目の再生処理後の活性炭重量は670.7gであっ
た。再生処理後のPt/AC−1の表面積は1150m
2 /g、細孔容積は0.156cm3 /gであった。活
性炭の重量および物性は再生処理前に比べて大きく低下
した。
Comparative Example 10 Activated carbon 694.8 g after the fourth regeneration treatment of Example 11
A residue of 5.10% by mass was adsorbed on the entire amount in the same manner as in Example 1, packed in the adsorption tower B, and subjected to a regeneration treatment with an oxygen mixed gas in the same operation as the first regeneration treatment. The regeneration conditions were as follows: the oxygen concentration of the oxygen mixed gas was 2% by volume, the pressure was normal pressure, and the flow rate was 10.0% for the activated carbon filled portion 0 to 20 cm.
Reproduction was performed at 12.0 Nl / min for Nl / min and 4040 cm. The temperature in the tower during the regeneration treatment varied depending on the flow rate, and was about 460 ° C. and about 500 ° C., respectively. 5
The activated carbon weight after the second regeneration treatment was 670.7 g. The surface area of Pt / AC-1 after the regeneration treatment is 1150 m
The pore volume was 0.156 cm 3 / g. The weight and physical properties of the activated carbon were greatly reduced as compared with those before the regeneration treatment.

【0086】比較例11 33.64gの活性炭を吸着塔Aに充填(充填層高40
cm)し、実施例12と同じLPガス、処理条件で、1
回目のLPガス中の残渣分除去処理を行った。破過時間
は13.0時間であった。図3に破過曲線を示す。残渣
分除去処理後の酸素混合ガスによる再生処理も、実施例
12と同じ方法で行った。再生処理中の吸着塔内の温度
は最高260℃であった。また、上記と同じLPガスと
条件で、2回目のLPガス中の残渣分除去処理を行った
が、破過時間は7.8時間であり、1回目より残渣分吸
着能は低下した。
Comparative Example 11 The adsorption tower A was filled with 33.64 g of activated carbon (having a packed bed height of 40).
cm) under the same LP gas and processing conditions as in Example 12.
A second residue removal process in the LP gas was performed. Breakthrough time was 13.0 hours. FIG. 3 shows a breakthrough curve. A regeneration process using an oxygen mixed gas after the residue removal process was performed in the same manner as in Example 12. The temperature in the adsorption tower during the regeneration treatment was 260 ° C. at the maximum. Further, the second residue removal treatment in the LP gas was performed under the same LP gas conditions as described above, but the breakthrough time was 7.8 hours, and the residue adsorption ability was lower than the first time.

【0087】[0087]

【発明の効果】以上説明したように本発明によれば、従
来に比して低温で再生できる吸着剤(白金を担持した活
性炭)を用いる液化ガス中の残渣分の除去方法、および
該吸着剤を再生する方法が提供される。また本発明によ
れば、液化ガス中の残渣分の除去と吸着剤の再生を繰り
返すことが可能となり、液化ガス中の残渣分を連続的に
除去することが可能となる。
As described above, according to the present invention, there is provided a method for removing residues in a liquefied gas using an adsorbent (activated carbon carrying platinum) which can be regenerated at a lower temperature than in the past, and the adsorbent Is provided. Further, according to the present invention, the removal of the residue in the liquefied gas and the regeneration of the adsorbent can be repeated, and the residue in the liquefied gas can be continuously removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための液化石油ガス(LP
G)中の残渣分の除去および吸着剤の再生を連続的に行
うことができる装置の一例である。
FIG. 1 shows a liquefied petroleum gas (LP) for carrying out the present invention.
This is an example of an apparatus that can continuously remove the residue in G) and regenerate the adsorbent.

【図2】実施例1、2、3、5、6のPt/ACのTG
/DTAの実験結果(測定結果)のチャート図である。
図中、横軸は温度(℃)を、縦軸はDTGをそれぞれ表
す。
FIG. 2 is a TG of Pt / AC of Examples 1, 2, 3, 5, and 6
It is a chart figure of the experimental result (measurement result) of / DTA.
In the figure, the horizontal axis represents temperature (° C.), and the vertical axis represents DTG.

【図3】実施例12および比較例11の1回目と2回目
のPt/ACの残渣分除去効果の破過曲線を表す図であ
る。図中、横軸は液化石油ガスの通液時間(h)を、縦
軸は吸着処理された液化石油ガス中の残渣分の濃度(出
口濃度)を吸着処理される前の液化石油ガス中の残渣分
の濃度で割って得られる百分率(%)をそれぞれ示す。
FIG. 3 is a graph showing breakthrough curves of the first and second Pt / AC residue removal effects of Example 12 and Comparative Example 11. In the figure, the abscissa indicates the flow time (h) of the liquefied petroleum gas, and the ordinate indicates the concentration (outlet concentration) of the residue in the liquefied petroleum gas subjected to the adsorption treatment. The percentage (%) obtained by dividing by the concentration of the residue is shown.

【符号の説明】[Explanation of symbols]

1a、1b 吸着塔 1a, 1b adsorption tower

───────────────────────────────────────────────────── フロントページの続き (72)発明者 畑谷 行徳 埼玉県越谷市東大沢3−28−15 (72)発明者 加藤 勝博 埼玉県幸手市権現堂1134−2 (72)発明者 宮田 豊 埼玉県越谷市下間久里830−3 (72)発明者 庄 泉 5−1 HillsideDrive S t.Catharines、Ontari o Canada L2T 3N8 Fターム(参考) 4D017 AA04 BA06 CA03 CA06 CB01 DA01 DB03 EA01 EA03 EB07 4G046 HC11 HC15 4G066 AA05B AA28B AA53A BA25 BA26 BA36 CA51 DA09 DA20 FA12 FA37 GA06 GA32  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yukinori Hataya 3-28-15 Higashi-Osawa, Koshigaya, Saitama Prefecture (72) Inventor Katsuhiro Kato 1134-2, Gongendo, Satte City, Saitama Prefecture (72) Inventor Yutaka Miyata Koshigaya, Saitama Prefecture 830-3 Kuri, Shimouma, Ichimi (72) Inventor 5-1 Shoizumi Drive Hillside Drive St. Catharines, Ontario Canada L2T 3N8 F Term (Reference) 4D017 AA04 BA06 CA03 CA06 CB01 DA01 DB03 EA01 EA03 EB07 4G046 HC11 HC15 4G066 AA05B AA28B AA53A BA25 BA26 BA36 CA51 DA09 DA20 GA32 FA

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 液化ガス中の残渣分の除去方法であっ
て、液化ガスを白金が担持された活性炭を充填した充填
層に接触させることにより、前記残渣分を該活性炭に吸
着させることを特徴とする液化ガス中の残渣分の除去方
法。
1. A method for removing a residue in a liquefied gas, wherein the residue is adsorbed to the activated carbon by contacting the liquefied gas with a packed bed filled with activated carbon carrying platinum. Method for removing residues in liquefied gas.
【請求項2】 液化ガスを白金が担持された活性炭を充
填した充填層に接触させることにより、前記残渣分を該
活性炭に吸着させ、前記活性炭に吸着した残渣分を酸素
酸化させることで、前記活性炭を再生処理することを特
徴とする吸着剤の再生方法。
2. The liquefied gas is brought into contact with a packed bed filled with activated carbon loaded with platinum, whereby the residue is adsorbed on the activated carbon, and the residue adsorbed on the activated carbon is oxidized with oxygen, A method for regenerating an adsorbent, comprising regenerating activated carbon.
【請求項3】 液化ガスを白金が担持された活性炭を充
填した充填層と接触させることにより、該液化ガス中の
残渣分を前記活性炭に吸着させる液化ガス中の残渣分の
除去工程と、前記活性炭に吸着した液化ガス中の残渣分
を酸素酸化させることで、前記活性炭を再生処理する活
性炭再生工程とを有し、これらの工程を連続的に繰り返
し行うことを特徴とする液化ガス中の残渣分の除去方
法。
3. A step of removing a residue in the liquefied gas, wherein the residue in the liquefied gas is adsorbed on the activated carbon by bringing the liquefied gas into contact with a packed bed filled with activated carbon carrying platinum. By oxidizing the residue in the liquefied gas adsorbed on the activated carbon with oxygen, to have the activated carbon regenerating step of regenerating the activated carbon, and continuously and repeatedly performing these steps. Minute removal method.
【請求項4】 白金を金属換算で、担持後の活性炭の重
量基準で0.01〜5質量%担持させた活性炭を用いる
ことを特徴とする請求項1又は3に記載の液化ガス中の
残渣分の除去方法。
4. The residue in a liquefied gas according to claim 1, wherein activated carbon in which platinum is supported in an amount of 0.01 to 5% by mass in terms of metal based on the weight of the activated carbon after being supported is used. Minute removal method.
【請求項5】 白金を金属換算で、担持後の活性炭重量
基準で、0.01〜5質量%担持させた活性炭を吸着剤
に用いることを特徴とする請求項2に記載の活性炭の再
生方法。
5. The method for regenerating activated carbon according to claim 2, wherein activated carbon loaded with 0.01 to 5% by mass of platinum in terms of metal, based on the weight of activated carbon after loading, is used as an adsorbent. .
【請求項6】 前記酸素酸化は、0℃、1気圧の標準状
態換算で酸素含有量が0.01〜25容量%である混合
ガスを用いて、200〜450℃の温度範囲で酸素酸化
を行うことを特徴とする請求項2又は5に記載の活性炭
の再生方法。
6. The oxygen oxidation is carried out in a temperature range of 200 to 450 ° C. using a mixed gas having an oxygen content of 0.01 to 25% by volume in terms of a standard state at 0 ° C. and 1 atm. The method for regenerating activated carbon according to claim 2 or 5, wherein the method is performed.
JP2000112054A 2000-04-13 2000-04-13 Method for removing residue in liquefied gas and method for regenerating activated carbon Expired - Lifetime JP3651881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000112054A JP3651881B2 (en) 2000-04-13 2000-04-13 Method for removing residue in liquefied gas and method for regenerating activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000112054A JP3651881B2 (en) 2000-04-13 2000-04-13 Method for removing residue in liquefied gas and method for regenerating activated carbon

Publications (2)

Publication Number Publication Date
JP2001294415A true JP2001294415A (en) 2001-10-23
JP3651881B2 JP3651881B2 (en) 2005-05-25

Family

ID=18624288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000112054A Expired - Lifetime JP3651881B2 (en) 2000-04-13 2000-04-13 Method for removing residue in liquefied gas and method for regenerating activated carbon

Country Status (1)

Country Link
JP (1) JP3651881B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248848A (en) * 2005-03-11 2006-09-21 Jfe Chemical Corp Method for manufacturing porous carbon material and method for processing the same
JP2008255364A (en) * 2008-06-19 2008-10-23 Japan Energy Corp Liquefied petroleum gas composition for automobile
CN107583308A (en) * 2017-10-19 2018-01-16 苏州苏震生物工程有限公司 A kind of equipment and technique for being used for 1,3 propane diols and the purifying of 2,3 butanediols
CN109701507A (en) * 2019-01-25 2019-05-03 安徽国孚凤凰科技有限公司 A kind of the solvent desorbing device and process of silica gel purification Reclaimed Base Oil
JP2019077609A (en) * 2012-05-07 2019-05-23 カーボン テクノロジー ホールディングス, エルエルシー Biogenic activated carbon and methods of making and using the same
JP2019136640A (en) * 2018-02-08 2019-08-22 ダイダン株式会社 Method for determining performance recovery possibility of active charcoal, active charcoal regeneration method and active charcoal reuse system
JP2020121286A (en) * 2019-01-31 2020-08-13 三菱ケミカル株式会社 Regeneration method of adsorbent

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248848A (en) * 2005-03-11 2006-09-21 Jfe Chemical Corp Method for manufacturing porous carbon material and method for processing the same
JP2008255364A (en) * 2008-06-19 2008-10-23 Japan Energy Corp Liquefied petroleum gas composition for automobile
JP2019077609A (en) * 2012-05-07 2019-05-23 カーボン テクノロジー ホールディングス, エルエルシー Biogenic activated carbon and methods of making and using the same
JP7428472B2 (en) 2012-05-07 2024-02-06 カーボン テクノロジー ホールディングス, エルエルシー Biogenic activated carbon and methods of making and using it
CN107583308A (en) * 2017-10-19 2018-01-16 苏州苏震生物工程有限公司 A kind of equipment and technique for being used for 1,3 propane diols and the purifying of 2,3 butanediols
CN107583308B (en) * 2017-10-19 2023-10-10 苏州苏震生物工程有限公司 Equipment and process for purifying 1, 3-propylene glycol and 2, 3-butanediol
JP2019136640A (en) * 2018-02-08 2019-08-22 ダイダン株式会社 Method for determining performance recovery possibility of active charcoal, active charcoal regeneration method and active charcoal reuse system
JP7055556B2 (en) 2018-02-08 2022-04-18 ダイダン株式会社 Activated carbon performance recovery possibility judgment method, activated carbon regeneration method, and activated carbon reuse system
CN109701507A (en) * 2019-01-25 2019-05-03 安徽国孚凤凰科技有限公司 A kind of the solvent desorbing device and process of silica gel purification Reclaimed Base Oil
CN109701507B (en) * 2019-01-25 2023-12-26 安徽国孚凤凰科技有限公司 Solvent desorption device and process method for refining and regenerating base oil by using silica gel
JP2020121286A (en) * 2019-01-31 2020-08-13 三菱ケミカル株式会社 Regeneration method of adsorbent
JP7400189B2 (en) 2019-01-31 2023-12-19 三菱ケミカル株式会社 How to regenerate adsorbent

Also Published As

Publication number Publication date
JP3651881B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JP4153483B2 (en) Method for purifying hydride gas
US7381243B2 (en) Method for purifying carbon dioxide
TWI460003B (en) Gas purifying method and gas purifying device
JP2009506967A (en) Method and system for purifying gases
KR20060045436A (en) Ingredient and process for producing copper(i) chloride, adsorbent and adsorbing method for reductive gas each with the use of copper(i) chloride, and recovering method of carbon monoxide gas
JPH07330313A (en) Method and apparatus for preparation of high purity liquid nitrogen
JP2001294415A (en) Method of removing residue in liquefied gas and regenerating method of activated carbon
US6589493B2 (en) Gas purification-treating agents and gas purifying apparatuses
JP6142785B2 (en) Method and apparatus for desulfurization of sulfur compounds in fuel
JP5039631B2 (en) Method for producing noble metal supported catalyst
JP6695375B2 (en) Purified gas manufacturing apparatus and purified gas manufacturing method
JP5677358B2 (en) Method for producing ruthenium-supported catalyst
CN112206756A (en) Desorption method of adsorbent
JP3300896B2 (en) How to remove trace oxygen
JP2001162175A (en) Method of producing catalyst for removal of nitrogen oxide and device for that production
JP4101955B2 (en) Ammonia purification method
JP2009249571A (en) Method for eliminating hydrogen sulfide contained in biogas
KR102677862B1 (en) A method for manufacturing a granular adsorbent for separating carbon monoxide or carbon disulfide, a granular adsorbent for separating carbon monoxide and carbon disulfide produced therefrom, and a separation device comprising the granular adsorbent
JP5684898B2 (en) Gas purification method
JP3062759B2 (en) Manufacturing method of carbon dioxide adsorbent
JPH0521027B2 (en)
CN114073987B (en) Catalyst for eliminating formaldehyde through storage-oxidation tandem connection and preparation and application thereof
JP3213851B2 (en) Removal method of carbon monoxide in inert gas
JP2902317B2 (en) Room temperature purification method and apparatus for inert gas
JPS61242908A (en) Adsorbent for separating and recovering co, production thereof and method for separating and recovering co of high purity using said adsorbent

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3651881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term