JP7400101B2 - Method for manufacturing copper-iron alloy material with electromagnetic shielding performance - Google Patents

Method for manufacturing copper-iron alloy material with electromagnetic shielding performance Download PDF

Info

Publication number
JP7400101B2
JP7400101B2 JP2022529750A JP2022529750A JP7400101B2 JP 7400101 B2 JP7400101 B2 JP 7400101B2 JP 2022529750 A JP2022529750 A JP 2022529750A JP 2022529750 A JP2022529750 A JP 2022529750A JP 7400101 B2 JP7400101 B2 JP 7400101B2
Authority
JP
Japan
Prior art keywords
alloy
temperature
copper
strip
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022529750A
Other languages
Japanese (ja)
Other versions
JP2023503916A (en
Inventor
ワン、ウェンピン
チョウ、ピン
リャン、チエンピン
ワン、チュン
ヤン、ホンイェン
スン、チュンポン
クオ、チョアンリー
シャン、イン
Original Assignee
シルイ アドバンスド コパー アロイ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シルイ アドバンスド コパー アロイ カンパニー リミテッド filed Critical シルイ アドバンスド コパー アロイ カンパニー リミテッド
Publication of JP2023503916A publication Critical patent/JP2023503916A/en
Application granted granted Critical
Publication of JP7400101B2 publication Critical patent/JP7400101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

発明の詳細な説明Detailed description of the invention

本願は、出願日が2019年11月23日である中国特許出願201910782289Xの優先権を主張する。本願は、上記の中国特許出願の全文を引用する。 This application claims priority to Chinese Patent Application No. 201910782289X, whose filing date is November 23, 2019. This application cites the entire text of the above-mentioned Chinese patent application.

本発明は、電磁波シールド技術分野に関し、具体的に電磁波シールド性能を備えた銅鉄合金材の製造方法に関する The present invention relates to the field of electromagnetic shielding technology, and specifically relates to a method for manufacturing a copper-iron alloy material with electromagnetic shielding performance.

現代の電子情報の急速な発展に伴い、ますます多くの電子・電気デバイスが使用されるようになり、同時に、これらの電子デバイスによって発生されるさまざまな周波数とエネルギーの電磁波は、新しい汚染源として人々の生活に溢れている。また、それは、現在、水質汚染、騒音汚染、大気汚染と合わせて4つの主な汚染と呼ばれている。電磁波による汚染は、宇宙に分布する電磁波によって引き起こされ、電磁波によって引き起こされる電磁波の危険性は、主に人間の健康への悪影響、自然環境への影響、電子機器への妨害という3つの面にある。 With the rapid development of modern electronic information, more and more electronic and electrical devices are used, and at the same time, the electromagnetic waves of various frequencies and energies generated by these electronic devices are becoming a new source of pollution for people. It's full of life. In addition, it is currently called four major types of pollution, including water pollution, noise pollution, and air pollution. Electromagnetic pollution is caused by electromagnetic waves distributed in space, and the dangers of electromagnetic waves caused by electromagnetic waves mainly lie in three aspects: negative impact on human health, impact on the natural environment, and interference with electronic equipment. .

現在、金属電磁波シールド材料は通常、(i)良好な電気伝導率を有するため静電界と高周波および低周波の磁界のシールドによく使用される、銅、アルミニウム、ニッケルなどの優れた導体類シールド材料、および、(ii)高い透磁率を有するため、低周波(f<100KHz)の磁界のシールドによく使用される、鉄、シリコン鋼、ピペルモ合金などの、強磁性シールド材という2つのカテゴリに分類されている。したがって、電磁波シールド保護措置は、現代の生活において非常に重要な役割を果たし、将来研究の重要な課題の1つである。 At present, metal electromagnetic shielding materials are usually selected from (i) good conductor-type shielding materials such as copper, aluminum, and nickel, which have good electrical conductivity and are often used for shielding electrostatic fields and high- and low-frequency magnetic fields; and (ii) ferromagnetic shielding materials, such as iron, silicon steel, and Pipermo alloys, which are often used to shield low-frequency (f<100 KHz) magnetic fields because of their high magnetic permeability. has been done. Therefore, electromagnetic shielding protection measures play a very important role in modern life and are one of the important topics of future research.

上記の既存の技術的問題を考慮して、本発明は、組織が均一で、高い導電性、透磁性を有する銅鉄合金材の製造方法を提供する。
本発明の構成は、下記の通りである。
In view of the above existing technical problems, the present invention provides a method for producing a copper-iron alloy material having a uniform structure, high electrical conductivity, and magnetic permeability.
The configuration of the present invention is as follows.

パーセンテージで原料中のFe元素の含有率5%~10%、原料中のCu元素の含有率90%~95%で配合された原料を中周波数誘導炉で溶解して均一な合金溶液を得る溶解ステップであって、その過程で脱気および脱酸工程を行い、かつ、電磁攪拌を伴い、Fe元素としてCuFe母合金を添加し、Cu元素として電気銅板を用いる溶解ステップ(1)、 Melting to obtain a uniform alloy solution by melting raw materials with a percentage of Fe element content in the raw material of 5% to 10% and a Cu element content of the raw material of 90% to 95% in a medium frequency induction furnace. A melting step (1) in which a degassing and deoxidizing step is performed in the process, a CuFe master alloy is added as the Fe element, and an electrolytic copper plate is used as the Cu element;

黒鉛張り銅晶析器を使用してステップ(1)で得られた合金溶液を冷却晶析し、鋳造速度を50~100mm/minとし、長方形の合金インゴットを得る鋳造ステップ(2)、 A casting step (2) in which the alloy solution obtained in step (1) is cooled and crystallized using a graphite-lined copper crystallizer at a casting speed of 50 to 100 mm/min to obtain a rectangular alloy ingot;

ガス炉を使用して、ステップ(2)で得られた合金インゴットを加熱温度890℃~930℃で加熱し、3~4時間保温した後、2ロール可逆圧延機でパス分けして熱間圧延する熱間圧延ステップ(3)、 Using a gas furnace, the alloy ingot obtained in step (2) is heated at a heating temperature of 890°C to 930°C, kept warm for 3 to 4 hours, and then hot-rolled in passes in a two-roll reversible rolling mill. hot rolling step (3),

ステップ(3)で熱間圧延して得られた板材を、両面フライス加工装置でフライス厚さ0.5mm~1mmで上面フライス加工および下面フライス加工を行うフライス加工ステップ(4)、 A milling step (4) in which the plate material obtained by hot rolling in step (3) is subjected to upper surface milling and lower surface milling using a double-sided milling device to a milling thickness of 0.5 mm to 1 mm;

ステップ(4)で得られたストリップを冷間圧延し、冷間圧延プロセス中にベルジャー炉を用いて焼鈍温度を600℃~700℃に制御しながら焼鈍処理を行って半製品であるストリップを得る冷間圧延・焼鈍ステップ(5)、および、 The strip obtained in step (4) is cold rolled and annealed using a bell jar furnace during the cold rolling process while controlling the annealing temperature to 600°C to 700°C to obtain a semi-finished strip. cold rolling/annealing step (5), and

ステップ(5)で得られた半製品であるストリップを熱処理し、熱処理温度を450℃~550℃に制御し、熱処理した後、表面洗浄を行って、最終製品である合金ストリップを得る熱処理・洗浄ステップ(6)、
を含む、電磁波シールド性能を備えた銅鉄合金材の製造方法。
The semi-finished strip obtained in step (5) is heat treated, the heat treatment temperature is controlled at 450°C to 550°C, and after the heat treatment, the surface is cleaned to obtain the final product, the alloy strip.Heat treatment and cleaning step (6),
A method for producing a copper-iron alloy material with electromagnetic shielding performance, including

さらに、ステップ(3)の具体的な手順として、まず、2ロール可逆圧延機を予めに温度750℃~850℃に加熱し、そして、合金インゴットを、厚さが70~95mmになるまで4~8パスで熱間圧延する。このプロセスにより、合金の組成成分を均質化して熱間圧延後の金属粒子の析出を低減するという目的を達成することができる。
さらに、ステップ(4)において、上部フライス盤送り速度は30~60mm/minであり、下部フライス盤送り速度は50~90mm/minである。
Furthermore, as a specific procedure for step (3), first, a two-roll reversible rolling mill is heated in advance to a temperature of 750°C to 850°C, and then the alloy ingot is Hot rolling is performed in 8 passes. This process can achieve the objective of homogenizing the compositional components of the alloy and reducing precipitation of metal particles after hot rolling.
Furthermore, in step (4), the upper milling machine feed rate is 30-60 mm/min, and the lower milling machine feeding rate is 50-90 mm/min.

さらに、ステップ(5)において、焼鈍処理するとき、ベルジャー炉に窒素ガスとメタノールを加え、窒素ガスの流量を2m/h~4m/hとし、メタノールの流量を0.08L/h~0.15L/hとし、加熱時間を15分間~45分間とし、上昇温度を620℃~670℃とし、0.5時間~2.0時間保温処理し、前記ベルジャー炉の炉圧を180Pa~320Paに制御する。これにより、ストリップの透磁性を高め、熱処理中におけるストリップの酸化を防止する。 Furthermore, in step (5), when annealing, nitrogen gas and methanol are added to the bell jar furnace, and the flow rate of nitrogen gas is set to 2 m 3 /h to 4 m 3 /h, and the flow rate of methanol is set to 0.08 L/h to 0. .15L/h, heating time for 15 minutes to 45 minutes, rising temperature to 620°C to 670°C, heat retention treatment for 0.5 hours to 2.0 hours, and furnace pressure of the bell jar furnace to 180 Pa to 320 Pa. Control. This increases the magnetic permeability of the strip and prevents oxidation of the strip during heat treatment.

さらに、ステップ(6)において、前記熱処理の具体的な手順として、第1段階で、前記半製品であるストリップを熱処理炉に置き、温度450℃~500℃の条件下で1.2h~2h保温処理し、そして、第2段階で、前記半製品であるストリップを温度500℃~700℃の条件下で2h~4h保温し、そして温度450℃~550℃まで降温して2.5h~4h保温処理する。これにより、半製品であるストリップの引張強度、曲げ強度等の物性を向上させる。 Furthermore, in step (6), as a specific procedure for the heat treatment, in the first step, the strip, which is the semi-finished product, is placed in a heat treatment furnace and kept warm for 1.2 hours to 2 hours at a temperature of 450°C to 500°C. Then, in the second step, the semi-finished strip is kept warm at a temperature of 500°C to 700°C for 2h to 4h, and then lowered to a temperature of 450°C to 550°C and kept warm for 2.5h to 4h. Process. This improves physical properties such as tensile strength and bending strength of the semi-finished strip.

さらに、ステップ(6)が完了した後、研磨装置を使用して最終製品である合金ストリップを研磨処理し、かつ磁粉探傷と超音波探傷による処理を行って、最終製品である合金ストリップにクラックの有無を検査して、最終製品である合金ストリップの表面と内部に欠陥がないことを確保する。 Furthermore, after step (6) is completed, the final product, the alloy strip, is polished using a polishing device, and processed by magnetic particle flaw detection and ultrasonic flaw detection to eliminate cracks in the final product, the alloy strip. Presence inspection to ensure that there are no defects on the surface and interior of the final product, the alloy strip.

さらに、ステップ(6)において、半製品であるストリップを、まず無水アルコールに浸漬し、次に純水で超音波洗浄を行い、最後に高純度窒素ガスでブロー乾燥する。半製品であるストリップの表面を洗浄することにより、半製品であるストリップの表面に付着する不純物が合金材料の電磁波シールド性能に影響を与えることを回避する。 Further, in step (6), the semi-finished strip is first immersed in absolute alcohol, then subjected to ultrasonic cleaning with pure water, and finally blow-dried with high-purity nitrogen gas. By cleaning the surface of the semi-finished strip, impurities adhering to the surface of the semi-finished strip are prevented from affecting the electromagnetic shielding performance of the alloy material.

従来技術に比べて、本発明にて製造された銅鉄合金材は、組織が均一で、Fe相が微細繊維状で圧延方向に平行に分布し、高い導電性と透磁性を有し、それ自体電磁波シールド性能を有する合金材である。本発明は、熱処理と焼鈍処理により合金材のマイクロ構造を変化させ、材料の結晶化体積分率を増加させ、材料のヒステリシスループの形状を変化させ、材料の誘導異方性を高め、合金材中の原子拡散を顕著にし、金属組織分布を均一にする効果を有する。 Compared to the conventional technology, the copper-iron alloy material manufactured by the present invention has a uniform structure, the Fe phase is finely fibrous and distributed parallel to the rolling direction, and has high electrical conductivity and magnetic permeability. It is an alloy material that itself has electromagnetic shielding properties. The present invention changes the microstructure of the alloy material through heat treatment and annealing treatment, increases the crystallization volume fraction of the material, changes the shape of the hysteresis loop of the material, increases the induced anisotropy of the material, and It has the effect of making the atomic diffusion in the metal more noticeable and making the metal structure distribution uniform.

本発明のプロセスフロー図である。FIG. 3 is a process flow diagram of the present invention. 本発明の実施例3で製造された銅鉄合金材を顕微鏡下で50倍に拡大したトポグラフィー図である。FIG. 3 is a topography diagram of the copper-iron alloy material manufactured in Example 3 of the present invention, magnified 50 times under a microscope. 本発明の実施例4で製造された銅鉄合金材を顕微鏡下で100倍に拡大したトポグラフィー図である。FIG. 3 is a topography diagram of the copper-iron alloy material manufactured in Example 4 of the present invention, magnified 100 times under a microscope. 本発明の実施例4で製造された銅鉄合金材を用いて作製された角棒の構造模式図である。It is a structural schematic diagram of the square bar produced using the copper-iron alloy material manufactured in Example 4 of this invention. 本発明の実施例4で製造された銅鉄合金材を用いて作製された丸棒の構造模式図である。It is a structural schematic diagram of the round bar produced using the copper-iron alloy material manufactured in Example 4 of this invention. 本発明の実施例1で製造された銅鉄合金材を用いて作製されたストリップの構造模式図である。FIG. 2 is a schematic structural diagram of a strip manufactured using the copper-iron alloy material manufactured in Example 1 of the present invention. 本発明の実施例2で製造された銅鉄合金材を用いて作製されたCFA95(t)0.2mm銅鉄合金放熱板の構造模式図である。FIG. 2 is a schematic structural diagram of a CFA95(t) 0.2 mm copper-iron alloy heat sink manufactured using the copper-iron alloy material manufactured in Example 2 of the present invention. 本発明の実施例3で製造された銅鉄合金材を用いて作製されたCFA95(t)0.2mm CPUカバーの構造模式図である。FIG. 2 is a schematic structural diagram of a CFA95(t) 0.2 mm CPU cover manufactured using the copper-iron alloy material manufactured in Example 3 of the present invention. 本発明の実施例5で製造された銅鉄合金材を用いて作製されたシールドルームの構造模式図である。It is a structural schematic diagram of the shield room produced using the copper-iron alloy material manufactured in Example 5 of this invention. 本発明の実施例6で製造された銅鉄合金材を用いて作製されたCFA95(t)0.3mm空調パイプの構造模式図である。FIG. 3 is a schematic structural diagram of a CFA95(t) 0.3 mm air conditioning pipe manufactured using the copper-iron alloy material manufactured in Example 6 of the present invention.

実施例1
電磁波シールド性能を備えた銅鉄合金材の製造方法として、下記のステップを含んだ。
Example 1
The method for producing a copper-iron alloy material with electromagnetic shielding performance included the following steps.

溶解ステップ(1):パーセンテージで原料中のFe元素の含有率5%、原料中のCu元素の含有率95%で配合された原料を中周波数誘導炉で溶解し、その過程で脱気および脱酸工程を行い、かつ、電磁攪拌を伴い、そのうち、Fe元素としてCuFe母合金を添加し、Cu元素として電気銅板を用いて、均一な合金溶液を得た。 Melting step (1): The raw materials containing 5% Fe element content and 95% Cu element content in the raw materials are melted in a medium frequency induction furnace, and degassing and degassing are performed in the process. A uniform alloy solution was obtained by carrying out an acid process, accompanied by electromagnetic stirring, adding a CuFe master alloy as the Fe element, and using an electrolytic copper plate as the Cu element.

鋳造ステップ(2):黒鉛張り銅晶析器を使用してステップ(1)で得られた合金溶液を冷却晶析し、鋳造速度を50mm/minとし、長方形の合金インゴットを得た。 Casting step (2): The alloy solution obtained in step (1) was cooled and crystallized using a graphite-lined copper crystallizer at a casting speed of 50 mm/min to obtain a rectangular alloy ingot.

熱間圧延ステップ(3):ガス炉を使用して、ステップ(2)で得られた合金インゴットを加熱温度890℃で加熱し、3時間保温した後、2ロール可逆圧延機でパス分けして熱間圧延し、まず、2ロール可逆圧延機を予め温度750℃に加熱し、そして、合金インゴットを、厚さが70mmになるまで4パスで熱間圧延した。このプロセスにより、合金の組成成分を均質化して熱間圧延後の金属粒子の析出を低減した。 Hot rolling step (3): Using a gas furnace, heat the alloy ingot obtained in step (2) at a heating temperature of 890°C, keep it warm for 3 hours, and then pass it through a two-roll reversible rolling mill. Hot rolling was carried out. First, a two-roll reversible rolling mill was preheated to a temperature of 750° C., and the alloy ingot was hot rolled in four passes until the thickness became 70 mm. This process homogenized the composition of the alloy and reduced the precipitation of metal particles after hot rolling.

フライス加工ステップ(4):ステップ(3)で熱間圧延して得られた板材を、両面フライス加工装置でフライス厚さ0.5mmで上面フライス加工および下面フライス加工を行った。 Milling step (4): The plate material obtained by hot rolling in step (3) was subjected to upper surface milling and lower surface milling using a double-sided milling device to a milling thickness of 0.5 mm.

冷間圧延・焼鈍ステップ(5):ステップ(4)で得られたストリップを冷間圧延し、冷間圧延プロセス中にベルジャー炉を用いて焼鈍温度を600℃に制御しながら焼鈍処理を行って半製品であるストリップを得た。 Cold rolling/annealing step (5): The strip obtained in step (4) is cold rolled and annealed using a bell jar furnace during the cold rolling process while controlling the annealing temperature at 600°C. A semi-finished product, a strip, was obtained.

熱処理・洗浄ステップ(6):ステップ(5)で得られた半製品であるストリップを、熱処理温度450℃で熱処理し、熱処理した後表面洗浄を行って最終製品である合金ストリップを得た。
製造された銅鉄合金材をシールドルーム法で測定し、その結果を表1に示した。
本実施例で製造された銅鉄合金材の構造模式図を図6に示した。
Heat treatment/cleaning step (6): The semi-finished strip obtained in step (5) was heat treated at a heat treatment temperature of 450° C. After the heat treatment, the surface was cleaned to obtain an alloy strip as a final product.
The manufactured copper-iron alloy material was measured by the shield room method, and the results are shown in Table 1.
A schematic structural diagram of the copper-iron alloy material manufactured in this example is shown in FIG.

実施例2
電磁波シールド性能を備えた銅鉄合金材の製造方法として、下記のステップを含んだ。
Example 2
The method for producing a copper-iron alloy material with electromagnetic shielding performance included the following steps.

溶解ステップ(1):パーセンテージで原料中のFe元素の含有率8%、原料中のCu元素の含有率92%で配合された原料を中周波数誘導炉で溶解し、その過程で脱気および脱酸工程を行い、かつ、電磁攪拌を伴い、そのうち、Fe元素としてCuFe母合金を添加し、Cu元素として電気銅板を用いて、均一な合金溶液を得た。 Melting step (1): The raw materials with a Fe element content of 8% in the raw materials and a Cu element content of 92% in the raw materials are melted in a medium frequency induction furnace, and degassing and degassing are performed in the process. A uniform alloy solution was obtained by carrying out an acid process, accompanied by electromagnetic stirring, adding a CuFe master alloy as the Fe element, and using an electrolytic copper plate as the Cu element.

鋳造ステップ(2):黒鉛張り銅晶析器を使用してステップ(1)で得られた合金溶液を冷却晶析し、鋳造速度を80mm/minとし、長方形の合金インゴットを得た。 Casting step (2): The alloy solution obtained in step (1) was cooled and crystallized using a graphite-lined copper crystallizer at a casting speed of 80 mm/min to obtain a rectangular alloy ingot.

熱間圧延ステップ(3):ガス炉を使用して、ステップ(2)で得られた合金インゴットを加熱温度915℃で加熱し、3.5時間保温した後、2ロール可逆圧延機でパス分けして熱間圧延し、まず、2ロール可逆圧延機を予めに温度800℃に加熱し、そして、合金インゴットを、厚さが82mmになるまで6パスで熱間圧延した。このプロセスにより、合金の組成成分を均質化して熱間圧延後の金属粒子の析出を低減した。 Hot rolling step (3): Using a gas furnace, heat the alloy ingot obtained in step (2) at a heating temperature of 915°C, keep it warm for 3.5 hours, and then pass it through a two-roll reversible rolling mill. First, a two-roll reversible rolling mill was preheated to a temperature of 800° C., and the alloy ingot was hot rolled in six passes until the thickness became 82 mm. This process homogenized the composition of the alloy and reduced the precipitation of metal particles after hot rolling.

フライス加工ステップ(4):ステップ(3)で熱間圧延して得られた板材を、両面フライス加工装置でフライス厚さ0.8mmで上面フライス加工および下面フライス加工を行った。そのうち上部フライス盤送り速度は46mm/minであり、下部フライス盤送り速度は77mm/minであった。 Milling step (4): The plate material obtained by hot rolling in step (3) was subjected to upper surface milling and lower surface milling using a double-sided milling device to a milling thickness of 0.8 mm. The feed rate of the upper milling machine was 46 mm/min, and the feed rate of the lower milling machine was 77 mm/min.

冷間圧延・焼鈍ステップ(5):ステップ(4)で得られたストリップを冷間圧延し、冷間圧延プロセス中にベルジャー炉を用いて焼鈍温度を660℃に制御しながら焼鈍処理を行って半製品であるストリップを得た。 Cold rolling/annealing step (5): The strip obtained in step (4) is cold rolled and annealed using a bell jar furnace during the cold rolling process while controlling the annealing temperature at 660°C. A semi-finished product, a strip, was obtained.

熱処理・洗浄ステップ(6):ステップ(5)で得られた半製品であるストリップを、熱処理温度500℃で熱処理し、熱処理した後表面洗浄を行って最終製品である合金ストリップを得た。
製造された銅鉄合金材をシールドルーム法で測定し、その結果を表1に示した。
本実施例で製造された銅鉄合金材から作製したCFA95(t)0.2mm銅鉄合金放熱板的構造模式図を図7に示した。
Heat treatment/cleaning step (6): The strip, which is a semi-finished product obtained in step (5), was heat treated at a heat treatment temperature of 500° C. After the heat treatment, the surface was cleaned to obtain an alloy strip as a final product.
The manufactured copper-iron alloy material was measured by the shield room method, and the results are shown in Table 1.
A schematic structural diagram of a CFA95(t) 0.2 mm copper-iron alloy heat sink manufactured from the copper-iron alloy material manufactured in this example is shown in FIG.

実施例3
電磁波シールド性能を備えた銅鉄合金材の製造方法として、下記のステップを含んだ。
Example 3
The method for producing a copper-iron alloy material with electromagnetic shielding performance included the following steps.

溶解ステップ(1):パーセンテージで原料中のFe元素の含有率10%、原料中のCu元素の含有率90%で配合された原料を中周波数誘導炉で溶解し、その過程で脱気および脱酸工程を行い、かつ、電磁攪拌を伴い、そのうち、Fe元素としてCuFe母合金を添加し、Cu元素として電気銅板を用いて、均一な合金溶液を得た。 Melting step (1): The raw materials containing 10% Fe element content and 90% Cu element content in the raw materials are melted in a medium frequency induction furnace, and degassing and degassing are performed in the process. A uniform alloy solution was obtained by carrying out an acid process, accompanied by electromagnetic stirring, adding a CuFe master alloy as the Fe element, and using an electrolytic copper plate as the Cu element.

鋳造ステップ(2):黒鉛張り銅晶析器を使用してステップ(1)で得られた合金溶液を冷却晶析し、鋳造速度を100mm/minとし、長方形の合金インゴットを得た。 Casting step (2): The alloy solution obtained in step (1) was cooled and crystallized using a graphite-lined copper crystallizer at a casting speed of 100 mm/min to obtain a rectangular alloy ingot.

熱間圧延ステップ(3):ガス炉を使用して、ステップ(2)で得られた合金インゴットを加熱温度930℃で加熱し、4時間保温した後、2ロール可逆圧延機でパス分けして熱間圧延し、まず、2ロール可逆圧延機を予めに温度850℃に加熱し、そして、合金インゴットを、厚さが95mmになるまで8パスで熱間圧延した。このプロセスにより、合金の組成成分を均質化して熱間圧延後の金属粒子の析出を低減した。 Hot rolling step (3): Using a gas furnace, heat the alloy ingot obtained in step (2) at a heating temperature of 930°C, keep it warm for 4 hours, and then pass it through a two-roll reversible rolling mill. Hot rolling was carried out. First, a two-roll reversible rolling mill was preheated to a temperature of 850° C., and the alloy ingot was hot rolled in 8 passes until the thickness became 95 mm. This process homogenized the composition of the alloy and reduced the precipitation of metal particles after hot rolling.

フライス加工ステップ(4):ステップ(3)で熱間圧延して得られた板材を、両面フライス加工装置でフライス厚さ1mmで上面フライス加工および下面フライス加工を行った。そのうち、上部フライス盤送り速度は60mm/minであり、下部フライス盤送り速度は90mm/minであった。 Milling step (4): The plate material obtained by hot rolling in step (3) was subjected to upper surface milling and lower surface milling with a milling thickness of 1 mm using a double-sided milling device. The feed rate of the upper milling machine was 60 mm/min, and the feed rate of the lower milling machine was 90 mm/min.

冷間圧延・焼鈍ステップ(5):ステップ(4)で得られたストリップを冷間圧延し、冷間圧延プロセス中にベルジャー炉を用いて焼鈍温度を700℃に制御しながら焼鈍処理を行って半製品であるストリップを得た。焼鈍処理したとき、ベルジャー炉に窒素ガスとメタノールを加え、窒素ガスの流量を2m/h~4m/hとし、メタノールの流量を0.08L/h~0.15L/hとし、加熱時間を15分間~45分間とし、上昇温度を620℃~670℃とし、0.5時間~2.0時間保温処理し、ベルジャー炉の炉圧を180Pa~320Paに制御した。これにより、ストリップの透磁性を高め、熱処理中におけるストリップの酸化を防止した。 Cold rolling/annealing step (5): The strip obtained in step (4) is cold rolled and annealed using a bell jar furnace during the cold rolling process while controlling the annealing temperature to 700°C. A semi-finished product, a strip, was obtained. During the annealing treatment, nitrogen gas and methanol were added to the bell jar furnace, the flow rate of nitrogen gas was set to 2 m 3 /h to 4 m 3 /h, the flow rate of methanol was set to 0.08 L/h to 0.15 L/h, and the heating time was The heating time was 15 minutes to 45 minutes, the rising temperature was 620° C. to 670° C., the temperature was maintained for 0.5 hours to 2.0 hours, and the furnace pressure of the bell jar furnace was controlled to 180 Pa to 320 Pa. This increased the magnetic permeability of the strip and prevented oxidation of the strip during heat treatment.

熱処理・洗浄ステップ(6):ステップ(5)で得られた半製品であるストリップを、熱処理温度550℃で熱処理し、熱処理した後表面洗浄を行って最終製品である合金ストリップを得た。
製造された銅鉄合金材をシールドルーム法で測定し、その結果を表1に示した。
本実施例で製造された銅鉄合金材を顕微鏡下で50倍に拡大したトポグラフィーを図2に示した。
本実施例で製造された銅鉄合金材を用いて作製されたCFA95(t)0.2mm CPUカバーの構造模式図を図8に示した。
Heat treatment/cleaning step (6): The semi-finished strip obtained in step (5) was heat treated at a heat treatment temperature of 550° C. After the heat treatment, the surface was cleaned to obtain an alloy strip as a final product.
The manufactured copper-iron alloy material was measured by the shield room method, and the results are shown in Table 1.
FIG. 2 shows the topography of the copper-iron alloy material produced in this example, magnified 50 times under a microscope.
FIG. 8 shows a structural schematic diagram of a CFA95(t) 0.2 mm CPU cover manufactured using the copper-iron alloy material manufactured in this example.

実施例4
電磁波シールド性能を備えた銅鉄合金材の製造方法として、下記のステップを含んだ。
Example 4
The method for producing a copper-iron alloy material with electromagnetic shielding performance included the following steps.

溶解ステップ(1):パーセンテージで原料中のFe元素の含有率5%、原料中のCu元素の含有率95%で配合された原料を中周波数誘導炉で溶解し、その過程で脱気および脱酸工程を行い、かつ、電磁攪拌を伴い、そのうち、Fe元素としてCuFe母合金を添加し、Cu元素として電気銅板を用いて、均一な合金溶液を得た。 Melting step (1): The raw materials containing 5% Fe element content and 95% Cu element content in the raw materials are melted in a medium frequency induction furnace, and degassing and degassing are performed in the process. A uniform alloy solution was obtained by carrying out an acid process, accompanied by electromagnetic stirring, adding a CuFe master alloy as the Fe element, and using an electrolytic copper plate as the Cu element.

鋳造ステップ(2):黒鉛張り銅晶析器を使用してステップ(1)で得られた合金溶液を冷却晶析し、鋳造速度を50mm/minとし、長方形の合金インゴットを得た。 Casting step (2): The alloy solution obtained in step (1) was cooled and crystallized using a graphite-lined copper crystallizer at a casting speed of 50 mm/min to obtain a rectangular alloy ingot.

熱間圧延ステップ(3):ガス炉を使用して、ステップ(2)で得られた合金インゴットを加熱温度890℃で加熱し、3時間保温した後、2ロール可逆圧延機でパス分けして熱間圧延し、まず、2ロール可逆圧延機を予めに温度750℃に加熱し、そして、合金インゴットを、厚さが70mmになるまで4パスで熱間圧延した。このプロセスにより、合金の組成成分を均質化して熱間圧延後の金属粒子の析出を低減した。 Hot rolling step (3): Using a gas furnace, heat the alloy ingot obtained in step (2) at a heating temperature of 890°C, keep it warm for 3 hours, and then pass it through a two-roll reversible rolling mill. Hot rolling was carried out. First, a two-roll reversible rolling mill was preheated to a temperature of 750° C., and the alloy ingot was hot rolled in four passes until the thickness became 70 mm. This process homogenized the composition of the alloy and reduced the precipitation of metal particles after hot rolling.

フライス加工ステップ(4):ステップ(3)で熱間圧延して得られた板材を、両面フライス加工装置でフライス厚さ0.5mmで上面フライス加工および下面フライス加工を行った。 Milling step (4): The plate material obtained by hot rolling in step (3) was subjected to upper surface milling and lower surface milling using a double-sided milling device to a milling thickness of 0.5 mm.

冷間圧延・焼鈍ステップ(5):ステップ(4)で得られたストリップを冷間圧延し、冷間圧延プロセス中にベルジャー炉を用いて焼鈍温度を600℃に制御しながら焼鈍処理を行って半製品であるストリップを得た。 Cold rolling/annealing step (5): The strip obtained in step (4) is cold rolled and annealed using a bell jar furnace during the cold rolling process while controlling the annealing temperature at 600°C. A semi-finished product, a strip, was obtained.

熱処理・洗浄ステップ(6):ステップ(5)で得られた半製品であるストリップを、熱処理温度450℃で熱処理し、熱処理した後表面洗浄を行って最終製品である合金ストリップを得た。熱処理の具体的な手順として、第1段階で、前記半製品であるストリップを熱処理炉に置き、温度450℃の条件下で1.2h保温処理し、そして、第2段階で、前記半製品であるストリップを温度500℃の条件下で2h保温し、そして温度450℃まで降温して2.5h保温処理した。これにより、半製品であるストリップの引張強度、曲げ強度等の物性を向上させる。 Heat treatment/cleaning step (6): The semi-finished strip obtained in step (5) was heat treated at a heat treatment temperature of 450° C. After the heat treatment, the surface was cleaned to obtain an alloy strip as a final product. As a specific procedure for the heat treatment, in the first step, the semi-finished product strip is placed in a heat treatment furnace and kept at a temperature of 450°C for 1.2 hours, and in the second step, the semi-finished product is heated. A certain strip was kept at a temperature of 500°C for 2 hours, and then the temperature was lowered to 450°C and kept at a temperature of 2.5 hours. This improves physical properties such as tensile strength and bending strength of the semi-finished strip.

製造された銅鉄合金材をシールドルーム法で測定し、その結果を表1に示した。 The manufactured copper-iron alloy material was measured by the shield room method, and the results are shown in Table 1.

本実施例で製造された銅鉄合金材を顕微鏡下で100倍に拡大したトポグラフィーを図3に示した。 FIG. 3 shows the topography of the copper-iron alloy material produced in this example, magnified 100 times under a microscope.

本実施例で製造された銅鉄合金材を用いて作製された方棒の構造模式図を図4に示した。
本実施例で製造された銅鉄合金材を用いて作製された丸棒の構造模式図を図5に示した。
FIG. 4 shows a schematic structural diagram of a square rod manufactured using the copper-iron alloy material manufactured in this example.
FIG. 5 shows a schematic structural diagram of a round bar manufactured using the copper-iron alloy material manufactured in this example.

実施例5:電磁波シールド性能を備えた銅鉄合金材の製造方法として、下記のステップを含んだ。 Example 5: A method for producing a copper-iron alloy material with electromagnetic shielding performance included the following steps.

溶解ステップ(1):パーセンテージで原料中のFe元素の含有率8%、原料中のCu元素の含有率92%で配合された原料を中周波数誘導炉で溶解し、その過程で脱気および脱酸工程を行い、かつ、電磁攪拌を伴い、そのうち、Fe元素としてCuFe母合金を添加し、Cu元素として電気銅板を用いて、均一な合金溶液を得た。 Melting step (1): The raw materials with a Fe element content of 8% in the raw materials and a Cu element content of 92% in the raw materials are melted in a medium frequency induction furnace, and degassing and degassing are performed in the process. A uniform alloy solution was obtained by carrying out an acid process, accompanied by electromagnetic stirring, adding a CuFe master alloy as the Fe element, and using an electrolytic copper plate as the Cu element.

鋳造ステップ(2):黒鉛張り銅晶析器を使用してステップ(1)で得られた合金溶液を冷却晶析し、鋳造速度を80mm/minとし、長方形の合金インゴットを得た。 Casting step (2): The alloy solution obtained in step (1) was cooled and crystallized using a graphite-lined copper crystallizer at a casting speed of 80 mm/min to obtain a rectangular alloy ingot.

熱間圧延ステップ(3):ガス炉を使用して、ステップ(2)で得られた合金インゴットを加熱温度915℃で加熱し、3.5時間保温した後、2ロール可逆圧延機でパス分けして熱間圧延し、まず、2ロール可逆圧延機を予めに温度800℃に加熱し、そして、合金インゴットを、厚さが82mmになるまで6パスで熱間圧延した。このプロセスにより、合金の組成成分を均質化して熱間圧延後の金属粒子の析出を低減した。 Hot rolling step (3): Using a gas furnace, heat the alloy ingot obtained in step (2) at a heating temperature of 915°C, keep it warm for 3.5 hours, and then pass it through a two-roll reversible rolling mill. First, a two-roll reversible rolling mill was preheated to a temperature of 800° C., and the alloy ingot was hot rolled in six passes until the thickness became 82 mm. This process homogenized the composition of the alloy and reduced the precipitation of metal particles after hot rolling.

フライス加工ステップ(4):ステップ(3)で熱間圧延して得られた板材を、両面フライス加工装置でフライス厚さ0.8mmで上面フライス加工および下面フライス加工を行った。そのうち、上部フライス盤送り速度は46mm/minであり、下部フライス盤送り速度は77mm/minであった。 Milling step (4): The plate material obtained by hot rolling in step (3) was subjected to upper surface milling and lower surface milling using a double-sided milling device to a milling thickness of 0.8 mm. The feed rate of the upper milling machine was 46 mm/min, and the feed rate of the lower milling machine was 77 mm/min.

冷間圧延・焼鈍ステップ(5):ステップ(4)で得られたストリップを冷間圧延し、冷間圧延プロセス中にベルジャー炉を用いて焼鈍温度を660℃に制御しながら焼鈍処理を行って半製品であるストリップを得た。 Cold rolling/annealing step (5): The strip obtained in step (4) is cold rolled and annealed using a bell jar furnace during the cold rolling process while controlling the annealing temperature at 660°C. A semi-finished product, a strip, was obtained.

熱処理・洗浄ステップ(6):ステップ(5)で得られた半製品であるストリップを、熱処理温度500℃で熱処理し、熱処理した後表面洗浄を行って最終製品である合金ストリップを得た。研磨装置を使用して最終製品である合金ストリップを研磨処理し、かつ磁粉探傷と超音波探傷による処理を行い、最終製品である合金ストリップの表面と内部に欠陥がないことを確保するために、最終製品である合金ストリップにクラックがないかどうかを確認した。
製造された銅鉄合金材をシールドルーム法で測定し、その結果を表1に示した。
本実施例で製造された銅鉄合金材を用いて作製されたシールドルームの構造模式図を図9に示した。
Heat treatment/cleaning step (6): The strip, which is a semi-finished product obtained in step (5), was heat treated at a heat treatment temperature of 500° C. After the heat treatment, the surface was cleaned to obtain an alloy strip as a final product. The final product, the alloy strip, is polished using a polishing device, and processed by magnetic particle flaw detection and ultrasonic flaw detection to ensure that there are no defects on the surface and inside of the final product, the alloy strip. The final product, the alloy strip, was checked for cracks.
The manufactured copper-iron alloy material was measured by the shield room method, and the results are shown in Table 1.
FIG. 9 shows a schematic structural diagram of a shield room manufactured using the copper-iron alloy material manufactured in this example.

実施例6
電磁波シールド性能を備えた銅鉄合金材の製造方法として、下記のステップを含んだ。
Example 6
The method for producing a copper-iron alloy material with electromagnetic shielding performance included the following steps.

溶解ステップ(1):パーセンテージで原料中のFe元素の含有率8%、原料中のCu元素の含有率92%で配合された原料を中周波数誘導炉で溶解し、その過程で脱気および脱酸工程を行い、かつ、電磁攪拌を伴い、そのうち、Fe元素としてCuFe母合金を添加し、Cu元素として電気銅板を用いて、均一な合金溶液を得た。 Melting step (1): The raw materials with a Fe element content of 8% in the raw materials and a Cu element content of 92% in the raw materials are melted in a medium frequency induction furnace, and degassing and degassing are performed in the process. A uniform alloy solution was obtained by carrying out an acid process, accompanied by electromagnetic stirring, adding a CuFe master alloy as the Fe element, and using an electrolytic copper plate as the Cu element.

鋳造ステップ(2):黒鉛張り銅晶析器を使用してステップ(1)で得られた合金溶液を冷却晶析し、鋳造速度を77mm/minとし、長方形の合金インゴットを得た。 Casting step (2): The alloy solution obtained in step (1) was cooled and crystallized using a graphite-lined copper crystallizer at a casting speed of 77 mm/min to obtain a rectangular alloy ingot.

熱間圧延ステップ(3):ガス炉を使用して、ステップ(2)で得られた合金インゴットを加熱温度915℃で加熱し、3.5時間保温した後、2ロール可逆圧延機でパス分けして熱間圧延し、まず、2ロール可逆圧延機を予めに温度800℃に加熱し、そして、合金インゴットを、厚さが83mmになるまで4~8パスで熱間圧延した。このプロセスにより、合金の組成成分を均質化して熱間圧延後の金属粒子の析出を低減した。 Hot rolling step (3): Using a gas furnace, heat the alloy ingot obtained in step (2) at a heating temperature of 915°C, keep it warm for 3.5 hours, and then pass it through a two-roll reversible rolling mill. First, a two-roll reversible rolling mill was preheated to a temperature of 800° C., and the alloy ingot was hot rolled in 4 to 8 passes until the thickness became 83 mm. This process homogenized the composition of the alloy and reduced the precipitation of metal particles after hot rolling.

フライス加工ステップ(4):ステップ(3)で熱間圧延して得られた板材を、両面フライス加工装置でフライス厚さ0.8mmで上面フライス加工および下面フライス加工を行った。そのうち、上部フライス盤送り速度は48mm/minであり、下部フライス盤送り速度は77mm/minであった。 Milling step (4): The plate material obtained by hot rolling in step (3) was subjected to upper surface milling and lower surface milling using a double-sided milling device to a milling thickness of 0.8 mm. The feed rate of the upper milling machine was 48 mm/min, and the feed rate of the lower milling machine was 77 mm/min.

冷間圧延・焼鈍ステップ(5):ステップ(4)で得られたストリップを冷間圧延し、冷間圧延プロセス中にベルジャー炉を用いて焼鈍温度を650℃に制御しながら焼鈍処理を行って半製品であるストリップを得た。焼鈍処理するとき、ベルジャー炉に窒素ガスとメタノールを加え、窒素ガスの流量を3m/hとし、メタノールの流量を0.12L/hとし、昇温時間を32 minとし、昇温温度を650℃とし、1.5時間保温処理し、ベルジャー炉の炉圧を260Paに制御した。これにより、ストリップの透磁性を高め、熱処理中におけるストリップの酸化を防止した。 Cold rolling/annealing step (5): The strip obtained in step (4) is cold rolled and annealed using a bell jar furnace during the cold rolling process while controlling the annealing temperature to 650°C. A semi-finished product, a strip, was obtained. When annealing, nitrogen gas and methanol were added to the bell jar furnace, the flow rate of nitrogen gas was 3 m 3 /h, the flow rate of methanol was 0.12 L/h, the heating time was 32 min, and the heating temperature was 650 m 3 /h. ℃, and was heat-retained for 1.5 hours, and the furnace pressure of the bell jar furnace was controlled to 260 Pa. This increased the magnetic permeability of the strip and prevented oxidation of the strip during heat treatment.

熱処理・洗浄ステップ(6):ステップ(5)で得られた半製品であるストリップを、熱処理温度510℃で熱処理し、熱処理した後表面洗浄を行って最終製品である合金ストリップを得た。熱処理の具体的な手順として、第1段階で、半製品であるストリップを熱処理炉に置き、温度470℃の条件下で1.7h保温処理し、そして、第2段階で、半製品であるストリップを温度610℃の条件下で3h保温し、そして温度510℃まで降温して3.5h保温処理した。これにより、半製品であるストリップの引張強度、曲げ強度等の物性を向上させた。研磨装置を使用して最終製品である合金ストリップを研磨処理し、かつ磁粉探傷と超音波探傷による処理を行い、最終製品である合金ストリップの表面と内部に欠陥がないことを確保するために、最終製品である合金ストリップにクラックがないかどうかを確認した。表面を洗浄するとき、半製品であるストリップを、まず無水アルコールに浸漬し、次に純水で超音波洗浄を行い、最後に高純度窒素ガスでブロー乾燥する。半製品であるストリップの表面を洗浄することにより、半製品であるストリップの表面に付着する不純物が合金材料の電磁波シールド性能に影響を与えることを回避した。
製造された銅鉄合金材をシールドルーム法で測定し、その結果を表1に示した。
本実施例6で製造された銅鉄合金材を用いて作製されたCFA95(t)0.3mm空調パイプの構造模式図を図10に示した。
Heat treatment/cleaning step (6): The semi-finished strip obtained in step (5) was heat treated at a heat treatment temperature of 510° C. After the heat treatment, the surface was cleaned to obtain an alloy strip as a final product. As for the specific steps of the heat treatment, in the first step, the semi-finished strip is placed in a heat treatment furnace and kept at a temperature of 470°C for 1.7 hours, and in the second step, the semi-finished strip is placed in a heat treatment furnace. The sample was kept at a temperature of 610°C for 3 hours, and then the temperature was lowered to 510°C and kept at a temperature of 3.5 hours. This improved the physical properties of the semi-finished strip, such as tensile strength and bending strength. The final product, the alloy strip, is polished using a polishing device, and processed by magnetic particle flaw detection and ultrasonic flaw detection to ensure that there are no defects on the surface and inside of the final product, the alloy strip. The final product, the alloy strip, was checked for cracks. When cleaning the surface, the semi-finished strip is first immersed in absolute alcohol, then ultrasonically cleaned with pure water, and finally blow-dried with high-purity nitrogen gas. By cleaning the surface of the semi-finished strip, impurities adhering to the surface of the semi-finished strip were prevented from affecting the electromagnetic shielding performance of the alloy material.
The manufactured copper-iron alloy material was measured by the shield room method, and the results are shown in Table 1.
FIG. 10 shows a structural schematic diagram of a CFA95(t) 0.3 mm air conditioning pipe manufactured using the copper-iron alloy material manufactured in Example 6.

実施例7
電磁波シールド性能を備えた銅鉄合金材の製造方法として、下記のステップを含んだ。
Example 7
The method for producing a copper-iron alloy material with electromagnetic shielding performance included the following steps.

溶解ステップ(1):パーセンテージで原料中のFe元素の含有率10%、原料中のCu元素の含有率90%で配合された原料を中周波数誘導炉で溶解し、その過程で脱気および脱酸工程を行い、かつ、電磁攪拌を伴い、そのうち、Fe元素としてCuFe母合金を添加し、Cu元素として電気銅板を用いて、均一な合金溶液を得た。 Melting step (1): The raw materials containing 10% Fe element content and 90% Cu element content in the raw materials are melted in a medium frequency induction furnace, and degassing and degassing are performed in the process. A uniform alloy solution was obtained by carrying out an acid process, accompanied by electromagnetic stirring, adding a CuFe master alloy as the Fe element, and using an electrolytic copper plate as the Cu element.

鋳造ステップ(2):黒鉛張り銅晶析器を使用してステップ(1)で得られた合金溶液を冷却晶析し、鋳造速度を100mm/minとし、長方形の合金インゴットを得た。 Casting step (2): The alloy solution obtained in step (1) was cooled and crystallized using a graphite-lined copper crystallizer at a casting speed of 100 mm/min to obtain a rectangular alloy ingot.

熱間圧延ステップ(3):ガス炉を使用して、ステップ(2)で得られた合金インゴットを加熱温度930℃で加熱し、4時間保温した後、2ロール可逆圧延機でパス分けして熱間圧延した。 Hot rolling step (3): Using a gas furnace, heat the alloy ingot obtained in step (2) at a heating temperature of 930°C, keep it warm for 4 hours, and then pass it through a two-roll reversible rolling mill. Hot rolled.

フライス加工ステップ(4):ステップ(3)で熱間圧延して得られた板材を、両面フライス加工装置でフライス厚さ1mmで上面フライス加工および下面フライス加工を行った。 Milling step (4): The plate material obtained by hot rolling in step (3) was subjected to upper surface milling and lower surface milling with a milling thickness of 1 mm using a double-sided milling device.

冷間圧延・焼鈍ステップ(5):ステップ(4)で得られたストリップを冷間圧延し、冷間圧延プロセス中にベルジャー炉を用いて焼鈍温度を700℃に制御しながら焼鈍処理を行って半製品であるストリップを得た。 Cold rolling/annealing step (5): The strip obtained in step (4) is cold rolled and annealed using a bell jar furnace during the cold rolling process while controlling the annealing temperature to 700°C. A semi-finished product, a strip, was obtained.

熱処理・洗浄ステップ(6):ステップ(5)で得られた半製品であるストリップを、熱処理温度450℃~550℃で熱処理し、熱処理した後表面洗浄を行って最終製品である合金ストリップを得た。
製造された銅鉄合金材をシールドルーム法で測定し、その結果を表1に示した。
Heat treatment/cleaning step (6): The strip, which is a semi-finished product obtained in step (5), is heat treated at a heat treatment temperature of 450°C to 550°C, and after the heat treatment, the surface is cleaned to obtain an alloy strip, which is a final product. Ta.
The manufactured copper-iron alloy material was measured by the shield room method, and the results are shown in Table 1.

銅鉄合金の電磁波シールド特性は、以下のとおりである。 The electromagnetic shielding properties of copper-iron alloy are as follows.

銅鉄合金は大きな塑性変形を経ると、銅マトリックス内のFe相が「針状」組織(「繊維状」)を呈し、針状形態のFe相が形成する磁場は避雷針の作用と同じ、周辺磁界を吸収し、発電所の磁界と磁場の磁界が反方向性を有し、ヒステリシス現象を起こして互いに打ち消し合い、完全なシールド効果が得られる。
銅鉄合金の応用例
銅鉄合金ストリップ(仕様:(t)0.01mm~(t)0.3mm)
1、5G通信の時代には、ワイヤレス充電とフレキシブル配線板(10μm)に用いる電磁波シールド機能、導電放熱機能を有するプレートが必要されている。
2、ディスプレイバックパネル材用1000mm×1000mm×0.1mmのCFA95ストリップは、ディスプレイメーカーに必要されている。
3、大きなシールドルーム用材料
4、CFA95(t)0.3mmストリップを溶接してなる板材は、コンデンサーパイプなどに用いられる。
When a copper-iron alloy undergoes large plastic deformation, the Fe phase in the copper matrix exhibits an ``acicular'' structure (``fiber-like''), and the magnetic field formed by the acicular Fe phase is similar to the action of a lightning rod. It absorbs the magnetic field, and the magnetic field of the power plant and the magnetic field have opposite directions, causing a hysteresis phenomenon and canceling each other, resulting in a complete shielding effect.
Application examples of copper-iron alloy Copper-iron alloy strip (specifications: (t) 0.01mm to (t) 0.3mm)
1. In the era of 5G communication, plates with electromagnetic shielding functions and conductive heat dissipation functions are needed for wireless charging and flexible wiring boards (10 μm).
2. 1000mm x 1000mm x 0.1mm CFA95 strip for display back panel material is required by display manufacturers.
3. Material for large shield room 4. Plate material made by welding CFA95(t) 0.3mm strips is used for condenser pipes, etc.

以上、本発明の実施形態について説明したが、これらは例示に過ぎず、本発明の原理及び趣旨から逸脱することなく、これらの実施形態に様々な変更又は修正を加えることができることは、当業者には理解すべきである。したがって、本発明の保護範囲は、添付の特許請求の範囲によって定義される。
Although the embodiments of the present invention have been described above, these are merely illustrative, and those skilled in the art will appreciate that various changes or modifications can be made to these embodiments without departing from the principle and spirit of the present invention. should be understood. The scope of protection of the invention is therefore defined by the appended claims.

Claims (8)

パーセンテージで原料中のFe元素の含有率5%~10%、原料中のCu元素の含有率90%~95%で配合された原料を中周波数誘導炉で溶解して均一な合金溶液を得る溶解ステップであって、その過程で脱気および脱酸工程を行い、かつ、電磁攪拌を伴い、Fe元素としてCuFe母合金を添加し、Cu元素として電気銅板を用いる溶解ステップ(1)、
黒鉛張り銅晶析器を使用してステップ(1)で得られた合金溶液を冷却晶析し、鋳造速度を50~100mm/minとし、長方形の合金インゴットを得る鋳造ステップ(2)、
ガス炉を使用して、ステップ(2)で得られた合金インゴットを加熱温度890℃~930℃で加熱し、3~4時間保温した後、2ロール可逆圧延機でパス分けして熱間圧延する熱間圧延ステップ(3)、
ステップ(3)で熱間圧延して得られた板材を、両面フライス加工装置でフライス厚さ0.5mm~1mmで上面フライス加工および下面フライス加工を行うフライス加工ステップ(4)、
ステップ(4)で得られたストリップを冷間圧延し、冷間圧延プロセス中にベルジャー炉を用いて焼鈍温度を600℃~700℃に制御しながら焼鈍処理を行って半製品であるストリップを得る冷間圧延・焼鈍ステップ(5)、および、
ステップ(5)で得られた半製品であるストリップを、熱処理し、熱処理温度を450℃~550℃に制御し、熱処理した後、表面洗浄を行って最終製品である合金ストリップを得る熱処理・洗浄ステップ(6)、
を含み、
前記ステップ(5)において、焼鈍処理するとき、前記ベルジャー炉に窒素ガスとメタノールを加え、前記窒素ガスの流量を2m /h~4m /hとし、前記メタノールの流量を0.08L/h~0.15L/hとし、加熱時間を15分間~45分間とし、昇温温度を620℃~670℃とし、0.5時間~2.0時間保温処理し、前記ベルジャー炉の炉圧を180Pa~320Paに制御することを特徴とし、
ステップ(6)では、前記熱処理を複数の段階に分けて行い、ある段階の熱処理温度を450℃~550℃に制御することを特徴とする、
電磁波シールド性能を備えた銅鉄合金材の製造方法。
Melting to obtain a uniform alloy solution by melting raw materials with a percentage of Fe element content in the raw material of 5% to 10% and a Cu element content of the raw material of 90% to 95% in a medium frequency induction furnace. A melting step (1) in which a degassing and deoxidizing step is performed in the process, a CuFe master alloy is added as the Fe element, and an electrolytic copper plate is used as the Cu element;
A casting step (2) in which the alloy solution obtained in step (1) is cooled and crystallized using a graphite-lined copper crystallizer at a casting speed of 50 to 100 mm/min to obtain a rectangular alloy ingot;
Using a gas furnace, the alloy ingot obtained in step (2) is heated at a heating temperature of 890°C to 930°C, kept warm for 3 to 4 hours, and then hot-rolled in passes in a two-roll reversible rolling mill. hot rolling step (3),
A milling step (4) in which the plate material obtained by hot rolling in step (3) is subjected to upper surface milling and lower surface milling using a double-sided milling device to a milling thickness of 0.5 mm to 1 mm;
The strip obtained in step (4) is cold rolled and annealed using a bell jar furnace during the cold rolling process while controlling the annealing temperature to 600°C to 700°C to obtain a semi-finished strip. cold rolling/annealing step (5), and
The semi-finished strip obtained in step (5) is heat treated, the heat treatment temperature is controlled at 450°C to 550°C, and after the heat treatment, the surface is cleaned to obtain the final product, the alloy strip.Heat treatment/cleaning step (6),
including;
In step (5), when performing the annealing treatment, nitrogen gas and methanol are added to the bell jar furnace, the flow rate of the nitrogen gas is set to 2 m 3 /h to 4 m 3 /h, and the flow rate of the methanol is 0.08 L/h. ~0.15 L/h, heating time for 15 minutes to 45 minutes, heating temperature to 620°C to 670°C, heat retention treatment for 0.5 to 2.0 hours, and furnace pressure of the bell jar furnace to 180 Pa. It is characterized by being controlled to ~320Pa,
In step (6), the heat treatment is performed in a plurality of stages, and the heat treatment temperature in a certain stage is controlled to 450 ° C. to 550 ° C.
A method for manufacturing a copper-iron alloy material with electromagnetic shielding performance.
前記ステップ(3)の具体的な手順として、まず、2ロール可逆圧延機を予めに温度750℃~850℃に加熱し、そして、前記合金インゴットを、厚さが70~95mmになるまで4~8パスで熱間圧延することを特徴とするか、
あるいは、前記ステップ(3)の具体的な手順として、まず、2ロール可逆圧延機を予めに温度750℃~850℃に加熱し、そして、前記合金インゴットを、厚さが70~95mmになるまで6~10パスで熱間圧延することを特徴とする、
請求項1に記載の電磁波シールド性能を備えた銅鉄合金材の製造方法。
As a specific procedure for step (3), first, a two-roll reversible rolling mill is heated in advance to a temperature of 750°C to 850°C, and the alloy ingot is rolled until the thickness becomes 70 to 95 mm. It is characterized by hot rolling in 8 passes,
Alternatively, as a specific procedure for step (3), first, a two-roll reversible rolling mill is heated in advance to a temperature of 750°C to 850°C, and the alloy ingot is rolled until the thickness becomes 70 to 95 mm. Characterized by hot rolling in 6 to 10 passes,
A method for producing a copper-iron alloy material having electromagnetic shielding performance according to claim 1.
前記ステップ(4)において、上部フライス盤送り速度は30~60mm/minであり、下部フライス盤送り速度は50~90mm/minであることを特徴とする、請求項1又は2に記載の電磁波シールド性能を備えた銅鉄合金材の製造方法。 The electromagnetic shielding performance according to claim 1 or 2, characterized in that in step (4), the upper milling machine feed rate is 30 to 60 mm/min, and the lower milling machine feed rate is 50 to 90 mm/min. A method for manufacturing a copper-iron alloy material. ステップ(6)において、前記熱処理の具体的な手順として、第1段階で、前記半製品であるストリップを熱処理炉に置き、温度450℃~500℃の条件下で1.2h~2h保温処理し、そして、第2段階で、前記半製品であるストリップを温度500℃~700℃の条件下で2h~4h保温し、そして温度450℃~550℃まで降温して2.5h~4h保温処理することを特徴とする、請求項1~3のいずれか1項に記載の電磁波シールド性能を備えた銅鉄合金材の製造方法。 In step (6), as a specific procedure for the heat treatment, in the first step, the semi-finished strip is placed in a heat treatment furnace and heat-retained for 1.2 hours to 2 hours at a temperature of 450°C to 500°C. Then, in the second step, the semi-finished strip is kept warm at a temperature of 500°C to 700°C for 2h to 4h, and then lowered to a temperature of 450°C to 550°C for 2.5h to 4h. A method for producing a copper-iron alloy material having electromagnetic shielding performance according to any one of claims 1 to 3, characterized in that: ステップ(6)が完了した後、研磨装置を使用して前記最終製品である合金ストリップを研磨処理し、かつ磁粉探傷と超音波探傷による処理を行って、最終製品である合金ストリップにクラックの有無を検査して、最終製品である合金ストリップの表面と内部に欠陥
がないことを確保することを特徴とする請求項1~4のいずれか1項に記載の電磁波シールド性能を備えた銅鉄合金材の製造方法。
After step (6) is completed, the final product, the alloy strip, is polished using a polishing device, and subjected to magnetic particle flaw detection and ultrasonic flaw detection to determine whether or not there are any cracks in the final product, the alloy strip. The copper-iron alloy with electromagnetic shielding performance according to any one of claims 1 to 4, wherein the copper-iron alloy with electromagnetic shielding performance is inspected to ensure that there are no defects on the surface and inside of the final product alloy strip. Method of manufacturing wood.
パーセンテージで原料中のFe元素の含有率5%~10%、原料中のCu元素の含有率90%~95%で配合された原料を中周波数誘導炉で溶解して均一な合金溶液を得る溶解ステップであって、その過程で脱気および脱酸工程を行い、かつ、電磁攪拌を伴い、Fe元素としてCuFe母合金を添加し、Cu元素として電気銅板を用いる溶解ステップ(1)、
黒鉛張り銅晶析器を使用してステップ(1)で得られた合金溶液を冷却晶析し、鋳造速度を50~100mm/minとし、長方形の合金インゴットを得る鋳造ステップ(2)、
ガス炉を使用して、ステップ(2)で得られた合金インゴットを加熱温度890℃~930℃で加熱し、3~4時間保温した後、2ロール可逆圧延機でパス分けして熱間圧延する熱間圧延ステップ(3)、
ステップ(3)で熱間圧延して得られた板材を、両面フライス加工装置でフライス厚さ0.5mm~1mmで上面フライス加工および下面フライス加工を行うフライス加工ステップ(4)、
ステップ(4)で得られたストリップを冷間圧延し、冷間圧延プロセス中にベルジャー炉を用いて焼鈍温度を600℃~700℃に制御しながら焼鈍処理を行って半製品であるストリップを得る冷間圧延・焼鈍ステップ(5)、および、
ステップ(5)で得られた半製品であるストリップを、熱処理し、熱処理温度を450℃~550℃に制御し、熱処理した後、表面洗浄を行って最終製品である合金ストリップを得る熱処理・洗浄ステップ(6)、
を含み、
ステップ(6)において、前記熱処理の具体的な手順として、第1段階で、前記半製品であるストリップを熱処理炉に置き、温度450℃~500℃の条件下で1.2h~2h保温処理し、そして、第2段階で、前記半製品であるストリップを温度500℃~700℃の条件下で2h~4h保温し、そして温度450℃~550℃まで降温して2.5h~4h保温処理することを特徴とする、
電磁波シールド性能を備えた銅鉄合金材の製造方法。
Melting to obtain a uniform alloy solution by melting raw materials with a percentage of Fe element content in the raw material of 5% to 10% and a Cu element content of the raw material of 90% to 95% in a medium frequency induction furnace. A melting step (1) in which a degassing and deoxidizing step is performed in the process, a CuFe master alloy is added as the Fe element, and an electrolytic copper plate is used as the Cu element;
A casting step (2) in which the alloy solution obtained in step (1) is cooled and crystallized using a graphite-lined copper crystallizer at a casting speed of 50 to 100 mm/min to obtain a rectangular alloy ingot;
Using a gas furnace, the alloy ingot obtained in step (2) is heated at a heating temperature of 890°C to 930°C, kept warm for 3 to 4 hours, and then hot-rolled in passes in a two-roll reversible rolling mill. hot rolling step (3),
A milling step (4) in which the plate material obtained by hot rolling in step (3) is subjected to upper surface milling and lower surface milling using a double-sided milling device to a milling thickness of 0.5 mm to 1 mm;
The strip obtained in step (4) is cold rolled and annealed using a bell jar furnace during the cold rolling process while controlling the annealing temperature to 600°C to 700°C to obtain a semi-finished strip. cold rolling/annealing step (5), and
The semi-finished strip obtained in step (5) is heat treated, the heat treatment temperature is controlled at 450°C to 550°C, and after the heat treatment, the surface is cleaned to obtain the final product, the alloy strip.Heat treatment/cleaning step (6),
including;
In step (6), as a specific procedure for the heat treatment, in the first step, the semi-finished strip is placed in a heat treatment furnace and heat-retained for 1.2 hours to 2 hours at a temperature of 450°C to 500°C. Then, in the second step, the semi-finished strip is kept warm at a temperature of 500°C to 700°C for 2h to 4h, and then lowered to a temperature of 450°C to 550°C for 2.5h to 4h. characterized by
A method for manufacturing a copper-iron alloy material with electromagnetic shielding performance.
前記ステップ(3)の具体的な手順として、まず、2ロール可逆圧延機を予めに温度750℃~850℃に加熱し、そして、前記合金インゴットを、厚さが70~95mmになるまで4~8パスで熱間圧延することを特徴とするか、
あるいは、前記ステップ(3)の具体的な手順として、まず、2ロール可逆圧延機を予めに温度750℃~850℃に加熱し、そして、前記合金インゴットを、厚さが70~95mmになるまで6~10パスで熱間圧延することを特徴とする、
請求項6に記載の電磁波シールド性能を備えた銅鉄合金材の製造方法。
As a specific procedure for step (3), first, a two-roll reversible rolling mill is heated in advance to a temperature of 750°C to 850°C, and the alloy ingot is rolled until the thickness becomes 70 to 95 mm. It is characterized by hot rolling in 8 passes,
Alternatively, as a specific procedure for step (3), first, a two-roll reversible rolling mill is heated in advance to a temperature of 750°C to 850°C, and the alloy ingot is rolled until the thickness becomes 70 to 95 mm. Characterized by hot rolling in 6 to 10 passes,
A method for manufacturing a copper-iron alloy material having electromagnetic shielding performance according to claim 6.
前記ステップ(4)において、上部フライス盤送り速度は30~60mm/minであり、下部フライス盤送り速度は50~90mm/minであることを特徴とする、請求項6又は7に記載の電磁波シールド性能を備えた銅鉄合金材の製造方法。The electromagnetic shielding performance according to claim 6 or 7, characterized in that in step (4), the upper milling machine feed rate is 30 to 60 mm/min, and the lower milling machine feed rate is 50 to 90 mm/min. A method for manufacturing a copper-iron alloy material.
JP2022529750A 2019-11-23 2020-09-27 Method for manufacturing copper-iron alloy material with electromagnetic shielding performance Active JP7400101B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910782289.XA CN110699571B (en) 2019-11-23 2019-11-23 Preparation method of copper-iron alloy material with electromagnetic shielding performance
CN201910782289.X 2019-11-23
PCT/CN2020/118032 WO2021098381A1 (en) 2019-11-23 2020-09-27 Method for preparing copper-iron alloy material having electromagnetic shielding performance

Publications (2)

Publication Number Publication Date
JP2023503916A JP2023503916A (en) 2023-02-01
JP7400101B2 true JP7400101B2 (en) 2023-12-18

Family

ID=69193377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022529750A Active JP7400101B2 (en) 2019-11-23 2020-09-27 Method for manufacturing copper-iron alloy material with electromagnetic shielding performance

Country Status (4)

Country Link
JP (1) JP7400101B2 (en)
KR (1) KR20220104222A (en)
CN (1) CN110699571B (en)
WO (1) WO2021098381A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110699571B (en) * 2019-11-23 2021-03-12 西安斯瑞先进铜合金科技有限公司 Preparation method of copper-iron alloy material with electromagnetic shielding performance
CN111618533B (en) * 2020-06-01 2021-07-06 西安斯瑞先进铜合金科技有限公司 Preparation method of long-life and low-cost soldering bit
CN111778417B (en) * 2020-06-15 2021-05-14 陕西斯瑞新材料股份有限公司 Preparation method of CuFeP alloy wire for shielding
CN111826545B (en) * 2020-06-24 2022-02-01 东南大学 Copper-iron alloy material and preparation method and application thereof
CN111893342B (en) * 2020-07-16 2021-11-30 中南大学 Preparation method of CuFe alloy composite material for electromagnetic shielding body and product thereof
CN112011698A (en) * 2020-08-17 2020-12-01 西安斯瑞先进铜合金科技有限公司 Preparation method of copper strip of manganese white copper
CN112080658A (en) * 2020-08-28 2020-12-15 西安斯瑞先进铜合金科技有限公司 Preparation method of copper-iron alloy plate strip
CN113444900A (en) * 2021-06-25 2021-09-28 中铜华中铜业有限公司 Copper-based iron-rich alloy plate strip foil and preparation process thereof
CN114540657B (en) * 2022-03-24 2022-11-25 中南大学 Rare earth copper alloy material with broadband electromagnetic shielding function and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207246A (en) 2011-03-29 2012-10-25 Kobe Steel Ltd Copper alloy for electromagnetic shielding material and method for producing the same
JP2015093311A (en) 2013-11-13 2015-05-18 巌 中島 Manufacturing method of eutectic copper-iron alloy
JP2015151559A (en) 2014-02-12 2015-08-24 三菱マテリアル株式会社 Cu-Fe alloy
US20160215357A1 (en) 2013-09-06 2016-07-28 Kc Glass & Materials Co., Ltd. Copper ferrous alloy for shielding electromagnetic waves and method for preparing the same
CN107695622A (en) 2017-09-22 2018-02-16 山西春雷铜材有限责任公司 The preparation method of new energy car battery lug copper strips
CN110229972A (en) 2019-06-12 2019-09-13 陕西斯瑞新材料股份有限公司 A kind of Copper-iron alloy material electromagnetic shielding line and its manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030029532A1 (en) * 2001-05-24 2003-02-13 Olin Corporation Nickel containing high copper alloy
WO2006009538A1 (en) * 2004-06-16 2006-01-26 Brush Wellman Inc. Copper beryllium alloy strip
CN104561885B (en) * 2013-10-10 2017-03-29 通富热处理(昆山)有限公司 The method for annealing of automobile brake disc
CN106148866A (en) * 2015-04-13 2016-11-23 江苏迅达电磁线有限公司 A kind of short route manufactures the processing method of copper alloy abnormity band
CN104988350B (en) * 2015-07-30 2016-09-28 张连仲 A kind of high ductibility copper-iron alloy and preparation method thereof and copper-iron alloy silk material
KR20170075832A (en) * 2015-12-23 2017-07-04 주식회사 포스코 Electromagnetic wave shielding material using copper-ferrous alloy powder and manufacturing method of the same
KR101939899B1 (en) * 2017-04-19 2019-01-18 한국생산기술연구원 Cu-Fe alloy and electromagnetic wave shilding material
CN109576516B (en) * 2018-12-19 2020-11-03 湘潭大学 Short-process preparation method of copper-iron alloy plate wire for electromagnetic wave shielding
CN110699571B (en) * 2019-11-23 2021-03-12 西安斯瑞先进铜合金科技有限公司 Preparation method of copper-iron alloy material with electromagnetic shielding performance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207246A (en) 2011-03-29 2012-10-25 Kobe Steel Ltd Copper alloy for electromagnetic shielding material and method for producing the same
US20160215357A1 (en) 2013-09-06 2016-07-28 Kc Glass & Materials Co., Ltd. Copper ferrous alloy for shielding electromagnetic waves and method for preparing the same
JP2015093311A (en) 2013-11-13 2015-05-18 巌 中島 Manufacturing method of eutectic copper-iron alloy
JP2015151559A (en) 2014-02-12 2015-08-24 三菱マテリアル株式会社 Cu-Fe alloy
CN107695622A (en) 2017-09-22 2018-02-16 山西春雷铜材有限责任公司 The preparation method of new energy car battery lug copper strips
CN110229972A (en) 2019-06-12 2019-09-13 陕西斯瑞新材料股份有限公司 A kind of Copper-iron alloy material electromagnetic shielding line and its manufacturing method

Also Published As

Publication number Publication date
CN110699571B (en) 2021-03-12
JP2023503916A (en) 2023-02-01
WO2021098381A1 (en) 2021-05-27
KR20220104222A (en) 2022-07-26
CN110699571A (en) 2020-01-17

Similar Documents

Publication Publication Date Title
JP7400101B2 (en) Method for manufacturing copper-iron alloy material with electromagnetic shielding performance
Xiao et al. Microstructure and properties of Cu–Ni–Si–Zr alloy after thermomechanical treatments
TWI623629B (en) Non-oriented electromagnetic steel sheet and manufacturing method of non-oriented electromagnetic steel sheet
CN101180412B (en) Copper alloy with high strength and excellent processability in bending, and process for producing copper alloy sheet
JP5441876B2 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5476149B2 (en) Copper alloy with low strength anisotropy and excellent bending workability
JP6366298B2 (en) High-strength copper alloy sheet material and manufacturing method thereof
CN111922114B (en) High-purity fine platinum wire and preparation method thereof
WO2021037061A1 (en) 600mpa grade non-oriented electrical steel sheet and manufacturing method thereof
CN113913642A (en) Copper alloy strip and preparation method thereof
JP2012207246A (en) Copper alloy for electromagnetic shielding material and method for producing the same
CN110172561B (en) Preparation method of non-oriented electrical steel with strong {100} texture
US11255000B2 (en) Copper alloy and application thereof
JP2013104080A (en) Non-oriented magnetic steel sheet and method for manufacturing the same
CN112281021B (en) Ultrahigh-strength stress relaxation-resistant excellent-bending-forming conductive copper alloy and preparation method and application thereof
CN115602403B (en) Fe-based medium-high frequency amorphous nanocrystalline strip and preparation method thereof
US20240035120A1 (en) Copper alloy strip and its preparation method
CN111235493A (en) Non-magnetic steel, non-magnetic steel bolt and preparation method thereof
JP6146695B2 (en) Copper alloy material and connector parts
TW201303045A (en) Rolled copper foil, process for producing same, and copper-clad laminate
JP2011162826A (en) Aluminum alloy wire
CN113215439A (en) High-strength copper alloy plate and production process thereof
JP2014055341A (en) Copper alloy sheet material and manufacturing method thereof
JP5130993B2 (en) High frequency electrical steel sheet
JPWO2019244962A1 (en) Fe-Ni alloy thin plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231206

R150 Certificate of patent or registration of utility model

Ref document number: 7400101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150