JP7398612B2 - Semiconductor device manufacturing system and semiconductor device manufacturing method - Google Patents

Semiconductor device manufacturing system and semiconductor device manufacturing method Download PDF

Info

Publication number
JP7398612B2
JP7398612B2 JP2019062141A JP2019062141A JP7398612B2 JP 7398612 B2 JP7398612 B2 JP 7398612B2 JP 2019062141 A JP2019062141 A JP 2019062141A JP 2019062141 A JP2019062141 A JP 2019062141A JP 7398612 B2 JP7398612 B2 JP 7398612B2
Authority
JP
Japan
Prior art keywords
component
semiconductor device
bonding
device manufacturing
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019062141A
Other languages
Japanese (ja)
Other versions
JP2020161751A (en
Inventor
知幸 園田
哲平 小塩
和俊 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019062141A priority Critical patent/JP7398612B2/en
Publication of JP2020161751A publication Critical patent/JP2020161751A/en
Application granted granted Critical
Publication of JP7398612B2 publication Critical patent/JP7398612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors

Landscapes

  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

本発明は、複数の部品を基板の上に積層して半導体デバイスを製造する半導体デバイス製造システムおよび半導体デバイス製造方法に関する。 The present invention relates to a semiconductor device manufacturing system and a semiconductor device manufacturing method for manufacturing a semiconductor device by stacking a plurality of components on a substrate.

従来、小型高性能の半導体デバイスを製造する装置として、下面にバンプを有する複数の部品を基板の上に積層していく半導体デバイス製造装置が知られている。このような半導体デバイス製造装置では通常、部品のバンプ形成面(下面)に非導電性の熱硬化性材料から成る接合フィルムを貼り付けておき、部品を実装ヘッドによって加圧しながら加熱する動作を繰り返すことで、部品を積層していく。また、基板との間に熱硬化性の樹脂を介在させて部品を基板に実装する場合の技術として、加圧手段で部品を加熱する過程で、加熱と冷却を繰り返し実行することが接合信頼性の向上等の面から有効であることが知られている(例えば、下記の特許文献1)。 2. Description of the Related Art Conventionally, as an apparatus for manufacturing small, high-performance semiconductor devices, a semiconductor device manufacturing apparatus is known in which a plurality of components having bumps on the lower surface are stacked on a substrate. In such semiconductor device manufacturing equipment, a bonding film made of a non-conductive thermosetting material is usually pasted on the bump forming surface (lower surface) of the component, and the component is repeatedly heated while being pressed by a mounting head. This allows the parts to be layered. In addition, as a technique for mounting components on a board with a thermosetting resin interposed between the board and the board, it is necessary to repeat heating and cooling during the process of heating the part with pressure means to improve bonding reliability. It is known that this method is effective in terms of improving performance (for example, Patent Document 1 below).

特開2004-31885号公報Japanese Patent Application Publication No. 2004-31885

しかしながら、複数の部品を基板の上に積層して半導体デバイスの製造において、積層する部品のひとつひとつについて加熱と冷却を繰り返し実行すると、半導体デバイスのひとつ当たりの製造に多くの時間がかかってしまい、生産性が悪いという問題点があった。そして、その問題点は、製造する半導体デバイスが高積層数であるほど顕著であった。 However, when manufacturing semiconductor devices by stacking multiple parts on a substrate, repeatedly heating and cooling each of the stacked parts takes a lot of time to manufacture each semiconductor device, and production There was a problem with it being bad. The problem became more pronounced as the number of stacked layers of the semiconductor device to be manufactured increased.

そこで本発明は、複数の部品が積層されて成る半導体デバイスを製造するにおいて、部品のひとつひとつの積層に要する時間を短縮して生産性を向上させることができる半導体デバイス製造システムおよび半導体デバイス製造方法を提供することを目的とする。 Therefore, the present invention provides a semiconductor device manufacturing system and a semiconductor device manufacturing method that can shorten the time required for laminating each component and improve productivity when manufacturing a semiconductor device consisting of a plurality of laminated components. The purpose is to provide.

本発明の半導体デバイス製造システムは、バンプが形成された下面に熱硬化性材料から成る接合フィルムが貼り付けられた構成を有する複数の部品をステージに保持された基板の上に積層して半導体デバイスを製造する半導体デバイス製造システムであって、超音波ヘッドにより前記基板の上に複数の部品を超音波接合により接合して積層する部品積層部と、前記部品積層部により積層された複数の部品をまとめて加熱することにより前記複数の部品それぞれが備える前記接合フィルムを一括して熱硬化させる加熱部とを備え、部品が接合される部品接合面の前記ステージからの高さである接合面高さに応じて前記超音波ヘッドにより部品を接合するときの接合条件を設定するThe semiconductor device manufacturing system of the present invention laminates a plurality of components, each having a bonding film made of a thermosetting material on the lower surface on which bumps are formed, on a substrate held on a stage to produce a semiconductor device. A semiconductor device manufacturing system for manufacturing a semiconductor device, comprising: a component stacking section for bonding and stacking a plurality of components on the substrate by ultrasonic bonding using an ultrasonic head; a heating unit that thermally cures the bonding films of each of the plurality of components at once by heating them all at once , and a bonding surface height that is the height of the component bonding surface on which the components are bonded from the stage; Welding conditions for joining parts using the ultrasonic head are set accordingly .

本発明の半導体デバイス製造方法は、バンプが形成された下面に熱硬化性材料から成る接合フィルムが貼り付けられた構成を有する複数の部品をステージに保持された基板の上に積層して半導体デバイスを製造する半導体デバイス製造方法であって、超音波ヘッドにより前記基板の上に複数の部品を超音波接合により接合して積層する部品積層工程と、前記部品積層工程で積層した複数の部品をまとめて加熱することにより前記複数の部品それぞれが備える前記接合フィルムを一括して熱硬化させる加熱工程とを含み、部品が接合される部品接合面の前記ステージからの高さである接合面高さに応じて前記超音波ヘッドにより部品を接合するときの接合条件を設定するIn the semiconductor device manufacturing method of the present invention, a semiconductor device is manufactured by laminating a plurality of components having a bonding film made of a thermosetting material on the lower surface on which bumps are formed on a substrate held on a stage. A semiconductor device manufacturing method for manufacturing a semiconductor device, comprising: a component lamination step in which a plurality of components are bonded and laminated on the substrate by ultrasonic bonding using an ultrasonic head; and a plurality of components laminated in the component lamination step are assembled. a heating step of thermally curing the bonding films of each of the plurality of components at once by heating the components, the bonding surface height being the height from the stage of the component bonding surface to which the components are bonded; Welding conditions for joining parts using the ultrasonic head are set accordingly .

本発明によれば、複数の部品が積層されて成る半導体デバイスを製造するにおいて、部品のひとつひとつの積層に要する時間を短縮して生産性を向上させることができる。 According to the present invention, in manufacturing a semiconductor device formed by stacking a plurality of components, it is possible to shorten the time required for stacking each component and improve productivity.

本発明の一実施の形態における半導体デバイス製造システムの構成図Configuration diagram of a semiconductor device manufacturing system according to an embodiment of the present invention 本発明の一実施の形態における半導体デバイス製造システムが備える部品積層部の概略構成図A schematic configuration diagram of a component stacking section included in a semiconductor device manufacturing system according to an embodiment of the present invention 本発明の一実施の形態における半導体デバイス製造システムが備える部品積層部の要部拡大図Enlarged view of main parts of a component stacking section included in a semiconductor device manufacturing system according to an embodiment of the present invention 本発明の一実施の形態における半導体デバイス製造システムにより半導体デバイスを製造する手順を示すフローチャートA flowchart showing a procedure for manufacturing a semiconductor device using a semiconductor device manufacturing system according to an embodiment of the present invention. (a)(b)本発明の一実施の形態における半導体デバイス製造システムが備える部品積層部の動作説明図(a) (b) Diagrams explaining the operation of the component stacking section included in the semiconductor device manufacturing system according to an embodiment of the present invention (a)(b)本発明の一実施の形態における半導体デバイス製造システムが備える部品積層部の動作説明図(a) (b) Diagrams explaining the operation of the component stacking section included in the semiconductor device manufacturing system according to an embodiment of the present invention 本発明の一実施の形態における半導体デバイス製造システムが備える制御装置に記憶される(a)接合面高さと接合時間との対応関係のデータの一例を示すグラフ(b)接合面高さと押圧力との対応関係のデータの一例を示すグラフ(c)接合面高さと超音波ヘッドの超音波出力との対応関係のデータの一例を示すグラフ(a) A graph showing an example of the data of the correspondence between the bonding surface height and the bonding time, which is stored in the control device of the semiconductor device manufacturing system according to an embodiment of the present invention.(b) The graph showing the relationship between the bonding surface height and the pressing force (c) Graph showing an example of data on the correspondence between the height of the bonding surface and the ultrasonic output of the ultrasonic head

以下、図面を参照して本発明の実施の形態について説明する。図1は本発明の一実施の形態における半導体デバイス製造システム1を示している。半導体デバイス製造システム1は、上流側ストッカ11、部品積層部12、下流側ストッカ13および加熱部(オーブン)14を備えている。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a semiconductor device manufacturing system 1 in one embodiment of the present invention. The semiconductor device manufacturing system 1 includes an upstream stocker 11, a component stacking section 12, a downstream stocker 13, and a heating section (oven) 14.

上流側ストッカ11は内部にマガジンMGを備えており、マガジンMG内には複数の基板2が収納されている。部品積層部12は、上流側ストッカ11のマガジンMGから送られてきた基板2の上に複数の部品3を積層して部品積層体4を生成する(詳細は後述)。下流側ストッカ13は内部にマガジンMGを備えており、部品積層部12で生成された部品積層体4をストックする。加熱部14には、作業者によって、下流側ストッカ13内のマガジンMGが搬入される。加熱部14は、下流側ストッカ13から搬入されたマガジンMGごと、複数の部品積層体4をまとめて加熱する。 The upstream stocker 11 includes a magazine MG therein, and a plurality of substrates 2 are stored in the magazine MG. The component stacking unit 12 stacks a plurality of components 3 on the substrate 2 sent from the magazine MG of the upstream stocker 11 to generate a component stack 4 (details will be described later). The downstream stocker 13 includes a magazine MG therein, and stores the component stack 4 produced in the component stack unit 12. The magazine MG in the downstream stocker 13 is carried into the heating section 14 by an operator. The heating unit 14 collectively heats the plurality of component stacks 4 for each magazine MG carried in from the downstream stocker 13 .

ここで、部品積層部12の構成について説明する。図2において、部品積層部12は、部品供給部21、ステージ22、ヘッド移動機構23.超音波ヘッド24および制御装置25を備えている。 Here, the configuration of the component stacking section 12 will be explained. In FIG. 2, the component stacking section 12 includes a component supply section 21, a stage 22, a head moving mechanism 23. It includes an ultrasonic head 24 and a control device 25.

図2において、部品供給部21は部品3を上面に載置させた状態で供給する。部品3は下面に複数のバンプ3Bを有しており、部品3の下面には更に、被導電性の熱硬化性材料から成る接合フィルム3Fが貼り付けられている(図3も参照)。接合フィルム3Fは、常温では軟性のシート状部材であるが、所定の温度以上の温度に晒されると熱硬化して固くなり、接合材として機能する。部品3の上面には、その部品3の上に積層される部品3が有する複数のバンプ3Bが接合される複数の電極3Dが設けられている(図3)。 In FIG. 2, the component supply unit 21 supplies the component 3 with the component 3 placed on the top surface. The component 3 has a plurality of bumps 3B on its lower surface, and a bonding film 3F made of an electrically conductive thermosetting material is further attached to the lower surface of the component 3 (see also FIG. 3). The bonding film 3F is a sheet-like member that is flexible at room temperature, but when exposed to a temperature higher than a predetermined temperature, it is thermosetted and becomes hard, and functions as a bonding material. A plurality of electrodes 3D are provided on the upper surface of the component 3 to which a plurality of bumps 3B of the component 3 stacked on the component 3 are bonded (FIG. 3).

図2において、ステージ22は上面が平らに形成されたブロック状の部材から構成されている。ステージ22の上面には複数の吸着開口(図示せず)が形成されており、ステージ22の内部にはそれら吸着開口と繋がる吸着機構(図示せず)が設けられている。ステージ22の上面に基板2が載置された状態で吸着機構が吸着開口から真空吸引すると、ステージ22の上面に基板2が吸着保持される。ステージ22の下方にはステージ昇降部22Kが設けられており、ステージ22はステージ昇降部22Kによって昇降される。 In FIG. 2, the stage 22 is composed of a block-shaped member with a flat upper surface. A plurality of suction openings (not shown) are formed on the upper surface of the stage 22, and a suction mechanism (not shown) connected to the suction openings is provided inside the stage 22. When the suction mechanism applies vacuum suction from the suction opening with the substrate 2 placed on the top surface of the stage 22, the substrate 2 is suctioned and held on the top surface of the stage 22. A stage elevating section 22K is provided below the stage 22, and the stage 22 is elevated and lowered by the stage elevating section 22K.

図2において、ステージ22にはステージ用ヒータ22Hとステージ用熱電対22Nが設けられている。ステージ用ヒータ22Hはステージ22を加熱し、ステージ用熱電対22Nはステージ22の温度を計測する。ステージ用ヒータ22Hはステージ22を加熱することによって、ステージ22に保持された基板2を加熱する。 In FIG. 2, the stage 22 is provided with a stage heater 22H and a stage thermocouple 22N. The stage heater 22H heats the stage 22, and the stage thermocouple 22N measures the temperature of the stage 22. The stage heater 22H heats the substrate 2 held on the stage 22 by heating the stage 22.

図2において、ヘッド移動機構23は、ステージ22の上方に設けられている。ヘッド移動機構23は、ヘッド昇降部23Aとヘッド水平移動部23Bを有している。ヘッド昇降部23Aはここではシリンダから構成されており、ピストンロッド23Rの先端を下方に向けている。超音波ヘッド24はピストンロッド23Rの先端(下端)に取り付けられており、ヘッド昇降部23Aはピストンロッド23Rを作動させることで、超音波ヘッド24を昇降させる。ヘッド水平移動部23Bはヘッド昇降部23Aを超音波ヘッド24とともに水平方向に移動させる。 In FIG. 2, the head moving mechanism 23 is provided above the stage 22. The head moving mechanism 23 has a head elevating section 23A and a head horizontal moving section 23B. The head elevating section 23A is constituted of a cylinder here, and the tip of the piston rod 23R is directed downward. The ultrasonic head 24 is attached to the tip (lower end) of the piston rod 23R, and the head elevating section 23A moves the ultrasonic head 24 up and down by operating the piston rod 23R. The head horizontal moving section 23B moves the head elevating section 23A together with the ultrasonic head 24 in the horizontal direction.

超音波ヘッド24は、ヘッド移動機構23によって移動されることで、ステージ22に保持された基板2の上面に部品3を接合し、更に、基板2の上面に接合した部品3の上面に部品3を接合していくことによって、基板2の上面に複数の部品3を積層していく。図2および図3において、超音波ヘッド24は、支持部材31、ホーン32、超音波振動子33および接合ツール34を備えている。支持部材31はヘッド昇降部23Aのピストンロッド23Rの先端に結合されており、ホーン32を支持している。 The ultrasonic head 24 is moved by the head moving mechanism 23 to bond the component 3 to the top surface of the substrate 2 held on the stage 22, and further bond the component 3 to the top surface of the component 3 bonded to the top surface of the substrate 2. A plurality of components 3 are stacked on the upper surface of the substrate 2 by joining them. 2 and 3, the ultrasonic head 24 includes a support member 31, a horn 32, an ultrasonic transducer 33, and a bonding tool 34. The support member 31 is connected to the tip of the piston rod 23R of the head elevating section 23A, and supports the horn 32.

ホーン32は水平方向に延びた棒状の金属部材から構成されている。超音波振動子33はホーン32の一端側に取り付けられており(図3)、超音波振動することによってホーン32を長手方向に振動(縦振動)させる。 The horn 32 is composed of a rod-shaped metal member extending in the horizontal direction. The ultrasonic vibrator 33 is attached to one end of the horn 32 (FIG. 3), and causes the horn 32 to vibrate in the longitudinal direction (longitudinal vibration) by ultrasonic vibration.

図2および図3において、接合ツール34はホーン32の下面側に取り付けられており、ホーン32の下方に突出して延びている。ホーン32が超音波振動子33によって超音波振動されると、接合ツール34はホーン32と一体となってホーン32の長手方向に振動する。 In FIGS. 2 and 3, the welding tool 34 is attached to the lower surface of the horn 32 and extends downwardly. When the horn 32 is ultrasonically vibrated by the ultrasonic vibrator 33, the welding tool 34 vibrates in the longitudinal direction of the horn 32 together with the horn 32.

ホーン32の内部には図示しない吸引機構が設けられている。図示しない真空源から供給される真空圧を吸引機構によって制御することで、接合ツール34の下端に吸引力を発生させることができる。このため接合ツール34の下端面を部品3の上面に当接させた状態で接合ツールの下端に吸引力を発生させると、接合ツール34の下端面に部品3が真空吸着される。 A suction mechanism (not shown) is provided inside the horn 32. A suction force can be generated at the lower end of the welding tool 34 by controlling the vacuum pressure supplied from a vacuum source (not shown) using a suction mechanism. Therefore, when a suction force is generated at the lower end of the welding tool with the lower end surface of the welding tool 34 in contact with the upper surface of the component 3, the component 3 is vacuum-sucked to the lower end surface of the welding tool 34.

図2および図3において、ホーン32にはヘッド用ヒータ24Hとヘッド用熱電対24Nが設けられている。ヘッド用ヒータ24Hはホーン32を通じて接合ツール34を加熱し、接合ツール34に部品3が吸着される場合には、更に接合ツール34を通じて部品3も加熱する。ヘッド用熱電対24Nはホーン32を通じて接合ツール34の温度を計測する。 2 and 3, the horn 32 is provided with a head heater 24H and a head thermocouple 24N. The head heater 24H heats the welding tool 34 through the horn 32, and when the component 3 is attracted to the welding tool 34, it also heats the component 3 through the welding tool 34. The head thermocouple 24N measures the temperature of the welding tool 34 through the horn 32.

図2において、制御装置25は、移動制御部25a、吸着制御部25b、加熱制御部25c、接合制御部25dおよび記憶部25eを備えている。移動制御部25aは、ステージ昇降部22Kの制御を行ってステージ22を昇降させる。また移動制御部25aは、ヘッド昇降部23Aの制御を行って超音波ヘッド24を昇降させ、ヘッド水平移動部23Bの制御を行って超音波ヘッド24を水平方向に移動させる。吸着制御部25bは、ステージ22の内部に設けられた前述の吸着機構を作動させてステージ22の上面に基板2を吸着させる。また吸着制御部25bは、超音波ヘッド24のホーン32内に設けられた前述の吸引機構を作動させて、接合ツール34の下端に部品3を吸着させる。 In FIG. 2, the control device 25 includes a movement control section 25a, an adsorption control section 25b, a heating control section 25c, a joining control section 25d, and a storage section 25e. The movement control section 25a controls the stage elevating section 22K to move the stage 22 up and down. Furthermore, the movement control section 25a controls the head elevating section 23A to move the ultrasonic head 24 up and down, and controls the head horizontal movement section 23B to move the ultrasonic head 24 in the horizontal direction. The suction control unit 25b operates the aforementioned suction mechanism provided inside the stage 22 to suction the substrate 2 to the upper surface of the stage 22. The suction control unit 25b also operates the aforementioned suction mechanism provided in the horn 32 of the ultrasonic head 24 to suction the component 3 to the lower end of the welding tool 34.

図2において、ステージ用熱電対22Nが計測するステージ22の温度は制御装置25に入力される。制御装置25の加熱制御部25cは、ステージ用熱電対22Nによって計測されるステージ22の温度に基づいて、ステージ用ヒータ22Hの加熱制御を行う。また、図2において、ヘッド用熱電対24Nが計測する接合ツール34の温度は制御装置25に入力される。加熱制御部25cは、ヘッド用熱電対24Nによって計測される接合ツール34の温度に基づいて、ヘッド用ヒータ24Hの加熱制御を行う。 In FIG. 2, the temperature of the stage 22 measured by the stage thermocouple 22N is input to the control device 25. The heating control unit 25c of the control device 25 performs heating control of the stage heater 22H based on the temperature of the stage 22 measured by the stage thermocouple 22N. Further, in FIG. 2, the temperature of the welding tool 34 measured by the head thermocouple 24N is input to the control device 25. The heating control unit 25c performs heating control of the head heater 24H based on the temperature of the welding tool 34 measured by the head thermocouple 24N.

制御装置25の接合制御部25dは、超音波ヘッド24により部品3を部品接合面に接合するときの接合条件を設定する。ここで「部品接合面」とは、これから接合しようとする部品3が接合される面であり、基板2の上面あるいは基板2の上面に接合された部品3の上面がこれに相当する。 The joining control unit 25d of the control device 25 sets joining conditions when the ultrasonic head 24 joins the component 3 to the component joining surface. Here, the "component bonding surface" is the surface to which the component 3 to be bonded is to be bonded, and corresponds to the top surface of the substrate 2 or the top surface of the component 3 bonded to the top surface of the substrate 2.

超音波ヘッド24により部品3を部品接合面に接合するときの接合条件としては、上側の部品3(これから接合しようとする部品3)を下側の部品3(部品3が接合される部品3)に押圧するときの押圧力と超音波荷重とを与える時間(接合時間)、上側の部品3を下側の部品3に押圧するときの押圧力、超音波ヘッド24の超音波出力、接合時の上側および下側の双方の部品3の温度等がある。制御装置25の記憶部25eには、部品3の接合作業時に接合制御部25dが用いるデータをはじめ、種々のデータが記憶されている。 The joining conditions when joining the component 3 to the component joining surface using the ultrasonic head 24 are as follows: the upper component 3 (the component 3 to be joined) is connected to the lower component 3 (the component 3 to which the component 3 is to be joined). The time to apply the pressing force and ultrasonic load when pressing the upper part 3 to the lower part 3 (joining time), the pressing force when pressing the upper part 3 to the lower part 3, the ultrasonic output of the ultrasonic head 24, the time when joining There are temperatures, etc. of both the upper and lower parts 3. The storage section 25e of the control device 25 stores various data including data used by the joining control section 25d during the joining operation of the parts 3.

図2において、ヘッド昇降部23Aには押圧センサ23Sが設けられている。押圧センサ23Sは例えば圧電素子から成り、接合ツール34の下端面に作用する上向き荷重を検出して制御装置25に送信する。制御装置25は、押圧センサ23Sからの検出情報に基づいて、部品3の接合作業時に超音波ヘッド24が部品3を下方に押圧している押圧力を検知する。 In FIG. 2, a pressure sensor 23S is provided in the head elevating section 23A. The pressure sensor 23S is made of, for example, a piezoelectric element, detects an upward load acting on the lower end surface of the welding tool 34, and transmits the detected upward load to the control device 25. The control device 25 detects the pressing force with which the ultrasonic head 24 presses the component 3 downward during the welding operation of the component 3, based on the detection information from the pressure sensor 23S.

次に、図4に示すフローチャートを用いて、半導体デバイス製造システム1により半導体デバイス5(図1)を製造する手順(半導体デバイス製造方法)を説明する。ここでは基板2の上面に2つ以上の部品3を接合して半導体デバイス5を製造するものとする。 Next, a procedure (semiconductor device manufacturing method) for manufacturing the semiconductor device 5 (FIG. 1) using the semiconductor device manufacturing system 1 will be explained using the flowchart shown in FIG. Here, it is assumed that the semiconductor device 5 is manufactured by bonding two or more components 3 to the upper surface of the substrate 2.

半導体デバイス製造システム1は、半導体デバイス5の製造を行うときには先ず、部品積層部12のステージ用ヒータ22Hとヘッド用ヒータ24Hによって、ステージ22と接合ツール34がそれぞれ所定の温度になるように調整される。部品積層部12のステージ用ヒータ22Hとヘッド用ヒータ24Hの温度が調整されたら、これから部品3が接合される基板2が上流側ストッカ11内のマガジンMGから取り出されて部品積層部12に投入される(ステップST1)。 When manufacturing the semiconductor device 5, the semiconductor device manufacturing system 1 first adjusts the stage 22 and the bonding tool 34 to predetermined temperatures using the stage heater 22H and head heater 24H of the component stacking section 12. Ru. After the temperatures of the stage heater 22H and the head heater 24H of the component stacking section 12 are adjusted, the substrate 2 to which the component 3 will be bonded is taken out from the magazine MG in the upstream stocker 11 and put into the component stacking section 12. (Step ST1).

部品積層部12は、基板2が投入されたら、図示しない基板移載部によって、基板2をステージ22の上面に移載する。部品積層部12は、基板2がステージ22の上面に移載されたら、ステージ22に内蔵された前述の図示しない吸着機構を作動させてステージ22に基板2を保持させる(ステップST2)。これにより基板2はステージ22を通じてステージ用ヒータ22Hによって加熱される。 When the substrate 2 is input, the component stacking section 12 transfers the substrate 2 onto the upper surface of the stage 22 using a substrate transfer section (not shown). Once the substrate 2 is transferred to the upper surface of the stage 22, the component stacking unit 12 operates the aforementioned suction mechanism (not shown) built into the stage 22 to hold the substrate 2 on the stage 22 (step ST2). As a result, the substrate 2 is heated through the stage 22 by the stage heater 22H.

ステージ22が基板2を保持したら、ステージ昇降部22Kはステージ22を上下方向に移動させて、部品接合面である基板2の上面を、部品積層部12に固定して定められた基準面MLからの所定の高さである基準高さBH(図2及び図3)に一致させる(図5(a)。ステップST3)。部品接合面である基板2の上面が基準高さBHに一致したら、超音波ヘッド24は部品供給部21が供給する部品3をピックアップする(ステップST4)。具体的には、超音波ヘッド24は先ず、ヘッド水平移動部23Bの作動によって部品供給部21の上方に移動し、ヘッド昇降部23Aの作動によって下降する。そして、接合ツール34の下端面を部品供給部21が供給する部品3の上面に接触させて真空吸引し、接合ツール34によって部品3を吸着する。超音波ヘッド24は接合ツール34によって部品3を吸着したら、ヘッド昇降部23Aの作動によって上昇する。これにより超音波ヘッド24による部品3のピックアップが完了する。 Once the stage 22 holds the substrate 2, the stage lifting section 22K moves the stage 22 in the vertical direction to move the top surface of the substrate 2, which is the component bonding surface, from the reference plane ML fixed to the component stacking section 12. (FIG. 5(a), step ST3). When the upper surface of the substrate 2, which is the component bonding surface, matches the reference height BH, the ultrasonic head 24 picks up the component 3 supplied by the component supply section 21 (step ST4). Specifically, the ultrasonic head 24 is first moved above the component supply section 21 by the operation of the head horizontal moving section 23B, and is lowered by the operation of the head elevating section 23A. Then, the lower end surface of the welding tool 34 is brought into contact with the upper surface of the component 3 supplied by the component supply section 21 to perform vacuum suction, and the component 3 is sucked by the welding tool 34 . After the ultrasonic head 24 adsorbs the component 3 with the welding tool 34, it is raised by the operation of the head elevating section 23A. This completes the pickup of the component 3 by the ultrasonic head 24.

超音波ヘッド24は、部品3をピックアップしたら、ヘッド水平移動部23Bの作動によってステージ22の上方、すなわち基板2の上方に移動する。そして、ヘッド昇降部23Aの作動によって下降し、部品3を基板2の上面に押圧して接合する(ステップST5の部品接合工程。図5(a)→図5(b))。超音波ヘッド24が部品3を基板2の上面に押圧することで、部品3の下面に設けられたバンプ3Bはその部品3の下面に貼り付けられた接合フィルム3Fを下方に突き破り、基板2の上面側に設けられた電極(基板電極2T)に当接する。 After picking up the component 3, the ultrasonic head 24 moves above the stage 22, that is, above the substrate 2, by the operation of the head horizontal moving section 23B. Then, the head is lowered by the operation of the head elevating section 23A, and the component 3 is pressed and bonded to the upper surface of the substrate 2 (component bonding step of step ST5. FIG. 5(a)→FIG. 5(b)). When the ultrasonic head 24 presses the component 3 against the upper surface of the substrate 2, the bumps 3B provided on the lower surface of the component 3 break through the bonding film 3F attached to the lower surface of the component 3, and the bumps 3B of the component 3 break through the bonding film 3F attached to the lower surface of the component 3. It comes into contact with an electrode (substrate electrode 2T) provided on the upper surface side.

ステップST5の部品接合工程において、超音波ヘッド24は、接合制御部25dで設定された所定の押圧力で部品3を押圧するとともに、接合制御部25dで設定された所定の接合時間だけ超音波振動を与えて部品3を接合する。部品3に超音波振動が与えられることによってバンプ3Bと基板電極2Tとの間に熱ストレスが発生し、バンプ3Bが基板電極2Tに接合される。なお、この間、超音波ヘッド24が部品3を押圧することによって、バンプ3Bは若干上下方向に潰れるように変形する(接合フィルム3Fに変化は生じない)。 In the component bonding process of step ST5, the ultrasonic head 24 presses the component 3 with a predetermined pressing force set by the bonding control section 25d, and also applies ultrasonic vibration for a predetermined bonding time set by the bonding control section 25d. Part 3 is joined by giving By applying ultrasonic vibration to the component 3, thermal stress is generated between the bump 3B and the substrate electrode 2T, and the bump 3B is bonded to the substrate electrode 2T. Note that during this time, the ultrasonic head 24 presses the component 3, so that the bump 3B is deformed so as to be slightly crushed in the vertical direction (no change occurs in the bonding film 3F).

部品3が部品接合面(基板2の上面)に接合されている間、制御装置25は、超音波ヘッド24の高さを検出することによってバンプ3Bの高さをモニタリングし、そのモニタリングしたバンプ3Bの高さに基づいてバンプ3Bの形状の変化をリアルタイムで把握する。そして、その把握したバンプ3Bの高さが所望の高さになるように所定のプロファイルで超音波ヘッド24によって部品3を押圧する。 While the component 3 is being bonded to the component bonding surface (the top surface of the substrate 2), the control device 25 monitors the height of the bump 3B by detecting the height of the ultrasonic head 24, and the monitored bump 3B The change in the shape of the bump 3B is grasped in real time based on the height of the bump 3B. Then, the component 3 is pressed by the ultrasonic head 24 with a predetermined profile so that the height of the bump 3B thus grasped becomes a desired height.

超音波ヘッド24は、所定の接合時間が経過したら超音波振動を停止させ、接合ツール34による部品3の吸着を解除したうえで、ヘッド昇降部23Aの作動によって上昇する。これにより基板2への部品3の接合作業が終了する。 The ultrasonic head 24 stops ultrasonic vibration after a predetermined welding time has elapsed, releases the adsorption of the parts 3 by the welding tool 34, and then rises by operating the head lifting section 23A. This completes the work of bonding the component 3 to the substrate 2.

ステップST5の部品接合工程が終了したら、基板2に接合すべき全ての部品3を接合して部品3の積層が完了したかどうかを判定する(ステップST6)。そして、部品3の積層が完了していなかった場合にはステップST3に戻り、部品3の積層が完了していた場合には、部品3の接合作業を終了する。ここでは部品3はまだ1つしか積層されていないので、ステップST3に戻る。 When the component bonding process of step ST5 is completed, it is determined whether all the components 3 to be bonded to the substrate 2 are bonded and the stacking of the components 3 is completed (step ST6). Then, if the stacking of the components 3 has not been completed, the process returns to step ST3, and if the stacking of the components 3 has been completed, the joining work of the components 3 is finished. Since only one component 3 has been stacked here, the process returns to step ST3.

戻ったステップST3では、ステージ22を下降させることによって、次の部品接合面(直前に接合した一層目の部品3の上面)を基準高さBHに一致させる(図6(a))。そして、前述の基板2への部品3の接合作業と同様の要領により、部品3をピックアップしたうえで(ステップST4)、その部品3(上側の部品3)を直前に接合した部品3(下側の部品3)の上面に接合する(ステップST5の部品接合工程。図6(a)→図6(b))。下側の部品3の上面に上側の部品3を接合する場合には、上側の部品3のバンプ3Bは下側の部品3の上面に設けられた電極3Dに接合される。 In the returned step ST3, the stage 22 is lowered to make the next component joining surface (the upper surface of the first layer component 3 joined immediately before) equal to the reference height BH (FIG. 6(a)). Then, after picking up the component 3 (step ST4) in the same manner as in the process of joining the component 3 to the board 2 described above, the component 3 (upper component 3) is replaced with the previously joined component 3 (lower component 3). (component joining process of step ST5. FIG. 6(a)→FIG. 6(b)). When joining the upper part 3 to the upper surface of the lower part 3, the bumps 3B of the upper part 3 are joined to the electrodes 3D provided on the upper surface of the lower part 3.

ステップST5の部品接合工程が終了したら、基板2に接合すべき全ての部品3を接合して部品3の積層が完了したかどうかを判定する(ステップST6)。そして、部品3の積層が完了していなかった場合にはステップST3に戻り、ステップST3~ステップST5の工程を繰り返す。ステップST6で、部品3の積層が完了していた場合には、部品3の積層作業を終了する。部品3の積層作業が終了することによって部品積層体4が生成される。部品積層体4が生成されたら、部品積層部12は、前述の図示しない基板移載部によって、その部品積層体4を下流側ストッカ13内のマガジンMGに搬出する(ステップST7)。 When the component bonding process of step ST5 is completed, it is determined whether all the components 3 to be bonded to the substrate 2 are bonded and the stacking of the components 3 is completed (step ST6). If the stacking of the parts 3 has not been completed, the process returns to step ST3 and the steps ST3 to ST5 are repeated. In step ST6, if the stacking of the components 3 has been completed, the stacking work of the components 3 is finished. A component stack 4 is generated by completing the stacking operation of the components 3. After the component stack 4 is generated, the component stack 4 is transferred to the magazine MG in the downstream stocker 13 by the aforementioned board transfer section (not shown) (step ST7).

部品積層体4が部品積層部12から下流側ストッカ13内のマガジンMGに搬出されることによって、下流側ストッカ13内のマガジンMGに部品積層体4が一定量ストックされたら、作業者は、下流側ストッカ13からマガジンMGを取り出して加熱部14に入れる(ステップST8)。 When the component stack 4 is carried out from the component stack section 12 to the magazine MG in the downstream stocker 13 and a certain amount of the component stack 4 is stocked in the magazine MG in the downstream stocker 13, the operator The magazine MG is taken out from the side stocker 13 and placed in the heating section 14 (step ST8).

作業者は、加熱部14にマガジンMGを入れたら、加熱部14によってマガジンMGの全体を加熱する(ステップST9の加熱工程)。これによりマガジンMG内の各部品積層体4が加熱される。なお、加熱部14によるマガジンMGの加熱は、複数のマガジンMGについてまとめて行ってもよい。 After putting the magazine MG into the heating section 14, the operator heats the entire magazine MG using the heating section 14 (heating step of step ST9). As a result, each component stack 4 in the magazine MG is heated. Note that the heating unit 14 may heat the magazines MG for a plurality of magazines MG at once.

加熱工程における加熱部14内の温度は、部品3に貼り付けられている接合フィルム3Fが熱硬化を始める温度以上の所定の温度に設定される。このため各部品積層体4では、各部品3の下面に貼り付けられている接合フィルム3Fが軟化した後、熱硬化する。これにより上下に隣接する部品3同士は熱硬化した接合フィルム3Fによって相互に固く結合され、半導体デバイス5が製造される(図1)。加熱工程が終了したら、作業者は、加熱部14からマガジンMGを取り出す(ステップST10)。 The temperature inside the heating section 14 in the heating step is set to a predetermined temperature higher than the temperature at which the bonding film 3F attached to the component 3 starts to thermoset. Therefore, in each component laminate 4, the bonding film 3F attached to the lower surface of each component 3 is softened and then thermally hardened. As a result, the vertically adjacent components 3 are firmly bonded to each other by the thermoset bonding film 3F, and the semiconductor device 5 is manufactured (FIG. 1). After the heating process is completed, the operator takes out the magazine MG from the heating section 14 (step ST10).

このように、本実施の形態における半導体デバイス製造システム1(半導体デバイス製造方法)では、超音波ヘッド24により基板2の上に複数の部品3を超音波接合により接合して積層した後(ステップST3~ステップST5の部品積層工程)、積層した複数の部品3をまとめて加熱することにより複数の部品3それぞれが備える接合フィルム3Fを一括して熱硬化させるようになっている(ステップST9の加熱工程)。部品積層工程では、極めて短時間で行うことができる超音波接合によって部品3の接合を行うので(また、接合フィルム3Fの加熱は関係しないので)、部品3の積層に要する時間は非常に短いものとなる。そして、加熱部14は積層された複数の部品3(すなわち部品積層体4)の全体を加熱し、各部品3の接合フィルム3Fを一括して熱硬化するので、部品3の層数には無関係に、全ての部品3の接合フィルム3Fを短時間で熱硬化することができる。 As described above, in the semiconductor device manufacturing system 1 (semiconductor device manufacturing method) according to the present embodiment, after a plurality of components 3 are bonded and stacked on the substrate 2 by ultrasonic bonding using the ultrasonic head 24 (step ST3 - component lamination step of step ST5), by collectively heating the plurality of laminated components 3, the bonding films 3F of each of the plurality of components 3 are collectively thermally cured (heating step of step ST9). ). In the component lamination process, the components 3 are joined by ultrasonic bonding, which can be performed in an extremely short time (also, heating of the bonding film 3F is not involved), so the time required for laminating the components 3 is extremely short. becomes. Then, the heating unit 14 heats the entire plurality of laminated components 3 (i.e. component laminate 4) and heat-cures the bonding film 3F of each component 3 at once, so the number of layers in the component 3 is irrelevant. In addition, the bonding films 3F of all the parts 3 can be thermally cured in a short time.

このため本実施の形態における半導体デバイス製造システム1(半導体デバイス製造方法)によれば、複数の部品3を積層されて成る半導体デバイス5を製造するにおいて、部品3のひとつひとつの積層に要する時間を短縮することができ、結果として半導体デバイス5の生産性を大幅に向上させることができる。 Therefore, according to the semiconductor device manufacturing system 1 (semiconductor device manufacturing method) in this embodiment, the time required for laminating each component 3 is reduced in manufacturing the semiconductor device 5 formed by laminating a plurality of components 3. As a result, the productivity of the semiconductor device 5 can be greatly improved.

ところで、部品3の上面に部品3を接合して積層を進めていくと、次の部品3が接合される部品接合面のステージ22からの高さは次第に高くなっていき、上層側になるほど(接合面高さSHが大きくなるほど)、接合時における部品3の温度がそれよりも下層側の部品3を接合したときの温度よりも低くなる。従って、本実施の形態では、前述のステップST5の部品接合工程において、超音波ヘッド24により部品3を接合するときの接合条件を、これから部品3を接合しようとする部品接合面のステージ22からの高さ(「接合面高さSH」と称する。図3)に応じて設定するようになっている。具体的には、超音波ヘッド24により部品3に押圧力と超音波荷重とを与える時間である接合時間、超音波ヘッド24により上側の部品3を下側の部品3に押圧する力である押圧力或いは超音波ヘッド24の超音波出力を、接合面高さSHによらず一定とするのではなく、接合面高さSHに応じて可変に設定するようになっている。 By the way, as the component 3 is bonded to the top surface of the component 3 and stacking progresses, the height of the component bonding surface to which the next component 3 is bonded from the stage 22 gradually increases, and the higher the layer is ( As the bonding surface height SH increases), the temperature of the component 3 during bonding becomes lower than the temperature when the component 3 on the lower layer side is bonded. Therefore, in the present embodiment, in the above-described component joining process of step ST5, the joining conditions when joining the parts 3 by the ultrasonic head 24 are set such that the joining conditions from the stage 22 of the parts joining surface to which the parts 3 are to be joined are set as follows. It is set according to the height (referred to as "joint surface height SH", FIG. 3). Specifically, the bonding time is the time during which the ultrasonic head 24 applies a pressing force and ultrasonic load to the component 3, and the pressing time is the time during which the ultrasonic head 24 applies a pressing force and an ultrasonic load to the component 3. The pressure or the ultrasonic output of the ultrasonic head 24 is not set constant regardless of the joint surface height SH, but is set variably according to the joint surface height SH.

本実施の形態では、具体的には、接合面高さSHに応じて接合時間を変化させ、或いは接合面高さSHに応じて押圧力を変化させ、また或いは、接合面高さSHに応じて超音波ヘッド24の超音波出力を変化させる。接合面高さSHに応じて接合時間を変化させる場合には、例えば、記憶部25eに記憶された図7(a)のグラフによって示される接合面高さSHと接合時間Tvの対応関係のデータに基づいて、接合面高さSHに対する接合時間Tvの値を読み出して設定するようにする。また、接合面高さSHに応じて押圧力を変化させる場合には、例えば、記憶部25eに記憶された図7(b)のグラフによって示される接合面高さSHと押圧力Pとの対応関係のデータに基づいて、接合面高さSHに対する押圧力Pの値を読み出して設定するようにする。また、接合面高さSHに応じて超音波ヘッド24の超音波出力を変化させる場合には、例えば、記憶部25eに記憶された図7(c)のグラフによって示される接合面高さSHと超音波ヘッド24の超音波出力Vの対応関係のデータに基づいて、接合面高さSHに対する超音波出力Vの値を読み出して設定するようにする。 Specifically, in this embodiment, the bonding time is changed depending on the bonding surface height SH, or the pressing force is changed depending on the bonding surface height SH, or alternatively, the bonding time is changed depending on the bonding surface height SH. to change the ultrasonic output of the ultrasonic head 24. When changing the bonding time according to the bonding surface height SH, for example, the data of the correspondence relationship between the bonding surface height SH and the bonding time Tv shown by the graph of FIG. 7(a) stored in the storage unit 25e is used. Based on this, the value of the bonding time Tv with respect to the bonding surface height SH is read and set. In addition, when changing the pressing force according to the joint surface height SH, for example, the correspondence between the joint surface height SH and the pressing force P shown in the graph of FIG. 7(b) stored in the storage section 25e. Based on the related data, the value of the pressing force P with respect to the joint surface height SH is read and set. In addition, when changing the ultrasonic output of the ultrasonic head 24 according to the bonding surface height SH, for example, the bonding surface height SH shown by the graph of FIG. 7(c) stored in the storage section 25e Based on the data on the correspondence of the ultrasonic output V of the ultrasonic head 24, the value of the ultrasonic output V with respect to the bonding surface height SH is read out and set.

このように本実施の形態では、超音波ヘッド24により部品3を接合するときの接合条件を、部品3が接合される部品接合面(直前に接合した部品3の上面)のステージ22からの高さである接合面高さSHに応じて設定するようになっているので、次の部品3が接合される部品接合面のステージ22からの高さが次第に高くなっていき、上層側になるほど(接合面高さSHが大きくなるほど)、接合時における部品3の温度が低くなる場合であっても、これを是正して良好な接合をすることができる。 As described above, in the present embodiment, the welding conditions when joining the parts 3 by the ultrasonic head 24 are set such that the height from the stage 22 of the part joining surface (the upper surface of the part 3 that was just joined) to which the parts 3 are joined is set. Since it is set according to the joint surface height SH, the height of the component joint surface to which the next component 3 is to be welded from the stage 22 gradually increases, and as it approaches the upper layer ( Even if the temperature of the parts 3 during bonding becomes lower as the bonding surface height SH becomes larger), this can be corrected and good bonding can be achieved.

以上説明したように、本実施の形態における半導体デバイス製造システム1および半導体製造方法によれば、複数の部品3が積層されて成る半導体デバイス5を製造するにおいて、部品3のひとつひとつの積層に要する時間を短縮して生産性を向上させることができる。 As explained above, according to the semiconductor device manufacturing system 1 and the semiconductor manufacturing method according to the present embodiment, the time required for laminating each component 3 in manufacturing the semiconductor device 5 formed by laminating a plurality of components 3. can be shortened and productivity can be improved.

複数の部品が積層されて成る半導体デバイスを製造するにおいて、部品のひとつひとつの積層に要する時間を短縮して生産性を向上させることができる半導体デバイス製造システムおよび半導体デバイス製造方法を提供する。 To provide a semiconductor device manufacturing system and a semiconductor device manufacturing method capable of improving productivity by shortening the time required for laminating each component in manufacturing a semiconductor device formed by laminating a plurality of components.

1 半導体デバイス製造システム
2 基板
3 部品
3B バンプ
3F 接合フィルム
4 部品積層体
5 半導体デバイス
12 部品積層部
14 加熱部
22 ステージ
24 超音波ヘッド
SH 接合面高さ
Tv 接合時間
P 押圧力
1 Semiconductor device manufacturing system 2 Substrate 3 Component 3B Bump 3F Bonding film 4 Component laminate 5 Semiconductor device 12 Component laminate section 14 Heating section 22 Stage 24 Ultrasonic head SH Bonding surface height Tv Bonding time P Pressing force

Claims (12)

バンプが形成された下面に熱硬化性材料から成る接合フィルムが貼り付けられた構成を有する複数の部品をステージに保持された基板の上に積層して半導体デバイスを製造する半導体デバイス製造システムであって、
超音波ヘッドにより前記基板の上に複数の部品を超音波接合により接合して積層する部品積層部と、
前記部品積層部により積層された複数の部品をまとめて加熱することにより前記複数の部品それぞれが備える前記接合フィルムを一括して熱硬化させる加熱部とを備え、
部品が接合される部品接合面の前記ステージからの高さである接合面高さに応じて前記超音波ヘッドにより部品を接合するときの接合条件を設定する半導体デバイス製造システム。
A semiconductor device manufacturing system that manufactures semiconductor devices by laminating a plurality of components on a substrate held on a stage, each having a bonding film made of a thermosetting material attached to the lower surface on which bumps are formed. hand,
a component stacking unit for bonding and stacking a plurality of components on the substrate by ultrasonic bonding using an ultrasonic head;
a heating section that collectively heats the plurality of components laminated by the component lamination section to heat-cure the bonding film of each of the plurality of components at once;
A semiconductor device manufacturing system that sets bonding conditions for bonding components using the ultrasonic head according to a bonding surface height that is a height from the stage of a component bonding surface to which the components are bonded.
前記部品積層部は、下側の部品の上面に上側の部品を接合するとき、加熱した前記ステージの上面側で前記上側の部品の前記バンプを前記下側の部品の上面に当接させ、所定の押圧力で前記上側の部品を前記下側の部品に押圧しながら前記上側の部品に超音波振動を与えることによって前記上側の前記バンプを前記下側の部品に超音波接合するようになっている請求項1に記載の半導体デバイス製造システム。 When the upper component is bonded to the upper surface of the lower component, the component stacking unit brings the bumps of the upper component into contact with the upper surface of the lower component on the upper surface side of the heated stage, and The bump on the upper side is ultrasonically bonded to the lower part by applying ultrasonic vibration to the upper part while pressing the upper part against the lower part with a pressing force of The semiconductor device manufacturing system according to claim 1. 前記ステージを昇降させるステージ昇降部をさらに備え、
前記ステージ昇降部で前記ステージを下降させることによって直前に接合した部品の上面である前記部品接合面を基準高さに位置合わせした状態で、前記超音波ヘッドが保持する部品を前記直前に接合した部品に接合する請求項1または2に記載の半導体デバイス製造システム。
further comprising a stage elevating section for elevating the stage,
The part held by the ultrasonic head is bonded immediately before the stage is lowered by the stage elevating section so that the component bonding surface, which is the upper surface of the component bonded immediately before, is aligned at a reference height. The semiconductor device manufacturing system according to claim 1 or 2, wherein the semiconductor device manufacturing system is bonded to a component.
前記部品積層部は、前記接合面高さに応じて前記超音波ヘッドにより部品に押圧力と超音波荷重とを与える時間を変化させる請求項1または2に記載の半導体デバイス製造システム。 3. The semiconductor device manufacturing system according to claim 1, wherein the component stacking section changes the time during which the ultrasonic head applies the pressing force and ultrasonic load to the component depending on the height of the bonding surface. 前記部品積層部は、前記接合面高さに応じて前記超音波ヘッドにより前記上側の部品の前記下側の部品へ与える押圧力の大きさを変化させる請求項に記載の半導体デバイス製造システム。 3. The semiconductor device manufacturing system according to claim 2 , wherein the component stacking section changes the magnitude of the pressing force applied from the upper component to the lower component by the ultrasonic head depending on the height of the bonding surface. 前記部品積層部は、前記接合面高さに応じて前記超音波ヘッドの超音波出力の大きさを変化させる請求項1または2に記載の半導体デバイス製造システム。 3. The semiconductor device manufacturing system according to claim 1, wherein the component stacking section changes the magnitude of the ultrasonic output of the ultrasonic head depending on the height of the bonding surface. バンプが形成された下面に熱硬化性材料から成る接合フィルムが貼り付けられた構成を有する複数の部品をステージに保持された基板の上に積層して半導体デバイスを製造する半導体デバイス製造方法であって、
超音波ヘッドにより前記基板の上に複数の部品を超音波接合により接合して積層する部品積層工程と、
前記部品積層工程で積層した複数の部品をまとめて加熱することにより前記複数の部品それぞれが備える前記接合フィルムを一括して熱硬化させる加熱工程とを含み、
部品が接合される部品接合面の前記ステージからの高さである接合面高さに応じて前記超音波ヘッドにより部品を接合するときの接合条件を設定する半導体デバイス製造方法。
A semiconductor device manufacturing method in which a semiconductor device is manufactured by laminating a plurality of components on a substrate held on a stage, each of which has a bonding film made of a thermosetting material attached to the lower surface on which bumps are formed. hand,
a component stacking step of bonding and stacking a plurality of components on the substrate by ultrasonic bonding using an ultrasonic head;
a heating step of thermally curing the bonding film of each of the plurality of components at once by heating the plurality of components laminated in the component lamination step,
A semiconductor device manufacturing method, wherein bonding conditions for bonding components by the ultrasonic head are set according to a bonding surface height that is a height from the stage of a component bonding surface to which the components are bonded.
前記部品積層工程において、下側の部品の上面に上側の部品を接合するとき、加熱した前記ステージの上面側で前記上側の部品の前記バンプを前記下側の部品の上面に当接させ、所定の押圧力で前記上側の部品を前記下側の部品に押圧しながら前記上側の部品に超音波振動を与えることによって前記上側の前記バンプを前記下側の部品に超音波接合するようになっている請求項7に記載の半導体デバイス製造方法。 In the component stacking step, when joining the upper component to the upper surface of the lower component, the bumps of the upper component are brought into contact with the upper surface of the lower component on the upper surface side of the heated stage, and a predetermined The bump on the upper side is ultrasonically bonded to the lower part by applying ultrasonic vibration to the upper part while pressing the upper part against the lower part with a pressing force of 8. The semiconductor device manufacturing method according to claim 7. ステージ昇降部で前記ステージを下降させることによって直前に接合した部品の上面である前記部品接合面を基準高さに位置合わせした状態で、前記超音波ヘッドが保持する部品を前記直前に接合した部品に接合する請求項7または8に記載の半導体デバイス製造方法。 The part held by the ultrasonic head is moved to the part held by the ultrasonic head in a state where the stage is lowered by the stage lift section so that the part joining surface, which is the upper surface of the part joined immediately before, is aligned with the reference height. The semiconductor device manufacturing method according to claim 7 or 8, wherein the semiconductor device manufacturing method is bonded to. 前記部品積層工程において、前記接合面高さに応じて前記超音波ヘッドにより部品に押圧力と超音波荷重とを与える時間を変化させる請求項7または8に記載の半導体デバイス製造方法。 9. The semiconductor device manufacturing method according to claim 7, wherein in the component laminating step, the time period during which the ultrasonic head applies the pressing force and the ultrasonic load to the component is changed depending on the height of the bonding surface. 前記部品積層工程において、前記接合面高さに応じて前記超音波ヘッドにより前記上側の部品の前記下側の部品へ与える押圧力の大きさを変化させる請求項に記載の半導体デバイス製造方法。 9. The semiconductor device manufacturing method according to claim 8 , wherein in the component lamination step, the magnitude of the pressing force applied from the upper component to the lower component by the ultrasonic head is changed depending on the height of the bonding surface. 前記部品積層工程において、前記接合面高さに応じて前記超音波ヘッドの超音波出力の大きさを変化させる請求項7または8に記載の半導体デバイス製造方法。 9. The semiconductor device manufacturing method according to claim 7, wherein in the component lamination step, the magnitude of the ultrasonic output of the ultrasonic head is changed depending on the height of the bonding surface.
JP2019062141A 2019-03-28 2019-03-28 Semiconductor device manufacturing system and semiconductor device manufacturing method Active JP7398612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019062141A JP7398612B2 (en) 2019-03-28 2019-03-28 Semiconductor device manufacturing system and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019062141A JP7398612B2 (en) 2019-03-28 2019-03-28 Semiconductor device manufacturing system and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2020161751A JP2020161751A (en) 2020-10-01
JP7398612B2 true JP7398612B2 (en) 2023-12-15

Family

ID=72640064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019062141A Active JP7398612B2 (en) 2019-03-28 2019-03-28 Semiconductor device manufacturing system and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP7398612B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307169A (en) 2004-03-22 2005-11-04 Hitachi Chem Co Ltd Filmy adhesive and production method of semiconductor device using this
JP2009110995A (en) 2007-10-26 2009-05-21 Toray Eng Co Ltd Three-dimensional packaging method and apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307169A (en) 2004-03-22 2005-11-04 Hitachi Chem Co Ltd Filmy adhesive and production method of semiconductor device using this
JP2009110995A (en) 2007-10-26 2009-05-21 Toray Eng Co Ltd Three-dimensional packaging method and apparatus

Also Published As

Publication number Publication date
JP2020161751A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US20100093131A1 (en) Bonding apparatus and bonding method
CN109103117B (en) Apparatus for bonding semiconductor chips and method of bonding semiconductor chips
WO2016125764A1 (en) Mounting device and mounting method
JP2008218474A5 (en)
WO2015133446A1 (en) Crimp head, and mounting device and mounting method using same
WO2018143222A1 (en) Semiconductor chip mounting apparatus and semiconductor chip mounting method
WO2016158935A1 (en) Method for manufacturing semiconductor device, semiconductor mounting device, and memory device manufactured by method for manufacturing semiconductor device
JP4666546B2 (en) Pressure device and bump bonding device, bonding device, and pressure bonding device using the same
JP6602022B2 (en) Mounting apparatus and mounting method
JP2017123423A (en) Semiconductor mounting device and semiconductor mounting method
JP7398612B2 (en) Semiconductor device manufacturing system and semiconductor device manufacturing method
WO2007099759A1 (en) Method of bonding part, method of stacking part, and structure including part bonded
JPWO2018221499A1 (en) Mounting device and semiconductor device manufacturing method
KR20220004193A (en) Semiconductor device manufacturing apparatus and manufacturing method
KR102372519B1 (en) mounting device
JP6688543B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JP4369528B2 (en) Bonding apparatus and method
KR20140071932A (en) Mounting apparatus and mounting method
JP7268929B2 (en) Mounting device and mounting method
JP2003179101A (en) Bonding unit, method of manufacturing semiconductor device, and bonding method
JP2014033100A (en) Mounting method
JP2019510378A (en) Ultrasonic lamination of dielectric circuit materials
JP5098939B2 (en) Bonding apparatus and bonding method
JP2009004462A (en) Method of mounting semiconductor device
JP7083795B2 (en) Mounting device and mounting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220111

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231106

R151 Written notification of patent or utility model registration

Ref document number: 7398612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151