JP7395941B2 - Glass interleaving paper, laminates and packaging - Google Patents

Glass interleaving paper, laminates and packaging Download PDF

Info

Publication number
JP7395941B2
JP7395941B2 JP2019188836A JP2019188836A JP7395941B2 JP 7395941 B2 JP7395941 B2 JP 7395941B2 JP 2019188836 A JP2019188836 A JP 2019188836A JP 2019188836 A JP2019188836 A JP 2019188836A JP 7395941 B2 JP7395941 B2 JP 7395941B2
Authority
JP
Japan
Prior art keywords
glass
interleaving paper
pulp
glass interleaving
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019188836A
Other languages
Japanese (ja)
Other versions
JP2021063317A (en
Inventor
剛直 嶋村
真之 阿部
渉 石田
恵嗣 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2019188836A priority Critical patent/JP7395941B2/en
Priority to TW109134722A priority patent/TW202128525A/en
Priority to KR1020200130009A priority patent/KR20210044703A/en
Priority to CN202011106575.3A priority patent/CN112660604B/en
Publication of JP2021063317A publication Critical patent/JP2021063317A/en
Priority to JP2023201927A priority patent/JP2024019252A/en
Application granted granted Critical
Publication of JP7395941B2 publication Critical patent/JP7395941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H5/00Special paper or cardboard not otherwise provided for
    • D21H5/12Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials
    • D21H5/14Special paper or cardboard not otherwise provided for characterised by the use of special fibrous materials of cellulose fibres only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Packaging Frangible Articles (AREA)
  • Paper (AREA)
  • Buffer Packaging (AREA)

Description

本発明は、ガラス合紙、積層体および梱包体に関する。 The present invention relates to a glass interleaving paper, a laminate, and a package.

プラズマディスプレイや液晶ディスプレイなどのフラットパネルディスプレイに使用されるガラス板の表面には、微細な電極あるいは隔壁などの素子や構造体が形成されるため、その表面には傷や異物等の微細な欠陥が少ないことが要求される。したがって、ガラス板同士が接触して傷つくことを防ぐため、ガラス板の搬送時には通常ガラス板の間に合紙が挿入されて、梱包される。 On the surface of glass plates used in flat panel displays such as plasma displays and liquid crystal displays, elements and structures such as minute electrodes and partition walls are formed, so the surface is prone to minute defects such as scratches and foreign objects. is required to be small. Therefore, in order to prevent the glass plates from coming into contact with each other and being damaged, when the glass plates are transported, interleaving paper is usually inserted between the glass plates and the glass plates are packaged.

しかしながら、ガラス板間にガラス合紙を介在させる方法では、ガラス合紙中のパーティクル(繊維や紙粉片、紙中の有機、無機異物等)がガラス板に転写され、ガラス板上へのデバイス形成時に該異物に起因する不良が発生することが問題であった。そこで、パーティクルの抑制のために、種々のガラス合紙が開発されている(例えば特許文献1~3)。 However, in the method of interposing glass interleaving paper between glass plates, particles in the glass interleaving paper (fibers, paper particles, organic and inorganic foreign substances in the paper, etc.) are transferred to the glass plate, and the device on the glass plate is transferred to the glass plate. The problem was that defects caused by the foreign matter occurred during formation. Therefore, various glass interleaving papers have been developed to suppress particles (for example, Patent Documents 1 to 3).

特開2016-34843号公報Japanese Patent Application Publication No. 2016-34843 特開2005-248409号公報Japanese Patent Application Publication No. 2005-248409 特許第5137063号公報Patent No. 5137063

しかし、近年ではディスプレイの高精細化に伴いガラス板状に形成されるデバイスはより微細化しており、ガラス板へのパーティクル付着抑制の要請はより一層高まっている。したがって、より一層パーティクルの発生が抑制されたガラス合紙が望まれている。 However, in recent years, devices formed in the shape of a glass plate have become smaller as displays have become more precise, and there has been an even greater demand for suppressing particle adhesion to the glass plate. Therefore, there is a demand for glass interleaving paper that can further suppress the generation of particles.

本発明は上記に鑑みてなされたものであり、パーティクルの発生が特に少ないガラス合紙の提供を目的とする。また、本発明は、当該ガラス合紙が複数のガラス板の間に介在された積層体、及び当該積層体が梱包容器に収納された梱包体の提供を目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a glass interleaving paper that generates particularly few particles. Another object of the present invention is to provide a laminate in which the glass interleaving paper is interposed between a plurality of glass plates, and a package in which the laminate is housed in a packaging container.

上記課題を解決する本発明のガラス合紙の第1の態様は、ガラス板間に介在させるガラス合紙であって、ガラス合紙の少なくとも一方の表面において、表面から厚み方向に10μm以内の領域である表面近傍領域を離解して得られる離解パルプの、長さ加重平均繊維長が0.5~3.5mmであり、フィブリル化率が0.1~4%である。
上記課題を解決する本発明のガラス合紙の第2の態様は、ガラス板間に介在させるガラス合紙であって、ガラス合紙を離解して得られる離解パルプの、長さ加重平均繊維長が0.7~2.5mmであり、フィブリル化率が0.3~3%である。
本発明のガラス合紙の一態様においては、バージンパルプ率が80%以上であってもよい。
本発明のガラス合紙の一態様においては、坪量が20~100g/m、厚さが30~150μm、灰分が0.5質量%以下、樹脂分が0.5質量%以下であってもよい。
本発明のガラス合紙の一態様においては、離解パルプにおける繊維長が1.2mm超3.2mm以下である繊維の含有率が40質量%以上であってもよい。
本発明のガラス合紙の一態様においては、離解パルプにおける繊維長が0.2mm以上1.2mm以下である繊維の含有率が40質量%以上であってもよい。
本発明のガラス合紙の一態様においては、ガラス合紙をガラス基板に接触させた後の、ガラス基板表面の水の接触角が30°以下であってもよい。
本発明のガラス合紙の一態様においては、R指数が0.4以下であってもよい。
本発明のガラス合紙の一態様においては、矩形状であり、少なくとも1辺の長さが500mm以上であってもよい。
また、本発明の積層体は、複数枚のガラス板の間に上記本発明のガラス合紙が介在された積層体である。
本発明の積層体の一態様において、ガラス板の厚さが0.1~1.5mmであってもよい。
また、本発明の梱包体は、梱包容器と、梱包容器に収容された本発明の積層体とを有する梱包体である。
A first aspect of the glass interleaving paper of the present invention that solves the above problems is a glass interleaving paper interposed between glass plates, which has an area within 10 μm from the surface in the thickness direction on at least one surface of the glass interleaving paper. The length-weighted average fiber length of the disintegrated pulp obtained by disintegrating the near-surface region is 0.5 to 3.5 mm, and the fibrillation rate is 0.1 to 4%.
A second aspect of the glass interleaving paper of the present invention that solves the above problems is a glass interleaving paper that is interposed between glass plates, and the length-weighted average fiber length of the disintegrated pulp obtained by disintegrating the glass interleaving paper. is 0.7 to 2.5 mm, and the fibrillation rate is 0.3 to 3%.
In one embodiment of the glass interleaving paper of the present invention, the virgin pulp ratio may be 80% or more.
In one embodiment of the glass interleaving paper of the present invention, the basis weight is 20 to 100 g/m 2 , the thickness is 30 to 150 μm, the ash content is 0.5% by mass or less, and the resin content is 0.5% by mass or less. Good too.
In one embodiment of the glass interleaving paper of the present invention, the content of fibers having a fiber length of more than 1.2 mm and 3.2 mm or less in the disintegrated pulp may be 40% by mass or more.
In one embodiment of the glass interleaving paper of the present invention, the content of fibers having a fiber length of 0.2 mm or more and 1.2 mm or less in the disintegrated pulp may be 40% by mass or more.
In one aspect of the glass interleaving paper of the present invention, after the glass interleaving paper is brought into contact with the glass substrate, the contact angle of water on the surface of the glass substrate may be 30° or less.
In one embodiment of the glass interleaving paper of the present invention, the R index may be 0.4 or less.
In one embodiment of the glass interleaving paper of the present invention, the glass interleaving paper may have a rectangular shape, and the length of at least one side may be 500 mm or more.
Moreover, the laminate of the present invention is a laminate in which the glass interleaving paper of the present invention is interposed between a plurality of glass plates.
In one embodiment of the laminate of the present invention, the glass plate may have a thickness of 0.1 to 1.5 mm.
Moreover, the package of the present invention is a package that includes a packaging container and the laminate of the present invention accommodated in the packaging container.

本発明のガラス合紙は、パーティクルの発生が特に少ない。また、本発明の積層体及び梱包体では、ガラス板へのパーティクルの付着が抑制されている。 The glass interleaving paper of the present invention generates particularly few particles. Furthermore, in the laminate and package of the present invention, adhesion of particles to the glass plate is suppressed.

図1は、本発明の実施形態のガラス合紙を用いた積層体の一例の概略構成を示す断面図である。FIG. 1 is a sectional view showing a schematic configuration of an example of a laminate using glass interleaving paper according to an embodiment of the present invention. 図2は、本発明の実施形態の梱包体の一例の概略構成を示す側面図である。FIG. 2 is a side view showing a schematic configuration of an example of a package according to an embodiment of the present invention. 図3は、本発明の実施形態の梱包体の別の一例の概略構成を示す側面図である。FIG. 3 is a side view showing a schematic configuration of another example of the package according to the embodiment of the present invention.

以下、本発明のガラス合紙、積層体、及び、梱包体の実施形態について説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明することがあり、重複する説明は省略または簡略化することがある。また、図面に記載の実施形態は、本発明を明瞭に説明するために模式化されており、実際のサイズや縮尺を必ずしも正確に表したものではない。 Hereinafter, embodiments of the glass interleaving paper, laminate, and package of the present invention will be described. Note that the present invention is not limited to the embodiments described below. Furthermore, in the following drawings, members and portions that have the same function may be described with the same reference numerals, and overlapping descriptions may be omitted or simplified. Further, the embodiments illustrated in the drawings are schematically illustrated to clearly explain the present invention, and do not necessarily accurately represent the actual size or scale.

[ガラス合紙]
図1に、本実施形態のガラス合紙1が複数のガラス板2の間に介在された積層体10の概略図を示す。本実施形態のガラス合紙1は、ガラス板間に介在させるガラス合紙であって、パーティクルの発生が抑制されており、接触したガラス板へのパーティクルの付着が少ない。以下に、本実施形態のガラス合紙1について詳細に説明する。
[Glass interleaving paper]
FIG. 1 shows a schematic diagram of a laminate 10 in which a glass interleaving paper 1 of this embodiment is interposed between a plurality of glass plates 2. The glass interleaving paper 1 of this embodiment is a glass interleaving paper interposed between glass plates, and the generation of particles is suppressed, and there are few particles attached to the glass plates that come into contact with it. Below, the glass interleaving paper 1 of this embodiment will be explained in detail.

本発明者らは、ガラス合紙を構成するパルプのフィブリル化率がパーティクル発生量と相関を持つことを見出した。フィブリル化とは叩解等の処理を受けた繊維が膨潤し、部分的に裂けて枝状化することをいう。フィブリル化率とはこのフィブリル化の度合いを表す値であり、繊維画像解析装置を用いて測定される、1本の繊維全体の投射部に対する小繊維の投射部の割合である。より詳細な測定方法については、実施例の欄において説明する。フィブリル化率が高いほど、フィブリル化が進行した状態である。
本発明者らは、フィブリル化率が高くなるほど細かい繊維が剥離してパーティクルが発生しやすくなることを見出した。すなわち、フィブリル化率が、パーティクルの発生しやすさと相関を持ち、フィブリル化率を低くすることでパーティクルの発生を抑制することができると見出した。パーティクルの発生を抑制する観点からは、フィブリル化率は低ければ低いほど好ましい。
一方、フィブリル化率が小さすぎると、ガラス合紙内における繊維間結合が弱くなり、紙強度の低下を招くため、操業中または使用時に紙が破れやすくなる。加えて保水量が少なく乾燥しやすくなり、静電気を帯びやすくなるので、ガラス板からの剥離時に剥離帯電現象を引き起こし、うまく剥がせない恐れがある。
上記観点より、本実施形態においては解離パルプのフィブリル化率が満たすべき範囲を規定する。本実施形態においては、以下のフィブリル化率の第1又は第2の条件を満足するようにする。
The present inventors have discovered that the fibrillation rate of the pulp constituting the glass interleaving paper has a correlation with the amount of particles generated. Fibrillation refers to the fact that fibers that have undergone a treatment such as beating swell, partially tear, and become branched. The fibrillation rate is a value representing the degree of fibrillation, and is the ratio of the projection area of small fibers to the projection area of the entire fiber, measured using a fiber image analysis device. A more detailed measurement method will be explained in the Examples section. The higher the fibrillation rate, the more advanced the fibrillation is.
The present inventors have discovered that the higher the fibrillation rate, the more likely fine fibers are to be exfoliated and particles to be generated. That is, the inventors have found that the fibrillation rate has a correlation with the ease with which particles are generated, and that by lowering the fibrillation rate, the generation of particles can be suppressed. From the viewpoint of suppressing the generation of particles, the lower the fibrillation rate, the more preferable.
On the other hand, if the fibrillation rate is too small, the bonds between fibers in the glass interleaving paper will become weak, resulting in a decrease in paper strength, making the paper more likely to tear during operation or use. In addition, it retains less water and dries easily, making it more likely to be charged with static electricity, which may cause a peeling electrification phenomenon when it is peeled off from the glass plate, making it difficult to peel it off properly.
From the above viewpoint, in this embodiment, the range that the fibrillation rate of the dissociated pulp should satisfy is defined. In this embodiment, the following first or second condition for the fibrillation rate is satisfied.

まず、フィブリル化率の第1の条件について説明する。
パーティクルの発生量は、使用時においてガラス基板に接触する部分の近傍である、ガラス合紙の表面から厚み方向に10μm以内の領域(以下「表面近傍領域」ともいう)の繊維状態に大きく依存する。このことから、フィブリル化率の第1の条件ではこの領域の離解パルプのフィブリル化率を規定する。
フィブリル化率の第1の条件では、ガラス合紙の表面近傍領域を離解して得られる離解パルプのフィブリル化率を0.1%以上、好ましくは0.2%以上、より好ましくは0.3%以上とし、また、4%以下、好ましくは3%以下、より好ましくは2%以下、さらに好ましくは1.5%以下、特に好ましくは1%以下とする。
ここで、ガラス基板において特に汚染の抑制が求められる、すなわちパーティクル付着の抑制が求められるのは電子回路形成面である。したがって、ガラス合紙の電子回路形成面に触れる側の面の繊維状態が制御されていれば、本発明の効果を奏することができる。よって、第1の条件では、ガラス合紙の少なくとも一方の表面において、表面近傍領域を離解して得られる離解パルプのフィブリル化率が上記の条件を満たせばよい。なお、ガラスの汚染をより一層抑制するためにはガラス合紙の両面の繊維状態が制御されていることが好ましく、したがってガラス合紙の両方の表面において、第1の条件を満たすことがより好ましい。ガラス基板の電子回路形成面の反対側の面の汚染が激しいと、電子回路形成のラインが汚染され、当該ラインの汚染が電子回路形成面に転写される恐れがあるためである。後述の平均繊維長についても同様である。
First, the first condition for the fibrillation rate will be explained.
The amount of particles generated largely depends on the state of the fibers in the region within 10 μm in the thickness direction from the surface of the glass interleaving paper (hereinafter also referred to as "near-surface region"), which is near the part that contacts the glass substrate during use. . From this, the first condition for the fibrillation rate defines the fibrillation rate of the disintegrated pulp in this region.
The first condition for the fibrillation rate is to set the fibrillation rate of the disintegrated pulp obtained by disintegrating the area near the surface of the glass interleaving paper to 0.1% or more, preferably 0.2% or more, and more preferably 0.3%. % or more, and 4% or less, preferably 3% or less, more preferably 2% or less, still more preferably 1.5% or less, particularly preferably 1% or less.
Here, in the glass substrate, suppression of contamination is particularly required, that is, suppression of particle adhesion is required on the surface on which electronic circuits are formed. Therefore, the effects of the present invention can be achieved as long as the fiber state of the surface of the glass interleaving paper that touches the electronic circuit forming surface is controlled. Therefore, in the first condition, it is sufficient that the fibrillation rate of the disintegrated pulp obtained by disintegrating the area near the surface of at least one surface of the glass interleaving paper satisfies the above condition. In addition, in order to further suppress contamination of the glass, it is preferable that the fiber state on both sides of the glass interleaving paper is controlled, and therefore it is more preferable that the first condition is satisfied on both surfaces of the glass interleaving paper. . This is because if the surface of the glass substrate opposite to the electronic circuit forming surface is heavily contaminated, the electronic circuit forming line may be contaminated and the contamination of the line may be transferred to the electronic circuit forming surface. The same applies to the average fiber length described below.

表面近傍領域の解離パルプは、ガラス合紙を適当な手法で厚み方向に分割して表面近傍領域のみを分離し、その後離解することで得られる。
ガラス合紙を厚み方向に分割する際には、繊維の切断を伴わない方法を用いることが好ましい。例えば、湿潤紙の両面を凍結させて内部で分割させるシートスプリッター(熊谷理機製)を利用する方法や、粘着テープで引き剥がして厚み方向に分割する方法が利用できる。
Disaggregated pulp in the region near the surface can be obtained by dividing glass interleaving paper in the thickness direction using an appropriate method to separate only the region near the surface, and then disintegrating it.
When dividing the glass interleaving paper in the thickness direction, it is preferable to use a method that does not involve cutting fibers. For example, a method using a sheet splitter (manufactured by Kumagai Riki) that freezes both sides of wet paper and splits it internally, or a method that separates it with adhesive tape and splits it in the thickness direction can be used.

次に、フィブリル化率の第2の条件について説明する。
第2の条件においては、ガラス合紙全体を離解して得られる離解パルプのフィブリル化率を規定する。
ここで、ガラス合紙全体には種々の繊維が含まれるため、ガラス合紙全体を離解して得られる解離パルプのフィブリル化率は、表面近傍領域を離解して得られる解離パルプのフィブリル化率と多少異なる場合がある。したがって、本実施形態においては、上記の効果(パーティクルの発生の抑制、及び、剥離帯電現象の抑制)を奏するためにガラス合紙全体を離解して得られる離解パルプのフィブリル化率が満たすべき範囲と、ガラス合紙の表面近傍領域を離解して得られる離解パルプのフィブリル化率が満たすべき範囲が異なる。より詳細には、ガラス合紙全体を離解して得られる離解パルプのフィブリル化率が満たすべき範囲は、表面近傍領域を離解して得られる離解パルプのフィブリル化率が満たすべき範囲と比べて狭くなる。なお、後述の平均繊維長についても同様である。
Next, the second condition for the fibrillation rate will be explained.
The second condition defines the fibrillation rate of the disintegrated pulp obtained by disintegrating the entire glass interleaving paper.
Here, since the entire glass interleaving paper contains various fibers, the fibrillation rate of the dissociated pulp obtained by disintegrating the entire glass interleaving paper is the fibrillation rate of the dissociated pulp obtained by disintegrating the area near the surface. It may be slightly different. Therefore, in this embodiment, in order to achieve the above-mentioned effects (suppression of particle generation and suppression of exfoliation charging phenomenon), the fibrillation rate of the disintegrated pulp obtained by disintegrating the entire glass interleaving paper should satisfy the range. The range to be satisfied by the fibrillation rate of the disintegrated pulp obtained by disintegrating the region near the surface of glass interleaving paper is different. More specifically, the range that the fibrillation rate of the disaggregated pulp obtained by disintegrating the entire glass interleaving paper should satisfy is narrower than the range that the fibrillation rate of the disaggregated pulp obtained by disintegrating the area near the surface should satisfy. Become. Note that the same applies to the average fiber length described below.

フィブリル化率の第2の条件では、ガラス合紙を離解して得られる離解パルプのフィブリル化率を0.3%以上、好ましくは0.4%以上、より好ましくは0.5%以上とし、また、3%以下、好ましくは2%以下、より好ましくは1.5%以下、さらに好ましくは1%以下、特に好ましくは0.7%以下とする。 In the second condition of the fibrillation rate, the fibrillation rate of the disintegrated pulp obtained by disintegrating the glass interleaving paper is 0.3% or more, preferably 0.4% or more, more preferably 0.5% or more, Further, the content is 3% or less, preferably 2% or less, more preferably 1.5% or less, even more preferably 1% or less, particularly preferably 0.7% or less.

また、ガラス合紙を離解して得られる離解パルプの長さ加重平均繊維長(以下単に「離解パルプの平均繊維長」ともいう)が短すぎると、繊維が脱落してガラス基板に付着する恐れがある。脱落した繊維はフィブリル化率の大小に起因して生じるパーティクルと比較するとガラス基板への付着力が弱く洗浄により除去されやすいのでガラス基板の品質(清浄性)に及ぼす悪影響は少ないものの、高い清浄性を達成するためにはこれも抑制する必要がある。一方、離解パルプの平均繊維長が長すぎると、ガラス合紙の地合の悪化を招き、厚さの均質性が低下するおそれがある。 Furthermore, if the length-weighted average fiber length of the disintegrated pulp obtained by disintegrating glass interleaving paper (hereinafter simply referred to as "average fiber length of disintegrated pulp") is too short, the fibers may fall off and adhere to the glass substrate. There is. Compared to particles generated due to the fibrillation rate, fallen fibers have weak adhesion to the glass substrate and are easily removed by cleaning, so they have little negative impact on the quality (cleanliness) of the glass substrate, but they have a high level of cleanliness. In order to achieve this, it is necessary to suppress this as well. On the other hand, if the average fiber length of the disintegrated pulp is too long, the formation of the glass interleaving paper may deteriorate and the uniformity of the thickness may decrease.

上記より、本実施形態においては、以下の平均繊維長の第1又は第2の条件を満足するようにする。 From the above, in this embodiment, the following first or second condition of average fiber length is satisfied.

平均繊維長の第1の条件では、ガラス合紙の表面近傍領域を離解して得られる離解パルプの平均繊維長を0.5mm以上、好ましくは0.9mm以上、より好ましくは1.1mm以上とし、また、3.5mm以下、好ましくは3.0mm以下、より好ましくは2.5mm以下であり、さらに好ましくは2.1mm以下とする。 In the first condition of the average fiber length, the average fiber length of the disintegrated pulp obtained by disintegrating the area near the surface of the glass interleaving paper is 0.5 mm or more, preferably 0.9 mm or more, and more preferably 1.1 mm or more. , and is also 3.5 mm or less, preferably 3.0 mm or less, more preferably 2.5 mm or less, and even more preferably 2.1 mm or less.

平均繊維長の第2の条件では、ガラス合紙を離解して得られる離解パルプの平均繊維長を0.7mm以上、好ましくは0.9mm以上、より好ましくは1.1mm以上とし、また、2.5mm以下、好ましくは2.3mm以下、より好ましくは2.1mm以下であり、さらに好ましくは1.9mm以下とする。 In the second condition of the average fiber length, the average fiber length of the disintegrated pulp obtained by disintegrating the glass interleaving paper is 0.7 mm or more, preferably 0.9 mm or more, more preferably 1.1 mm or more, and 2 .5 mm or less, preferably 2.3 mm or less, more preferably 2.1 mm or less, still more preferably 1.9 mm or less.

また、繊維の脱落をより一層抑制するためには、ガラス合紙全体の離解パルプ、または表面近傍領域の離解パルプにおける繊維長が1.2mm超3.2mm以下である繊維の含有率は、40質量%以上が好ましく、60質量%以上がより好ましく、80質量%以上がさらに好ましい。
また、ガラス合紙の地合を良好にし、厚さ及び表面平坦性の均質性を向上させるには、ガラス合紙全体の離解パルプ、または表面近傍領域の離解パルプにおける繊維長が0.2mm以上1.2mm以下である繊維(以下「短繊維」ともいう)の含有率は、40質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上がさらに好ましい。
繊維長が1.2mm超3.2mm以下である繊維、及び0.2mm以上1.2mm以下である繊維の含有率は、実施例の欄に記載の方法で測定できる。
In addition, in order to further suppress the falling of fibers, the content of fibers with a fiber length of more than 1.2 mm and 3.2 mm or less in the disintegrated pulp of the entire glass interleaving paper or the disintegrated pulp of the area near the surface should be set to 40 mm. The content is preferably at least 60% by mass, more preferably at least 60% by mass, even more preferably at least 80% by mass.
In addition, in order to improve the formation of the glass interleaving paper and improve the uniformity of its thickness and surface flatness, the fiber length of the disintegrated pulp of the entire glass interleaving paper or the disintegrated pulp of the area near the surface should be 0.2 mm or more. The content of fibers having a diameter of 1.2 mm or less (hereinafter also referred to as "short fibers") is preferably 40% by mass or more, more preferably 50% by mass or more, and even more preferably 60% by mass or more.
The content of fibers with a fiber length of more than 1.2 mm and 3.2 mm or less and fibers with a fiber length of 0.2 mm or more and 1.2 mm or less can be measured by the method described in the Examples section.

離解パルプのフリーネスはカナディアン・スタンダード・フリーネス(以下、CSF)で、200ml以上が好ましく、300ml以上がより好ましく、350ml以上がさらに好ましく、また、650ml以下が好ましく、550ml以下がより好ましく、500ml以下がさらに好ましい。
離解パルプのフリーネスは、ガラス合紙の製造時における叩解量と相関を有し、叩解量を多くするとフリーネスが小さくなる傾向がある。解離パルプのCSFが200~650mlとなるように叩解すると、離解パルプの平均繊維長及びフィブリル化率が好ましい範囲となりやすいため、好ましい。
離解パルプのフリーネスは、JIS P 8121-2:2012に準拠して測定することができる。詳細な測定方法は実施例の欄において説明する。
The freeness of the disintegrated pulp is Canadian Standard Freeness (hereinafter referred to as CSF), preferably 200 ml or more, more preferably 300 ml or more, even more preferably 350 ml or more, and preferably 650 ml or less, more preferably 550 ml or less, and 500 ml or less. More preferred.
The freeness of the disintegrated pulp has a correlation with the amount of beating during production of glass interleaving paper, and as the amount of beating increases, the freeness tends to decrease. It is preferable to beat the disaggregated pulp so that the CSF thereof is 200 to 650 ml because the average fiber length and fibrillation rate of the disaggregated pulp tend to be within the preferable range.
The freeness of disintegrated pulp can be measured in accordance with JIS P 8121-2:2012. The detailed measurement method will be explained in the Examples section.

離解パルプの平均繊維長、繊維長分布、フィブリル化率、及びCSFは、原料の種類や、叩解の条件(叩解機の種類、構造、刃の材質、形状(刃幅、溝幅、刃長、溝深さ、刃角度)、回転数、リファイニング強度、繊維スラリー濃度、温度、pH、流量、圧力等)を適宜調整することにより、制御することができる。 The average fiber length, fiber length distribution, fibrillation rate, and CSF of defibrated pulp depend on the type of raw material, beating conditions (type of beater, structure, blade material, shape (blade width, groove width, blade length, It can be controlled by appropriately adjusting the groove depth, blade angle), rotation speed, refining strength, fiber slurry concentration, temperature, pH, flow rate, pressure, etc.).

ガラス合紙中に含まれる金属異物の量を表す指標として、灰分がある。本実施形態のガラス合紙の灰分は、0.5%以下が好ましく、0.3%以下がより好ましく、0.1%以下がさらに好ましく、0.05%以下が特に好ましい。灰分を抑制することで、ガラス合紙中の金属成分の含有量が抑制されるため、ガラス合紙がガラス板に微細な傷をつけることを抑制することができる。
灰分とは、JIS P 8251:2003に準拠して測定することができる。詳細な測定方法は実施例の欄において説明する。
Ash content is an indicator of the amount of metal foreign matter contained in glass interleaving paper. The ash content of the glass interleaving paper of this embodiment is preferably 0.5% or less, more preferably 0.3% or less, even more preferably 0.1% or less, and particularly preferably 0.05% or less. Since the content of metal components in the glass interleaving paper is suppressed by suppressing the ash content, it is possible to suppress the glass interleaving paper from causing minute scratches on the glass plate.
Ash content can be measured in accordance with JIS P 8251:2003. The detailed measurement method will be explained in the Examples section.

ガラス合紙中に含まれるリグニン等に由来するセルロース以外の有機物の量を表す指標として、樹脂分がある。本実施形態のガラス合紙の樹脂分は、0.5%以下が好ましく、0.3%以下がより好ましく、0.1%以下がさらに好ましく、0.05%以下が特に好ましい。樹脂分を抑制することで、ガラス合紙中の有機物(樹脂成分)がガラス板に付着して、ガラスの汚染を引き起こすことを抑制することができる。
樹脂分は、JIS P 8224:2002に準拠して測定することができる。詳細な測定方法は実施例の欄において説明する。
The resin content is an index representing the amount of organic matter other than cellulose derived from lignin and the like contained in glass interleaving paper. The resin content of the glass interleaving paper of this embodiment is preferably 0.5% or less, more preferably 0.3% or less, even more preferably 0.1% or less, and particularly preferably 0.05% or less. By suppressing the resin content, it is possible to suppress the organic matter (resin component) in the glass interleaving paper from adhering to the glass plate and causing contamination of the glass.
The resin content can be measured in accordance with JIS P 8224:2002. The detailed measurement method will be explained in the Examples section.

本実施形態のガラス合紙の表面平坦性(数~数十mmオーダーの凹凸の度合)が低いと、ガラス合紙とガラス板とを積層して積層体とした際の積層高さが大きくなるため、所定の高さの容器に格納できる枚数が少なくなる。
ガラス合紙の表面平坦性の指標としては、実施例の欄に記載の方法で測定したR指数が挙げられる。本実施形態のガラス合紙のR指数は、0.4以下が好ましく、0.3以下がより好ましく、0.2以下がさらに好ましい。
表面平坦性は複数の要因により変化するため、表面平坦性を向上させる方法としては、複数の方法がある。
例えば、原料パルプ繊維の短繊維比率を高くすると、ガラス合紙の地合が向上し、表面平坦性が向上する。原料パルプ繊維の短繊維比率を高くするためには、例えば原料パルプとして短繊維比率の高いLBKPを用いればよい。また、原料パルプとしてNBKPを用いる場合は、カッティングを強めた叩解処理によって短繊維比率を高くすればよい。
また、抄紙時の紙幅方向の水分プロファイルの均一性を高めると、乾燥及び吸湿後の表面平坦性の変化が抑制されるため、表面平坦性が向上する。抄紙時の紙幅方向の水分プロファイルの均一性を高めるためには、例えばスチームプロファイラーを用いて幅方向の蒸気噴射量を制御したり、幅方向に分割された赤外線ヒーターを用いて加熱量を制御したりすればよい。
また、ガラス合紙にキャレンダー(カレンダー)処理を施すことによっても表面平坦性を向上させることができる。
If the surface flatness of the glass interleaving paper of this embodiment is low (degree of unevenness on the order of several to tens of mm), the stacking height when laminating the glass interleaving paper and the glass plate to form a laminate becomes large. Therefore, the number of sheets that can be stored in a container of a predetermined height decreases.
As an index of the surface flatness of glass interleaving paper, the R index measured by the method described in the Examples section can be mentioned. The R index of the glass interleaving paper of this embodiment is preferably 0.4 or less, more preferably 0.3 or less, and even more preferably 0.2 or less.
Since surface flatness changes depending on multiple factors, there are multiple methods for improving surface flatness.
For example, when the proportion of short fibers in the raw material pulp fibers is increased, the texture of the glass interleaving paper is improved and the surface flatness is improved. In order to increase the short fiber ratio of raw material pulp fibers, for example, LBKP with a high short fiber ratio may be used as the raw material pulp. Further, when NBKP is used as the raw material pulp, the short fiber ratio may be increased by beating treatment with stronger cutting.
Further, when the uniformity of the moisture profile in the paper width direction during paper making is improved, changes in surface flatness after drying and moisture absorption are suppressed, and thus surface flatness is improved. In order to improve the uniformity of the moisture profile in the paper width direction during paper making, for example, a steam profiler can be used to control the amount of steam jetted in the width direction, or an infrared heater divided in the width direction can be used to control the amount of heating. All you have to do is
Furthermore, the surface flatness can also be improved by subjecting the glass interleaving paper to a calender treatment.

本実施形態のガラス合紙の坪量が小さいと、強度が低下して破れやすくなる恐れがある。したがって、本実施形態のガラス合紙の坪量は20g/m以上が好ましく、30g/m以上がより好ましく、40g/m以上がさらに好ましく、45g/m以上が特に好ましい。
一方、坪量が大きいと、重量の増加を招き、また、ガラス合紙とガラス板とを積層して積層体とした際の積層高さが大きくなるため、所定の高さの容器に格納できる枚数が少なくなる。したがって、本実施形態のガラス合紙の坪量は100g/m以下が好ましく、90g/m以下がより好ましく、80g/m以下がさらに好ましく、70g/m以下が特に好ましい。
坪量は、JIS P 8124:2011に準拠して測定することができる。詳細な測定方法は実施例の欄において説明する。
また、同上の観点より、本実施形態のガラス合紙の厚さは30~150μmが好ましい。
If the basis weight of the glass interleaving paper of this embodiment is small, there is a possibility that the strength will decrease and it will be easily torn. Therefore, the basis weight of the glass interleaving paper of this embodiment is preferably 20 g/m 2 or more, more preferably 30 g/m 2 or more, even more preferably 40 g/m 2 or more, and particularly preferably 45 g/m 2 or more.
On the other hand, if the basis weight is large, the weight will increase, and the stacked height will also increase when glass interleaving paper and glass plates are stacked to form a laminate, so it can be stored in a container of a specified height. The number of sheets will decrease. Therefore, the basis weight of the glass interleaving paper of this embodiment is preferably 100 g/m 2 or less, more preferably 90 g/m 2 or less, even more preferably 80 g/m 2 or less, and particularly preferably 70 g/m 2 or less.
The basis weight can be measured in accordance with JIS P 8124:2011. The detailed measurement method will be explained in the Examples section.
Further, from the same viewpoint as above, the thickness of the glass interleaving paper of this embodiment is preferably 30 to 150 μm.

本実施形態のガラス合紙とともに積層されるガラス板は通常矩形状なので、本実施形態のガラス合紙も矩形状であることが好ましい。また、大型のガラス板の積層にも使用できるように、本実施形態のガラス合紙は、矩形状の少なくとも一辺の長さが500mm以上であることが好ましく、1000mm以上であることがより好ましく、1500mm以上であることがさらに好ましく、2200mm以上であることが特に好ましい。下限は特に限定されないが、例えば4000mm以下である。
例えばガラス板が矩形状であり、大きさが2200mm×2500mmである場合は、ガラス合紙は2280mm×2580mm程度の矩形状が好ましい。ガラス板が矩形である場合、ガラス合紙の各辺の長さは、それぞれ対応するガラス板の辺の長さの1.02~1.05倍程度であることが好ましい。
Since the glass plate laminated together with the glass interleaving paper of this embodiment is usually rectangular, it is preferable that the glass interleaving paper of this embodiment also has a rectangular shape. Furthermore, so that it can be used for laminating large glass plates, the glass interleaving paper of this embodiment preferably has a length of at least one rectangular side of 500 mm or more, more preferably 1000 mm or more, It is more preferably 1500 mm or more, and particularly preferably 2200 mm or more. The lower limit is not particularly limited, but is, for example, 4000 mm or less.
For example, if the glass plate is rectangular and measures 2200 mm x 2500 mm, the glass interleaving paper preferably has a rectangular shape of about 2280 mm x 2580 mm. When the glass plate is rectangular, the length of each side of the glass interleaving paper is preferably about 1.02 to 1.05 times the length of the corresponding side of the glass plate.

また、本実施形態のガラス合紙は、ガラス板へのパーティクルの付着のみならず、ガラス板への汚染(例えば、ガラス合紙に含まれる樹脂による汚染)も抑制されていることが好ましい。ガラス板への汚染の度合いの評価の指標としては、例えば実施例の欄に記載の方法により測定される、ガラス合紙をガラス基板に接触させた後のガラス基板表面の水の接触角が挙げられる。本実施形態のガラス合紙は、当該接触角が30°以下であることが好ましく、25°以下であることがより好ましく、20°以下であることがさらに好ましい。 Moreover, it is preferable that the glass interleaving paper of this embodiment not only suppresses adhesion of particles to the glass plate, but also suppresses contamination of the glass plate (for example, contamination due to resin contained in the glass interleaving paper). An example of an index for evaluating the degree of contamination on a glass plate is the contact angle of water on the surface of the glass substrate after the glass interleaving paper is brought into contact with the glass substrate, which is measured by the method described in the Examples section. It will be done. The contact angle of the glass interleaving paper of this embodiment is preferably 30° or less, more preferably 25° or less, and even more preferably 20° or less.

本実施形態のガラス合紙には、本発明の効果を奏する範囲において各種薬剤が内添又は外添(塗工、含浸等)されていてもよい。ガラス合紙に内添又は外添される薬剤としては、例えば硫酸アルミニウムや消泡剤、定着剤、紙力増強剤、歩留向上剤、凝結剤、界面活性剤、サイズ剤、帯電防止剤、スライムコントロール剤、ドライヤー剥離剤、ポリビニルアルコールやポリクリルアミド、でんぷん、CMC等のセルロース誘導体、填料(タルク、クレー、二酸化チタン、炭酸カルシウム等)等が挙げられる。 Various chemicals may be added internally or externally (coated, impregnated, etc.) to the glass interleaving paper of this embodiment as long as the effects of the present invention are achieved. Examples of chemicals added internally or externally to glass interleaving paper include aluminum sulfate, antifoaming agents, fixing agents, paper strength enhancers, retention aids, coagulants, surfactants, sizing agents, antistatic agents, Examples include slime control agents, dryer stripping agents, polyvinyl alcohol, polycrylamide, starch, cellulose derivatives such as CMC, and fillers (talc, clay, titanium dioxide, calcium carbonate, etc.).

以下に、本実施形態のガラス合紙の製造方法の例として、原料となるパルプを準備する準備工程、パルプからパルプスラリーを製造する調成工程、パルプスラリーからガラス合紙を抄紙する抄紙工程とを有する製造方法を説明する。なお、本実施形態のガラス合紙の製造方法は以下に説明する例に限定されない。 Below, as an example of the method for manufacturing glass interleaving paper of the present embodiment, a preparation step of preparing pulp as a raw material, a preparation step of manufacturing pulp slurry from pulp, a paper making step of making glass interleaving paper from pulp slurry, and the like will be described. A manufacturing method having the following will be described. Note that the method for manufacturing glass interleaving paper of this embodiment is not limited to the example described below.

準備工程は、ガラス合紙の原料パルプを準備する工程である。
原料パルプの種類は特に限定されないが、ガラス合紙として求められる特性を有するものを使用する。例えばクラフトパルプ(KP)、亜硫酸パルプ(SP)、ソーダパルプ(AP)等の化学パルプ;砕木パルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)等の機械パルプ;その中間的な機械的・化学的パルプとしてのケミグランドパルプ(CGP)、セミケミカルパルプ(SCP)等の半化学パルプ;ケナフ、ミツマタ、コウゾ、ガンピ、麻等を原料とする非木材繊維パルプ;合成パルプ、合成繊維、;古紙パルプ(DIP);等が挙げられる。パルプは晒でも未晒であってもよく、例えばKPのうち、広葉樹晒クラフトパルプ(LBKP)、針葉樹晒クラフトパルプ(NBKP)、広葉樹未晒クラフトパルプ(LUKP)、針葉樹未晒クラフトパルプ(NUKP)が利用できる。またカーボンナノファイバー(CNF)を含んでいても良い。
ガラス合紙には高い清浄性が要求されることから、原料パルプとしては漂白処理が施され、リグニン等に由来する樹脂分等の成分が洗浄されることでその量が低減された晒クラフトパルプ(LBKPおよびNBKP)が特に好ましい。
これらの原料パルプは、古紙パルプであっても、バージンパルプであっても、古紙パルプとバージンパルプとの混合物であってもよい。ここでバージンパルプとは古紙パルプを原料としたものではなく、木材、非木材、またはガラス積載等の用途に一度も使用されたことがない紙を原料としたパスプである。パーティクルや樹脂成分によるガラス板の汚染を特に抑制するためには、原料パルプ全量に対するバージンパルプの重量比率(バージンパルプ率)が高いことが好ましく、当該比率は80%以上が好ましく、90%以上が好ましく、100%が最も好ましい。バージンパルプ率が80%以上のガラス合紙は、一般的には高グレードなガラス合紙として認識されており、特に高い清浄度が求められるガラス基板(高グレード基板)の梱包に用いられる場合が多い。一方、バージンパルプ率が80%未満のガラス合紙は一般的には低グレードなガラス合紙として認識されており、高グレード基板ほどの清浄度が求められないガラス基板(低グレード基板)の梱包に用いられる場合が多い。
The preparation process is a process of preparing raw material pulp for glass interleaving paper.
The type of raw material pulp is not particularly limited, but one having characteristics required for glass interleaving paper is used. For example, chemical pulps such as kraft pulp (KP), sulfite pulp (SP), and soda pulp (AP); mechanical pulps such as ground wood pulp (GP), thermomechanical pulp (TMP), and chemi-thermomechanical pulp (CTMP); Semi-chemical pulps such as chemical ground pulp (CGP) and semi-chemical pulp (SCP) as mechanical and chemical pulps; non-wood fiber pulps made from kenaf, mulberry, mulberry, hemp, etc.; synthetic pulps , synthetic fibers, waste paper pulp (DIP), and the like. The pulp may be bleached or unbleached; for example, among KPs, hardwood bleached kraft pulp (LBKP), softwood bleached kraft pulp (NBKP), hardwood unbleached kraft pulp (LUKP), softwood unbleached kraft pulp (NUKP) is available. It may also contain carbon nanofibers (CNF).
Since glass interleaving paper requires high cleanliness, the raw material pulp is bleached kraft pulp, which is bleached to reduce the amount of resin and other components derived from lignin. (LBKP and NBKP) are particularly preferred.
These raw material pulps may be waste paper pulp, virgin pulp, or a mixture of waste paper pulp and virgin pulp. Here, virgin pulp is pulp that is not made from waste paper pulp, but is made from paper that has never been used for wood, non-wood, or glass loading purposes. In order to particularly suppress contamination of the glass plate by particles and resin components, it is preferable that the weight ratio of virgin pulp to the total amount of raw material pulp (virgin pulp ratio) is high, and the ratio is preferably 80% or more, and 90% or more. Preferably, 100% is most preferred. Glass interleaving paper with a virgin pulp ratio of 80% or more is generally recognized as high-grade glass interleaving paper, and is sometimes used for packaging glass substrates (high-grade substrates) that require particularly high cleanliness. many. On the other hand, glass interleaving paper with a virgin pulp ratio of less than 80% is generally recognized as low-grade glass interleaving paper, and packaging for glass substrates (low-grade substrates) that do not require the same level of cleanliness as high-grade substrates. It is often used for

調成工程においては、原料を水等で希釈し、コニカルリファイナーやダブルディスクリファイナー等を用いて適宜叩解して原料液(パルプスラリー)を得る。
この際、前述の各種薬剤を内添してもよい。叩解においては使用するパルプの種類と目的とするガラス合紙、言い換えれば離解パルプの特性に応じて叩解条件を変更し、繊維の切断(カッティング)を主効果とした遊離状叩解や、繊維の膨潤とフィブリル化を主効果とした粘状叩解等を適宜行えばよい。
In the preparation step, the raw material is diluted with water or the like, and is appropriately beaten using a conical refiner, double disc refiner, etc. to obtain a raw material liquid (pulp slurry).
At this time, the various drugs mentioned above may be added internally. During beating, the beating conditions are changed depending on the type of pulp used and the intended glass interleaving paper, in other words, the characteristics of the disintegrated pulp. Viscosity beating, etc., with the main effect of fibrillation, etc. may be performed as appropriate.

抄紙工程においては、得られたパルプスラリーを例えば長網抄紙機、円網抄紙機、傾斜ワイヤー抄紙機、ツインワイヤー抄紙機を用いて抄紙する。ウェットエンド通過後の湿潤紙を脱水し、多筒式ドライヤーやヤンキードライヤー等を用いて乾燥させる。必要に応じて前述の薬品をロールコーターやブレードコーターを用いて塗布、含浸してもよい。またソフトキャレンダー、スーパーキャレンダー等の各種キャレンダーをオンラインまたはオフラインにて使用してもよい。 In the papermaking process, the obtained pulp slurry is made into paper using, for example, a Fourdrinier paper machine, a cylinder paper machine, an inclined wire paper machine, or a twin wire paper machine. After passing through the wet end, the wet paper is dehydrated and dried using a multi-barrel dryer, Yankee dryer, etc. If necessary, the above-mentioned chemicals may be applied or impregnated using a roll coater or a blade coater. Further, various types of calendars such as soft calendars and super calendars may be used online or offline.

特に表層付近の繊維長分布やフィブリル化率が制御されたガラス合紙を製造する方法としては、ワイヤーパートにおける脱水の条件(サクションボックス数、ハイドロフォイル数、真空度等)を調整する方法や2種類以上の離解状態の異なるパルプからなる紙を組み合わせる方法がある。紙を組み合わせる方法としては2種類の湿紙を抄き合わせる方法や、紙同士を接着剤を用いて接合する方法、熱溶融物質を用いて熱プレスで溶着する方法等がある。
以上のようにして本実施形態のガラス合紙を得る。
In particular, methods for producing glass interleaving paper with controlled fiber length distribution and fibrillation rate near the surface layer include a method of adjusting dehydration conditions (number of suction boxes, number of hydrofoils, degree of vacuum, etc.) in the wire part; There is a method of combining papers made of more than one type of pulp with different disintegration states. Examples of methods for combining papers include a method of combining two types of wet paper, a method of joining papers together using an adhesive, and a method of welding them together using a heat press using a heat-melting substance.
The glass interleaving paper of this embodiment is obtained as described above.

[積層体]
本実施形態の積層体10は、複数枚のガラス板2の間に上述のガラス合紙1が介在された積層体10である。
[Laminated body]
The laminate 10 of this embodiment is a laminate 10 in which the above-mentioned glass interleaving paper 1 is interposed between a plurality of glass plates 2.

図1に示すガラス板積層体10は、各5枚のガラス合紙1とガラス板2が交互に積層された構成である。なお、ガラス合紙1とガラス板2の積層枚数はこれに限定されず、ガラス板2の強度やサイズ、梱包容器のサイズ等の種々の条件に応じて適宜変更すればよい。ガラス板の積層枚数は、2枚以上であればよく、上限は例えば300枚以下である。通常、積層体10の総質量が2000kg以下となるように積層される。
ガラス板2およびガラス合紙1の積層枚数は、通常、ガラス板2とガラス合紙1の枚数が同数となるか、ガラス合紙1の枚数がガラス板2の枚数よりも1枚多いかのいずれかである。
The glass plate laminate 10 shown in FIG. 1 has a structure in which five glass interleaving papers 1 and five glass plates 2 are alternately laminated. Note that the number of laminated sheets of glass interleaving paper 1 and glass plate 2 is not limited to this, and may be changed as appropriate depending on various conditions such as the strength and size of glass plate 2 and the size of the packaging container. The number of laminated glass plates may be two or more, and the upper limit is, for example, 300 or less. Usually, the laminates are stacked so that the total mass of the laminate 10 is 2000 kg or less.
The number of laminated sheets of glass plate 2 and glass laminated paper 1 is usually determined by whether the number of glass plate 2 and glass laminated paper 1 is the same, or the number of glass laminated paper 1 is one more than the number of glass plate 2. Either.

ガラス板2の用途は特には限定されないが、本実施形態のガラス合紙1はパーティクルの発生が特に少ないことから、ガラス板2は、半導体製品の製造に関連して使用されるガラス板等の表面が高度に清浄に保たれることが求められるガラス板、例えば、液晶ディスプレイ用ガラス基板、プラズマディスプレイ用ガラス基板等のフラットパネルディスプレイ、有機EL照明、および太陽電池等の電子デバイス等に適用されるガラス板であることが好ましい。 The use of the glass plate 2 is not particularly limited, but since the glass interleaving paper 1 of this embodiment generates particularly few particles, the glass plate 2 can be used for glass plates etc. used in the manufacture of semiconductor products. It is applied to glass plates whose surfaces are required to be kept highly clean, such as flat panel displays such as glass substrates for liquid crystal displays and glass substrates for plasma displays, organic EL lighting, and electronic devices such as solar cells. It is preferable that the glass plate is made of glass.

ガラス板2の材質も特に限定されず用途に応じて適宜選択すればよいが、例えば、ソーダライムガラス、アルミノ珪酸塩ガラス、ホウ珪酸ガラス、無アルカリアルミノ珪酸塩ガラス、石英ガラス等が挙げられる。また、紫外線や赤外線を吸収するガラスや強化ガラスからなるガラス板を用いることも可能である。 The material of the glass plate 2 is not particularly limited and may be appropriately selected depending on the application, and examples include soda lime glass, aluminosilicate glass, borosilicate glass, alkali-free aluminosilicate glass, and quartz glass. It is also possible to use a glass plate made of glass or tempered glass that absorbs ultraviolet and infrared rays.

ガラス板2の形状、大きさ、厚さ等は特に限定されず、2枚以上積層して保管、運搬することができる形状、大きさ、厚さ等であればよい。
ガラス板2の形状としては、例えば図2に示されるガラス板のように平板状であってもよく、また、全面または一部が曲率を有する曲面状であってもよい。
ガラス板2の厚さは、用途により適宜調整すればよいが、例えば0.01~10mmである。
ガラス板の大きさは、例えば、近年開発された第8世代(2200mm×2500mm)程度の大きさを有するものであってよい。この場合、ガラス板の厚さは、0.2~0.8mmであることが強度確保の点で好ましく、さらに好ましくは0.3~0.7mm程度である。
また、ガラス板2は、複数枚のガラス板が中間膜を挟んで接着された合わせガラスであってもよい。
The shape, size, thickness, etc. of the glass plate 2 are not particularly limited, and may be any shape, size, thickness, etc. that allows two or more sheets to be stacked and stored and transported.
The shape of the glass plate 2 may be, for example, a flat plate like the glass plate shown in FIG. 2, or may be a curved surface having a curvature on the entire surface or a part thereof.
The thickness of the glass plate 2 may be adjusted as appropriate depending on the application, and is, for example, 0.01 to 10 mm.
The size of the glass plate may be, for example, about the 8th generation (2200 mm x 2500 mm) developed in recent years. In this case, the thickness of the glass plate is preferably 0.2 to 0.8 mm from the viewpoint of ensuring strength, and more preferably about 0.3 to 0.7 mm.
Further, the glass plate 2 may be a laminated glass in which a plurality of glass plates are bonded with an interlayer interposed therebetween.

ガラス板2の製造方法も特に限定されないが、例えばプレス法、ダウンドロー法、フロート法などの方法により所定の板厚に成形し、徐冷後、研削、研磨などの加工を行い、所定のサイズ、形状のガラス板とすればよい。 The manufacturing method of the glass plate 2 is not particularly limited either, but for example, it is formed to a predetermined thickness by a method such as a press method, a down-draw method, or a float method, and after being slowly cooled, it is processed by grinding, polishing, etc. to a predetermined size. , a glass plate having a shape may be used.

また、ガラス板2は、表面に機能性薄膜を有するものであってもよい。機能性薄膜とは、具体的には、導電膜(スズドープ酸化インジウム(ITO)、酸化亜鉛(ZnO)、酸化スズ(SnO)、Ag、Cr/Cu/Cr構造を有する膜等)や熱線遮蔽膜(酸化物(例えば、酸化亜鉛、酸化チタン、ITO等)/Ag/酸化物の構造を有する層等)等である。ここで、酸化亜鉛には、Al、Gaまたは水素等がドープされていてもよい。また、酸化スズにはFまたはSbがドープされていてもよい。さらに、AgにはPdまたはAuがドープされていてもよい。 Further, the glass plate 2 may have a functional thin film on its surface. Specifically, functional thin films include conductive films (tin-doped indium oxide (ITO), zinc oxide (ZnO), tin oxide (SnO 2 ), Ag, films having a Cr/Cu/Cr structure, etc.) and heat ray shielding films. A film (a layer having an oxide (eg, zinc oxide, titanium oxide, ITO, etc.)/Ag/oxide structure, etc.), etc. Here, zinc oxide may be doped with Al, Ga, hydrogen, or the like. Furthermore, tin oxide may be doped with F or Sb. Furthermore, Ag may be doped with Pd or Au.

[梱包体]
本実施形態の梱包体は、梱包容器と、当該梱包容器に収容された本実施形態の積層体とを有する梱包体である。
ガラス板の輸送や保管の際には、ガラス板とガラス合紙とを交互に積層して積層体とし、これを梱包容器に収容してから梱包して梱包体(ガラス板梱包体)とする。ガラス板梱包体には、ガラス板を水平に積層する横置き型とガラス板を傾斜させて立てた状態で積層する縦積型とがあり、本発明はいずれの型にも適用できる。図2に縦積型のガラス板梱包体の一例の概略構成を示す。また、図3に横置き型のガラス板梱包体の一例の概略構成を示す。
[Package]
The package of this embodiment is a package that includes a packaging container and the laminate of this embodiment accommodated in the packaging container.
When transporting or storing glass plates, glass plates and glass interleaving paper are alternately laminated to form a laminate, which is then placed in a packaging container and then packed to form a package (glass plate package). . There are two types of glass plate packages: a horizontal type in which the glass plates are stacked horizontally, and a vertical type in which the glass plates are stacked in an inclined state, and the present invention can be applied to either type. FIG. 2 shows a schematic configuration of an example of a vertically stacked glass plate package. Further, FIG. 3 shows a schematic configuration of an example of a horizontally placed glass plate package.

図2に示すガラス板梱包体30は、梱包容器31に、複数枚のガラス板2を、間にガラス合紙1を介在させて積層したガラス板積層体10が、梱包されたものである。なお、ガラス合紙1は梱包容器31とガラス板2の間にも配置されている。梱包容器31は、公知の縦積型のガラス板梱包用の梱包容器であり、基台33と、基台33の上面に立設された傾斜台32と、基台33の上面に載置された載置台34とを有する。 In the glass plate package 30 shown in FIG. 2, a glass plate laminate 10 in which a plurality of glass plates 2 are laminated with a glass interleaving paper 1 interposed therebetween is packed in a packaging container 31. Note that the glass interleaving paper 1 is also placed between the packaging container 31 and the glass plate 2. The packaging container 31 is a well-known vertically stacked packaging container for glass plate packaging, and includes a base 33, an inclined table 32 erected on the top surface of the base 33, and a tilted table 32 placed on the top surface of the base 33. A mounting table 34 is provided.

傾斜台32の鉛直方向の一面(ガラス板積層体10との接触面。以下「傾斜面」ともいう。)は、鉛直方向に対して傾斜している。この傾斜面の角度(図2中、αで示す。)は、積層されたガラス板積層体10が安定して積載、保管および搬送できる角度であればよく、通常、水平方向に対して85°以下であり、例えば、85°~70°である。 One vertical surface (contact surface with the glass plate laminate 10; hereinafter also referred to as "slanted surface") of the inclined table 32 is inclined with respect to the vertical direction. The angle of this inclined surface (indicated by α in FIG. 2) may be any angle that allows the laminated glass plate laminate 10 to be stably loaded, stored, and transported, and is usually 85° with respect to the horizontal direction. or less, for example, 85° to 70°.

また、載置台34の上面は、水平方向に対して傾斜台32に向かって下降するように傾斜する。図示例においては、一例として、載置台34の上面は、傾斜台32の傾斜面に対して90°となるように構成されている。 Moreover, the upper surface of the mounting table 34 is inclined so as to descend toward the inclined table 32 with respect to the horizontal direction. In the illustrated example, the upper surface of the mounting table 34 is configured to form an angle of 90 degrees with respect to the inclined surface of the inclined table 32, as an example.

梱包容器31において、ガラス板2は、載置台34の上面に載置され、かつ、傾斜台32の傾斜面に立て掛けられた状態で積層される。また、各ガラス板の間には、ガラス合紙1が介在される。また、最前面のガラス板の表面をガラス合紙で覆ってもよい。 In the packaging container 31 , the glass plates 2 are placed on the upper surface of the mounting table 34 and stacked against the inclined surface of the inclined table 32 . Further, a glass interleaving paper 1 is interposed between each glass plate. Further, the surface of the frontmost glass plate may be covered with glass interleaving paper.

図3に示すガラス板梱包体50は、梱包容器51に、複数枚のガラス板2を間にガラス合紙1を介在させて積層したガラス板積層体10が、梱包されたものである。なお、ガラス合紙1は梱包容器51とガラス板2の間にも配置されている。梱包容器51は、公知の横置き型ガラス板梱包用の梱包容器であり、基台53と、基台53の上面に載置された載置台54とを有する。また、基台53の上面の隅(例えば、基台53の上面が矩形であれば少なくとも4隅)に、梱包容器51を積層するための支柱52を有する。 In the glass plate package 50 shown in FIG. 3, a glass plate laminate 10 in which a plurality of glass plates 2 are laminated with glass interleaving paper 1 interposed therebetween is packed in a packaging container 51. Note that the glass interleaving paper 1 is also placed between the packaging container 51 and the glass plate 2. The packaging container 51 is a known packaging container for horizontally placed glass plate packaging, and includes a base 53 and a mounting base 54 placed on the upper surface of the base 53. Further, at the corners of the upper surface of the base 53 (for example, at least four corners if the upper surface of the base 53 is rectangular), there are struts 52 for stacking the packaging containers 51.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれに限定されない。 The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto.

<ガラス合紙の製造>
(実施例1)
原料パルプとして準備したNBKP(バージンパルプ率100%)に水を添加してスラリー化し、更に絶乾パルプに対して硫酸アルミニウム(原料パルプ100質量部に対して1質量部)を添加し、その後ダブルディスクリファイナーを用いてCSFが500mlとなるまで叩解し、パルプスラリーを得た。得られたパルプスラリーを長網抄紙機と多筒式ドライヤーを用いて抄速400m/minで抄紙し、実施例1のガラス合紙を得た。
<Manufacture of glass interleaving paper>
(Example 1)
Water is added to NBKP (virgin pulp ratio 100%) prepared as raw material pulp to form a slurry, aluminum sulfate (1 part by mass per 100 parts by mass of raw material pulp) is added to the bone-dry pulp, and then double The pulp was refined using a disc refiner until the CSF was reduced to 500 ml to obtain a pulp slurry. The obtained pulp slurry was made into paper using a Fourdrinier paper machine and a multi-tube dryer at a papermaking speed of 400 m/min to obtain the glass interleaving paper of Example 1.

(実施例2)
原料パルプとしてNBKP(バージンパルプ率100%)80%及びLBKP(バージンパルプ率100%)20%を混合して用いたこと以外は実施例1と同様にして、実施例2のガラス合紙を得た。
(Example 2)
The glass interleaving paper of Example 2 was obtained in the same manner as in Example 1, except that 80% of NBKP (100% virgin pulp) and 20% of LBKP (100% virgin pulp) were used as the raw material pulp. Ta.

(実施例3)
原料パルプとしてLBKP(バージンパルプ率100%)を用いたこと以外は実施例1と同様にして、実施例3のガラス合紙を得た。
(Example 3)
Glass interleaving paper of Example 3 was obtained in the same manner as Example 1 except that LBKP (virgin pulp ratio 100%) was used as the raw material pulp.

(実施例4、5)
NBKPとLBKPの混合比率を表1に示すとおりに変更した以外は実施例2と同様にして、実施例4及び5のガラス合紙を得た。
(Examples 4 and 5)
Glass interleaving papers of Examples 4 and 5 were obtained in the same manner as in Example 2 except that the mixing ratio of NBKP and LBKP was changed as shown in Table 1.

参考例6)
原料パルプとしてNBKP80%、古紙パルプ(DIP)を20%を混合して用いたこと以外は実施例1と同様にして、参考例6のガラス合紙を得た。
( Reference example 6)
Glass interleaving paper of Reference Example 6 was obtained in the same manner as in Example 1 except that 80% of NBKP and 20% of waste paper pulp (DIP) were mixed and used as the raw material pulp.

(実施例7)
硫酸アルミニウムを添加しなかったこと以外は実施例3と同様にして、実施例7のガラス合紙を得た。
(Example 7)
Glass interleaving paper of Example 7 was obtained in the same manner as Example 3 except that aluminum sulfate was not added.

参考例8)
NBKP(バージンパルプ率100%)に水を添加してスラリー化し、更に絶乾パルプに対して硫酸アルミニウム(原料パルプ100質量部に対して1質量部)を添加し、その後ダブルディスクリファイナーを用いてCSFが500mlとなるまで叩解し、パルプスラリーAを得た。また、CSFが550mlとなるまで叩解したこと以外はパルプスラリーAと同様にして、パルプスラリーBを得た。2種類の原料を混合することなく噴射できる噴射口を備えたヘッドボックスとツインワイヤーからなる2層抄きクレセントフォーマーを用いて、外側ワイヤーにパルプスラリーA、内側ワイヤーにパルプスラリーBをそれぞれ導入し、これらを抄き合わせて2層の紙とし、ヤンキードライヤーを通過させて参考例8のガラス合紙を得た。
( Reference example 8)
Water is added to NBKP (virgin pulp ratio 100%) to form a slurry, aluminum sulfate (1 part by mass per 100 parts by mass of raw material pulp) is added to the bone-dry pulp, and then a double disc refiner is used. Pulp slurry A was obtained by beating until the CSF was reduced to 500 ml. Further, pulp slurry B was obtained in the same manner as pulp slurry A except that the pulp slurry was beaten until the CSF became 550 ml. Pulp slurry A is introduced into the outer wire and pulp slurry B is introduced into the inner wire using a two-layer crescent former consisting of twin wires and a head box equipped with an injection port that can inject two types of raw materials without mixing them. Then, these were combined to form a two-layer paper, and the paper was passed through a Yankee dryer to obtain glass interleaving paper of Reference Example 8.

(実施例9)
抄速を1.5倍としたこと以外は実施例1と同様にして、実施例9のガラス合紙を得た。
(Example 9)
Glass interleaving paper of Example 9 was obtained in the same manner as in Example 1 except that the papermaking speed was increased to 1.5 times.

(比較例1)
ダブルディスクリファイナーを用いた叩解において、CSFが30mlとなるまで叩解(主として遊離状叩解)したこと以外は実施例1と同様にして、比較例1のガラス合紙を得た。
(Comparative example 1)
A glass interleaving paper of Comparative Example 1 was obtained in the same manner as in Example 1 except that the paper was refined using a double disc refiner until the CSF became 30 ml (mainly free form refining).

(比較例2)
ダブルディスクリファイナーを用いた叩解において、パルプの加重平均繊維長が0.6mmになるまで叩解(主として遊離状叩解)したこと以外は実施例3と同様にして、比較例2のガラス合紙を得た。
(Comparative example 2)
Glass interleaving paper of Comparative Example 2 was obtained in the same manner as in Example 3, except that the pulp was refined using a double disc refiner until the weighted average fiber length of the pulp was 0.6 mm (mainly free beating). Ta.

参考例10、比較例3)
参考例10及び比較例3では、バージンパルプ率が80%未満の低グレードなガラス合紙を製造した。
原料パルプとしてLBKP70%、古紙パルプを30%を混合して用いたこと以外は実施例1と同様にして、参考例10のガラス合紙を得た。
また、原料パルプとして古紙パルプのみを用いたこと以外は実施例1と同様にして、比較例3のガラス合紙を得た。
( Reference Example 10, Comparative Example 3)
In Reference Example 10 and Comparative Example 3, low-grade glass interleaving paper with a virgin pulp ratio of less than 80% was produced.
Glass interleaving paper of Reference Example 10 was obtained in the same manner as in Example 1 except that 70% of LBKP and 30% of waste paper pulp were mixed and used as the raw material pulp.
Further, a glass interleaving paper of Comparative Example 3 was obtained in the same manner as in Example 1 except that only waste paper pulp was used as the raw material pulp.

<ガラス合紙の評価>
各例のガラス合紙について、離解パルプの平均繊維長、繊維長が0.2mm以上1.2mm以下である繊維の含有率、繊維長が1.2mm超3.2mm以下である繊維の含有率、フィブリル化率を測定した。また、坪量、厚さ、Bekk平滑度、樹脂分、灰分、ガラス基板に接触させた後のガラス基板表面の水の接触角、(R指数)、パーティクル発生量を測定した。測定方法を以下に説明する。また、測定結果を表1及び2に示す。
なお、測定には、JIS P8111:1998 「紙、板紙及びパルプ-調湿及び試験のための標準状態」に準拠して標準状態(23±1℃、50±2RH%)の空気中で静置し、調湿が完了して試料の水分と標準状態にある試験室内の水蒸気が平衡となったものを用いた。
<Evaluation of glass interleaving paper>
Regarding the glass interleaving paper of each example, the average fiber length of the disintegrated pulp, the content of fibers with a fiber length of 0.2 mm or more and 1.2 mm or less, and the content of fibers with a fiber length of more than 1.2 mm and 3.2 mm or less , the fibrillation rate was measured. In addition, the basis weight, thickness, Bekk smoothness, resin content, ash content, contact angle of water on the glass substrate surface after contact with the glass substrate, (R index), and particle generation amount were measured. The measurement method will be explained below. Moreover, the measurement results are shown in Tables 1 and 2.
In addition, for the measurement, in accordance with JIS P8111: 1998 "Paper, paperboard and pulp - standard conditions for humidity control and testing", the sample was left standing in air under standard conditions (23±1℃, 50±2RH%). The sample used was one in which humidity control had been completed and the moisture in the sample was in equilibrium with the water vapor in the test chamber under standard conditions.

(パルプの離解)
JIS P8220-1:2012「パルプ-離解方法-第1部:化学パルプの離解」に規定する方法によって、25℃における電気伝導度を0.25mS/m以下に精製した水を用いて、パルプの解離を行った。
実施例1~5、7、9、参考例6、10、比較例1、2では、20±5℃、2000±25mLの水に約25mm×25mmのサイズに引き裂いたガラス合紙を加え、標準離解機に加え、繊維が完全に分散するまで離解を行い、離解パルプを得た。
参考例8では、ガラス合紙を厚み方向に分割して表面近傍領域のみを分離し、これを約25mm×25mmのサイズに引き裂いて20±5℃、2000±25mLの水に加え、標準離解機に加え、繊維が完全に分散するまで離解を行い、離解パルプを得た。ガラス合紙の分割は、ベースフィルムがポリエステルであり、アクリル系樹脂の粘着剤を有する透明テープを使用し、厚さが10μmとなるまでテープの貼付及び剥離を繰り返すことにより行った。
(pulp disintegration)
JIS P8220-1:2012 "Pulp - Disintegration method - Part 1: Disintegration of chemical pulp" Using water purified to an electrical conductivity of 0.25 mS/m or less at 25°C, pulp is Dissociation was performed.
In Examples 1 to 5, 7, and 9, Reference Examples 6 and 10, and Comparative Examples 1 and 2, glass interleaving paper torn into a size of about 25 mm x 25 mm was added to 2000 ± 25 mL of water at 20 ± 5 ° C. In addition to using a disintegrator, disintegration was performed until the fibers were completely dispersed to obtain disintegrated pulp.
In Reference Example 8, the glass interleaving paper was divided in the thickness direction to separate only the area near the surface, and this was torn into a size of approximately 25 mm x 25 mm, added to 2000 ± 25 mL of water at 20 ± 5 ° C, and placed in a standard disintegrator. In addition, disintegration was performed until the fibers were completely dispersed to obtain disintegrated pulp. The glass interleaving paper was divided using a transparent tape whose base film was polyester and an acrylic resin adhesive, and repeated application and peeling of the tape until the thickness reached 10 μm.

(離解パルプの平均繊維長[mm]、繊維長が0.2mm以上1.2mm以下である繊維及び1.2mm超3.2mm以下である繊維の含有率[%]、フィブリル化率[%])
得られた離解パルプに対し、繊維画像分析装置(Valmet社製、Valmet FS5)を用いて離解パルプの平均繊維長、ならびに繊維長区分・分布を測定し、繊維長が0.2mm以上1.2mm以下である繊維の含有率、繊維長が1.2mm超3.2mm以下である繊維の含有率を求め、フィブリル化率を測定した。なお測定ではISOの繊維長範囲(0.20~7.0mm)を採用しており、1試料につき5回測定した値の平均値を使用した。
(Average fiber length [mm] of disintegrated pulp, content rate [%] of fibers whose fiber length is 0.2 mm or more and 1.2 mm or less and fiber length more than 1.2 mm and 3.2 mm or less, fibrillation rate [%] )
The average fiber length and fiber length classification/distribution of the obtained disintegrated pulp were measured using a fiber image analyzer (Valmet FS5, manufactured by Valmet), and the fiber length was determined to be between 0.2 mm and 1.2 mm. The content of fibers having the following values and the content of fibers having a fiber length of more than 1.2 mm and less than 3.2 mm were determined, and the fibrillation rate was measured. Note that the ISO fiber length range (0.20 to 7.0 mm) was adopted for the measurement, and the average value of the values measured five times for each sample was used.

(坪量[g/m])
JIS P8124:2011「紙及び板紙-坪量の測定方法」に準拠して各例のガラス合紙の坪量を測定した。
(Basic weight [g/m 2 ])
The basis weight of the glass interleaving paper of each example was measured in accordance with JIS P8124:2011 "Paper and Paperboard - Method for Measuring Basis Weight."

(厚さ[μm])
JIS P 8188:2014「紙及び板紙-厚さ,密度及び比容積の試験方法」に準拠して各例のガラス合紙の厚さの値を測定した。
(Thickness [μm])
The thickness value of the glass interleaving paper of each example was measured in accordance with JIS P 8188:2014 "Paper and paperboard - Test method for thickness, density and specific volume".

(Bekk平滑度[秒])
JIS P8119:1998「紙及び板紙-ベック平滑度試験機による平滑度試験方法」に規定する方法によって各例のガラス合紙のBekk平滑度を測定した。
(Bekk smoothness [seconds])
The Bekk smoothness of the glass interleaving paper of each example was measured by the method specified in JIS P8119:1998 "Paper and paperboard - Smoothness test method using Bekk smoothness tester".

(樹脂分[%])
JIS P8224:2002「パルプ-アセトン可溶分試験方法」に規定する方法によって各例のガラス合紙からアセトンで抽出された物質の量(樹脂分)を測定した。
(Resin content [%])
The amount of substance (resin content) extracted with acetone from the glass interleaving paper of each example was measured by the method specified in JIS P8224:2002 "Pulp - Acetone Soluble Content Test Method".

(灰分[%])
JIS P8251:2003「紙,板紙及びパルプ-灰分試験方法-525℃燃焼法」に規定する方法によって525±25℃の加熱炉の中で各例のガラス合紙を燃焼させた後の残渣量(灰分)を測定した。
(ash[%])
The amount of residue ( Ash content) was measured.

(ガラス基板に接触させた後のガラス基板表面の水の接触角[deg]、パーティクル量)
まず、ガラス基板を5%NaOH水溶液などのアルカリ性の液で洗浄して表面の有機物や無機物汚染を除去し、CDA(クリーンドライエアー)で乾燥した。次に、このガラス基板上にガラス合紙を載せ、面圧3kPaとなる荷重をかけ、恒温槽にて80℃、60RH%で24時間保管した(昇温は25℃、50RH%から5時間かけ、降温は25℃、50RH%へ5時間かけた)。その後、ガラス基板からガラス合紙を除去した。
その後、ガラス基板のガラス合紙が載っていた面の水の接触角を測定した。また、FPD用異物検査装置(東レ エンジニアリング社製 HS-830)を用いて標準感度モードでガラス基板を測定し、パーティクル個数を計測した。その後、各例において測定されたパーティクル個数を、実施例1において測定されたパーティクル個数で割った値(パーティクル量指数)を求めた。なお、実施例1のパーティクル個数を基準としたのは、実施例1のパーティクル個数が最も少なかったためである。
(Contact angle [deg] of water on the surface of the glass substrate after contact with the glass substrate, amount of particles)
First, the glass substrate was washed with an alkaline liquid such as a 5% NaOH aqueous solution to remove organic and inorganic contamination from the surface, and then dried with CDA (clean dry air). Next, a glass interleaving paper was placed on this glass substrate, a surface pressure of 3 kPa was applied, and the temperature was kept at 80°C and 60RH% for 24 hours in a constant temperature bath (the temperature was increased from 25°C and 50RH% for 5 hours). , the temperature was lowered to 25°C and 50RH% over 5 hours). Thereafter, the glass interleaving paper was removed from the glass substrate.
Thereafter, the contact angle of water on the surface of the glass substrate on which the glass interleaving paper was placed was measured. In addition, the glass substrate was measured in standard sensitivity mode using a foreign matter inspection device for FPD (HS-830 manufactured by Toray Engineering Co., Ltd.) to count the number of particles. Thereafter, a value (particle amount index) was calculated by dividing the number of particles measured in each example by the number of particles measured in Example 1. Note that the number of particles in Example 1 was used as the reference because the number of particles in Example 1 was the smallest.

(R指数)
ガラス合紙を白色板上に置き、その上に厚さ0.5mmのガラス基板を置いた。このガラス基板の垂直上方にエリアカメラを配置し、カメラから30°の角度に配置したライン状照明から、照明の発光から5mm離れた距離で測定したときの照度が3,000Luxとなる光量の光を照射しながら、カメラにより画像を取得した。取得した画像を画像処理して、周辺に対して階調値の変動が大きい点を抽出し、その点の個数を紙全体の画素数で除した値をR指数とした。階調値の変動が大きい点は、ABS((その画素の周辺±10画素の範囲の平均階調値)-(その画素の階調値))>2となる点である。
(R index)
A glass interleaving paper was placed on a white plate, and a glass substrate with a thickness of 0.5 mm was placed on top of it. An area camera is placed vertically above this glass substrate, and from a line-shaped illumination placed at an angle of 30 degrees from the camera, an amount of light is emitted that gives an illuminance of 3,000 Lux when measured at a distance of 5 mm from the illumination light emission. Images were acquired with a camera while irradiating. The acquired image was image-processed to extract points with large variations in gradation value relative to the surroundings, and the value obtained by dividing the number of such points by the number of pixels of the entire paper was defined as the R index. The point where the gradation value fluctuates greatly is the point where ABS ((average gradation value in the range of ±10 pixels surrounding the pixel)−(gradation value of the pixel))>2.

Figure 0007395941000001
Figure 0007395941000001

比較例1のガラス合紙は、ガラス合紙を離解して得られる離解パルプのフィブリル化率が大きく、したがってパーティクル量が多かった。
比較例2のガラス合紙は、ガラス合紙を離解して得られる離解パルプのフィブリル化率が大きく、また、平均繊維長が短く、したがってパーティクル量が多かった。
一方、ガラス合紙を離解して得られる離解パルプの平均繊維長が0.7~2.5mmであり、フィブリル化率が0.3~3%である実施例1~5、7、及び9、並びに参考例6のガラス合紙では、パーティクル量が少なかった。また、表面近傍領域を離解して得られる離解パルプの平均繊維長が0.5~3.5mmであり、フィブリル化率が0.1~4%である参考例8のガラス合紙でも、パーティクル量が少なかった。
In the glass interleaving paper of Comparative Example 1, the fibrillation rate of the disintegrated pulp obtained by disintegrating the glass interleaving paper was high, and therefore the amount of particles was large.
In the glass interleaving paper of Comparative Example 2, the fibrillation rate of the disintegrated pulp obtained by disintegrating the glass interleaving paper was high, and the average fiber length was short, so the amount of particles was large.
On the other hand, in Examples 1 to 5, 7, and 9, the average fiber length of the disintegrated pulp obtained by disintegrating glass interleaving paper was 0.7 to 2.5 mm, and the fibrillation rate was 0.3 to 3%. , and the glass interleaving paper of Reference Example 6 had a small amount of particles. Furthermore, even with the glass interleaving paper of Reference Example 8, in which the average fiber length of the disintegrated pulp obtained by disintegrating the area near the surface is 0.5 to 3.5 mm, and the fibrillation rate is 0.1 to 4%, particles The quantity was small.

Figure 0007395941000002
Figure 0007395941000002

低グレードなガラス合紙である参考例10と比較例3を対比すると、ガラス合紙を離解して得られる離解パルプの平均繊維長が短い比較例3のガラス合紙は、パーティクル量が顕著に多かった。
一方、ガラス合紙を離解して得られる離解パルプの平均繊維長が0.7~2.5mmであり、フィブリル化率が0.3~3%である参考例10のガラス合紙では、パーティクル量が比較的少なかった。
Comparing Reference Example 10, which is a low-grade glass interleaving paper, with Comparative Example 3, the glass interleaving paper of Comparative Example 3, in which the average fiber length of the disintegrated pulp obtained by disintegrating the glass interleaving paper is short, has a remarkable amount of particles. There were many.
On the other hand, in the glass interleaving paper of Reference Example 10, in which the average fiber length of the disintegrated pulp obtained by disintegrating the glass interleaving paper is 0.7 to 2.5 mm, and the fibrillation rate is 0.3 to 3%, the particle The quantity was relatively small.

1 ガラス合紙;2 ガラス板;10 積層体;30 梱包体;31 梱包容器;32 傾斜台;33 基台;34 載置台;50 梱包体;51 梱包容器;52 支柱;53 基台;54 載置台。 1 Glass interleaving paper; 2 Glass plate; 10 Laminated body; 30 Packing body; 31 Packing container; 32 Inclined table; 33 Base; 34 Mounting table; 50 Packing body; 51 Packing container; 52 Support column; 53 Base; Stand.

Claims (11)

ガラス板間に介在させるガラス合紙であって、
前記ガラス合紙を離解して得られる離解パルプの、長さ加重平均繊維長が0.7~2.5mmであり、フィブリル化率が0.3%以上2%未満である、ガラス合紙。
A glass interleaving paper interposed between glass plates,
A glass interleaving paper, wherein the length-weighted average fiber length of the disintegrated pulp obtained by disintegrating the glass interleaving paper is 0.7 to 2.5 mm, and the fibrillation rate is 0.3 % or more and less than 2% .
バージンパルプ率が80%以上である、請求項1に記載のガラス合紙。 The glass interleaving paper according to claim 1 , having a virgin pulp ratio of 80% or more. 坪量が20~100g/m、厚さが30~150μm、灰分が0.15質量%未満、樹脂分が0.5質量%以下である、請求項1又は2に記載のガラス合紙。 The glass interleaving paper according to claim 1 or 2, which has a basis weight of 20 to 100 g/m 2 , a thickness of 30 to 150 μm, an ash content of less than 0.15% by mass , and a resin content of 0.5% by mass or less . 前記離解パルプにおける繊維長が1.2mm超3.2mm以下である繊維の含有率が40質量%以上である、請求項1~のいずれか1項に記載のガラス合紙。 The glass interleaving paper according to any one of claims 1 to 3 , wherein the content of fibers having a fiber length of more than 1.2 mm and 3.2 mm or less in the disintegrated pulp is 40% by mass or more. 前記離解パルプにおける繊維長が0.2mm以上1.2mm以下である繊維の含有率が40質量%以上である、請求項1~のいずれか1項に記載のガラス合紙。 The glass interleaving paper according to any one of claims 1 to 4 , wherein the content of fibers having a fiber length of 0.2 mm or more and 1.2 mm or less in the disintegrated pulp is 40% by mass or more. 前記ガラス合紙をガラス基板に接触させた後の、前記ガラス基板表面の水の接触角が20°以下である、請求項1~のいずれか1項に記載のガラス合紙。 The glass interleaving paper according to any one of claims 1 to 5 , wherein the contact angle of water on the surface of the glass substrate after the glass interleaving paper is brought into contact with the glass substrate is 20 ° or less. R指数が0.4以下である、請求項1~のいずれか1項に記載のガラス合紙。 The glass interleaving paper according to any one of claims 1 to 6 , having an R index of 0.4 or less. 矩形状であり、少なくとも1辺の長さが500mm以上である、請求項1~のいずれか1項に記載のガラス合紙。 The glass interleaving paper according to any one of claims 1 to 7 , which has a rectangular shape and has at least one side length of 500 mm or more. 複数枚のガラス板の間に請求項1~のいずれか1項に記載のガラス合紙が介在された積層体。 A laminate in which the glass interleaving paper according to any one of claims 1 to 8 is interposed between a plurality of glass plates. 前記ガラス板の厚さが0.1~1.5mmである、請求項に記載の積層体。 The laminate according to claim 9 , wherein the glass plate has a thickness of 0.1 to 1.5 mm. 梱包容器と、前記梱包容器に収容された請求項9または10に記載の積層体とを有する梱包体。 A package comprising a packaging container and the laminate according to claim 9 or 10 accommodated in the packaging container.
JP2019188836A 2019-10-15 2019-10-15 Glass interleaving paper, laminates and packaging Active JP7395941B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019188836A JP7395941B2 (en) 2019-10-15 2019-10-15 Glass interleaving paper, laminates and packaging
TW109134722A TW202128525A (en) 2019-10-15 2020-10-07 Glass paper, laminated body and packaging body
KR1020200130009A KR20210044703A (en) 2019-10-15 2020-10-08 Glass interleaving paper, laminate, and package
CN202011106575.3A CN112660604B (en) 2019-10-15 2020-10-15 Glass paper, laminate, and package
JP2023201927A JP2024019252A (en) 2019-10-15 2023-11-29 Glass interleaving paper, glass plate laminated body and glass plate package body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019188836A JP7395941B2 (en) 2019-10-15 2019-10-15 Glass interleaving paper, laminates and packaging

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023201927A Division JP2024019252A (en) 2019-10-15 2023-11-29 Glass interleaving paper, glass plate laminated body and glass plate package body

Publications (2)

Publication Number Publication Date
JP2021063317A JP2021063317A (en) 2021-04-22
JP7395941B2 true JP7395941B2 (en) 2023-12-12

Family

ID=75402802

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019188836A Active JP7395941B2 (en) 2019-10-15 2019-10-15 Glass interleaving paper, laminates and packaging
JP2023201927A Withdrawn JP2024019252A (en) 2019-10-15 2023-11-29 Glass interleaving paper, glass plate laminated body and glass plate package body

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023201927A Withdrawn JP2024019252A (en) 2019-10-15 2023-11-29 Glass interleaving paper, glass plate laminated body and glass plate package body

Country Status (4)

Country Link
JP (2) JP7395941B2 (en)
KR (1) KR20210044703A (en)
CN (1) CN112660604B (en)
TW (1) TW202128525A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7326377B2 (en) * 2021-03-29 2023-08-15 特種東海製紙株式会社 Paper for glass plate
CN117597317A (en) * 2021-05-19 2024-02-23 康宁公司 Method and apparatus for packaging glass sheets with laminated paper
CN114084511B (en) * 2021-10-12 2023-01-17 河南旭阳光电科技有限公司 Device and method for recovering spacing paper
WO2023177552A1 (en) * 2022-03-16 2023-09-21 Corning Incorporated Paper interleaf for packing glass sheets
JP2024051900A (en) 2022-09-30 2024-04-11 Agc株式会社 Laminated paper for glass plate, glass plate laminate and glass plate packing body
JP7526332B1 (en) 2023-09-01 2024-07-31 王子ホールディングス株式会社 Cushioning paper and paper cushioning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266862A (en) 2007-03-29 2008-11-06 Oji Paper Co Ltd Glass interleaving paper
JP2016035125A (en) 2014-08-04 2016-03-17 王子ホールディングス株式会社 Insertion paper for glass plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137063B2 (en) 1974-04-15 1976-10-13
JP2005248409A (en) 2004-03-08 2005-09-15 Daifuku Paper Mfg Co Ltd Insertion paper for glass and method for producing the same
CN103137931B (en) * 2013-01-23 2015-11-25 华南理工大学 Diaphragm paper and preparation method and application thereof
JP6127319B2 (en) * 2014-03-13 2017-05-17 特種東海製紙株式会社 Glass paper
JP2016034843A (en) 2014-08-04 2016-03-17 旭硝子株式会社 Interleaf paper for glass plate, glass plate with interleaf paper, and glass plate packing body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266862A (en) 2007-03-29 2008-11-06 Oji Paper Co Ltd Glass interleaving paper
JP2016035125A (en) 2014-08-04 2016-03-17 王子ホールディングス株式会社 Insertion paper for glass plate

Also Published As

Publication number Publication date
JP2021063317A (en) 2021-04-22
CN112660604A (en) 2021-04-16
CN112660604B (en) 2024-09-17
KR20210044703A (en) 2021-04-23
JP2024019252A (en) 2024-02-08
TW202128525A (en) 2021-08-01

Similar Documents

Publication Publication Date Title
JP7395941B2 (en) Glass interleaving paper, laminates and packaging
JP5320656B2 (en) Manufacturing method of glass interleaving paper
JP5137063B2 (en) Glass paper
CN106103302B (en) Glass lining paper
JP4639690B2 (en) Glass paper
JP7264199B2 (en) Interleaving paper for glass plate, method for producing the same, and method for reducing adherence of aggregates
JP6519737B2 (en) Wood pulp for glass interleaf and paper for glass
KR101940087B1 (en) Glass slip sheet
CN111886187B (en) Interleaving paper for glass plate and method for manufacturing the same
TWI679154B (en) Glass sheet
JP2007051386A (en) Slip paper for glass
CN111886186B (en) Interleaving paper for glass plate and method for manufacturing the same
JP2006143221A (en) Corrugated board sheet for glass slip sheet
JP2021055192A (en) Pulp for glass interlayer sheet, glass interlayer sheet, and method of producing the same
TWI817401B (en) Glass plate interleaving paper
JP2022083995A (en) Slip paper for glass plate, glass plate laminate, and glass plate package
JP2024051900A (en) Laminated paper for glass plate, glass plate laminate and glass plate packing body
KR101165356B1 (en) Container paper board for containing electronic chips
TW202428961A (en) Spacer paper for glass plate, glass plate laminate and glass plate package
CN112593453B (en) Method for manufacturing liquid crystal substrate protection paper
JPH0246720B2 (en)
TW202220909A (en) Paper spacer for glass plate, glass plate laminate body and glass plate bale body wherein the thickness of the paper spacer for the glass plate is 30 [mu]m or more and 150 [mu]m or less
TW202222567A (en) Interleaving paper for glass plate which can suppress the adhesion of silicon-containing foreign matter to the surface of the glass plate
JP2022041953A (en) Laminated paper for glass plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7395941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150