JP7392143B2 - Compositions, polymers for capacitors and capacitors - Google Patents

Compositions, polymers for capacitors and capacitors Download PDF

Info

Publication number
JP7392143B2
JP7392143B2 JP2022528069A JP2022528069A JP7392143B2 JP 7392143 B2 JP7392143 B2 JP 7392143B2 JP 2022528069 A JP2022528069 A JP 2022528069A JP 2022528069 A JP2022528069 A JP 2022528069A JP 7392143 B2 JP7392143 B2 JP 7392143B2
Authority
JP
Japan
Prior art keywords
phosphate
capacitor
ethylenedioxythiophene
carboxylate
polymerizable monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022528069A
Other languages
Japanese (ja)
Other versions
JP2023502945A (en
Inventor
大成 趙
民翔 燕
尚軍 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Capchem Technology Co Ltd
Original Assignee
Shenzhen Capchem Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Capchem Technology Co Ltd filed Critical Shenzhen Capchem Technology Co Ltd
Publication of JP2023502945A publication Critical patent/JP2023502945A/en
Application granted granted Critical
Publication of JP7392143B2 publication Critical patent/JP7392143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/0425Electrodes or formation of dielectric layers thereon characterised by the material specially adapted for cathode
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3242Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more oxygen atoms as the only heteroatom, e.g. benzofuran
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は、固体コンデンサ材料の技術分野に属し、具体的には、組成物、コンデンサ用ポリマー及びコンデンサに関する。 The present invention is in the technical field of solid capacitor materials, and specifically relates to compositions, capacitor polymers, and capacitors.

固体電解コンデンサは、導電性が高く熱安定性に優れた導電性高分子を電解質として使用しており、従来の液体電解コンデンサに比べ、高信頼性、長寿命、高周波低インピーダンス、超大リップル電流耐性などの特性を有し、電解液が漏れやすいという液体電解コンデンサの欠点を克服した。国内の電子情報産業の急速な発展に伴い、近年の発展傾向から、固体電解コンデンサは徐々に液体低電圧電解コンデンサに取って代わり、21世紀の電子情報産業の基幹製品の一つとなることが期待されている。 Solid electrolytic capacitors use a conductive polymer with high conductivity and excellent thermal stability as an electrolyte, and compared to conventional liquid electrolytic capacitors, they have higher reliability, longer life, low impedance at high frequencies, and ultra-large ripple current resistance. These characteristics have overcome the drawbacks of liquid electrolytic capacitors, such as the tendency for electrolyte to leak. With the rapid development of the domestic electronic information industry and recent development trends, solid electrolytic capacitors are expected to gradually replace liquid low-voltage electrolytic capacitors and become one of the core products of the electronic information industry in the 21st century. has been done.

固体電解コンデンサの性能に対する要求の高まりに伴い、導電性高分子コンデンサの耐電圧をさらに改善し、漏れ電流を低減することでコンデンサの性能と耐用年数を改善することは、研究者の共通の目標となっている。アルミ電解コンデンサの耐電圧は酸化アルミニウム皮膜の厚さに比例する。酸化アルミニウム皮膜が薄くなると、アルミ箔の耐電圧が低下する。アルミ箔の酸化皮膜層の厚さがある程度薄くなると、正極箔の耐電圧が性能要求を満たさなくなり、コンデンサの使用中に正極と負極が導通し、いわゆる絶縁破壊が発生する。腐食が上記のように厳しい条件に達していない場合においても、漏れ電流が大きくなりすぎるおそれがある。漏れ電流の制御は、主要な固体アルミニウム電解コンデンサメーカーの制御の焦点にもなっている。また、近年、小型コンデンサに対する市場の需要及びアルミ固体電解コンデンサのコスト削減の需要に応じて、コンデンサメーカーが使用する正極箔の耐電圧はさらに低下傾向にある。そのため、陽極箔の腐食の緩和、コンデンサの漏れ電流の低減などに対する要求はより高くなっている。 With the increasing demands on the performance of solid electrolytic capacitors, it is a common goal of researchers to further improve the withstand voltage of conductive polymer capacitors and improve the capacitor performance and service life by reducing leakage current. It becomes. The withstand voltage of an aluminum electrolytic capacitor is proportional to the thickness of the aluminum oxide film. When the aluminum oxide film becomes thinner, the withstand voltage of the aluminum foil decreases. When the thickness of the oxide film layer of the aluminum foil becomes thin to a certain extent, the withstand voltage of the positive electrode foil no longer satisfies performance requirements, and the positive and negative electrodes become electrically conductive during use of the capacitor, resulting in so-called dielectric breakdown. Even if the corrosion does not reach the severe conditions mentioned above, there is a risk that the leakage current will become too large. Leakage current control has also become a control focus for major solid aluminum electrolytic capacitor manufacturers. Furthermore, in recent years, in response to market demand for small capacitors and demand for cost reduction of aluminum solid electrolytic capacitors, the withstand voltage of positive electrode foils used by capacitor manufacturers has been on the decline. Therefore, there are increasing demands for mitigation of corrosion of anode foils, reduction of leakage current of capacitors, etc.

現在、アルミ固体電解コンデンサでは、通常、3,4-エチレンジオキシチオフェンをモノマーとして製造されたポリ3,4-エチレンジオキシチオフェン(PEDOT)ポリマー材料が使用されている。上記のポリマー材料は良好な導電性と優れた環境安定性を有するため、固体電解コンデンサの陰極として幅広く使用されている。しかし、重合反応に使用される強酸性物質が生成したポリマー材料に残留することが多いため、コンデンサの使用時にアルミ箔酸化被膜層が腐食されて薄くなることで、コンデンサの耐電圧能力が低下し、漏れ電流が増大する問題が発生する。そのため、単に3,4-エチレンジオキシチオフェンモノマーを使用して製造されたアルミ固体電解コンデンサの耐電圧性及び漏れ電流性能は高まる要求を満たすことができなくなっている。 Currently, aluminum solid electrolytic capacitors typically use poly-3,4-ethylenedioxythiophene (PEDOT) polymer material, which is produced using 3,4-ethylenedioxythiophene as a monomer. The above polymer materials have good electrical conductivity and excellent environmental stability, so they are widely used as cathodes of solid electrolytic capacitors. However, since the strong acidic substances used in the polymerization reaction often remain in the resulting polymer material, the aluminum foil oxide layer corrodes and becomes thinner when the capacitor is used, reducing the capacitor's withstand voltage ability. , the problem of increased leakage current occurs. Therefore, the voltage resistance and leakage current performance of aluminum solid electrolytic capacitors manufactured using only 3,4-ethylenedioxythiophene monomer cannot meet the increasing demands.

従来の電解コンデンサに存在する金属箔酸化被膜の腐食による耐電圧性の低下及び漏れ電流の増大という問題を解決するために、本発明によれば、組成物、コンデンサ用ポリマー及びコンデンサが提供される。 In order to solve the problems of reduced voltage resistance and increased leakage current due to corrosion of the metal foil oxide film present in conventional electrolytic capacitors, the present invention provides a composition, a polymer for a capacitor, and a capacitor. .

上記の技術的問題を解決するために本発明が採用する技術的手段は以下の通りである。
本発明によれば、重合性モノマーと、リン酸エステル系化合物と、末端封鎖剤とを含む組成物であって、
前記重合性モノマーは、3,4-エチレンジオキシチオフェン系重合性モノマーを含み、
前記末端封鎖剤は、構造式1で表される化合物を含み、
式中、RはH又は炭素数1~6の炭化水素基から選択される組成物が提供される。
The technical means adopted by the present invention to solve the above technical problems are as follows.
According to the present invention, there is provided a composition comprising a polymerizable monomer, a phosphoric acid ester compound, and an end-capping agent,
The polymerizable monomer includes a 3,4-ethylenedioxythiophene-based polymerizable monomer,
The terminal capping agent includes a compound represented by Structural Formula 1,
A composition is provided in which R 4 is selected from H or a hydrocarbon group having 1 to 6 carbon atoms.

選択的に、前記組成物は、重量部で、重合性モノマー96~99.9998部と、末端封鎖剤0.0001~1部と、リン酸エステル系化合物0.0001~3部とを含む。 Optionally, the composition includes, by weight, 96 to 99.9998 parts of a polymerizable monomer, 0.0001 to 1 part of an end-capping agent, and 0.0001 to 3 parts of a phosphoric acid ester compound.

選択的に、前記末端封鎖剤は、3,4-エチレンジオキシチオフェン-2-カルボン酸メチル、3,4-エチレンジオキシチオフェン-2-カルボン酸エチル、3,4-エチレンジオキシチオフェン-2-カルボン酸プロピル、3,4-エチレンジオキシチオフェン-2-カルボン酸イソプロピル、3,4-エチレンジオキシチオフェン-2-カルボン酸ブチルのうちの1種又は複数種を含む。 Optionally, the end capping agent is methyl 3,4-ethylenedioxythiophene-2-carboxylate, ethyl 3,4-ethylenedioxythiophene-2-carboxylate, 3,4-ethylenedioxythiophene-2-carboxylate. - Contains one or more of propyl carboxylate, isopropyl 3,4-ethylenedioxythiophene-2-carboxylate, and butyl 3,4-ethylenedioxythiophene-2-carboxylate.

選択的に、前記リン酸エステル系化合物は、構造式2で表される化合物を含み、
式中、R、R及びRはそれぞれ独立してH、又は、水素原子が置換又は非置換の炭素数1~6の炭化水素基、エーテル基、カルボニル基及びアリール基から選択され、Rと、Rと、Rが同時にHである場合はない。
Optionally, the phosphoric acid ester compound includes a compound represented by Structural Formula 2,
In the formula, R 1 , R 2 and R 3 are each independently selected from H, a substituted or unsubstituted hydrocarbon group having 1 to 6 carbon atoms, an ether group, a carbonyl group and an aryl group, There is no case where R 1 , R 2 and R 3 are H at the same time.

選択的に、R、R及びRのうちの2つは互いに結合して環を形成する。 Optionally, two of R 1 , R 2 and R 3 are bonded to each other to form a ring.

選択的に、前記リン酸エステル系化合物は、リン酸トリメチル、リン酸ジメチル、リン酸メチルエチル、リン酸トリエチル、リン酸ジエチル、リン酸ジメチルエチル、リン酸メチルジエチル、リン酸トリプロピル、リン酸トリプロピニル、リン酸ジプロピル、リン酸トリブチル、リン酸ジブチル、リン酸モノブチル及びリン酸トリペンチルのうちの1種又は複数種を含む。 Selectively, the phosphate ester compound is trimethyl phosphate, dimethyl phosphate, methyl ethyl phosphate, triethyl phosphate, diethyl phosphate, dimethyl ethyl phosphate, methyl diethyl phosphate, tripropyl phosphate, phosphoric acid Contains one or more of tripropynyl, dipropyl phosphate, tributyl phosphate, dibutyl phosphate, monobutyl phosphate, and tripentyl phosphate.

選択的に、前記重合性モノマーは、構造式3で表される化合物を含む。
Optionally, the polymerizable monomer includes a compound represented by Structural Formula 3.

別の態様では、本発明によれば、前記組成物を重合して得られるコンデンサ用ポリマーが提供される。 In another aspect, the present invention provides a capacitor polymer obtained by polymerizing the composition.

別の態様では、本発明によれば、コンデンサ素子と、前記コンデンサ素子に付着した陰極材料とを含むコンデンサであって、前記陰極材料は、前記コンデンサ用ポリマーを含むことを特徴とする、コンデンサが提供される。 In another aspect, the present invention provides a capacitor comprising a capacitor element and a cathode material attached to the capacitor element, wherein the cathode material comprises the capacitor polymer. provided.

選択的に、前記コンデンサは、アルミ固体電解コンデンサ又はタンタル固体電解コンデンサである。 Optionally, the capacitor is an aluminum solid electrolytic capacitor or a tantalum solid electrolytic capacitor.

本発明で提供される組成物では、リン酸エステル系化合物、重合性モノマー及び末端封鎖剤が重合原料として使用される。リン酸エステル系化合物は、ある程度の潤滑性を有し、金属箔と直接接触しやすいため、金属箔の徐放剤として使用されて腐食の発生を防止することができ、金属箔上の酸化被膜に対して修復及び保護作用を奏し、コンデンサの金属箔上の酸化被膜の破壊を防止することができる。また、構造式1で表される化合物を末端封鎖剤として使用することにより、重合性モノマーの重合反応において重合度を低下させ、モノマーの重合速度を低下させることができ、これによって、反応系の酸性度が低下し、腐食の発生がさらに防止される。 In the composition provided by the present invention, a phosphoric acid ester compound, a polymerizable monomer, and an end capping agent are used as polymerization raw materials. Phosphate ester compounds have a certain degree of lubricity and are easy to come into direct contact with metal foils, so they can be used as sustained release agents for metal foils to prevent the occurrence of corrosion, and reduce the oxide film on metal foils. The oxidized film on the metal foil of the capacitor can be prevented from being destroyed. In addition, by using the compound represented by Structural Formula 1 as an end-capping agent, it is possible to lower the degree of polymerization in the polymerization reaction of polymerizable monomers and reduce the polymerization rate of the monomers, thereby reducing the reaction system. Acidity is reduced, further preventing corrosion from occurring.

本発明が解決しようとする課題、技術的手段及び有益な効果をより明確にするために、以下、実施例により本発明をさらに詳しく説明する。本明細書に記載の具体的な実施例は、本発明を解釈するためのものに過ぎず、本発明を制限するものではない。 In order to make the problems to be solved by the present invention, technical means and beneficial effects more clear, the present invention will be described in more detail with reference to Examples below. The specific examples described herein are only for interpreting the invention and are not intended to limit the invention.

本発明の一実施例によれば、重合性モノマーと、リン酸エステル系化合物と、末端封鎖剤とを含む組成物が提供される。
前記重合性モノマーは、3,4-エチレンジオキシチオフェン系重合性モノマーを含む。
前記末端封鎖剤は、構造式1で表される化合物を含む。
式中、RはH又は炭素数1~6の炭化水素基から選択される。
According to one embodiment of the present invention, a composition containing a polymerizable monomer, a phosphoric acid ester compound, and an end-capping agent is provided.
The polymerizable monomer includes a 3,4-ethylenedioxythiophene-based polymerizable monomer.
The terminal capping agent includes a compound represented by Structural Formula 1.
In the formula, R 4 is selected from H or a hydrocarbon group having 1 to 6 carbon atoms.

リン酸エステル系化合物は、ある程度の潤滑性を有し、金属箔と直接接触しやすいため、金属箔の徐放剤として使用されて腐食の発生を防止することができ、金属箔上の酸化被膜に対して修復及び保護作用を奏し、コンデンサの金属箔上の酸化被膜の破壊を防止することができる。また、構造式1で表される化合物を末端封鎖剤として使用することにより、重合性モノマーの重合反応において重合度を低下させ、モノマーの重合速度を低下させることができ、これによって、反応系の酸性度が低下し、腐食の発生がさらに防止される。 Phosphate ester compounds have a certain degree of lubricity and are easy to come into direct contact with metal foils, so they can be used as sustained release agents for metal foils to prevent the occurrence of corrosion, and reduce the oxide film on metal foils. The oxidized film on the metal foil of the capacitor can be prevented from being destroyed. In addition, by using the compound represented by Structural Formula 1 as an end-capping agent, it is possible to lower the degree of polymerization in the polymerization reaction of polymerizable monomers and reduce the polymerization rate of the monomers, thereby reducing the reaction system. Acidity is reduced, further preventing corrosion from occurring.

いくつかの実施例において、前記組成物は、重量部で、重合性モノマー96~99.9998部と、末端封鎖剤0.0001~1部と、リン酸エステル系化合物0.0001~3部とを含む。
より好ましい実施例において、前記組成物は、重量部で、重合性モノマー98~99.9899部と、末端封鎖剤0.0001~0.5部と、リン酸エステル系化合物0.01~1.5部とを含む。
In some embodiments, the composition comprises, by weight, 96 to 99.9998 parts of a polymerizable monomer, 0.0001 to 1 part of an end-capping agent, and 0.0001 to 3 parts of a phosphoric acid ester compound. including.
In a more preferred embodiment, the composition comprises, by weight, 98 to 99.9899 parts of a polymerizable monomer, 0.0001 to 0.5 parts of an end capping agent, and 0.01 to 1.0 parts of a phosphoric acid ester compound. 5 copies included.

前記リン酸エステル系化合物の添加量が少なすぎると、アルミ箔酸化被膜に対する保護作用は十分ではなく、前記リン酸エステル系化合物の添加量が多すぎると、重合後のポリマーの導電性が低下し、金属箔へのポリマーの付着効果が低下する場合がある。 If the amount of the phosphoric ester compound added is too small, the protective effect on the aluminum foil oxide film will not be sufficient, and if the amount of the phosphoric ester compound added is too large, the conductivity of the polymer after polymerization will decrease. , the adhesion effect of the polymer to the metal foil may be reduced.

前記末端封鎖剤の添加量が少なすぎると、重合反応の重合度の低下は十分ではなく、前記末端封鎖剤の添加量が多すぎると、重合後のポリマーの重合度が低くなりすぎることで、ポリマーの構造強度に影響が与え、コンデンサの安全性能の向上に不利である。 If the amount of the end-blocking agent added is too small, the degree of polymerization in the polymerization reaction will not be sufficiently reduced, and if the amount of the end-blocking agent added is too large, the degree of polymerization of the polymer after polymerization will become too low. This affects the structural strength of the polymer, which is disadvantageous to improving the safety performance of the capacitor.

いくつかの実施例において、前記末端封鎖剤は、3,4-エチレンジオキシチオフェン-2-カルボン酸メチル、3,4-エチレンジオキシチオフェン-2-カルボン酸エチル、3,4-エチレンジオキシチオフェン-2-カルボン酸プロピル、3,4-エチレンジオキシチオフェン-2-カルボン酸イソプロピル、3,4-エチレンジオキシチオフェン-2-カルボン酸ブチルのうちの1種又は複数種を含む。 In some examples, the end capping agent is methyl 3,4-ethylenedioxythiophene-2-carboxylate, ethyl 3,4-ethylenedioxythiophene-2-carboxylate, 3,4-ethylenedioxy Contains one or more of propyl thiophene-2-carboxylate, isopropyl 3,4-ethylenedioxythiophene-2-carboxylate, and butyl 3,4-ethylenedioxythiophene-2-carboxylate.

いくつかの実施例において、前記リン酸エステル系化合物は、構造式2で表される化合物を含む。
式中、R、R及びRはそれぞれ独立してH、又は、水素原子が置換又は非置換の炭素数1~6の炭化水素基、エーテル基、カルボニル基及びアリール基から選択され、置換基はハロゲン、ヒドロキシル基又はカルボキシル基であり、Rと、Rと、Rが同時にHである場合はない。
In some embodiments, the phosphoric acid ester compound includes a compound represented by Structural Formula 2.
In the formula, R 1 , R 2 and R 3 are each independently selected from H, a substituted or unsubstituted hydrocarbon group having 1 to 6 carbon atoms, an ether group, a carbonyl group and an aryl group, The substituent is a halogen, a hydroxyl group or a carboxyl group, and R 1 , R 2 and R 3 are not all H at the same time.

いくつかの実施例において、R、R及びRのうちの2つは互いに結合して環を形成する。 In some examples, two of R 1 , R 2 and R 3 are joined together to form a ring.

より好ましい実施例において、前記リン酸エステル系化合物は、リン酸トリメチル、リン酸ジメチル、リン酸メチルエチル、リン酸トリエチル、リン酸ジエチル、リン酸ジメチルエチル、リン酸メチルジエチル、リン酸トリプロピル、リン酸トリプロピニル、リン酸ジプロピル、リン酸トリブチル、リン酸ジブチル、リン酸モノブチル及びリン酸トリペンチルのうちの1種又は複数種を含む。 In more preferred embodiments, the phosphate ester compound includes trimethyl phosphate, dimethyl phosphate, methylethyl phosphate, triethyl phosphate, diethyl phosphate, dimethylethyl phosphate, methyldiethyl phosphate, tripropyl phosphate, Contains one or more of tripropynyl phosphate, dipropyl phosphate, tributyl phosphate, dibutyl phosphate, monobutyl phosphate, and tripentyl phosphate.

なお、本明細書において、3,4-エチレンジオキシチオフェン系重合性モノマーとは、チオフェン環上の2位及び5位に重合反応が発生可能な3,4-エチレンジオキシチオフェン、又はその誘導体を指す。 In addition, in this specification, the 3,4-ethylenedioxythiophene-based polymerizable monomer refers to 3,4-ethylenedioxythiophene, or a derivative thereof, in which a polymerization reaction can occur at the 2- and 5-positions on the thiophene ring. refers to

いくつかの実施例において、前記重合性モノマーは、構造式3で表される化合物を含む。
In some embodiments, the polymerizable monomer includes a compound represented by Structural Formula 3.

本発明の別の実施例によれば、前記組成物を重合して得られるコンデンサ用ポリマーが提供される。 According to another embodiment of the present invention, there is provided a capacitor polymer obtained by polymerizing the above composition.

従来のコンデンサ用のポリマーに比べ、前記組成物を重合して得られるコンデンサ用ポリマーは、金属箔に対する腐食性を低減できるため、コンデンサの漏れ電流を効果的に減少させ、固体コンデンサ性能の安定性を向上させることができる。 Compared to conventional polymers for capacitors, the polymer for capacitors obtained by polymerizing the above composition can reduce corrosiveness to metal foil, effectively reducing the leakage current of capacitors and improving the stability of solid capacitor performance. can be improved.

本発明の別の実施例によれば、コンデンサ素子と、前記コンデンサ素子に付着した陰極材料とを含み、前記陰極材料は前記コンデンサ用ポリマーを含むアルミ電解コンデンサが提供される。
いくつかの実施例において、前記コンデンサは、アルミ固体電解コンデンサ又はタンタル固体電解コンデンサである。
According to another embodiment of the invention, there is provided an aluminum electrolytic capacitor comprising a capacitor element and a cathode material deposited on the capacitor element, the cathode material comprising the capacitor polymer.
In some embodiments, the capacitor is an aluminum solid electrolytic capacitor or a tantalum solid electrolytic capacitor.

以下、実施例により本発明をさらに説明する。 The present invention will be further explained below with reference to Examples.

実施例1
本実施例は、本発明に係る組成物、コンデンサ用ポリマー及びコンデンサの製造方法を説明するためのものであり、以下の操作ステップを含む。
リン酸トリブチル0.07%重量部、3,4-エチレンジオキシチオフェン-2-カルボン酸メチル0.01%重量部、3,4-エチレンジオキシチオフェン99.92%重量部の配合比でこれらの物質を均一に混合し、重合性モノマー、リン酸エステル系化合物及び末端封鎖剤を含む組成物を製造した。
Example 1
This example is intended to illustrate a composition, a capacitor polymer, and a method of manufacturing a capacitor according to the present invention, and includes the following operational steps.
These at a blending ratio of 0.07% by weight of tributyl phosphate, 0.01% by weight of methyl 3,4-ethylenedioxythiophene-2-carboxylate, and 99.92% by weight of 3,4-ethylenedioxythiophene. A composition containing a polymerizable monomer, a phosphoric acid ester compound, and an end-blocking agent was prepared by uniformly mixing the above substances.

上記組成物を重合原料とし、ラジカル重合によりポリマー水分散体を製造した。具体的には、1753gの水及び90.32gのポリスチレンスルホン酸ナトリウムを取り、分散機内で高速で均一に混合し、窒素雰囲気の保護下で、反応器内の温度を22℃に制御し、17.54gの硫酸鉄水溶液(1.3%濃度)及び7.25gの上記重合原料を加え、引き続き24h反応させ、ポリマー分散体PEDOT/PSS中間体を得た。このポリマー分散体PEDOT/PSS中間体と陰陽イオン交換樹脂とを混合して不純物イオンを除去した。不純物イオンが除去されたポリマー分散体PEDOT:PSS中間体500gを取り、そこに53.2gポリエチレングリコール1000を加え、8h混合して撹拌した後、ホモジナイザーを用いて均質化処理し、ポリマー分散液を得た。 Using the above composition as a polymerization raw material, a polymer aqueous dispersion was produced by radical polymerization. Specifically, 1753 g of water and 90.32 g of sodium polystyrene sulfonate were taken, mixed uniformly at high speed in a disperser, controlled the temperature in the reactor at 22 ° C. under the protection of nitrogen atmosphere, and .54 g of an aqueous iron sulfate solution (1.3% concentration) and 7.25 g of the above polymerization raw material were added and reacted for 24 hours to obtain a polymer dispersion PEDOT/PSS intermediate. This polymer dispersion PEDOT/PSS intermediate was mixed with an anion and cation exchange resin to remove impurity ions. Take 500 g of the polymer dispersion PEDOT:PSS intermediate from which impurity ions have been removed, add 53.2 g of polyethylene glycol 1000 there, mix and stir for 8 hours, and then homogenize using a homogenizer to obtain a polymer dispersion. Obtained.

乾燥したコンデンサ素子を常温、真空度-0.09MPaの条件下でポリマー分散液に20min浸漬した後、素子を取り出し、その表面のポリマー分散液を拭き取り、125℃で1h乾燥した。このように浸漬、乾燥工程を3回繰り返した。浸漬終了後、コンデンサ素子をシールして組み立てることで固体電解コンデンサを形成した。 After the dried capacitor element was immersed in the polymer dispersion for 20 minutes at room temperature and a vacuum of -0.09 MPa, the element was taken out, the polymer dispersion on its surface was wiped off, and the element was dried at 125° C. for 1 hour. The dipping and drying steps were repeated three times in this manner. After dipping, the capacitor elements were sealed and assembled to form a solid electrolytic capacitor.

実施例2
本実施例は、本発明に係る組成物、コンデンサ用ポリマー及びコンデンサの製造方法を説明するためのものであり、リン酸メチルジエチル0.2%重量部、3,4-エチレンジオキシチオフェン-2-カルボン酸エチル0.1%重量部、3,4-エチレンジオキシチオフェン99.7%重量部の配合比でこれらの物質を均一に混合し、重合性モノマー、リン酸エステル系化合物及び末端封鎖剤を含む組成物を製造した以外、実施例1の操作ステップと同じである。
Example 2
This example is for explaining the composition, polymer for capacitor, and method for producing a capacitor according to the present invention, and includes 0.2% by weight of methyl diethyl phosphate, 3,4-ethylenedioxythiophene-2 - Mix these substances uniformly at a blending ratio of 0.1% by weight of ethyl carboxylate and 99.7% by weight of 3,4-ethylenedioxythiophene to form a polymerizable monomer, a phosphate ester compound, and a terminal blocker. The operating steps are the same as in Example 1, except that a composition containing the agent was prepared.

実施例3
本実施例は、本発明に係る組成物、コンデンサ用ポリマー及びコンデンサの製造方法を説明するためのものであり、リン酸ジメチルエチル1.0%重量部、3,4-エチレンジオキシチオフェン-2-カルボン酸プロピル0.3%重量部、3,4-エチレンジオキシチオフェン98.7%重量部の配合比でこれらの物質を均一に混合し、重合性モノマー、リン酸エステル系化合物及び末端封鎖剤を含む組成物を製造した以外、実施例1の操作ステップと同じである。
Example 3
This example is intended to explain the composition, polymer for capacitor, and method for producing a capacitor according to the present invention, and includes 1.0% by weight of dimethylethyl phosphate, 3,4-ethylenedioxythiophene-2 - Mix these substances uniformly at a blending ratio of 0.3% by weight of propyl carboxylate and 98.7% by weight of 3,4-ethylenedioxythiophene to form a polymerizable monomer, a phosphate ester compound, and a terminal blocker. The operating steps are the same as in Example 1, except that a composition containing the agent was prepared.

実施例4
本実施例は、本発明に係る組成物、コンデンサ用ポリマー及びコンデンサの製造方法を説明するためのものであり、リン酸トリプロピル0.62%重量部、3,4-エチレンジオキシチオフェン-2-カルボン酸ブチル0.0002%重量部、3,4-エチレンジオキシチオフェン99.3798%重量部の配合比でこれらの物質を均一に混合し、重合性モノマー、リン酸エステル系化合物及び末端封鎖剤を含む組成物を製造するした以外、実施例1の操作ステップと同じである。
Example 4
This example is for explaining the composition, the polymer for capacitors, and the manufacturing method of the capacitor according to the present invention. - These substances are mixed uniformly at a blending ratio of 0.0002% by weight of butyl carboxylate and 99.3798% by weight of 3,4-ethylenedioxythiophene, and the polymerizable monomer, phosphate ester compound, and terminal blocker are added. The operating steps are the same as in Example 1, except for preparing the composition containing the agent.

実施例5
本実施例は、本発明に係る組成物、コンデンサ用ポリマー及びコンデンサの製造方法を説明するためのものであり、リン酸トリプロピニル0.006%重量部、3,4-エチレンジオキシチオフェン-2-カルボン酸メチル0.006%重量部、3,4-エチレンジオキシチオフェン99.988%重量部の配合比でこれらの物質を均一に混合し、重合性モノマー、リン酸エステル系化合物及び末端封鎖剤を含む組成物を製造した以外、実施例1の操作ステップと同じである。
Example 5
This example is for explaining the composition, polymer for a capacitor, and method for producing a capacitor according to the present invention, and includes 0.006% by weight of tripropynyl phosphate, 3,4-ethylenedioxythiophene-2 - Mix these substances uniformly at a blending ratio of 0.006% by weight of methyl carboxylate and 99.988% by weight of 3,4-ethylenedioxythiophene to form a polymerizable monomer, a phosphate ester compound, and a terminal blocker. The operating steps are the same as in Example 1, except that a composition containing the agent was prepared.

実施例6
本実施例は、本発明に係る組成物、コンデンサ用ポリマー及びコンデンサの製造方法を説明するためのものであり、リン酸トリエチル0.05%重量部、3,4-エチレンジオキシチオフェン-2-カルボン酸イソプロピル0.024%重量部、3,4-エチレンジオキシチオフェン99.926%重量部の配合比でこれらの物質を均一に混合し、重合性モノマー、リン酸エステル系化合物及び末端封鎖剤を含む組成物を製造した以外、実施例1の操作ステップと同じである。
Example 6
This example is for explaining the composition, polymer for a capacitor, and method for manufacturing a capacitor according to the present invention, and includes 0.05% by weight of triethyl phosphate, 3,4-ethylenedioxythiophene-2- These substances were mixed uniformly at a blending ratio of 0.024% by weight of isopropyl carboxylate and 99.926% by weight of 3,4-ethylenedioxythiophene, and the polymerizable monomer, phosphate ester compound, and terminal blocking agent were added. The operating steps were the same as in Example 1, except that a composition comprising:

実施例7
本実施例は、本発明に係る組成物、コンデンサ用ポリマー及びコンデンサの製造方法を説明するためのものであり、リン酸モノブチル0.37%重量部、3,4-エチレンジオキシチオフェン-2-カルボン酸メチル0.052%重量部、3,4-エチレンジオキシチオフェン99.578%重量部の配合比でこれらの物質を均一に混合し、重合性モノマー、リン酸エステル系化合物及び末端封鎖剤を含む組成物を製造した以外、実施例1の操作ステップと同じである。
Example 7
This example is for explaining the composition, polymer for a capacitor, and method for producing a capacitor according to the present invention, and includes 0.37% by weight of monobutyl phosphate, 3,4-ethylenedioxythiophene-2- These substances were mixed uniformly at a blending ratio of 0.052% by weight of methyl carboxylate and 99.578% by weight of 3,4-ethylenedioxythiophene to form a polymerizable monomer, a phosphate ester compound, and an end-blocking agent. The operating steps were the same as in Example 1, except that a composition comprising:

実施例8
本実施例は、本発明に係る組成物、コンデンサ用ポリマー及びコンデンサの製造方法を説明するためのものであり、以下の操作ステップを含む。
リン酸トリブチル0.06%重量部、3,4-エチレンジオキシチオフェン-2-カルボン酸メチル0.04%重量部、3,4-エチレンジオキシチオフェン99.9%重量部の配合比でこれらの物質を均一に混合し、重合性モノマー、リン酸エステル系化合物及び末端封鎖剤を含む組成物を製造した。
Example 8
This example is intended to illustrate a composition, a capacitor polymer, and a method of manufacturing a capacitor according to the present invention, and includes the following operational steps.
These at a blending ratio of 0.06% by weight of tributyl phosphate, 0.04% by weight of methyl 3,4-ethylenedioxythiophene-2-carboxylate, and 99.9% by weight of 3,4-ethylenedioxythiophene. A composition containing a polymerizable monomer, a phosphoric acid ester compound, and an end-blocking agent was prepared by uniformly mixing the above substances.

エタノールを溶媒として上記組成物を25%のモノマー溶液に調製し、コンデンサ素子を上記モノマー溶液に2min浸漬した後、コンデンサ素子を取り出し、60℃のオーブン内で30min乾燥した後、常温まで冷却した。 The above composition was prepared as a 25% monomer solution using ethanol as a solvent, and a capacitor element was immersed in the above monomer solution for 2 minutes, then the capacitor element was taken out, dried in an oven at 60 ° C. for 30 minutes, and then cooled to room temperature.

上記のように処理されたコンデンサ素子を常温、真空度-0.085MPaの条件下で60%濃度のp-トルエンスルホン酸鉄のエタノール酸化剤溶液に5min浸漬した。 The capacitor element treated as described above was immersed in an ethanol oxidizing agent solution of iron p-toluenesulfonate at a concentration of 60% for 5 minutes at room temperature and a degree of vacuum of -0.085 MPa.

浸漬終了後、コンデンサ素子を取り出して恒温恒湿器に移し、温度40℃、湿度40%の条件下で1h反応させ、次に温度を60℃、湿度を25%に調整し、2h反応させ、次に温度を70℃、湿度を20%に調整し、1h反応させ、次に温度を150℃、湿度を0%に調整し、1h反応させ、次に温度を110℃、湿度を0%に調整し、3h反応させることで重合反応を行った。重合反応終了後、コンデンサ素子をシールして組み立てることで固体電解コンデンサを形成した。 After dipping, the capacitor element was taken out and transferred to a constant temperature and humidity chamber, and reacted for 1 hour at a temperature of 40°C and humidity of 40%, then adjusted to a temperature of 60°C and humidity of 25%, and reacted for 2 hours. Next, adjust the temperature to 70℃ and humidity to 20%, react for 1 hour, then adjust the temperature to 150℃ and humidity to 0%, react for 1 hour, then reduce the temperature to 110℃ and humidity to 0%. A polymerization reaction was carried out by adjusting and reacting for 3 hours. After the polymerization reaction was completed, the capacitor elements were sealed and assembled to form a solid electrolytic capacitor.

比較例1
本比較例は、本発明に係るコンデンサ用ポリマー及びコンデンサの製造方法を比較説明するためのものであり、実施例1の重合原料の代わりに、純粋なモノマー3,4-エチレンジオキシチオフェンを用いた以外、実施例1の操作ステップと同じである。
Comparative example 1
This comparative example is for comparatively explaining the capacitor polymer and capacitor manufacturing method according to the present invention, and instead of the polymerization raw material of Example 1, pure monomer 3,4-ethylenedioxythiophene was used. The operation steps are the same as those in Example 1 except for the following.

比較例2
本比較例は、本発明に係るコンデンサ用ポリマー及びコンデンサの製造方法を比較説明するためのものであり、以下の操作ステップを含む。
エタノールを溶媒として3,4-エチレンジオキシチオフェンを25%のモノマー溶液に調製し、コンデンサ素子をモノマー溶液に2min浸漬した後、コンデンサ素子を取り出し、60℃のオーブン内で30min乾燥した後、常温まで冷却した。
Comparative example 2
This comparative example is for comparatively explaining the capacitor polymer and the capacitor manufacturing method according to the present invention, and includes the following operational steps.
A 25% monomer solution of 3,4-ethylenedioxythiophene was prepared using ethanol as a solvent, and the capacitor element was immersed in the monomer solution for 2 min. The capacitor element was taken out and dried in an oven at 60°C for 30 min, and then left at room temperature. Cooled to .

上記のように処理されたコンデンサ素子を常温、真空度-0.085MPaの条件下で60%濃度のp-トルエンスルホン酸鉄のエタノール酸化剤溶液に5min浸漬した。 The capacitor element treated as described above was immersed in an ethanol oxidizing agent solution of iron p-toluenesulfonate at a concentration of 60% for 5 minutes at room temperature and a degree of vacuum of -0.085 MPa.

浸漬終了後、コンデンサ素子を取り出して恒温恒湿器に移し、温度40℃、湿度40%の条件下で1h反応させ、次に温度を60℃、湿度を25%に調整し、2h反応させ、次に温度を70℃、湿度を20%に調整し、1h反応させ、次に温度を150℃、湿度を0%に調整し、1h反応させ、次に温度を110℃、湿度を0%に調整し、3h反応させることで重合反応を行った。重合反応終了後、コンデンサ素子をシールして組み立てることで固体電解コンデンサを形成した。 After dipping, the capacitor element was taken out and transferred to a constant temperature and humidity chamber, and reacted for 1 hour at a temperature of 40°C and humidity of 40%, then adjusted to a temperature of 60°C and humidity of 25%, and reacted for 2 hours. Next, adjust the temperature to 70℃ and humidity to 20%, react for 1 hour, then adjust the temperature to 150℃ and humidity to 0%, react for 1 hour, then reduce the temperature to 110℃ and humidity to 0%. A polymerization reaction was carried out by adjusting and reacting for 3 hours. After the polymerization reaction was completed, the capacitor elements were sealed and assembled to form a solid electrolytic capacitor.

比較例3
本比較例は、本発明に係るコンデンサ用ポリマー及びコンデンサの製造方法を比較説明するためのものであり、リン酸トリブチル0.07%重量部、3,4-エチレンジオキシチオフェン99.93%重量部の配合比率でこれらの物質を均一に混合し、重合性モノマー及びリン酸エステル系化合物を含む組成物を製造した以外、実施例1の操作ステップと同じである。
Comparative example 3
This comparative example is for comparatively explaining the capacitor polymer and the manufacturing method of the capacitor according to the present invention. The operating steps were the same as in Example 1, except that these materials were uniformly mixed at a blending ratio of 50% to 50% to produce a composition containing a polymerizable monomer and a phosphoric acid ester compound.

比較例4
本比較例は、本発明に係るコンデンサ用ポリマー及びコンデンサの製造方法を比較説明するためのものであり、3,4-エチレンジオキシチオフェン-2-カルボン酸メチル0.01%重量部、3,4-エチレンジオキシチオフェン99.99%重量部の配合比率でこれらの物質を均一に混合し、重合性モノマー及び末端封鎖剤を含む組成物を製造した以外、実施例1の操作ステップと同じである。
Comparative example 4
This comparative example is for comparatively explaining the capacitor polymer and the capacitor manufacturing method according to the present invention, and contains 0.01% part by weight of methyl 3,4-ethylenedioxythiophene-2-carboxylate, 3, The operating steps were the same as in Example 1, except that these substances were mixed uniformly at a blending ratio of 99.99% by weight of 4-ethylenedioxythiophene to produce a composition containing a polymerizable monomer and an end-capping agent. be.

特性試験
上記の実施例1~7及び比較例1~4で製造された固体電解コンデンサについて以下の特性試験を行った。
電子部品自動分析装置及び漏れ電流計を用いて固体電解コンデンサの静電容量、損耗値、等価直列抵抗及び漏れ電流を測定した。ここで、容量、損耗値は120Hz周波数で測定し、等価直列抵抗は100KHz周波数で測定し、漏れ電流は定格電圧下で1min充電した後、漏れ電流計を用いて測定した。測定方法は、通常の電子部品自動分析装置、漏れ電流計の測定方法であるため、ここでは説明を省略する。
Characteristic Tests The following characteristic tests were conducted on the solid electrolytic capacitors manufactured in Examples 1 to 7 and Comparative Examples 1 to 4 above.
The capacitance, wear value, equivalent series resistance, and leakage current of the solid electrolytic capacitor were measured using an electronic component automatic analyzer and a leakage current meter. Here, the capacity and wear value were measured at a frequency of 120 Hz, the equivalent series resistance was measured at a frequency of 100 KHz, and the leakage current was measured using a leakage current meter after charging for 1 minute under the rated voltage. The measurement method is a measurement method using a normal electronic component automatic analyzer or a leakage current meter, so a description thereof will be omitted here.

試験結果を表1に示す。
<表1>
The test results are shown in Table 1.
<Table 1>

表1の試験結果から分かるように、本発明に係るコンデンサ用ポリマーを用いて製造された固体電解コンデンサは、漏れ電流値が比較的低く、最大でも7.3μAである一方、比較例1~4のモノマーを用いて製造された固体電解コンデンサは、漏れ電流値が顕著に大きくなり、最小でも12.5μAである。これは、リン酸エステル系物質及び末端封鎖剤の添加により、アルミ箔に対する固体電解質の腐食が効果的に軽減され、コンデンサの漏れ電流が減少し、コンデンサの耐電圧能力が向上するため、固体電解コンデンサ特性の安定性が確保され、固体電解コンデンサの使用寿命が大幅に延長することを示している。 As can be seen from the test results in Table 1, the solid electrolytic capacitors manufactured using the polymer for capacitors according to the present invention have a relatively low leakage current value of 7.3 μA at the maximum, whereas Comparative Examples 1 to 4 A solid electrolytic capacitor manufactured using the monomer has a significantly large leakage current value, which is at least 12.5 μA. This is because the addition of phosphate ester-based substances and terminal blocking agents effectively reduces the corrosion of the solid electrolyte against aluminum foil, reduces the leakage current of the capacitor, and improves the withstand voltage ability of the capacitor. This shows that the stability of capacitor characteristics is ensured and the service life of solid electrolytic capacitors is significantly extended.

実施例1、比較例3及び比較例4の試験結果を比較して明らかなように、リン酸エステル系化合物及び末端封鎖剤は、いずれもアルミ箔に対する固体電解質の腐食を軽減する作用を奏し、コンデンサの漏れ電流を減少させた。 As is clear from comparing the test results of Example 1, Comparative Example 3, and Comparative Example 4, the phosphate ester compound and the terminal blocking agent both have the effect of reducing the corrosion of the solid electrolyte on the aluminum foil. Reduced capacitor leakage current.

以上の説明は、本発明の好ましい実施例に過ぎず、本発明を制限するものではない。本発明の思想及び原則の範囲内に行われる全ての修正、同等置換及び改良などは、いずれも本発明の保護範囲内に含まれるべきである。 The above description is only a preferred embodiment of the invention and is not intended to limit the invention. All modifications, equivalent substitutions, improvements, etc. made within the spirit and principle of the present invention should be included within the protection scope of the present invention.

Claims (9)

重量部で、重合性モノマー96~99.9998部と、リン酸エステル系化合物0.0001~3部と、末端封鎖剤0.0001~1部とを含む組成物であって、
前記重合性モノマーは、3,4-エチレンジオキシチオフェン系重合性モノマーを含み、
前記末端封鎖剤は、構造式1で表される化合物を含み、

式中、RはH又は炭素数1~6の炭化水素基から選択されることを特徴とする、組成物。
A composition comprising, in parts by weight, 96 to 99.9998 parts of a polymerizable monomer, 0.0001 to 3 parts of a phosphoric acid ester compound, and 0.0001 to 1 part of an end blocking agent,
The polymerizable monomer includes a 3,4-ethylenedioxythiophene-based polymerizable monomer,
The terminal capping agent includes a compound represented by Structural Formula 1,

A composition, characterized in that R 4 is selected from H or a hydrocarbon group having 1 to 6 carbon atoms.
前記末端封鎖剤は、3,4-エチレンジオキシチオフェン-2-カルボン酸メチル、3,4-エチレンジオキシチオフェン-2-カルボン酸エチル、3,4-エチレンジオキシチオフェン-2-カルボン酸プロピル、3,4-エチレンジオキシチオフェン-2-カルボン酸イソプロピル、3,4-エチレンジオキシチオフェン-2-カルボン酸ブチルのうちの1種又は複数種を含むことを特徴とする、請求項1に記載の組成物。 The terminal capping agent is methyl 3,4-ethylenedioxythiophene-2-carboxylate, ethyl 3,4-ethylenedioxythiophene-2-carboxylate, propyl 3,4-ethylenedioxythiophene-2-carboxylate. , isopropyl 3,4-ethylenedioxythiophene-2-carboxylate, and butyl 3,4-ethylenedioxythiophene-2-carboxylate. Compositions as described. 前記リン酸エステル系化合物は、構造式2で表される化合物を含み、

式中、R、R及びRはそれぞれ独立してH、又は、水素原子が置換又は非置換の炭素数1~6の炭化水素基、エーテル基、カルボニル基及びアリール基から選択され、Rと、Rと、Rが同時にHである場合はないことを特徴とする、請求項1に記載の組成物。
The phosphoric acid ester compound includes a compound represented by Structural Formula 2,

In the formula, R 1 , R 2 and R 3 are each independently selected from H, a substituted or unsubstituted hydrocarbon group having 1 to 6 carbon atoms, an ether group, a carbonyl group and an aryl group, Composition according to claim 1, characterized in that R 1 , R 2 and R 3 are not simultaneously H.
、R及びRのうちの2つは互いに結合して環を形成することを特徴とする、請求項に記載の組成物。 The composition according to claim 3 , characterized in that two of R 1 , R 2 and R 3 are bonded to each other to form a ring. 前記リン酸エステル系化合物は、リン酸トリメチル、リン酸ジメチル、リン酸メチルエチル、リン酸トリエチル、リン酸ジエチル、リン酸ジメチルエチル、リン酸メチルジエチル、リン酸トリプロピル、リン酸トリプロピニル、リン酸ジプロピル、リン酸トリブチル、リン酸ジブチル、リン酸モノブチル及びリン酸トリペンチルのうちの1種又は複数種を含む、請求項に記載の組成物。 The phosphate ester compounds include trimethyl phosphate, dimethyl phosphate, methylethyl phosphate, triethyl phosphate, diethyl phosphate, dimethylethyl phosphate, methyl diethyl phosphate, tripropyl phosphate, tripropynyl phosphate, and phosphoric acid. 4. The composition of claim 3 , comprising one or more of dipropyl acid, tributyl phosphate, dibutyl phosphate, monobutyl phosphate, and tripentyl phosphate. 前記重合性モノマーは、構造式3で表される化合物を含むことを特徴とする、請求項1に記載の組成物。

The composition according to claim 1, wherein the polymerizable monomer includes a compound represented by Structural Formula 3.

請求項1からのいずれか1項に記載の組成物を重合して得られることを特徴とする、コンデンサ用ポリマー。 A polymer for capacitors, obtained by polymerizing the composition according to any one of claims 1 to 6 . コンデンサ素子と、前記コンデンサ素子に付着した陰極材料とを含むコンデンサであって、
前記陰極材料は、請求項に記載のコンデンサ用ポリマーを含むことを特徴とする、コンデンサ。
A capacitor comprising a capacitor element and a cathode material attached to the capacitor element,
8. A capacitor, wherein the cathode material comprises the capacitor polymer of claim 7 .
前記コンデンサは、アルミ固体電解コンデンサ又はタンタル固体電解コンデンサであることを特徴とする、請求項に記載のコンデンサ。 9. The capacitor according to claim 8 , wherein the capacitor is an aluminum solid electrolytic capacitor or a tantalum solid electrolytic capacitor.
JP2022528069A 2019-12-17 2020-12-14 Compositions, polymers for capacitors and capacitors Active JP7392143B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201911303518.1 2019-12-17
CN201911303518.1A CN112979927B (en) 2019-12-17 2019-12-17 Composition, polymer for capacitor and capacitor
PCT/CN2020/136011 WO2021121174A1 (en) 2019-12-17 2020-12-14 Composition, polymer for capacitor, and capacitor

Publications (2)

Publication Number Publication Date
JP2023502945A JP2023502945A (en) 2023-01-26
JP7392143B2 true JP7392143B2 (en) 2023-12-05

Family

ID=76342423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022528069A Active JP7392143B2 (en) 2019-12-17 2020-12-14 Compositions, polymers for capacitors and capacitors

Country Status (4)

Country Link
JP (1) JP7392143B2 (en)
KR (1) KR102591669B1 (en)
CN (1) CN112979927B (en)
WO (1) WO2021121174A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113363078A (en) * 2021-07-28 2021-09-07 深圳市金富康电子有限公司 Solid-liquid mixed state winding type aluminum electrolytic capacitor and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037903A (en) 2003-06-30 2005-02-10 Fuji Denki Gazo Device Kk Electrophotographic photoreceptor and electrophotographic apparatus using the same
US20120206860A1 (en) 2011-02-15 2012-08-16 Qingping Chen Process for producing electrolytic capacitors and capacitors made thereby
JP2013172146A (en) 2012-02-22 2013-09-02 Nichicon Corp Solid electrolytic capacitor
JP2015060897A (en) 2013-09-18 2015-03-30 テイカ株式会社 Hole transport material, electroluminescent element and thin film solar cell
WO2015129515A1 (en) 2014-02-27 2015-09-03 テイカ株式会社 Oxidant/dopant for conductive polymer production, solution of said oxidant/dopant, conductive particles produced using either of these, and electrolytic capacitor using said conductive particles as electrolyte
JP2016092387A (en) 2014-11-05 2016-05-23 財團法人工業技術研究院Industrial Technology Research Institute Iron salt oxidizer composition, solid electrolytic capacitor, and method for manufacturing the same
JP2017105982A (en) 2015-12-04 2017-06-15 東ソー株式会社 Antistatic thin film and antistatic solution

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816535A (en) * 2003-06-30 2006-08-09 富士电机影像器材有限公司 Quinone based compound, photosensitive article for electrophotography and electrophotographic device using the same
US7361728B1 (en) * 2004-09-30 2008-04-22 Tda Research, Inc. Electrically conducting materials from branched end-capping intermediates
CN101486839B (en) * 2008-01-18 2011-08-17 郑州泰达电子材料科技有限公司 Conductive polymer composition, solid electrolyte and solid electrolyte capacitor using the conductive polymer
CN101350252B (en) * 2008-09-17 2012-06-27 中国振华(集团)新云电子元器件有限责任公司 Conductive polyelectrolyte polymerization liquid prescription stored in normal temperature steadily and use thereof
JP2010095469A (en) * 2008-10-16 2010-04-30 Tama Kagaku Kogyo Kk Method for producing 3,4-dialkoxy (or alkylenedioxy) thiophene
CN102779653B (en) * 2012-07-18 2015-09-02 中国振华(集团)新云电子元器件有限责任公司 A kind of two step manufacture methods of high-conductivity polymer electrolytic capacitor
JP2017101104A (en) * 2015-11-30 2017-06-08 Necトーキン株式会社 Conductive polymer, conductive polymer solution, conductive polymer material, electrolytic capacitor, and method of manufacturing the same
US10737101B2 (en) * 2016-11-14 2020-08-11 Avx Corporation Medical device containing a solid electrolytic capacitor
TW201908363A (en) * 2017-07-12 2019-03-01 鈺邦科技股份有限公司 Polymer composite material applied to a solid capacitor, capacitor package structure using the same and manufacturing method thereof
CN109741858B (en) * 2018-12-04 2020-07-14 广州中国科学院先进技术研究所 Green printed all-polymer flexible transparent electrode and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037903A (en) 2003-06-30 2005-02-10 Fuji Denki Gazo Device Kk Electrophotographic photoreceptor and electrophotographic apparatus using the same
US20120206860A1 (en) 2011-02-15 2012-08-16 Qingping Chen Process for producing electrolytic capacitors and capacitors made thereby
JP2013172146A (en) 2012-02-22 2013-09-02 Nichicon Corp Solid electrolytic capacitor
JP2015060897A (en) 2013-09-18 2015-03-30 テイカ株式会社 Hole transport material, electroluminescent element and thin film solar cell
WO2015129515A1 (en) 2014-02-27 2015-09-03 テイカ株式会社 Oxidant/dopant for conductive polymer production, solution of said oxidant/dopant, conductive particles produced using either of these, and electrolytic capacitor using said conductive particles as electrolyte
JP2016092387A (en) 2014-11-05 2016-05-23 財團法人工業技術研究院Industrial Technology Research Institute Iron salt oxidizer composition, solid electrolytic capacitor, and method for manufacturing the same
JP2017105982A (en) 2015-12-04 2017-06-15 東ソー株式会社 Antistatic thin film and antistatic solution

Also Published As

Publication number Publication date
KR102591669B1 (en) 2023-10-20
KR20220086613A (en) 2022-06-23
WO2021121174A1 (en) 2021-06-24
CN112979927A (en) 2021-06-18
CN112979927B (en) 2021-12-14
JP2023502945A (en) 2023-01-26

Similar Documents

Publication Publication Date Title
US9953767B2 (en) Conductive polymer dispersion liquid, a conductive polymer, and use thereof
KR101803997B1 (en) A Method for improving electrical parameters in capacitors comprising PEDOT/PSS as a solid electrolyte through a polyalkylene glycol
JP7361284B2 (en) Manufacturing method of electrolytic capacitor
EP2622018B1 (en) Layer compositions with improved electrical parameters comprising pedot/pss and a stabilizer
KR101638993B1 (en) Method for the production of electrolyte capacitors with polymer intermediate layer
JP2023022858A (en) Method for manufacturing electrolytic capacitor
ZA200503497B (en) Process for the producing of electrolytic capacitators
KR101567317B1 (en) Conductive polymer composite and preparation and use thereof
US7916456B2 (en) Solid electrolytic capacitor having carbon layer, containing carbon particles and additive, on solid electrolyte layer, and method of manufacturing the same
JP7392143B2 (en) Compositions, polymers for capacitors and capacitors
JP5968485B2 (en) Electrolyte material composition, electrolyte material composition formed from the electrolyte material composition and use thereof
CN110993346B (en) Ultra-low impedance aluminum electrolytic capacitor for switching power supply
US8197886B2 (en) Method of manufacturing solid electrolytic capacitor
CN100495602C (en) Solid electrolytic capacitor and method for manufacturing same
JP2019172770A (en) Conductive polymer composition, manufacturing method of conductive polymer thin film
JP5598897B2 (en) Manufacturing method of solid electrolytic capacitor
JP2015095651A (en) Electrolyte and manufacturing method thereof, composition used for forming electrolyte, and capacitor including the same
JP5656127B2 (en) Electrolyte material composition, electrolyte material composition formed therefrom, and use thereof
JP6030628B2 (en) Iron salt oxidizing agent composition, solid electrolytic capacitor, and method for producing the same
WO2022247632A1 (en) Solid electrolyte electrolytic capacitor
JP2024509119A (en) Dispersion for aluminum electrolytic capacitors and aluminum electrolytic capacitors
CN102030760A (en) Monomer with selected chromatic number and capacitor prepared by same
JPH11283876A (en) Solid electrolytic capacitor and manufacture thereof
KR20020091964A (en) Electrolyte for intermediate voltage aluminium electrolysis condenser and aluminium electrolysis condenser having the electrolyte

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231122

R150 Certificate of patent or registration of utility model

Ref document number: 7392143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150