JP2024509119A - Dispersion for aluminum electrolytic capacitors and aluminum electrolytic capacitors - Google Patents

Dispersion for aluminum electrolytic capacitors and aluminum electrolytic capacitors Download PDF

Info

Publication number
JP2024509119A
JP2024509119A JP2023552144A JP2023552144A JP2024509119A JP 2024509119 A JP2024509119 A JP 2024509119A JP 2023552144 A JP2023552144 A JP 2023552144A JP 2023552144 A JP2023552144 A JP 2023552144A JP 2024509119 A JP2024509119 A JP 2024509119A
Authority
JP
Japan
Prior art keywords
aluminum electrolytic
electrolytic capacitor
dispersion
group
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023552144A
Other languages
Japanese (ja)
Inventor
宗澤 曹
媛媛 康
涵 王
大成 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Capchem Technology Co Ltd
Original Assignee
Shenzhen Capchem Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Capchem Technology Co Ltd filed Critical Shenzhen Capchem Technology Co Ltd
Publication of JP2024509119A publication Critical patent/JP2024509119A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、固体電解コンデンサ技術の分野に関し、特にアルミニウム電解コンデンサ用分散体及びアルミニウム電解コンデンサに関する。前記分散体は、分散剤と、前記分散剤中に分散された導電性重合体及び添加剤とを含み、前記添加剤は、以下の構造式で示される化合物のうちの1つ又は複数から選択され、JPEG2024509119000008.jpg23170前記化合物は、少なくとも1つのヒドロキシル基と少なくとも1つのエーテル基を有し、R1、R2は、互いに独立して、硫黄含有基、炭素含有基、水素から選択され、nは1~10の整数である。本発明の分散体は、ポリヒドロキシエーテル構造を有する添加剤を使用して、アルミニウム電解コンデンサの容量抽出を向上させ、等価抵抗を低減する。ポリヒドロキシ基構造の添加剤は、導電性高分子間の架橋を促進すると同時に、導電性重合体によって生成される電解質層と誘電体層Al2O3膜との結合の緊密さを向上させることができ、それにより、アルミニウム電解コンデンサの容量抽出率を向上させ、アルミニウム電解コンデンサの損失値及び等価抵抗を低減する。The present invention relates to the field of solid electrolytic capacitor technology, and in particular to dispersions for aluminum electrolytic capacitors and aluminum electrolytic capacitors. The dispersion includes a dispersant, a conductive polymer and an additive dispersed in the dispersant, and the additive is selected from one or more of the compounds represented by the following structural formula: and JPEG2024509119000008.jpg23170 said compound has at least one hydroxyl group and at least one ether group, R1, R2 are independently selected from a sulfur-containing group, a carbon-containing group, hydrogen, and n is 1 It is an integer between ~10. The dispersion of the present invention uses additives with polyhydroxyether structures to improve capacitance extraction and reduce equivalent resistance of aluminum electrolytic capacitors. The additive having a polyhydroxy group structure can promote crosslinking between conductive polymers and at the same time improve the tightness of the bond between the electrolyte layer produced by the conductive polymer and the dielectric layer Al2O3 film, Thereby, the capacity extraction rate of the aluminum electrolytic capacitor is improved, and the loss value and equivalent resistance of the aluminum electrolytic capacitor are reduced.

Description

本発明は、固体電解コンデンサの技術分野に関し、特に、アルミニウム電解コンデンサ用分散体及びアルミニウム電解コンデンサに関する。 The present invention relates to the technical field of solid electrolytic capacitors, and particularly to a dispersion for aluminum electrolytic capacitors and an aluminum electrolytic capacitor.

固体電解コンデンサは、電解質として導電率が高く、熱安定性の良い固体導電材料を採用しており、通常の電解コンデンサと比較して、通常の電解コンデンサのすべての特性を備えているだけでなく、良好な信頼性、長い使用寿命、高周波低インピーダンス、特別に大きなリプル電流に対する耐性などの特性を備えており、コンピュータ、通信、軍事、産業制御などの分野や、カメラ、ビデオレコーダ、フラットテレビ、ゲーム機などの消費財の電子製品の新世代の高級完成品に使用することができ、電子製品の集積化、小型化に有利であり、液漏れしやすく寿命が短いという液体電解コンデンサの欠点を克服することができる。中国の電子情報産業の急速な発展に伴い、近年の高分子固体電解コンデンサの開発傾向から、固体電解コンデンサは、徐々に通常の低電圧電解コンデンサに取って代わり、21世紀の電子情報産業の柱となる製品の一つとなるであろう。 Solid electrolytic capacitors adopt solid conductive materials with high conductivity and good thermal stability as electrolytes, and compared with ordinary electrolytic capacitors, they not only have all the characteristics of ordinary electrolytic capacitors, but also It has characteristics such as good reliability, long service life, high frequency low impedance, and special resistance to large ripple current, and is widely used in computer, communication, military, industrial control and other fields, as well as cameras, video recorders, flat televisions, It can be used in a new generation of high-end finished products for consumer electronic products such as game consoles, and is advantageous for the integration and miniaturization of electronic products, and eliminates the disadvantages of liquid electrolytic capacitors such as easy leakage and short life. can be overcome. With the rapid development of China's electronic information industry and the recent development trend of polymer solid electrolytic capacitors, solid electrolytic capacitors will gradually replace ordinary low-voltage electrolytic capacitors and become the pillar of the electronic information industry in the 21st century. This will be one of the products that will become popular.

固体電解コンデンサの性能に対する人々の要求の向上に伴い、導電性高分子重合体電解質の導電性をさらに向上させ、コンデンサの等価抵抗(ESR値)を下げることは、研究者の共通の目標となっている。しかしながら、現在一般的に使用されている添加剤には、導電性高分子重合体との相溶性が悪く、分散性がよくないなどの問題が存在し、電荷の移動及び伝導率の向上が妨げられている。特に重要なのは、充放電の過程で固体電解コンデンサの容量抽出率が急激に低下し、ESR値が急激に上昇し、その結果、固体電解コンデンサの性能が急激に劣化し、故障に至ることである。 With the improvement of people's requirements for the performance of solid electrolytic capacitors, it has become a common goal of researchers to further improve the conductivity of conductive polymer electrolytes and lower the equivalent resistance (ESR value) of capacitors. ing. However, the additives currently commonly used have problems such as poor compatibility with conductive polymers and poor dispersibility, which hinders charge transfer and improvement of conductivity. It is being What is particularly important is that during the charging and discharging process, the capacity extraction rate of solid electrolytic capacitors rapidly decreases, the ESR value rapidly increases, and as a result, the performance of solid electrolytic capacitors rapidly deteriorates, leading to failure. .

適切な添加剤を分散体中に添加することは、重合体の導電性を向上させる効果的な方法である。従来技術では、主に絶縁破壊電圧を高めるために、ポリエチレングリコール及びその誘導体であるポリグリセリンを使用している。例えば、公開番号がCN103429796Aである中国発明特許は、ポリグリセリンを使用して、固体電解質としてPEDOT/PSSを含むコンデンサのESRを低減することを開示しているが、容量の向上は明らかではない。 Adding suitable additives into the dispersion is an effective way to improve the electrical conductivity of polymers. In the prior art, polyethylene glycol and its derivative polyglycerin are used mainly to increase the dielectric breakdown voltage. For example, a Chinese invention patent with publication number CN103429796A discloses the use of polyglycerin to reduce the ESR of capacitors containing PEDOT/PSS as the solid electrolyte, but no improvement in capacity is evident.

本発明の目的は、従来技術における固体電解コンデンサの容量抽出が低く、ESRが大きいという問題を克服することである。上記の問題を解決するために、本発明は、アルミニウム電解コンデンサ用分散体、及び該分散体を採用して製造されるアルミニウム電解コンデンサを提供する。 The aim of the present invention is to overcome the problems of low capacitance extraction and high ESR of solid electrolytic capacitors in the prior art. In order to solve the above problems, the present invention provides a dispersion for an aluminum electrolytic capacitor, and an aluminum electrolytic capacitor manufactured using the dispersion.

本発明が上述の技術的課題を解決するために採用する技術的解決策は下記のとおりである。
アルミニウム電解コンデンサ用分散体が提供される。この分散体は、分散剤と、前記分散剤中に分散された導電性重合体及び添加剤とを含み、前記添加剤は、以下の構造式で示される化合物のうちの1つ又は複数から選択され、
前記化合物は、少なくとも1つのヒドロキシル基と少なくとも1つのエーテル基を有し、R1、R2は、互いに独立して、硫黄含有基、炭素含有基、水素から選択され、nは1~10の整数である。nが1~10である場合、分散剤の水溶性は比較的良好である。n>10である場合、この分散剤の水溶性が低下し、コンデンサの全体的な性能に影響を与える。好ましくは、nは1~5の整数である。
The technical solutions adopted by the present invention to solve the above technical problems are as follows.
A dispersion for an aluminum electrolytic capacitor is provided. The dispersion comprises a dispersant, a conductive polymer and an additive dispersed in the dispersant, the additive being selected from one or more of the compounds represented by the following structural formula: is,
The compound has at least one hydroxyl group and at least one ether group, R1 and R2 are independently selected from a sulfur-containing group, a carbon-containing group, and hydrogen, and n is an integer from 1 to 10. be. When n is 1 to 10, the water solubility of the dispersant is relatively good. If n>10, the water solubility of the dispersant decreases, affecting the overall performance of the capacitor. Preferably, n is an integer from 1 to 5.

さらに、R1、R2は、互いに独立して、スルホン酸基、硫酸基、カルボニル基、ヒドロキシアセトニル基、プロパントリオール基、プロパンジオール基、水素、アルキル基から選択される。 Further, R1 and R2 are independently selected from a sulfonic acid group, a sulfuric acid group, a carbonyl group, a hydroxyacetonyl group, a propanetriol group, a propanediol group, hydrogen, and an alkyl group.

さらに、R1、R2の少なくとも一つは、ヒドロキシアセトニル基、プロパントリオール基、プロパンジオール基から選択される。R1又はR2はヒドロキシル基を有しているか、又は両端ともヒドロキシル基を有している。構造式で示される化合物は、エーテル結合とヒドロキシル基の両方を有するため、導電性重合体と誘電体酸化層との結合の緊密さを向上させることができる。これは、コンデンサの容量の向上、ESR値の低減に非常に有益である。 Furthermore, at least one of R1 and R2 is selected from a hydroxyacetonyl group, a propanetriol group, and a propanediol group. R1 or R2 has a hydroxyl group, or both ends have a hydroxyl group. Since the compound represented by the structural formula has both an ether bond and a hydroxyl group, it is possible to improve the tightness of the bond between the conductive polymer and the dielectric oxide layer. This is very useful for improving the capacitance of the capacitor and reducing the ESR value.

さらに、前記添加剤は、以下の化合物1~12のうちの1つ又は複数から選択される。
Furthermore, the additive is selected from one or more of the following compounds 1-12.

さらに、前記分散体の総質量に対して、前記添加剤の含有量は0.01%~10%であり、さらに好ましくは、前記添加剤の含有量は0.1%~5%である。添加剤の含有量が高すぎると、分散体の粘度が増加し、含浸効果に影響を及ぼし、コンデンサの性能に悪影響を及ぼす。一方、添加剤の含有量が低すぎると、明らかに性能を向上させることができない。 Furthermore, the content of the additive is from 0.01% to 10%, more preferably from 0.1% to 5%, based on the total mass of the dispersion. If the content of additives is too high, the viscosity of the dispersion will increase, affecting the impregnation effect and negatively affecting the performance of the capacitor. On the other hand, if the additive content is too low, the performance cannot obviously be improved.

さらに、前記導電性重合体は、ポリチオフェン、ポリピロール、ポリアニリン、及びそれらの誘導体のうちの1つ又は複数から選択される。ポリチオフェン及びその誘導物が好ましい。ポリ(3,4-エチレンジオキシチオフェン)がさらに好ましい。 Further, the conductive polymer is selected from one or more of polythiophene, polypyrrole, polyaniline, and derivatives thereof. Polythiophene and its derivatives are preferred. More preferred is poly(3,4-ethylenedioxythiophene).

さらに、前記分散剤は、有機溶媒及び/又は水から選択される。前記分散剤は水であることが好ましい。分散体は、既知の方法により調製することができる。 Furthermore, the dispersant is selected from organic solvents and/or water. Preferably, the dispersant is water. Dispersions can be prepared by known methods.

本発明は、アルミニウム電解コンデンサをさらに提供する。このアルミニウム電解コンデンサは、表面に誘電体層を有する陽極体と、陰極体と、隔膜と、前記誘電体層の少なくとも一部を覆う固体電解質層とを含み、前記固体電解質層は、上記の分散体により製造される。 The invention further provides an aluminum electrolytic capacitor. This aluminum electrolytic capacitor includes an anode body having a dielectric layer on its surface, a cathode body, a diaphragm, and a solid electrolyte layer covering at least a portion of the dielectric layer, and the solid electrolyte layer includes the above-mentioned dispersion. Manufactured by the body.

本発明によって提供されるアルミニウム電解コンデンサ用分散体及びアルミニウム電解コンデンサは、以下の有益な効果を有する。
(1)本発明のアルミニウム電解コンデンサ用分散体は、添加剤としてポリヒドロキシエーテル構造を有する化合物を使用して、アルミニウム電解コンデンサの容量抽出を向上させ、ESR値を低減する。これは、ポリヒドロキシ基構造の添加剤が、導電性高分子間の架橋を促進すると同時に、導電性重合体によって生成される電解質層と誘電体層Al膜との結合の緊密さを向上させることができるためである。それにより、アルミニウム電解コンデンサの容量抽出率が向上し、アルミニウム電解コンデンサの損失値及び等価抵抗が低減する。
The dispersion for aluminum electrolytic capacitors and the aluminum electrolytic capacitor provided by the present invention have the following beneficial effects.
(1) The dispersion for aluminum electrolytic capacitors of the present invention uses a compound having a polyhydroxyether structure as an additive to improve capacity extraction and reduce the ESR value of aluminum electrolytic capacitors. This is because the additive with a polyhydroxy group structure promotes crosslinking between conductive polymers and at the same time improves the tightness of the bond between the electrolyte layer and the dielectric layer Al2O3 film produced by the conductive polymer. This is because it can be improved. As a result, the capacity extraction rate of the aluminum electrolytic capacitor is improved, and the loss value and equivalent resistance of the aluminum electrolytic capacitor are reduced.

(2)本発明のアルミニウム電解コンデンサ用分散体については、1≦n≦10の構造式で示される化合物は分散体中によりよく溶解することができ、分散系を破壊することがないので、分散体の粘度の上昇やゲル化が防止される。 (2) Regarding the dispersion for aluminum electrolytic capacitors of the present invention, the compound represented by the structural formula of 1≦n≦10 can be better dissolved in the dispersion and does not destroy the dispersion system. Increase in body viscosity and gelation are prevented.

以下、具体的な実施例を参照しながら、本発明の技術的解決策を明確かつ完全に説明する。当然のことながら、ここで説明する実施例は、本発明の実施例の全てではなく一部にすぎない。当業者が創造的な作業なしに本発明の実施例に基づいて得る他の全ての実施例は、本発明の保護範囲に入る。 In the following, the technical solution of the present invention will be clearly and completely explained with reference to specific embodiments. It should be understood that the embodiments described herein are only some, but not all, of the embodiments of the present invention. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative work fall within the protection scope of the present invention.

本発明では、電解コンデンサの製造に採用されるコアパックは、16V1000の仕様、10*13のサイズを有する巻回型コアパックである。
<実施例1>
In the present invention, the core pack employed in manufacturing the electrolytic capacitor is a wound type core pack having a specification of 16V1000 and a size of 10*13.
<Example 1>

本実施例は、本発明で開示されるアルミニウム電解コンデンサ分散体の製造方法、該分散体を使用して製造されたアルミニウム電解コンデンサを説明するためのものである。 This example is intended to explain the method for manufacturing an aluminum electrolytic capacitor dispersion disclosed in the present invention and an aluminum electrolytic capacitor manufactured using the dispersion.

表1に示すように、PEDOT/PSSに化合物1を加えた。化合物1の質量分率は混合液の総量の5%であり、マグネチックスターラーを使用して常温で6時間撹拌し、その後、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 Compound 1 was added to PEDOT/PSS as shown in Table 1. The mass fraction of Compound 1 was 5% of the total amount of the mixed solution, which was stirred for 6 hours at room temperature using a magnetic stirrer, and then homogenized with a homogenizer to obtain the aluminum electrolytic capacitor dispersion of the present invention. .

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<実施例2>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Example 2>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1の質量分率を混合液の総量の0.1%としたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, the only difference in this example compared to Example 1 is that the mass fraction of Compound 1 was 0.1% of the total amount of the mixed liquid, and other parameters and The method is the same as in Example 1. Details are as follows.

PEDOT/PSSに化合物1を加えた。化合物1の質量分率は混合液の総量の0.1%であり、マグネチックスターラーを使用して常温で6時間撹拌し、その後、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 Compound 1 was added to PEDOT/PSS. The mass fraction of Compound 1 was 0.1% of the total amount of the mixed solution, which was stirred for 6 hours at room temperature using a magnetic stirrer, and then homogenized with a homogenizer to obtain the aluminum electrolytic capacitor dispersion of the present invention. Obtained.

電解コンデンサコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<実施例3>
The electrolytic capacitor core pack was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions and dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Example 3>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1の質量分率を混合液の総量の3%としたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, compared to Example 1, the only difference in this example is that the mass fraction of compound 1 was 3% of the total amount of the mixture, and the other parameters and methods were Same as Example 1. Details are as follows.

PEDOT/PSSに化合物1を加えた。化合物1の質量分率は混合液の総量の3%であり、マグネチックスターラーを使用して常温で6時間撹拌し、その後、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 Compound 1 was added to PEDOT/PSS. The mass fraction of Compound 1 was 3% of the total amount of the mixed solution, which was stirred at room temperature for 6 hours using a magnetic stirrer, and then homogenized with a homogenizer to obtain the aluminum electrolytic capacitor dispersion of the present invention. .

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<実施例4>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Example 4>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1の質量分率を混合液の総量の0.01%としたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。
PEDOT/PSSに化合物1を加えた。化合物1の質量分率は混合液の総量の0.01%であり、マグネチックスターラーを使用して常温で6時間撹拌し、その後、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。
As shown in Table 1, the only difference in this example compared to Example 1 is that the mass fraction of compound 1 was 0.01% of the total amount of the mixed liquid, and other parameters and The method is the same as in Example 1. Details are as follows.
Compound 1 was added to PEDOT/PSS. The mass fraction of Compound 1 was 0.01% of the total amount of the mixed solution, which was stirred for 6 hours at room temperature using a magnetic stirrer, and then homogenized with a homogenizer to obtain the aluminum electrolytic capacitor dispersion of the present invention. Obtained.

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<実施例5>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Example 5>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1の質量分率を混合液の総量の10%としたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, the only difference in this example compared to Example 1 is that the mass fraction of compound 1 was 10% of the total amount of the mixture, and the other parameters and methods were Same as Example 1. Details are as follows.

PEDOT/PSSに化合物1を加えた。化合物1の質量分率は混合液の総量の10%であり、マグネチックスターラーを使用して常温で6時間撹拌し、その後、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 Compound 1 was added to PEDOT/PSS. The mass fraction of Compound 1 was 10% of the total amount of the mixed solution, which was stirred for 6 hours at room temperature using a magnetic stirrer, and then homogenized with a homogenizer to obtain the aluminum electrolytic capacitor dispersion of the present invention. .

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<比較例1>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Comparative example 1>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1を添加しなかったことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, compared with Example 1, the only difference of this example is that Compound 1 was not added, and other parameters and methods are the same as Example 1. Details are as follows.

マグネチックスターラーを使用してPEDOT/PSSを常温で6時間撹拌し、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 PEDOT/PSS was stirred at room temperature for 6 hours using a magnetic stirrer and homogenized using a homogenizer to obtain an aluminum electrolytic capacitor dispersion of the present invention.

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<比較例2>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Comparative example 2>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1をグリセリンに置き換えたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, compared with Example 1, the only difference in this example is that Compound 1 was replaced with glycerin, and other parameters and methods are the same as Example 1. Details are as follows.

表1に示すように、PEDOT/PSSにグリセリンを加えた。グリセリンの質量分率は混合液の総量の5%であり、マグネチックスターラーを使用して常温で6時間撹拌し、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 Glycerin was added to PEDOT/PSS as shown in Table 1. The mass fraction of glycerin was 5% of the total amount of the mixed liquid, and the mixture was stirred at room temperature for 6 hours using a magnetic stirrer and homogenized using a homogenizer to obtain an aluminum electrolytic capacitor dispersion of the present invention.

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<比較例3>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Comparative example 3>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1をポリエチレングリコール400に置き換えたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, compared with Example 1, the only difference in this example is that compound 1 was replaced with polyethylene glycol 400, and other parameters and methods are the same as Example 1. . Details are as follows.

表1に示すように、PEDOT/PSSにポリエチレングリコール400を加えた。ポリエチレングリコール400の質量分率は混合液の総量の5%であり、マグネチックスターラーを使用して常温で6時間撹拌し、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 As shown in Table 1, polyethylene glycol 400 was added to PEDOT/PSS. The mass fraction of polyethylene glycol 400 was 5% of the total amount of the mixed solution, which was stirred for 6 hours at room temperature using a magnetic stirrer and homogenized using a homogenizer to obtain an aluminum electrolytic capacitor dispersion of the present invention.

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<実施例6>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Example 6>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1を化合物2に置き換え、化合物2の質量分率を混合液の総量の3%としたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, the only difference in this example compared to Example 1 is that Compound 1 was replaced with Compound 2, and the mass fraction of Compound 2 was 3% of the total amount of the mixed liquid. Other parameters and methods are the same as in Example 1. Details are as follows.

PEDOT/PSSに化合物2を加えた。化合物2の質量分率は混合液の総量の3%であり、マグネチックスターラーを使用して常温で6時間撹拌し、その後、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 Compound 2 was added to PEDOT/PSS. The mass fraction of Compound 2 was 3% of the total amount of the mixed solution, which was stirred for 6 hours at room temperature using a magnetic stirrer, and then homogenized with a homogenizer to obtain the aluminum electrolytic capacitor dispersion of the present invention. .

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<実施例7>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Example 7>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1を化合物3に置き換え、化合物3の質量分率を混合液の総量の2%としたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, the only difference in this example compared to Example 1 is that Compound 1 was replaced with Compound 3, and the mass fraction of Compound 3 was 2% of the total amount of the mixed liquid. Other parameters and methods are the same as in Example 1. Details are as follows.

PEDOT/PSSに化合物3を加えた。化合物3の質量分率は混合液の総量の2%であり、マグネチックスターラーを使用して常温で6時間撹拌し、その後、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 Compound 3 was added to PEDOT/PSS. The mass fraction of Compound 3 was 2% of the total amount of the mixed solution, which was stirred for 6 hours at room temperature using a magnetic stirrer, and then homogenized with a homogenizer to obtain the aluminum electrolytic capacitor dispersion of the present invention. .

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<実施例8>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Example 8>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1を化合物5に置き換え、化合物5の質量分率を混合液の総量の1%としたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, the only difference in this example compared to Example 1 is that Compound 1 was replaced with Compound 5, and the mass fraction of Compound 5 was 1% of the total amount of the mixed liquid. Other parameters and methods are the same as in Example 1. Details are as follows.

PEDOT/PSSに化合物5を加えた。化合物5の質量分率は混合液の総量の1%であり、マグネチックスターラーを使用して常温で6時間撹拌し、その後、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 Compound 5 was added to PEDOT/PSS. The mass fraction of Compound 5 was 1% of the total amount of the mixed solution, which was stirred for 6 hours at room temperature using a magnetic stirrer, and then homogenized using a homogenizer to obtain the aluminum electrolytic capacitor dispersion of the present invention. .

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<実施例9>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Example 9>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1を化合物8に置き換え、化合物8の質量分率を混合液の総量の1%としたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, the only difference in this example compared to Example 1 is that Compound 1 was replaced with Compound 8, and the mass fraction of Compound 8 was 1% of the total amount of the mixed liquid. Other parameters and methods are the same as in Example 1. Details are as follows.

PEDOT/PSSに化合物8を加えた。化合物8の質量分率は混合液の総量の1%であり、マグネチックスターラーを使用して常温で6時間撹拌し、その後、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 Compound 8 was added to PEDOT/PSS. The mass fraction of Compound 8 was 1% of the total amount of the mixed solution, which was stirred for 6 hours at room temperature using a magnetic stirrer, and then homogenized with a homogenizer to obtain the aluminum electrolytic capacitor dispersion of the present invention. .

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<実施例10>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Example 10>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1を化合物4に置き換えたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, compared with Example 1, the only difference in this example is that Compound 1 was replaced with Compound 4, and other parameters and methods are the same as Example 1. Details are as follows.

PEDOT/PSSに化合物4を加えた。化合物4の質量分率は混合液の総量の5%であり、マグネチックスターラーを使用して常温で6時間撹拌し、その後、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 Compound 4 was added to PEDOT/PSS. The mass fraction of Compound 4 was 5% of the total amount of the mixed solution, which was stirred at room temperature for 6 hours using a magnetic stirrer, and then homogenized with a homogenizer to obtain the aluminum electrolytic capacitor dispersion of the present invention. .

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<実施例11>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Example 11>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1を化合物6に置き換えたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, compared with Example 1, the only difference in this example is that Compound 1 was replaced with Compound 6, and other parameters and methods are the same as Example 1. Details are as follows.

PEDOT/PSSに化合物6を加えた。化合物6の質量分率は混合液の総量の5%であり、マグネチックスターラーを使用して常温で6時間撹拌し、その後、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 Compound 6 was added to PEDOT/PSS. The mass fraction of Compound 6 was 5% of the total amount of the mixed solution, which was stirred at room temperature for 6 hours using a magnetic stirrer, and then homogenized with a homogenizer to obtain the aluminum electrolytic capacitor dispersion of the present invention. .

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<実施例12>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Example 12>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1を化合物7に置き換えたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, compared with Example 1, the only difference in this example is that Compound 1 was replaced with Compound 7, and other parameters and methods are the same as Example 1. Details are as follows.

PEDOT/PSSに化合物7を加えた。化合物7の質量分率は混合液の総量の5%であり、マグネチックスターラーを使用して常温で6時間撹拌し、その後、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 Compound 7 was added to PEDOT/PSS. The mass fraction of Compound 7 was 5% of the total amount of the mixed solution, which was stirred for 6 hours at room temperature using a magnetic stirrer, and then homogenized with a homogenizer to obtain the aluminum electrolytic capacitor dispersion of the present invention. .

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<実施例13>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Example 13>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1を化合物9に置き換えたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, compared with Example 1, the only difference in this example is that Compound 1 was replaced with Compound 9, and other parameters and methods are the same as Example 1. Details are as follows.

PEDOT/PSSに化合物9を加えた。化合物9の質量分率は混合液の総量の5%であり、マグネチックスターラーを使用して常温で6時間撹拌し、その後、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 Compound 9 was added to PEDOT/PSS. The mass fraction of Compound 9 was 5% of the total amount of the mixed solution, which was stirred for 6 hours at room temperature using a magnetic stirrer, and then homogenized with a homogenizer to obtain the aluminum electrolytic capacitor dispersion of the present invention. .

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<実施例14>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Example 14>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1を化合物10に置き換えたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, compared with Example 1, the only difference in this example is that Compound 1 was replaced with Compound 10, and other parameters and methods are the same as Example 1. Details are as follows.

PEDOT/PSSに化合物10を加えた。化合物10の質量分率は混合液の総量の5%であり、マグネチックスターラーを使用して常温で6時間撹拌し、その後、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 Compound 10 was added to PEDOT/PSS. The mass fraction of Compound 10 was 5% of the total amount of the mixed solution, which was stirred at room temperature for 6 hours using a magnetic stirrer, and then homogenized with a homogenizer to obtain the aluminum electrolytic capacitor dispersion of the present invention. .

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<実施例15>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Example 15>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1を化合物11に置き換えたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, compared with Example 1, the only difference in this example is that Compound 1 was replaced with Compound 11, and other parameters and methods are the same as Example 1. Details are as follows.

PEDOT/PSSに化合物11を加えた。化合物11の質量分率は混合液の総量の5%であり、マグネチックスターラーを使用して常温で6時間撹拌し、その後、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 Compound 11 was added to PEDOT/PSS. The mass fraction of Compound 11 was 5% of the total amount of the mixed solution, which was stirred at room temperature for 6 hours using a magnetic stirrer, and then homogenized with a homogenizer to obtain the aluminum electrolytic capacitor dispersion of the present invention. .

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。
<実施例16>
The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.
<Example 16>

表1に示すように、実施例1と比較して、本実施例の唯一の違いは、化合物1を化合物12に置き換えたことであり、他のパラメータ及び方法は実施例1と同じである。詳細は、以下のとおりである。 As shown in Table 1, compared with Example 1, the only difference in this example is that Compound 1 was replaced with Compound 12, and other parameters and methods are the same as Example 1. Details are as follows.

PEDOT/PSSに化合物12を加えた。化合物12の質量分率は混合液の総量の5%であり、マグネチックスターラーを使用して常温で6時間撹拌し、その後、ホモジナイザーで均質化して、本発明のアルミニウム電解コンデンサ分散体を得た。 Compound 12 was added to PEDOT/PSS. The mass fraction of Compound 12 was 5% of the total amount of the mixed solution, which was stirred for 6 hours at room temperature using a magnetic stirrer, and then homogenized with a homogenizer to obtain the aluminum electrolytic capacitor dispersion of the present invention. .

電解コンデンサのコアパックを、本実施例で調製したアルミニウム電解コンデンサ分散体中に負圧条件下で30分間浸漬し、乾燥した。上記のステップを3回繰り返し、封止後、アルミニウム電解コンデンサを組み立てた。 The core pack of the electrolytic capacitor was immersed in the aluminum electrolytic capacitor dispersion prepared in this example for 30 minutes under negative pressure conditions, and then dried. The above steps were repeated three times, and after sealing, an aluminum electrolytic capacitor was assembled.

実施例1~16及び比較例1~3で製造した電解コンデンサに対して性能テストを行った。自動電子部品分析装置を使用して、周波数120Hzにおけるコンデンサの静電容量、損失値、周波数100kHzにおける等価抵抗をテストした。 Performance tests were conducted on the electrolytic capacitors manufactured in Examples 1 to 16 and Comparative Examples 1 to 3. An automatic electronic component analyzer was used to test the capacitance, loss value, and equivalent resistance at a frequency of 120 Hz and 100 kHz.

上記の実施例及び比較例のテスト結果を、以下の表2に示す。
The test results of the above examples and comparative examples are shown in Table 2 below.

表2のデータからわかるように、本発明のアルミニウム電解コンデンサ用分散体により製造された電解コンデンサは、静電容量(Cap)≧1021μF、容量損失値(DF)≦3.01%、等価抵抗(ESR)≦7.02mΩであり、本発明の電解コンデンサは、より高い静電容量、より低い容量損失値及び等価抵抗を有する。 As can be seen from the data in Table 2, the electrolytic capacitor manufactured using the dispersion for aluminum electrolytic capacitors of the present invention has a capacitance (Cap) ≧1021 μF, a capacitance loss value (DF) ≦3.01%, and an equivalent resistance ( ESR)≦7.02 mΩ, and the electrolytic capacitor of the present invention has higher capacitance, lower capacitive loss value and equivalent resistance.

表2の実施例1~5のテスト結果から、分散体中の化合物1の含有量が電解コンデンサ導電性能の向上と密接に関係していることが分かる。化合物1の含有量が0.1%~5%である場合、その分散体により製造された電解コンデンサの性能は著しく向上する。化合物1の含有量がより低いと、分散体の酸化アルミニウム膜への吸着作用が比較的弱く、アルミ電解コンデンサの性能を明らかに向上させることができない。化合物1の含有量がより高いと、分散体の粘度が増加し、含浸効果に影響を及ぼし、同時にコンデンサの性能に悪影響を及ぼす。表2の比較例1~3のテスト結果から、従来技術と比較して、本発明の添加剤は、アルミニウム電解コンデンサの容量抽出率を向上させるとともに、アルミニウム電解コンデンサの損失値及び等価抵抗を低減することができ、アルミニウム電解コンデンサの導電性能及び安定性を大幅に向上させることができることが分かる。 From the test results of Examples 1 to 5 in Table 2, it can be seen that the content of Compound 1 in the dispersion is closely related to the improvement in the conductive performance of the electrolytic capacitor. When the content of Compound 1 is between 0.1% and 5%, the performance of the electrolytic capacitor produced by the dispersion is significantly improved. When the content of Compound 1 is lower, the adsorption effect of the dispersion on the aluminum oxide film is relatively weak, and the performance of the aluminum electrolytic capacitor cannot be clearly improved. Higher content of compound 1 increases the viscosity of the dispersion, which affects the impregnation effect and at the same time negatively affects the performance of the capacitor. From the test results of Comparative Examples 1 to 3 in Table 2, compared to the conventional technology, the additive of the present invention improves the capacity extraction rate of aluminum electrolytic capacitors, and reduces the loss value and equivalent resistance of aluminum electrolytic capacitors. It can be seen that the conductive performance and stability of aluminum electrolytic capacitors can be significantly improved.

上述は本発明の好適な実施形態に過ぎず、本発明はこれに限定されるものでなく、本発明の精神および原則内に属する限り、行われる全ての修正、同等の置き換え、改善などは、いずれも本発明の保護範囲内に含まれるべきである。 The above description is only the preferred embodiment of the present invention, and the present invention is not limited thereto, and all modifications, equivalent substitutions, improvements, etc., which may be made within the spirit and principles of the present invention are contemplated. All should be included within the protection scope of the present invention.

Claims (8)

アルミニウム電解コンデンサ用分散体であって、分散剤と、前記分散剤中に分散された導電性重合体及び添加剤とを含み、前記添加剤は、以下の構造式で示される化合物のうちの1つ又は複数から選択され、
前記化合物は、少なくとも1つのヒドロキシル基と少なくとも1つのエーテル基を有し、R1、R2は、互いに独立して、硫黄含有基、炭素含有基、水素から選択され、nは1~10の整数である、ことを特徴とする分散体。
A dispersion for an aluminum electrolytic capacitor, comprising a dispersant, a conductive polymer dispersed in the dispersant, and an additive, the additive being one of the compounds represented by the following structural formula. selected from one or more;
The compound has at least one hydroxyl group and at least one ether group, R1 and R2 are independently selected from a sulfur-containing group, a carbon-containing group, and hydrogen, and n is an integer from 1 to 10. A dispersion body characterized by a certain thing.
R1、R2は、互いに独立して、スルホン酸基、硫酸基、カルボニル基、ヒドロキシアセトニル基、プロパントリオール基、プロパンジオール基、水素、アルキル基から選択される、ことを特徴とする請求項1に記載の分散体。 Claim 1, wherein R1 and R2 are independently selected from a sulfonic acid group, a sulfuric acid group, a carbonyl group, a hydroxyacetonyl group, a propanetriol group, a propanediol group, hydrogen, and an alkyl group. The dispersion described in. R1、R2の少なくとも一つは、ヒドロキシアセトニル基、プロパントリオール基、プロパンジオール基から選択される、ことを特徴とする請求項2に記載の分散体。 3. The dispersion according to claim 2, wherein at least one of R1 and R2 is selected from a hydroxyacetonyl group, a propanetriol group, and a propanediol group. 前記添加剤は、以下の化合物1~12のうちの1つ又は複数から選択される、ことを特徴とする請求項1に記載の分散体
Dispersion according to claim 1, characterized in that the additive is selected from one or more of the following compounds 1 to 12:
.
前記分散体の総質量に対して、前記添加剤の含有量は0.01%~10%である、ことを特徴とする請求項1~4のいずれか一項に記載の分散体。 The dispersion according to any one of claims 1 to 4, characterized in that the content of the additive is 0.01% to 10% based on the total mass of the dispersion. 前記導電性重合体は、ポリチオフェン、ポリピロール、ポリアニリン、及びそれらの誘導体のうちの1つ又は複数から選択される、ことを特徴とする請求項1~4のいずれか一項に記載の分散体。 Dispersion according to any one of claims 1 to 4, characterized in that the conductive polymer is selected from one or more of polythiophene, polypyrrole, polyaniline and derivatives thereof. 前記分散剤は、有機溶媒及び/又は水から選択される、ことを特徴とする請求項1に記載の分散体。 Dispersion according to claim 1, characterized in that the dispersant is selected from organic solvents and/or water. アルミニウム電解コンデンサであって、表面に誘電体層を有する陽極体と、陰極体と、隔膜と、前記誘電体層の少なくとも一部を覆う固体電解質層とを含み、前記固体電解質層は、請求項1~7のいずれか一項に記載の分散により製造される、ことを特徴とするアルミニウム電解コンデンサ。 An aluminum electrolytic capacitor comprising an anode body having a dielectric layer on its surface, a cathode body, a diaphragm, and a solid electrolyte layer covering at least a part of the dielectric layer, the solid electrolyte layer comprising: An aluminum electrolytic capacitor manufactured by the dispersion method according to any one of items 1 to 7.
JP2023552144A 2021-04-15 2022-03-25 Dispersion for aluminum electrolytic capacitors and aluminum electrolytic capacitors Pending JP2024509119A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110404800.XA CN115223796A (en) 2021-04-15 2021-04-15 Dispersion for aluminum electrolytic capacitor and aluminum electrolytic capacitor
CN202110404800.X 2021-04-15
PCT/CN2022/083006 WO2022218130A1 (en) 2021-04-15 2022-03-25 Dispersion for aluminum electrolytic capacitor and aluminum electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2024509119A true JP2024509119A (en) 2024-02-29

Family

ID=83604187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023552144A Pending JP2024509119A (en) 2021-04-15 2022-03-25 Dispersion for aluminum electrolytic capacitors and aluminum electrolytic capacitors

Country Status (4)

Country Link
JP (1) JP2024509119A (en)
KR (1) KR20230147635A (en)
CN (1) CN115223796A (en)
WO (1) WO2022218130A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078239A (en) * 2014-06-25 2014-10-01 福建国光电子科技股份有限公司 Polymerization solution for solid electrolytic capacitor to manufacture solid electrolyte layer
CN105761937B (en) * 2016-02-25 2019-02-15 深圳新宙邦科技股份有限公司 A kind of aluminum electrolytic condenser and preparation method thereof

Also Published As

Publication number Publication date
CN115223796A (en) 2022-10-21
KR20230147635A (en) 2023-10-23
WO2022218130A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
KR101571191B1 (en) Electrode structure for an energy storage device
KR101375450B1 (en) Electric double layer capacitor
US9390863B2 (en) Composite electrode and electrolytic capacitor
US9613757B2 (en) Conductive polymer composite and preparation and use thereof
WO2020073189A1 (en) Hybrid aluminum electrolytic capacitor and manufacturing method therefor
CN101916671B (en) Preparation method of solid electrolytic capacitor capable of reducing ESR and enhancing electrostatic capacitance
CN103578769A (en) Electrolyte mixture, electrolytic capacitor and composition for synthesizing conductive polymer
JP2024509119A (en) Dispersion for aluminum electrolytic capacitors and aluminum electrolytic capacitors
JP2018174233A (en) Electrolyte solution for driving electrolytic capacitor and electrolytic capacitor arranged by use thereof
JP2017222795A (en) Conductive polymer dispersion liquid and method for producing solid electrolytic capacitor using the same
US20080224090A1 (en) Method of manufacturing solid electrolytic capacitor
JP2008288342A (en) Method of forming electrolyte for electrolytic capacitor
JP2022529801A (en) Conductive polymers, capacitors and their manufacturing methods
CN102723201B (en) Electrolyte material formulation, electrolyte material composition formed therefrom, and use thereof
JP2023521677A (en) Manufacturing Process of Polymer Capacitors for High Reliability Applications
CN110010353B (en) Polymer dispersion and solid electrolytic capacitor
WO2021121174A1 (en) Composition, polymer for capacitor, and capacitor
JP2003309041A (en) Solid electrolytic capacitor
CN111875935B (en) Conductive polymer composition and solid aluminum electrolytic capacitor
CN111875934B (en) Conductive polymer composition and solid aluminum electrolytic capacitor
JP5063172B2 (en) Electrolyte for electric double layer capacitor
JP2008218985A (en) Conductive polymer solid electrolytic capacitor
CN115410828A (en) Method for improving high-temperature flashover voltage of working electrolyte of medium-high voltage aluminum electrolytic capacitor
US10262808B2 (en) Conductive composite and capacitor utilizing the same
JP2020088332A (en) Electrolyte solution for electrolytic capacitor, and electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240625