JP7386105B2 - Water treatment equipment and water treatment method - Google Patents

Water treatment equipment and water treatment method Download PDF

Info

Publication number
JP7386105B2
JP7386105B2 JP2020039026A JP2020039026A JP7386105B2 JP 7386105 B2 JP7386105 B2 JP 7386105B2 JP 2020039026 A JP2020039026 A JP 2020039026A JP 2020039026 A JP2020039026 A JP 2020039026A JP 7386105 B2 JP7386105 B2 JP 7386105B2
Authority
JP
Japan
Prior art keywords
water
groundwater
pressure
separation means
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020039026A
Other languages
Japanese (ja)
Other versions
JP2021137754A (en
Inventor
光 石橋
禎仁 中原
教介 蛯名
充 日根野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Mitsubishi Chemical Aqua Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Aqua Solutions Co Ltd filed Critical Mitsubishi Chemical Aqua Solutions Co Ltd
Priority to JP2020039026A priority Critical patent/JP7386105B2/en
Publication of JP2021137754A publication Critical patent/JP2021137754A/en
Application granted granted Critical
Publication of JP7386105B2 publication Critical patent/JP7386105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水処理装置及び水処理方法に関する。 The present invention relates to a water treatment device and a water treatment method.

井戸内から汲み上げられた地下水は、水処理装置によって処理された後、生活用水、工業用水、農業用水等に利用される。
地下水を水処理装置で処理する方法としては、例えば井戸から汲み上げられた地下水を一旦、原水槽に貯留し、その後、砂ろ過、活性炭処理等の前処理を行った後に、限外ろ過膜や逆浸透膜等による膜分離処理を行い、透過水と非透過水とに分離する方法が知られている。
Groundwater pumped up from a well is treated by a water treatment device and then used for domestic, industrial, agricultural, and other purposes.
As a method for treating groundwater with a water treatment device, for example, groundwater pumped up from a well is first stored in a raw water tank, then subjected to pretreatment such as sand filtration and activated carbon treatment, and then subjected to ultrafiltration membrane or reverse water treatment. A method is known in which membrane separation treatment using a permeable membrane or the like is performed to separate permeated water and non-permeated water.

処理項目が多くなるほど、地下水中の不純物が除去されやすくなるが、水処理装置が大型化し、処理コストも上昇する。前処理を行わずに工程を簡素化すれば、省スペース及び低コスト化を図ることができる。
しかし、地下水が原水槽中で空気に触れることにより、地下水に溶存する鉄イオン等の金属イオンが酸化して金属酸化物となり、この金属酸化物が膜分離処理に用いる分離膜を閉塞することがある。
The more treatment items there are, the easier it is to remove impurities from groundwater, but this also increases the size of the water treatment equipment and increases the treatment cost. By simplifying the process without performing pretreatment, it is possible to save space and reduce costs.
However, when groundwater comes into contact with air in the raw water tank, metal ions such as iron ions dissolved in the groundwater oxidize and become metal oxides, which can clog the separation membrane used for membrane separation treatment. be.

地下水の溶存元素の酸化を防止する方法として、地下水を還元状態に調整した後に膜分離処理する方法(例えば特許文献1)、汲み上げた地下水を貯蔵する貯水タンク(原水槽)に不活性ガスを供給する方法(例えば特許文献2)が知られている。
また、井戸から地下水を汲み上げる水中ポンプ、圧力タンク及び吸気弁等を組み合わせて、揚水装置に空気が混入するのを防止する空気混入防止装置(例えば特許文献3)が知られている。
As a method of preventing oxidation of dissolved elements in groundwater, there is a method of membrane separation treatment after adjusting groundwater to a reduced state (for example, Patent Document 1), and supplying an inert gas to a water storage tank (raw water tank) that stores pumped groundwater. A method (for example, Patent Document 2) is known.
Furthermore, an aeration prevention device (for example, Patent Document 3) is known that combines a submersible pump for pumping up groundwater from a well, a pressure tank, an intake valve, and the like to prevent air from entering a water pumping device.

特開2011-189242号公報Japanese Patent Application Publication No. 2011-189242 特開2012-122189号公報Japanese Patent Application Publication No. 2012-122189 実開昭56-86374号公報Utility Model Publication No. 56-86374

しかしながら、特許文献1に記載の方法では、還元状態に調整する前に地下水の溶存元素が酸化すると、酸化物を還元するのは困難であり、溶存元素の酸化防止が必ずしも充分ではない。
特許文献2に記載の方法は定期的なガスの補充が必要であり、手間やコストがかかる。
特許文献3に記載の空気混入防止装置では、空気の混入防止が必ずしも充分ではない。
本発明は、分離膜の閉塞を抑制しつつ、省スペース化及び低コスト化が図られた水処理装置及び水処理方法を提供することを目的とする。
However, in the method described in Patent Document 1, if dissolved elements in groundwater are oxidized before being adjusted to a reduced state, it is difficult to reduce the oxides, and prevention of oxidation of the dissolved elements is not necessarily sufficient.
The method described in Patent Document 2 requires periodic replenishment of gas, which is laborious and costly.
The air entrainment prevention device described in Patent Document 3 does not necessarily sufficiently prevent air incorporation.
An object of the present invention is to provide a water treatment device and a water treatment method that can save space and reduce costs while suppressing clogging of separation membranes.

本発明は、下記の態様を有する。
[1] 井戸から地下水を汲み上げる水中ポンプと、
前記井戸から汲み上げられた地下水を透過水と非透過水とに分離する膜分離手段と、
前記水中ポンプと前記膜分離手段とを連結する原水供給流路と、
前記原水供給流路に設けられた、前記井戸から汲み上げられた地下水の圧力の変動を低減する圧力変動低減手段と、を備え、
前記井戸から汲み上げられた地下水は、気密状態を保持したまま前記膜分離手段に供給される、水処理装置。
[2] 前記膜分離手段は、逆浸透膜及び限外ろ過膜の少なくとも一方を備える、前記[1]の水処理装置。
[3] 前記非透過水の一部を前記膜分離手段に返送する返送手段をさらに備え、
前記非透過水の一部は、気密状態を保持したまま前記膜分離手段に返送される、前記[1]又は[2]の水処理装置。
[4] 井戸から汲み上げられた地下水を膜分離手段に供給して透過水と非透過水とに分離する水処理方法であって、
前記井戸から汲み上げられた地下水をその圧力の変動を低減しつつ、気密状態を保持したまま前記膜分離手段に供給する、水処理方法。
[5] 前記膜分離手段は、逆浸透膜及び限外ろ過膜の少なくとも一方を備える、前記[4]の水処理方法。
[6] 前記非透過水の一部を気密状態を保持したまま前記膜分離手段に返送する、前記[4]又は[5]の水処理方法。
The present invention has the following aspects.
[1] A submersible pump that pumps groundwater from a well,
membrane separation means for separating groundwater pumped from the well into permeated water and non-permeated water;
a raw water supply channel connecting the submersible pump and the membrane separation means;
Pressure fluctuation reducing means provided in the raw water supply flow path for reducing pressure fluctuations in the groundwater pumped from the well,
In the water treatment device, groundwater pumped up from the well is supplied to the membrane separation means while maintaining an airtight state.
[2] The water treatment device according to [1], wherein the membrane separation means includes at least one of a reverse osmosis membrane and an ultrafiltration membrane.
[3] Further comprising a return means for returning a portion of the non-permeated water to the membrane separation means,
The water treatment device according to [1] or [2], wherein a part of the non-permeated water is returned to the membrane separation means while maintaining an airtight state.
[4] A water treatment method in which groundwater pumped from a well is supplied to a membrane separation means and separated into permeated water and non-permeated water,
A water treatment method in which groundwater pumped up from the well is supplied to the membrane separation means while maintaining an airtight state while reducing fluctuations in its pressure.
[5] The water treatment method according to [4], wherein the membrane separation means includes at least one of a reverse osmosis membrane and an ultrafiltration membrane.
[6] The water treatment method according to [4] or [5], wherein a part of the non-permeated water is returned to the membrane separation means while maintaining an airtight state.

本発明によれば、分離膜の閉塞を抑制しつつ、省スペース化及び低コスト化が図られた水処理装置及び水処理方法を提供できる。 According to the present invention, it is possible to provide a water treatment device and a water treatment method that can save space and reduce costs while suppressing clogging of separation membranes.

本発明の第一の態様の水処理装置の一例を模式的に示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows typically an example of the water treatment apparatus of the 1st aspect of this invention. 本発明の第二の態様の水処理装置の一例を模式的に示す概略図である。It is a schematic diagram showing typically an example of the water treatment device of the second aspect of the present invention. 実施例1における、通水時間と、フラックス及びRO平均圧力との関係を示すグラフである。2 is a graph showing the relationship between water flow time, flux, and RO average pressure in Example 1. 実施例1における、非透過水中の全鉄と鉄イオンと酸化鉄の濃度の測定結果を示すグラフである。2 is a graph showing the measurement results of the concentrations of total iron, iron ions, and iron oxide in non-permeated water in Example 1. 比較例1で用いた水処理装置を模式的に示す概略図である。2 is a schematic diagram schematically showing a water treatment device used in Comparative Example 1. FIG. 比較例1における、通水時間と、フラックス及びRO平均圧力との関係を示すグラフである。3 is a graph showing the relationship between water flow time, flux, and RO average pressure in Comparative Example 1. 比較例1における、非透過水中の全鉄と鉄イオンと酸化鉄の濃度の測定結果を示すグラフである。3 is a graph showing the measurement results of the concentrations of total iron, iron ions, and iron oxide in non-permeated water in Comparative Example 1.

以下、本発明に係る水処理方法及び水処理装置の一実施形態を挙げ、図1、2を適宜参照しながら詳述する。
なお、以下の説明で用いる各図面は、その特徴をわかりやすくするために、便宜上、特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は実際とは異なる場合がある。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
また、図2において、図1と同じ構成要素には同じ符号を付して、その説明を省略する。
Hereinafter, one embodiment of the water treatment method and water treatment apparatus according to the present invention will be described in detail with reference to FIGS. 1 and 2 as appropriate.
In addition, in each drawing used in the following explanation, characteristic parts may be shown enlarged for convenience in order to make the characteristics easier to understand, and the dimensional ratio of each component may differ from the actual one. There is. Furthermore, the materials, dimensions, etc. exemplified in the following description are merely examples, and the present invention is not limited thereto, and can be practiced with appropriate changes within the scope of the gist thereof.
Further, in FIG. 2, the same components as in FIG. 1 are given the same reference numerals, and their explanations will be omitted.

<第一の態様>
(水処理装置)
図1に本発明の第一の態様の水処理装置の一例を模式的に示す。
図1に示す水処理装置1は、水源である井戸100と、井戸100から地下水(原水)を汲み上げる水中ポンプ21と、井戸100から汲み上げられた地下水を透過水と非透過水とに分離する膜分離手段10と、水中ポンプ21と膜分離手段10とを連結する原水供給流路22と、井戸100から汲み上げられた地下水の圧力の変動を低減する圧力変動低減手段30とを備える。
<First aspect>
(Water treatment equipment)
FIG. 1 schematically shows an example of a water treatment apparatus according to the first aspect of the present invention.
The water treatment device 1 shown in FIG. 1 includes a well 100 that is a water source, a submersible pump 21 that pumps groundwater (raw water) from the well 100, and a membrane that separates the groundwater pumped from the well 100 into permeated water and non-permeated water. It includes a separation means 10, a raw water supply channel 22 that connects a submersible pump 21 and a membrane separation means 10, and a pressure fluctuation reduction means 30 that reduces pressure fluctuations in groundwater pumped from a well 100.

水処理装置1は、さらに、膜分離手段10から透過水を排出する透過水排出手段40と、膜分離手段10から非透過水を排出する非透過水排出手段50とを備える。
なお、ポンプや後述の電磁弁、流量計、圧力計等は、これらの動作を制御する制御部(図示略)に電気的に接続されている。
The water treatment device 1 further includes a permeated water discharge means 40 for discharging permeated water from the membrane separation means 10 and a non-permeated water discharge means 50 for discharging non-permeated water from the membrane separation means 10.
Note that the pump, a solenoid valve (described later), a flow meter, a pressure gauge, etc. are electrically connected to a control section (not shown) that controls their operations.

膜分離手段10は、地下水を透過水と非透過水とに分離する手段である。
この例の膜分離手段10は、逆浸透膜モジュール11と、ポンプ12と、原水流路13と、流量計14と、圧力計15とを備える。
逆浸透膜モジュール11は逆浸透膜を備え、導入された地下水を、逆浸透膜を透過する透過水と逆浸透膜を透過しない非透過水とに分離するものであればよい。なお、逆浸透膜を透過した透過水を「処理水」といい、逆浸透膜を透過しなかった非透過水を「濃縮水」ともいう。
逆浸透膜には、ナノろ過膜が包含される。
逆浸透膜の形態としては、スパイラル膜、中空糸膜、管状膜、平膜等が挙げられる。
逆浸透膜の材質としては、ポリアミド、ポリスルフォン、酢酸セルロース、ポリアクリロニトリル等が挙げられる。
The membrane separation means 10 is a means for separating groundwater into permeated water and non-permeated water.
The membrane separation means 10 in this example includes a reverse osmosis membrane module 11, a pump 12, a raw water channel 13, a flow meter 14, and a pressure gauge 15.
The reverse osmosis membrane module 11 may be any module that includes a reverse osmosis membrane and separates introduced groundwater into permeated water that passes through the reverse osmosis membrane and non-permeated water that does not pass through the reverse osmosis membrane. Note that the permeated water that has passed through the reverse osmosis membrane is called "treated water," and the non-permeated water that has not passed through the reverse osmosis membrane is also called "concentrated water."
Reverse osmosis membranes include nanofiltration membranes.
Examples of the form of reverse osmosis membranes include spiral membranes, hollow fiber membranes, tubular membranes, and flat membranes.
Examples of the material for the reverse osmosis membrane include polyamide, polysulfone, cellulose acetate, and polyacrylonitrile.

逆浸透膜モジュール11としては、例えば、スパイラル型逆浸透膜エレメントの1個以上を、ベッセル等の耐圧容器に収納したものが挙げられる。スパイラル型逆浸透膜エレメントとしては、例えば、集水管のまわりに逆浸透膜を巻き回したものを円筒状のケーシングに収納し、ケーシングの両端面にテレスコープ防止部材を取り付けたものが挙げられる。 Examples of the reverse osmosis membrane module 11 include one in which one or more spiral-type reverse osmosis membrane elements are housed in a pressure-resistant container such as a vessel. An example of a spiral reverse osmosis membrane element is one in which a reverse osmosis membrane is wound around a water collection pipe, housed in a cylindrical casing, and telescope prevention members are attached to both end faces of the casing.

原水流路13は、逆浸透膜モジュール11とポンプ12とを連結する連結管である。
流量計14及び圧力計15は、原水流路13に設けられている。
The raw water channel 13 is a connecting pipe that connects the reverse osmosis membrane module 11 and the pump 12.
A flow meter 14 and a pressure gauge 15 are provided in the raw water flow path 13.

原水供給流路22は、水中ポンプ21と膜分離手段10とを連結する連結管である。
井戸から汲み上げられた地下水は、気密状態を保持したまま原水供給流路22を通って、膜分離手段10へ供給される。
The raw water supply channel 22 is a connecting pipe that connects the submersible pump 21 and the membrane separation means 10.
The groundwater pumped up from the well passes through the raw water supply channel 22 while maintaining an airtight state, and is supplied to the membrane separation means 10.

原水供給流路22は、地下から地上に延びる揚水管23と、揚水管23の上端に接続して、水平方向に延びる送水管24とで構成されている。
この例の送水管24は、圧力変動低減手段30よりも上流側の第一の送水管241と、圧力変動低減手段30よりも下流側の第二の送水管242とで構成されている。
揚水管23の下端、すなわち原水供給流路22の一端には、水中ポンプ21が接続されている。送水管24の先端(第二の送水管242の先端)、すなわち原水供給流路22の他端には、膜分離手段10のポンプ12が接続されている。
原水供給流路22としては、気密状態を保持できる配管であれば特に限定されない。
The raw water supply channel 22 includes a water pump 23 extending from underground to above ground, and a water pipe 24 connected to the upper end of the water pump 23 and extending horizontally.
The water pipe 24 in this example includes a first water pipe 241 upstream of the pressure fluctuation reducing means 30 and a second water pipe 242 downstream of the pressure fluctuation reducing means 30.
A submersible pump 21 is connected to the lower end of the pumping pipe 23, that is, one end of the raw water supply channel 22. The pump 12 of the membrane separation means 10 is connected to the tip of the water pipe 24 (the tip of the second water pipe 242), that is, the other end of the raw water supply channel 22.
The raw water supply channel 22 is not particularly limited as long as it is a pipe that can maintain an airtight state.

圧力変動低減手段30は、井戸100から汲み上げられた地下水の圧力の変動を低減する手段であり、原水供給流路22に設けられている。地下水の圧力の変動を低減することで、水中ポンプ21から原水供給流路22に送り込まれる地下水の流量と、ポンプ12から逆浸透膜モジュール11に送り込まれる地下水の流量のバランスを図ることができ、分離膜の破損を抑制できる。
この例の圧力変動低減手段30は、圧力タンク31である。
圧力タンク31は、圧力に応じて内部に地下水を貯留できるようになっており、地下水の圧力の変動を吸収して低減するとともに、内部に地下水を貯留したり、貯留した地下水を排出したりして、送水管24内を流れる地下水の流量の調節も行うことができる。
圧力タンク31としては、貯留している地下水が気密状態を保持できれば特に限定されないが、例えば気相に窒素、二酸化炭素等の不活性ガスが充填されているタンク;アキュムレーターのようなゴム膜等に封入した蓄圧気体がタンク内部に充填され、蓄圧気体の圧縮と膨張によって蓄圧できるタンクが好ましい。
The pressure fluctuation reducing means 30 is a means for reducing pressure fluctuations of groundwater pumped up from the well 100, and is provided in the raw water supply channel 22. By reducing fluctuations in groundwater pressure, it is possible to balance the flow rate of groundwater sent from the submersible pump 21 to the raw water supply channel 22 and the flow rate of groundwater sent from the pump 12 to the reverse osmosis membrane module 11, Damage to the separation membrane can be suppressed.
The pressure fluctuation reducing means 30 in this example is a pressure tank 31.
The pressure tank 31 can store groundwater inside according to the pressure, and can absorb and reduce fluctuations in groundwater pressure, and can also store groundwater inside and discharge the stored groundwater. Accordingly, the flow rate of underground water flowing through the water pipe 24 can also be adjusted.
The pressure tank 31 is not particularly limited as long as the stored groundwater can be maintained in an airtight state, but for example, a tank filled with an inert gas such as nitrogen or carbon dioxide in the gas phase; a rubber membrane such as an accumulator, etc. It is preferable to use a tank in which the inside of the tank is filled with a pressure-accumulating gas sealed in the tank, and the pressure can be accumulated by compression and expansion of the pressure-accumulating gas.

透過水排出手段40は、膜分離手段10から透過水を排出する手段である。
透過水排出手段40は、透過水流路41と、透過水流路41に設けられた流量計42及び圧力計43とを備える。
The permeated water discharge means 40 is a means for discharging permeated water from the membrane separation means 10.
The permeated water discharge means 40 includes a permeated water flow path 41, and a flow meter 42 and a pressure gauge 43 provided in the permeated water flow path 41.

非透過水排出手段50は、膜分離手段10から非透過水を排出する手段である。
非透過水排出手段50は、非透過水流路51と、非透過水流路51に設けられた流量計52及び圧力計53とを備える。
The non-permeated water discharge means 50 is a means for discharging non-permeated water from the membrane separation means 10.
The non-permeated water discharge means 50 includes a non-permeated water flow path 51, and a flow meter 52 and a pressure gauge 53 provided in the non-permeated water flow path 51.

(水処理方法)
水処理装置1を用いた水処理方法の一例について説明する。
まず、水中ポンプ21を駆動させて井戸100から地下水を汲み上げる。次いで、ポンプ12を駆動させて、井戸100から汲み上げられた地下水を、気密状態を保持したまま膜分離手段10へ供給する。地下水が原水供給流路22を通過する際に、圧力変動低減手段30によって地下水の圧力の変動が低減される。すなわち、井戸100から汲み上げられた地下水は、その圧力の変動が低減されつつ、気密状態を保持したまま膜分離手段10に供給される。
(Water treatment method)
An example of a water treatment method using the water treatment device 1 will be described.
First, the submersible pump 21 is driven to pump up groundwater from the well 100. Next, the pump 12 is driven to supply the groundwater pumped up from the well 100 to the membrane separation means 10 while maintaining an airtight state. When the groundwater passes through the raw water supply channel 22, the pressure fluctuation reducing means 30 reduces the fluctuation in the pressure of the groundwater. That is, the groundwater pumped up from the well 100 is supplied to the membrane separation means 10 while maintaining an airtight state while reducing fluctuations in its pressure.

ポンプ12を通過した地下水は、気密状態を保持したまま原水流路13を通過して逆浸透膜モジュール11に供給される。このとき、原水流路13に設けられた流量計14及び圧力計15、透過水流路41に設けられた流量計42及び圧力計43、非透過水流路51に設けられた流量計52及び圧力計53をモニタリングしながら、逆浸透膜に対する地下水の圧力や水量をポンプ12にて調節するのが好ましい。
逆浸透膜モジュール11に供給された地下水は、逆浸透膜を透過する透過水と、逆浸透膜を透過しない非透過水とに分離される。
The groundwater that has passed through the pump 12 passes through the raw water channel 13 while maintaining an airtight state and is supplied to the reverse osmosis membrane module 11. At this time, a flow meter 14 and a pressure gauge 15 provided in the raw water channel 13, a flow meter 42 and a pressure gauge 43 provided in the permeated water channel 41, a flow meter 52 and a pressure gauge provided in the non-permeated water channel 51, It is preferable to adjust the pressure of groundwater and the amount of water relative to the reverse osmosis membrane using the pump 12 while monitoring 53.
The groundwater supplied to the reverse osmosis membrane module 11 is separated into permeated water that passes through the reverse osmosis membrane and non-permeated water that does not pass through the reverse osmosis membrane.

逆浸透膜を透過した透過水は、透過水流路41を通って受水槽(図示略)に貯留される。
一方、逆浸透膜を透過しなかった非透過水は、非透過水流路51を通って、例えば下水などに放流されて処分される。
The permeated water that has passed through the reverse osmosis membrane passes through the permeated water channel 41 and is stored in a water receiving tank (not shown).
On the other hand, non-permeated water that has not passed through the reverse osmosis membrane passes through the non-permeated water flow path 51 and is disposed of, for example, by being discharged into a sewage system.

(作用効果)
本発明の第一の態様の水処理装置及び水処理方法によれば、井戸から汲み上げられた地下水を、その圧力の変動を低減しつつ、気密状態を保持したまま膜分離手段に供給して透過水と非透過水とに分離する。すなわち、井戸から汲み上げられた地下水は、空気に触れることなく膜分離手段に供給されるので、地下水が膜分離手段に供給されるまでの間に地下水に溶存する金属イオンが酸化しにくく、分離膜の閉塞を抑制できる。
加えて、本発明の第一の態様の水処理装置及び水処理方法では、井戸から汲み上げられた地下水を直接膜分離手段に供給するので、工程を簡素化ができ、省スペース化及び低コスト化を図ることができる。
しかも、本発明の第一の態様の水処理装置及び水処理方法では、圧力変動低減手段により地下水の圧力の変動を低減しながら地下水を膜分離手段に供給するので、水中ポンプから原水供給流路に送り込まれる地下水の流量と、膜分離手段においてポンプから逆浸透膜モジュールに送り込まれる地下水の流量のバランスを図ることができ、分離膜の破損を抑制できる。
(effect)
According to the water treatment device and water treatment method of the first aspect of the present invention, groundwater pumped from a well is supplied to the membrane separation means while maintaining an airtight state while reducing fluctuations in its pressure, and permeates the groundwater. Separates into water and non-permeable water. In other words, since groundwater pumped up from a well is supplied to the membrane separation means without coming into contact with air, metal ions dissolved in the groundwater are unlikely to oxidize before the groundwater is supplied to the membrane separation means, and the separation membrane blockage can be suppressed.
In addition, in the water treatment device and water treatment method of the first aspect of the present invention, groundwater pumped up from a well is directly supplied to the membrane separation means, so the process can be simplified, saving space and reducing costs. can be achieved.
Moreover, in the water treatment apparatus and water treatment method according to the first aspect of the present invention, groundwater is supplied to the membrane separation means while reducing pressure fluctuations in the groundwater by the pressure fluctuation reducing means, so that the raw water supply channel is connected to the submersible pump. It is possible to balance the flow rate of groundwater sent to the reverse osmosis membrane module with the flow rate of groundwater sent from the pump to the reverse osmosis membrane module in the membrane separation means, and damage to the separation membrane can be suppressed.

(他の態様)
本発明の第一の態様の水処理装置及び水処理方法は、上述した実施形態に限定されない。
第一の態様では、圧力変動低減手段は原水供給流路に設けられた圧力タンクであるが、原水供給流路そのものを圧力変動低減手段としてもよい。ただし、原水供給流路を圧力変動低減手段とする場合は、原水供給流路の直径を大きくしたり、長さを長くしたりするのが好ましい。特に、送水管の直径を大きくしたり、長さを長くしたりするのが好ましい。具体的には、送水管の直径は13~1000mmが好ましく、長さは10~600mが好ましい。
(Other aspects)
The water treatment device and water treatment method of the first aspect of the present invention are not limited to the embodiments described above.
In the first aspect, the pressure fluctuation reducing means is a pressure tank provided in the raw water supply channel, but the raw water supply channel itself may be used as the pressure fluctuation reducing means. However, when the raw water supply channel is used as pressure fluctuation reducing means, it is preferable to increase the diameter or length of the raw water supply channel. In particular, it is preferable to increase the diameter or length of the water pipe. Specifically, the diameter of the water pipe is preferably 13 to 1000 mm, and the length is preferably 10 to 600 m.

第一の態様では逆浸透膜を用いて地下水を透過水と非透過水とに分離しているが、膜分離に用いられる分離膜は逆浸透膜に限定されず、例えば限外ろ過膜、精密ろ過膜などであってもよい。分離膜としては、逆浸透膜、限外ろ過膜が好ましく、逆浸透膜がより好ましい。
また、第一の態様の水処理装置の膜分離手段は、1つの逆浸透膜モジュールを備えているが、膜分離手段は並列に配置された複数の逆浸透膜モジュールを備えていてもよい。この場合、原水流路は途中で分岐して、各逆浸透膜モジュールに接続されていることが好ましく、膜分離手段のポンプは昇圧ポンプが好ましい。
In the first embodiment, a reverse osmosis membrane is used to separate groundwater into permeated water and non-permeated water, but the separation membrane used for membrane separation is not limited to reverse osmosis membranes, and includes, for example, ultrafiltration membranes, precision It may also be a filtration membrane or the like. As the separation membrane, a reverse osmosis membrane or an ultrafiltration membrane is preferable, and a reverse osmosis membrane is more preferable.
Moreover, although the membrane separation means of the water treatment apparatus of the first aspect includes one reverse osmosis membrane module, the membrane separation means may include a plurality of reverse osmosis membrane modules arranged in parallel. In this case, it is preferable that the raw water flow path is branched in the middle and connected to each reverse osmosis membrane module, and the pump of the membrane separation means is preferably a boost pump.

<第二の態様>
(水処理装置)
図2に本発明の第二の態様の水処理装置の一例を模式的に示す。
第二の態様の水処理装置2は、非透過水の一部を膜分離手段10に返送する返送手段60をさらに備える以外は、第一の態様の水処理装置と同様である。
すなわち、図2に示す水処理装置2は、水源である井戸100と、井戸100から地下水(原水)を汲み上げる水中ポンプ21と、井戸100から汲み上げられた地下水を透過水と非透過水とに分離する膜分離手段10と、水中ポンプ21と膜分離手段10とを連結する原水供給流路22と、井戸100から汲み上げられた地下水の圧力の変動を低減する圧力変動低減手段30と、非透過水の一部を膜分離手段10に返送する返送手段60とを備える。
水処理装置2は、さらに、膜分離手段10から透過水を排出する透過水排出手段40と、膜分離手段10から非透過水を排出する非透過水排出手段50とを備える。
<Second aspect>
(Water treatment equipment)
FIG. 2 schematically shows an example of a water treatment device according to the second aspect of the present invention.
The water treatment device 2 of the second embodiment is the same as the water treatment device of the first embodiment, except that it further includes return means 60 for returning a portion of non-permeated water to the membrane separation means 10.
That is, the water treatment device 2 shown in FIG. 2 includes a well 100 that is a water source, a submersible pump 21 that pumps groundwater (raw water) from the well 100, and a system that separates the groundwater pumped from the well 100 into permeated water and non-permeated water. a raw water supply flow path 22 that connects the submersible pump 21 and the membrane separation means 10, a pressure fluctuation reduction means 30 that reduces pressure fluctuations in groundwater pumped from the well 100, and non-permeable water. and return means 60 for returning a part of the membrane separation means 10 to the membrane separation means 10.
The water treatment device 2 further includes a permeated water discharge means 40 for discharging permeated water from the membrane separation means 10 and a non-permeated water discharge means 50 for discharging non-permeated water from the membrane separation means 10.

膜分離手段10、原水供給流路22、圧力変動低減手段30、透過水排出手段40及び非透過水排出手段50は第一の態様と同じであるため、これらの説明は省略する。 The membrane separation means 10, the raw water supply channel 22, the pressure fluctuation reduction means 30, the permeated water discharge means 40, and the non-permeated water discharge means 50 are the same as in the first embodiment, and therefore their explanations will be omitted.

返送手段60は、非透過水の一部を膜分離手段10に返送する手段である。
返送手段60は、返送流路61と、返送流路61の開閉を行い、膜分離手段10に返送される非透過水の圧力を調整する電磁弁62と、流量計63とを備える。
この例の返送流路61は、その一端が非透過水流路51の途中に接続され、他端が第二の送水管242の途中に接続されており、非透過水の一部が非透過水流路51、返送流路61及び第二の送水管242を順に経て、膜分離手段10に返送されるようになっている。
返送流路61を通過する非透過水は、気密状態を保持したまま膜分離手段10に返送されることが好ましい。
The return means 60 is a means for returning part of the non-permeated water to the membrane separation means 10.
The return means 60 includes a return flow path 61 , a solenoid valve 62 that opens and closes the return flow path 61 and adjusts the pressure of non-permeated water returned to the membrane separation means 10 , and a flow meter 63 .
The return flow path 61 in this example has one end connected to the middle of the non-permeated water flow path 51 and the other end connected to the middle of the second water supply pipe 242, so that a part of the non-permeated water flows into the non-permeated water flow. The water is returned to the membrane separation means 10 through the water pipe 51, the return channel 61, and the second water pipe 242 in this order.
The non-permeated water passing through the return channel 61 is preferably returned to the membrane separation means 10 while maintaining an airtight state.

(水処理方法)
水処理装置2を用いた水処理方法の一例について説明する。
まず、水中ポンプ21を駆動させて井戸100から地下水を汲み上げる。次いで、ポンプ12を駆動させて、井戸100から汲み上げられた地下水を、気密状態を保持したまま膜分離手段10へ供給する。地下水が原水供給流路22を通過する際に、圧力変動低減手段30によって地下水の圧力の変動が低減される。すなわち、井戸100から汲み上げられた地下水は、その圧力の変動が低減されつつ、気密状態を保持したまま膜分離手段10に供給される。
(Water treatment method)
An example of a water treatment method using the water treatment device 2 will be described.
First, the submersible pump 21 is driven to pump up groundwater from the well 100. Next, the pump 12 is driven to supply the groundwater pumped up from the well 100 to the membrane separation means 10 while maintaining an airtight state. When the groundwater passes through the raw water supply channel 22, the pressure fluctuation reducing means 30 reduces the fluctuation in the pressure of the groundwater. That is, the groundwater pumped up from the well 100 is supplied to the membrane separation means 10 while maintaining an airtight state while reducing fluctuations in its pressure.

ポンプ12を通過した地下水は、気密状態を保持したまま原水流路13を通過して逆浸透膜モジュール11に供給される。このとき、原水流路13に設けられた流量計14及び圧力計15、透過水流路41に設けられた流量計42及び圧力計43、非透過水流路51に設けられた流量計52及び圧力計53をモニタリングしながら、逆浸透膜に対する地下水の圧力や水量をポンプ12にて調節するのが好ましい。
逆浸透膜モジュール11に供給された地下水は、逆浸透膜を透過する透過水と、逆浸透膜を透過しない非透過水とに分離される。
The groundwater that has passed through the pump 12 passes through the raw water channel 13 while maintaining an airtight state and is supplied to the reverse osmosis membrane module 11. At this time, a flow meter 14 and a pressure gauge 15 provided in the raw water channel 13, a flow meter 42 and a pressure gauge 43 provided in the permeated water channel 41, a flow meter 52 and a pressure gauge provided in the non-permeated water channel 51, It is preferable to adjust the pressure of groundwater and the amount of water relative to the reverse osmosis membrane using the pump 12 while monitoring 53.
The groundwater supplied to the reverse osmosis membrane module 11 is separated into permeated water that passes through the reverse osmosis membrane and non-permeated water that does not pass through the reverse osmosis membrane.

逆浸透膜を透過した透過水は、透過水流路41を通って受水槽(図示略)に貯留される。
一方、逆浸透膜を透過しなかった非透過水は、非透過水流路51を通って、例えば下水などに放流されて処分される。その際、必要に応じて電磁弁62を開くことによって、非透過水の一部を非透過水流路51の途中で分流して返送流路61を通過させ、第二の送水管242の途中で、井戸100から汲み上げられた地下水と合流させる。これにより、非透過水の一部は、非透過水流路51、返送流路61及び第二の送水管242を順に経て、膜分離手段10に返送される。
非透過水の一部を膜分離手段10に返送する際は、気密状態を保持したまま非透過水の一部を膜分離手段10に返送することが好ましい。
The permeated water that has passed through the reverse osmosis membrane passes through the permeated water channel 41 and is stored in a water receiving tank (not shown).
On the other hand, non-permeated water that has not passed through the reverse osmosis membrane passes through the non-permeated water flow path 51 and is disposed of, for example, by being discharged into a sewage system. At that time, by opening the electromagnetic valve 62 as necessary, a part of the non-permeated water is diverted in the middle of the non-permeated water flow path 51 and passed through the return flow path 61, and a part of the non-permeated water is diverted in the middle of the second water pipe 242. , and the groundwater pumped up from the well 100. As a result, a portion of the non-permeated water is returned to the membrane separation means 10 through the non-permeated water channel 51, the return channel 61, and the second water pipe 242 in this order.
When returning a portion of the non-permeated water to the membrane separation means 10, it is preferable to return a portion of the non-permeated water to the membrane separation means 10 while maintaining an airtight state.

(作用効果)
本発明の第二の態様の水処理装置及び水処理方法によれば、第一の態様の水処理装置及び水処理方法と同様、井戸から汲み上げられた地下水が膜分離手段に供給されるまでの間に、地下水に溶存する金属イオンが酸化しにくく、分離膜の閉塞を抑制できる。加えて、工程を簡素化ができ、省スペース化及び低コスト化を図ることができる。しかも、水中ポンプから原水供給流路に送り込まれる地下水の流量と、膜分離手段においてポンプから逆浸透膜モジュールに送り込まれる地下水の流量のバランスを図ることができ、分離膜の破損を抑制できる。
(effect)
According to the water treatment device and water treatment method of the second aspect of the present invention, similar to the water treatment device and water treatment method of the first aspect, the groundwater pumped from the well is processed until it is supplied to the membrane separation means. Meanwhile, metal ions dissolved in groundwater are less likely to be oxidized, and clogging of the separation membrane can be suppressed. In addition, the process can be simplified, and space and cost can be reduced. Moreover, it is possible to balance the flow rate of groundwater sent from the submersible pump to the raw water supply channel and the flow rate of groundwater sent from the pump to the reverse osmosis membrane module in the membrane separation means, and damage to the separation membrane can be suppressed.

(他の態様)
本発明の第二の態様の水処理装置及び水処理方法は、上述した実施形態に限定されない。
なお、第二の態様において、第一の態様と共通部分についての他の態様は第一の態様と同様であるため、説明を省略する。
(Other aspects)
The water treatment device and water treatment method of the second aspect of the present invention are not limited to the embodiments described above.
In addition, in the second aspect, other aspects regarding the common parts with the first aspect are the same as the first aspect, and therefore description thereof will be omitted.

第二の態様では返送流路の他端は第二の送水管の途中に接続されているが、返送流路の他端は第一の送水管の途中に接続されていてもよいし、原水流路の途中に接続されていてもよい。ただし、逆浸透膜に供給される地下水と非透過水との混合物の圧力や水量をモニタリングしながら調節できる点で、返送流路の他端は第一の送水管又は第二の送水管の途中に接続されることが好ましい。 In the second embodiment, the other end of the return flow path is connected to the middle of the second water pipe, but the other end of the return flow path may be connected to the middle of the first water pipe, or It may be connected in the middle of the water flow path. However, since the pressure and water volume of the mixture of groundwater and non-permeated water supplied to the reverse osmosis membrane can be adjusted while monitoring, the other end of the return flow path is located midway through the first water pipe or the second water pipe. preferably connected to.

以下、本発明を実施例によりさらに詳しく説明するが、以下の実施例は本発明の範囲を限定するものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following Examples are not intended to limit the scope of the present invention.

[実施例1]
本実施例においては、図2に示す水処理装置2を用いて、以下のようにして地下水の水処理を行った。
なお、本実施例では地下水に溶存する金属イオンが酸化することによる分離膜への影響を確認する目的で、以下に示すように、地下水に硫酸鉄の水溶液を意図的に添加した。
また、逆浸透膜としては、アズワン株式会社製の商品名「ROメンブレンフィルター(型番:BW60-1812-75)」(膜面積:0.5m)を使用した。
[Example 1]
In this example, groundwater was treated as follows using the water treatment apparatus 2 shown in FIG. 2.
In this example, an aqueous solution of iron sulfate was intentionally added to the groundwater as shown below in order to confirm the effect on the separation membrane due to oxidation of metal ions dissolved in the groundwater.
Further, as the reverse osmosis membrane, a product name "RO Membrane Filter (model number: BW60-1812-75)" manufactured by As One Corporation (membrane area: 0.5 m 2 ) was used.

まず、水中ポンプ21を駆動させて井戸100から地下水を汲み上げた。次いで、ポンプ12を駆動させて、井戸100から汲み上げられた地下水を、気密状態を保持したまま膜分離手段10へ供給した。その際、原水供給流路22を流れる地下水を一旦、圧力タンク31に貯留し、貯留した地下水を原水供給流路22に排出することで、地下水の圧力の変動を低減した。また、井戸100から汲み上げられた地下水が圧力タンク31に貯留される前に、地下水中の全鉄の濃度が4.8mg/Lとなるように硫酸鉄の水溶液を地下水に添加した。なお、硫酸鉄の水溶液としては、25℃におけるpHが2.5となるように調整された純水に、硫酸鉄(II)七水和物(FeSO・7HO)を添加した後に、溶存酸素量が0mg/Lになるまで密閉容器内でアルゴンで置換したものを用いた。また、硫酸鉄の水溶液を地下水に添加する際には、硫酸鉄の水溶液を密閉容器(図示略)に入れた状態のまま、ポンプ(図示略)を用いて地下水へ添加した。硫酸鉄の水溶液を添加した地下水の25℃におけるpHは7.5であった。
次いで、地下水を逆浸透膜モジュール11にて透過水と非透過水とに分離した。
逆浸透膜を透過した透過水を透過水排出手段40により膜分離手段10から排出し、逆浸透膜を透過しなかった非透過水を非透過水排出手段50により膜分離手段10から排出した。その際、電磁弁62を開いて非透過水の一部を非透過水流路51の途中で分流して返送流路61を通過させ、第二の送水管242の途中で、井戸100から汲み上げられた地下水と合流させ、膜分離手段10に返送した。通水条件は、流量計14を2600mL/min、流量計42を113mL/min、流量計52を49mL/minに設定した。
First, the submersible pump 21 was driven to pump groundwater from the well 100. Next, the pump 12 was driven to supply the groundwater pumped up from the well 100 to the membrane separation means 10 while maintaining an airtight state. At that time, the groundwater flowing through the raw water supply channel 22 was temporarily stored in the pressure tank 31, and the stored groundwater was discharged into the raw water supply channel 22, thereby reducing fluctuations in the pressure of the groundwater. Furthermore, before the groundwater pumped from the well 100 was stored in the pressure tank 31, an aqueous solution of iron sulfate was added to the groundwater so that the total iron concentration in the groundwater was 4.8 mg/L. In addition, as an aqueous solution of iron sulfate, after adding iron (II) sulfate heptahydrate (FeSO 4.7H 2 O) to pure water whose pH at 25 ° C. was adjusted to 2.5, The container was replaced with argon in a closed container until the amount of dissolved oxygen became 0 mg/L. Further, when adding the aqueous solution of iron sulfate to groundwater, the aqueous solution of iron sulfate was kept in a closed container (not shown) and added to the groundwater using a pump (not shown). The pH of the groundwater to which the iron sulfate aqueous solution was added at 25°C was 7.5.
Next, the groundwater was separated into permeated water and non-permeated water using the reverse osmosis membrane module 11.
The permeated water that passed through the reverse osmosis membrane was discharged from the membrane separation means 10 by the permeated water discharge means 40, and the non-permeated water that did not pass through the reverse osmosis membrane was discharged from the membrane separation means 10 by the non-permeated water discharge means 50. At that time, the electromagnetic valve 62 is opened to divert part of the non-permeated water in the middle of the non-permeated water flow path 51 and allow it to pass through the return flow path 61, and the water is pumped up from the well 100 in the middle of the second water pipe 242. The collected groundwater was combined with groundwater and returned to the membrane separation means 10. The water flow conditions were set to 2600 mL/min for the flow meter 14, 113 mL/min for the flow meter 42, and 49 mL/min for the flow meter 52.

通水を開始してから115時間経過するまでの間、25℃における単位時間及び単位膜面積当たりの透過水量を計測し、フラックス(透過流束)を算出した。また、逆浸透膜の平均圧力(RO平均圧力)を圧力計にて測定した。結果を図3に示す。
一般的に、一定圧で膜ろ過する場合、分離膜が閉塞するとフラックスが低下する傾向にある。
図3に示すように、本実施例であれば通水時間が100時間以上経過してもRO平均圧力及びフラックスは概ね一定であり、逆浸透膜の閉塞が生じていないことが示された。
The amount of permeated water per unit time and per unit membrane area at 25° C. was measured until 115 hours had passed since the start of water flow, and the flux (permeation flux) was calculated. In addition, the average pressure of the reverse osmosis membrane (RO average pressure) was measured using a pressure gauge. The results are shown in Figure 3.
Generally, when membrane filtration is performed at a constant pressure, the flux tends to decrease when the separation membrane is clogged.
As shown in FIG. 3, in this example, the RO average pressure and flux remained approximately constant even after 100 hours or more of water flow, indicating that no blockage of the reverse osmosis membrane occurred.

また、通水を開始してから115時間経過した時点での非透過水中の全鉄の濃度及び鉄イオンの濃度をHACH社製の商品名「ポータブル吸光光度計DR890」を用い、全鉄濃度はFeroo Ver法、鉄イオン濃度は1.10フェナントロリン法で測定した。また、全鉄の濃度から鉄イオン濃度を差し引き、非透過水中の酸化鉄の濃度を求めた。結果を図4に示す。
図4に示すように、非透過水中の全鉄の濃度及び鉄イオンの濃度はいずれも16mg/Lであり、非透過水中に酸化鉄は含まれていなかった。すなわち、地下水中の鉄イオンは酸化されていないことから、本実施例では井戸から汲み上げられた地下水を気密状態で膜分離手段に供給したといえる。
In addition, the concentration of total iron and the concentration of iron ions in the non-permeated water after 115 hours had passed from the start of water flow were measured using a product name "Portable Absorption Photometer DR890" manufactured by HACH, and the total iron concentration was determined. The iron ion concentration was measured using the Feroo Ver method and the 1.10 phenanthroline method. In addition, the iron oxide concentration in the non-permeated water was determined by subtracting the iron ion concentration from the total iron concentration. The results are shown in Figure 4.
As shown in FIG. 4, the total iron concentration and iron ion concentration in the non-permeated water were both 16 mg/L, and no iron oxide was contained in the non-permeated water. That is, since the iron ions in the groundwater are not oxidized, it can be said that in this example, the groundwater pumped up from the well was supplied to the membrane separation means in an airtight state.

また、通水を開始してから115時間経過した時点で、非透過水流路51から排出された直後の非透過水の溶存酸素量を測定したところ、0mg/Lであった。よって、膜分離手段10に返送された非透過水の溶存酸素量も0mg/Lであるといえることから、本実施例では気密状態を保持したまま非透過水の一部を膜分離手段10に返送したといえる。 Further, when 115 hours had passed since the start of water flow, the amount of dissolved oxygen in the non-permeated water immediately after being discharged from the non-permeated water channel 51 was measured and found to be 0 mg/L. Therefore, it can be said that the amount of dissolved oxygen in the non-permeated water returned to the membrane separation means 10 is 0 mg/L, so in this example, a part of the non-permeated water is transferred to the membrane separation means 10 while maintaining an airtight state. It can be said that it was sent back.

[比較例1]
本比較例においては、図5に示す水処理装置3を用いて、以下のようにして地下水の水処理を行った。
図5に示す水処理装置3は、水源である井戸100と、井戸100から地下水(原水)を汲み上げる水中ポンプ21と、井戸100から汲み上げられた地下水を貯留する原水槽70と、地下水を透過水と非透過水とに分離する膜分離手段10と、膜分離手段10から透過水を排出する透過水排出手段40と、膜分離手段10から非透過水を排出する非透過水排出手段50と、非透過水の一部を膜分離手段10に返送する返送手段60と、井戸100から汲み上げられた地下水に硫酸を添加する添加手段80と、井戸100から汲み上げられた地下水を原水槽70に供給する第一の被処理水流路91と、原水槽70と膜分離手段10とを連結する第二の被処理水流路93とを備える。
水処理装置3の膜分離手段10は、ポンプ12が昇圧ポンプである以外は、図2に示す膜分離手段10と同じである。
水処理装置3の透過水排出手段40は、図2に示す透過水排出手段40と同じである。
水処理装置3の非透過水排出手段50は、図2に示す非透過水排出手段50と同じである。
水処理装置3の返送手段60は、返送流路61の他端が第二の被処理水流路93に接続されている以外は、図2に示す返送手段60と同じである。
[Comparative example 1]
In this comparative example, groundwater was treated as follows using the water treatment device 3 shown in FIG. 5.
The water treatment device 3 shown in FIG. 5 includes a well 100 that is a water source, a submersible pump 21 that pumps groundwater (raw water) from the well 100, a raw water tank 70 that stores the groundwater pumped from the well 100, and a water tank 70 that stores the groundwater pumped from the well 100. a membrane separation means 10 for separating permeated water and non-permeated water; a permeated water discharge means 40 for discharging permeated water from the membrane separation means 10; and a non-permeated water discharge means 50 for discharging non-permeated water from the membrane separation means 10; A return means 60 returns part of the non-permeated water to the membrane separation means 10, an addition means 80 adds sulfuric acid to the groundwater pumped from the well 100, and supplies the groundwater pumped from the well 100 to the raw water tank 70. It includes a first treated water flow path 91 and a second treated water flow path 93 that connects the raw water tank 70 and the membrane separation means 10.
The membrane separation means 10 of the water treatment apparatus 3 is the same as the membrane separation means 10 shown in FIG. 2, except that the pump 12 is a boost pump.
The permeated water discharge means 40 of the water treatment device 3 is the same as the permeated water discharge means 40 shown in FIG.
The non-permeated water discharge means 50 of the water treatment device 3 is the same as the non-permeated water discharge means 50 shown in FIG.
The return means 60 of the water treatment device 3 is the same as the return means 60 shown in FIG. 2 except that the other end of the return flow path 61 is connected to the second water flow path 93 to be treated.

原水槽70には、散気手段71が設けられている。散気手段71は原水槽70内の底部近傍に略水平に配置され散気管71aと、散気管71aに気体を送気するブロワ71bと、ブロワ71bから送気された気体を散気管71aへ供給する気体供給管71cとを備える。
添加手段80は、硫酸を収容するタンク81と、硫酸を原水槽70へ供給する硫酸供給管82と、硫酸供給管82の途中に設けられたポンプ83とを備える。
第一の被処理水流路91には、電磁弁92が設けられている。
第二の被処理水流路93には、ポンプ94と、流量計95と、2つのプレフィルター96と、圧力計97が、原水槽70側からこの順に設けられている。
なお、ポンプ、電磁弁、流量計、圧力計等は、これらの動作を制御する制御部(図示略)に電気的に接続されている。
逆浸透膜としては、日東電工株式会社製の商品名「ESPA2-LD4040」(膜面積:7.43m)を使用した。
プレフィルター96としては、ゼット工業株式会社製の商品名「ワイドカートリッジフィルター(型番:ZW-PP10-500L)」を使用した。
また、比較例1では、実施例1で使用した井戸とは異なる井戸100を使用した。比較例1で使用した井戸100中の地下水の全鉄の濃度は5.2mg/Lであった。
The raw water tank 70 is provided with an aeration means 71. The aeration means 71 is arranged approximately horizontally near the bottom of the raw water tank 70, and includes an aeration tube 71a, a blower 71b that supplies gas to the aeration tube 71a, and a gas diffuser 71b that supplies the gas supplied from the blower 71b to the aeration tube 71a. A gas supply pipe 71c is provided.
The addition means 80 includes a tank 81 containing sulfuric acid, a sulfuric acid supply pipe 82 that supplies sulfuric acid to the raw water tank 70, and a pump 83 provided in the middle of the sulfuric acid supply pipe 82.
A solenoid valve 92 is provided in the first treated water flow path 91 .
A pump 94, a flow meter 95, two pre-filters 96, and a pressure gauge 97 are provided in the second treated water flow path 93 in this order from the raw water tank 70 side.
Note that the pump, solenoid valve, flow meter, pressure gauge, etc. are electrically connected to a control section (not shown) that controls their operations.
As the reverse osmosis membrane, Nitto Denko Corporation's product name "ESPA2-LD4040" (membrane area: 7.43 m 2 ) was used.
As the pre-filter 96, the product name "Wide Cartridge Filter (model number: ZW-PP10-500L)" manufactured by Z Kogyo Co., Ltd. was used.
Furthermore, in Comparative Example 1, a well 100 different from the well used in Example 1 was used. The concentration of total iron in the groundwater in the well 100 used in Comparative Example 1 was 5.2 mg/L.

まず、水中ポンプ21を駆動させて井戸100から地下水を汲み上げた。電磁弁92を開いて井戸100から汲み上げられた地下水を原水槽70に供給した。その際、ポンプ83を駆動させて、地下水の25℃におけるpHが6.0となるように硫酸を第一の被処理水流路91を通過する地下水に添加した。
次いで、ブロワ71bを駆動させることで空気を、気体供給管71cを経て原水槽70内の散気管71aに供給し、原水槽70中の地下水を曝気した。
次いで、ポンプ94及びポンプ12を駆動させて、原水槽70の地下水を引き抜き、プレフィルター96を経て膜分離手段10へ供給した。
次いで、地下水を逆浸透膜モジュール11にて透過水と非透過水とに分離した。
逆浸透膜を透過した透過水を透過水排出手段40により膜分離手段10から排出し、逆浸透膜を透過しなかった非透過水を非透過水排出手段50により膜分離手段10から排出した。その際、電磁弁62を開いて非透過水の一部を非透過水流路51の途中で分流して返送流路61を通過させ、第二の被処理水流路93の途中、具体的にはポンプ94よりも上流側で、原水槽70から引き抜かれた地下水と合流させ、膜分離手段10に返送した。
なお、比較例1では、井戸から汲み上げられた地下水を一旦、原水槽に貯留し、原水槽中で曝気した後に膜分離手段に供給していることから、井戸から汲み上げられた地下水は、気密状態を保持せずに膜分離手段に供給されたことになる。通水条件は、流量計14を25.0L/min、流量計42を1.7L/min、流量計52を0.7L/minに設定した。
First, the submersible pump 21 was driven to pump groundwater from the well 100. The solenoid valve 92 was opened to supply groundwater pumped up from the well 100 to the raw water tank 70. At that time, the pump 83 was driven and sulfuric acid was added to the groundwater passing through the first water to be treated channel 91 so that the pH of the groundwater at 25° C. was 6.0.
Next, by driving the blower 71b, air was supplied to the aeration pipe 71a in the raw water tank 70 through the gas supply pipe 71c, and the groundwater in the raw water tank 70 was aerated.
Next, the pump 94 and the pump 12 were driven to draw out the groundwater from the raw water tank 70 and supply it to the membrane separation means 10 through the prefilter 96.
Next, the groundwater was separated into permeated water and non-permeated water using the reverse osmosis membrane module 11.
The permeated water that passed through the reverse osmosis membrane was discharged from the membrane separation means 10 by the permeated water discharge means 40, and the non-permeated water that did not pass through the reverse osmosis membrane was discharged from the membrane separation means 10 by the non-permeated water discharge means 50. At that time, the electromagnetic valve 62 is opened, a part of the non-permeated water is diverted in the middle of the non-permeated water flow path 51 and passed through the return flow path 61, and a part of the non-permeated water is diverted in the middle of the second water flow path 93, specifically, On the upstream side of the pump 94, it was combined with groundwater drawn from the raw water tank 70 and returned to the membrane separation means 10.
In Comparative Example 1, the groundwater pumped from the well is stored in the raw water tank and supplied to the membrane separation means after being aerated in the raw water tank, so the groundwater pumped from the well is in an airtight state. This means that it was supplied to the membrane separation means without being retained. The water flow conditions were set to 25.0 L/min for the flow meter 14, 1.7 L/min for the flow meter 42, and 0.7 L/min for the flow meter 52.

通水を開始してから23時間経過するまでの間、25℃における単位時間及び単位膜面積当たりの透過水量を計測し、フラックス(透過流束)を算出した。また、逆浸透膜の平均圧力(RO平均圧力)を圧力計にて測定した。結果を図6に示す。
図6に示すように、通水時間が20時間経過した時点で、RO平均圧力が通水開始時の2倍に上昇し、逆浸透膜が閉塞したことが示された。
The amount of permeated water per unit time and per unit membrane area at 25° C. was measured for 23 hours after the start of water flow, and the flux (permeation flux) was calculated. In addition, the average pressure of the reverse osmosis membrane (RO average pressure) was measured using a pressure gauge. The results are shown in FIG.
As shown in FIG. 6, after 20 hours of water flow had passed, the RO average pressure rose to twice that at the start of water flow, indicating that the reverse osmosis membrane was clogged.

また、通水を開始してから23時間経過した時点での原水槽70内の地下水中の全鉄の濃度及び鉄イオンの濃度を実施例1と同様の方法で測定した。また、全鉄の濃度から鉄イオン濃度を差し引き、原水槽70内の地下水中の酸化鉄の濃度を求めた。結果を図7に示す。
図7に示すように、原水槽70内の地下水中の全鉄の濃度は5.2mg/Lであり、鉄イオンの濃度は4.4mg/Lであり、酸化鉄の濃度は0.8mg/Lであった。これは、井戸100から汲み上げられた地下水が原水槽70に貯留されている間に、地下水中の全鉄の15%が酸化されて酸化鉄となったことを意味する。この酸化鉄が逆浸透膜の閉塞の原因と考えられる。
Furthermore, the concentration of total iron and the concentration of iron ions in the groundwater in the raw water tank 70 at the time point when 23 hours had passed since the start of water flow were measured in the same manner as in Example 1. Further, the concentration of iron oxide in the underground water in the raw water tank 70 was determined by subtracting the concentration of iron ions from the concentration of total iron. The results are shown in FIG.
As shown in FIG. 7, the concentration of total iron in the groundwater in the raw water tank 70 is 5.2 mg/L, the concentration of iron ions is 4.4 mg/L, and the concentration of iron oxide is 0.8 mg/L. It was L. This means that while the groundwater pumped up from the well 100 was stored in the raw water tank 70, 15% of the total iron in the groundwater was oxidized to iron oxide. This iron oxide is thought to be the cause of blockage of the reverse osmosis membrane.

一般的に、地下水等の被処理水のpHを下げると被処理に溶存している金属イオンは酸化されにくくなる傾向にある。また、プレフィルターは水中の濁質(ゴミ、砂等)を除去するものであり、水中の濁質を除去することで逆浸透膜を保護する役割を果たす。
しかし、井戸から汲み上げられた地下水を、気密状態を保持せずに膜分離手段に供給した比較例1では、地下水のpHを6.0まで下げ、さらにプレフィルターにて前処理された地下水を膜分離手段に供給したにも関わらず、地下水中で酸化鉄が生じ、水処理中にRO平均圧力が上昇し、逆浸透膜が閉塞した。
Generally, when the pH of water to be treated, such as groundwater, is lowered, metal ions dissolved in the water to be treated tend to be less likely to be oxidized. In addition, the pre-filter removes suspended matter (dust, sand, etc.) from the water, and by removing suspended matter from the water, it plays a role in protecting the reverse osmosis membrane.
However, in Comparative Example 1, in which groundwater pumped up from a well was supplied to the membrane separation means without maintaining an airtight state, the pH of the groundwater was lowered to 6.0, and the groundwater that had been pretreated with a prefilter was passed through the membrane separation means. Despite being fed to the separation means, iron oxides formed in the groundwater, increasing the RO average pressure during water treatment and blocking the reverse osmosis membranes.

1,2,3 水処理装置
10 膜分離手段
11 逆浸透膜モジュール
12,83,94 ポンプ
13 原水流路
14,42,52,63,95 流量計
15,43,53,97 圧力計
21 水中ポンプ
22 原水供給流路
23 揚水管
24 送水管
241 第一の送水管
242 第二の送水管
30 圧力変動低減手段
31 圧力タンク
40 透過水排出手段
41 透過水流路
50 非透過水排出手段
51 非透過水流路
60 返送手段
61 返送流路
62,92 電磁弁
70 原水槽
71 散気手段
71a 散気管
71b ブロワ
71c 気体供給管
80 添加手段
81 タンク
82 硫酸供給管
91 第一の被処理水流路
93 第二の被処理水流路
96 プレフィルター
100 井戸
1, 2, 3 Water treatment equipment 10 Membrane separation means 11 Reverse osmosis membrane module 12, 83, 94 Pump 13 Raw water channel 14, 42, 52, 63, 95 Flow meter 15, 43, 53, 97 Pressure gauge 21 Submersible pump 22 Raw water supply channel 23 Lifting pipe 24 Water pipe 241 First water pipe 242 Second water pipe 30 Pressure fluctuation reduction means 31 Pressure tank 40 Permeated water discharge means 41 Permeated water flow path 50 Non-permeated water discharge means 51 Non-permeated water flow Channel 60 Return means 61 Return flow path 62, 92 Solenoid valve 70 Raw water tank 71 Aeration means 71a Diffuser pipe 71b Blower 71c Gas supply pipe 80 Addition means 81 Tank 82 Sulfuric acid supply pipe 91 First treated water flow path 93 Second Treated water flow path 96 Pre-filter 100 Well

Claims (10)

井戸から地下水を汲み上げる水中ポンプと、
前記井戸から汲み上げられた地下水を透過水と非透過水とに分離する膜分離手段と、
前記水中ポンプと前記膜分離手段とを連結する原水供給流路と、
前記原水供給流路に設けられた、前記井戸から汲み上げられた地下水の圧力の変動を低減する圧力変動低減手段と、を備え、
前記圧力変動低減手段は、圧力タンクであり、
前記井戸から汲み上げられた地下水は、気密状態を保持したまま前記膜分離手段に供給される、水処理装置。
A submersible pump pumps groundwater from a well,
membrane separation means for separating groundwater pumped from the well into permeated water and non-permeated water;
a raw water supply channel connecting the submersible pump and the membrane separation means;
Pressure fluctuation reducing means provided in the raw water supply flow path for reducing pressure fluctuations in the groundwater pumped from the well,
The pressure fluctuation reducing means is a pressure tank,
In the water treatment device, groundwater pumped up from the well is supplied to the membrane separation means while maintaining an airtight state.
前記圧力タンクは、タンク内部に貯留される地下水が気密状態を保持できるものである、請求項1に記載の水処理装置。The water treatment apparatus according to claim 1, wherein the pressure tank is capable of keeping groundwater stored inside the tank in an airtight state. 前記圧力タンクは、不活性ガスが充填されているタンク、又はゴム膜に封入した蓄圧気体がタンク内部に充填され、蓄圧気体の圧縮と膨張によって蓄圧できるタンクである、請求項1又は2に記載の水処理装置。3. The pressure tank is a tank filled with an inert gas, or a tank filled with an accumulating gas sealed in a rubber membrane, and capable of accumulating pressure by compressing and expanding the accumulating gas. water treatment equipment. 前記膜分離手段は、逆浸透膜及び限外ろ過膜の少なくとも一方を備える、請求項1~3のいずれか一項に記載の水処理装置。 The water treatment apparatus according to any one of claims 1 to 3 , wherein the membrane separation means includes at least one of a reverse osmosis membrane and an ultrafiltration membrane. 前記非透過水の一部を前記膜分離手段に返送する返送手段をさらに備え、
前記非透過水の一部は、気密状態を保持したまま前記膜分離手段に返送される、請求項1~4のいずれか一項に記載の水処理装置。
further comprising a return means for returning a portion of the non-permeated water to the membrane separation means,
The water treatment device according to any one of claims 1 to 4 , wherein a part of the non-permeated water is returned to the membrane separation means while maintaining an airtight state.
井戸から汲み上げられた地下水を膜分離手段に供給して透過水と非透過水とに分離する水処理方法であって、
前記井戸から汲み上げられた地下水を、圧力タンクにより前記地下水の圧力の変動を低減しつつ、気密状態を保持したまま前記膜分離手段に供給する、水処理方法。
A water treatment method in which groundwater pumped from a well is supplied to a membrane separation means to separate permeated water and non-permeated water,
A water treatment method , wherein groundwater pumped from the well is supplied to the membrane separation means while maintaining an airtight state while reducing fluctuations in pressure of the groundwater using a pressure tank .
前記圧力タンクは、タンク内部に貯留される地下水が気密状態を保持できるものである、請求項6に記載の水処理方法。7. The water treatment method according to claim 6, wherein the pressure tank is capable of keeping groundwater stored inside the tank in an airtight state. 前記圧力タンクは、不活性ガスが充填されているタンク、又はゴム膜に封入した蓄圧気体がタンク内部に充填され、蓄圧気体の圧縮と膨張によって蓄圧できるタンクである、請求項6又は7に記載の水処理方法。According to claim 6 or 7, the pressure tank is a tank filled with an inert gas, or a tank in which the inside of the tank is filled with a pressure accumulation gas sealed in a rubber membrane, and the pressure can be accumulated by compression and expansion of the pressure accumulation gas. water treatment methods. 前記膜分離手段は、逆浸透膜及び限外ろ過膜の少なくとも一方を備える、請求項6~8のいずれか一項に記載の水処理方法。 The water treatment method according to any one of claims 6 to 8 , wherein the membrane separation means includes at least one of a reverse osmosis membrane and an ultrafiltration membrane. 前記非透過水の一部を気密状態を保持したまま前記膜分離手段に返送する、請求項6~9のいずれか一項に記載の水処理方法。 The water treatment method according to any one of claims 6 to 9 , wherein a part of the non-permeated water is returned to the membrane separation means while maintaining an airtight state.
JP2020039026A 2020-03-06 2020-03-06 Water treatment equipment and water treatment method Active JP7386105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020039026A JP7386105B2 (en) 2020-03-06 2020-03-06 Water treatment equipment and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020039026A JP7386105B2 (en) 2020-03-06 2020-03-06 Water treatment equipment and water treatment method

Publications (2)

Publication Number Publication Date
JP2021137754A JP2021137754A (en) 2021-09-16
JP7386105B2 true JP7386105B2 (en) 2023-11-24

Family

ID=77667253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020039026A Active JP7386105B2 (en) 2020-03-06 2020-03-06 Water treatment equipment and water treatment method

Country Status (1)

Country Link
JP (1) JP7386105B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346562A (en) 2001-05-25 2002-12-03 Toshiba Plant Kensetsu Co Ltd Method and apparatus for water treatment
JP2005095812A (en) 2003-09-26 2005-04-14 Daicen Membrane Systems Ltd Water purifying device and water purifying method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346562A (en) 2001-05-25 2002-12-03 Toshiba Plant Kensetsu Co Ltd Method and apparatus for water treatment
JP2005095812A (en) 2003-09-26 2005-04-14 Daicen Membrane Systems Ltd Water purifying device and water purifying method

Also Published As

Publication number Publication date
JP2021137754A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
CN212091724U (en) Water purification unit with filter element group spare
KR101354403B1 (en) Filtering method, and membrane-filtering apparatus
EP1807180B1 (en) Reduction of backwash liquid waste
JP2005524520A (en) Two-stage nanofiltration seawater desalination system
JP2007181822A (en) Water treatment system for producing drinking water and its operation method
CN105036249B (en) Water-saving reverse osmosis water purifier
JP2001239134A (en) Method for operating reverse osmosis treatment device, control device therefor and method for making water
JP2008149285A (en) Water treatment system for producing drinking water and its operation method
JP3957081B1 (en) Water treatment system for drinking water production and operation method thereof
JP7386105B2 (en) Water treatment equipment and water treatment method
JPH05317605A (en) Membrane vacuum deaerating method and device therefor
JP2008149284A (en) Water treatment system for producing drinking water and its operation method
JP2009119435A (en) Water treatment system for making drinking water and its operation method
JPH03242288A (en) Treatment of raw water by reverse osmosis membrane module
WO2019106752A1 (en) Water purification system
JP2007029836A (en) Apparatus for treating city water
JP5048239B2 (en) Water purifier
JP4114555B2 (en) Reverse osmosis membrane device
JP2005254192A (en) Membrane separator and membrane separation method
JP7352125B2 (en) Membrane separation equipment and membrane separation method
JP5987646B2 (en) Treatment method for organic water
JP2666200B2 (en) Water purification equipment
JP2006218341A (en) Method and apparatus for treating water
KR20020076197A (en) Reverse Osmosis Water Purification Apparatus for Coercive Circulation of Waste Water
CN114250829B (en) Water supply system, water supply control method, and readable storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7386105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150