JP7385098B2 - Grain-oriented electrical steel sheet with good iron loss and its manufacturing method - Google Patents

Grain-oriented electrical steel sheet with good iron loss and its manufacturing method Download PDF

Info

Publication number
JP7385098B2
JP7385098B2 JP2019039058A JP2019039058A JP7385098B2 JP 7385098 B2 JP7385098 B2 JP 7385098B2 JP 2019039058 A JP2019039058 A JP 2019039058A JP 2019039058 A JP2019039058 A JP 2019039058A JP 7385098 B2 JP7385098 B2 JP 7385098B2
Authority
JP
Japan
Prior art keywords
groove
steel sheet
grooves
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019039058A
Other languages
Japanese (ja)
Other versions
JP2020143314A (en
Inventor
史明 高橋
秀行 濱村
聡 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019039058A priority Critical patent/JP7385098B2/en
Publication of JP2020143314A publication Critical patent/JP2020143314A/en
Application granted granted Critical
Publication of JP7385098B2 publication Critical patent/JP7385098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、溝による磁区細分化処理を施す方向性電磁鋼板に関するものであり、特に溝深さを規定することにより、溝形成後の磁束密度が十分高く、かつ低鉄損の方向性電磁鋼板、およびその製造方法に関するものである。 The present invention relates to a grain-oriented electrical steel sheet subjected to magnetic domain refining treatment using grooves, and in particular, by specifying the groove depth, a grain-oriented electrical steel sheet with sufficiently high magnetic flux density after groove formation and low iron loss. , and its manufacturing method.

一方向性電磁鋼板はエネルギー節約の観点から鉄損を低減することが要望されている。特に巻き鉄心トランス用としては、人為的に溝を導入することにより歪取り焼鈍後にも磁区細分化効果を維持する手段が特許文献1に開示されている。この方法は、歯形ロール等の機械的手段により鋼板に溝を導入し磁区細分化を図るものである。 Unidirectional electrical steel sheets are required to reduce iron loss from the viewpoint of energy conservation. Particularly for wound core transformers, Patent Document 1 discloses a means for maintaining the magnetic domain refining effect even after strain relief annealing by artificially introducing grooves. This method involves introducing grooves into a steel plate using a mechanical means such as a toothed roll to refine the magnetic domains.

また、上記の機械的手段以外にも、エッチングによる手段として、特許文献2、特許文献3に開示された技術が存在するが、いずれも溝を導入し、歪取り焼鈍後にも磁区細分化効果を発揮するという点で機械的手段と同様の技術である。 In addition to the above-mentioned mechanical means, there are etching methods disclosed in Patent Document 2 and Patent Document 3, but both introduce grooves and maintain the magnetic domain refining effect even after strain relief annealing. It is a technique similar to mechanical means in that it exerts its effects.

特開平1-252726号公報Japanese Patent Application Publication No. 1-252726 特開昭62-179105号公報Japanese Unexamined Patent Publication No. 179105/1983 特開平4-88121号公報Japanese Patent Application Publication No. 4-88121

方向性電磁鋼板では、圧延方向と交差する方向に溝を形成して磁区制御を行うことにより、鉄損を低減することが知られている。 In grain-oriented electrical steel sheets, it is known that core loss can be reduced by forming grooves in a direction intersecting the rolling direction to control magnetic domains.

溝形成による磁区制御では、溝を形成することによる鉄損改善(鉄損低下)というメリットはあるが、一方で、溝の存在により磁束密度が低下するという問題がある。実用的には磁束密度の低下を許容できる範囲で調整されるが、明確な設計指針は確立されておらず、最適な形成条件が選定されているとは言えない。 Magnetic domain control by forming grooves has the advantage of improving iron loss (reducing iron loss) by forming grooves, but on the other hand, there is a problem that magnetic flux density decreases due to the presence of grooves. In practice, the magnetic flux density is adjusted within an allowable range, but clear design guidelines have not been established, and it cannot be said that the optimal forming conditions have been selected.

本発明者は各種材料の溝の深さと磁気特性の関連を調査するうち、溝の深さと鉄損改善効果の関係には、励磁される磁束密度に応じて変化する溝の深さの最適値が存在することを知見した。例えば特定の試験材において、1.7T励磁での溝深さの最適値は30μm程度であるのに対して、1.5T励磁での溝深さの最適値は35μmを超えていた。 While investigating the relationship between the groove depth and magnetic properties of various materials, the present inventor found that the relationship between the groove depth and the iron loss improvement effect was determined by the optimum value of the groove depth, which changes according to the excited magnetic flux density. It was discovered that there is. For example, in a specific test material, the optimum value of the groove depth under 1.7T excitation was about 30 μm, whereas the optimum value of the groove depth under 1.5T excitation exceeded 35 μm.

これらの知見から、本発明者は、磁区制御のために形成する溝の深さの最適値を、鋼板の磁気特性、特に磁束密度との関係で決定することに想い至った。そして、溝の深さだけでなく、溝の配置(溝の間隔、溝と鋼板圧延方向とのなす角度)を、鋼板を800(A/m)で励磁した場合の磁束密度B8(T)との関連で最適化することに成功した。 Based on these findings, the present inventor came up with the idea of determining the optimal value of the depth of the grooves formed for magnetic domain control in relation to the magnetic properties of the steel sheet, particularly the magnetic flux density. In addition to the depth of the grooves, the arrangement of the grooves (the interval between the grooves and the angle between the grooves and the rolling direction of the steel plate) is determined based on the magnetic flux density B8 (T) when the steel plate is excited at 800 (A/m). We succeeded in optimizing the relationship.

本発明は、上記の知見をもととして達成されたものであり、磁区制御を目的として鋼板表面に溝が形成された方向性電磁鋼板において、溝形成後の磁束密度が十分高く、かつ低鉄損の方向性電磁鋼板を得ることを、目的とする。 The present invention has been achieved based on the above findings, and provides a grain-oriented electrical steel sheet in which grooves are formed on the surface of the steel sheet for the purpose of magnetic domain control, in which the magnetic flux density after groove formation is sufficiently high and the iron content is low. The purpose is to obtain a loss-oriented electrical steel sheet.

本発明により、以下の態様が提供される。
[1]
質量%で、Si:2.00~7.00%を含有し、残部がFe及び不純物である化学組成を有し、圧延方向と交差する方向かつ溝深さ方向が板厚方向となる溝を一定間隔で有する鋼板であって、
鋼板を800(A/m)で励磁した場合の磁束密度をB8(T)と定義し、前記溝を除去した鋼板のB8(T)をB8n(T)と定義し、該溝の深さをd(μm)と定義し、該溝の間隔をp(mm)、該溝が圧延直角方向となす角度をθ(°)と定義したときに、以下の式(1)を満足し、溝の幅Wが20~100μmである、方向性電磁鋼板
B8n+{0.1428+0.0032*d-(0.0722+0.0024*d)*B8n}*(3/p)*e^(-qθ)≧1.87 … (1)
ただし、B8n≧1.90(T)
0≦θ≦30°
2≦p≦30
q=0.075
である。
[2]
鋳造工程、熱間圧延工程、冷間圧延工程、脱炭焼鈍工程、仕上焼鈍工程を有する方向性電磁鋼板の製造方法であって、冷間圧延工程以降に、圧延方向と交差する方向かつ溝深さ方向が板厚方向となる溝を一定間隔で形成する溝形成工程を含み、
前記鋼板を800(A/m)で励磁した場合の磁束密度をB8(T)と定義し、該溝の深さd(μm)を溝形成材の目標B8(T)と溝未形成材のB8(T)から決めることを特徴とする方向性電磁鋼板の製造方法。
[3]
溝形成材の目標B8(T)をB8m(T)と定義し、溝未形成材のB8(T)をB8n(T)と定義し、該溝の間隔をp(mm)、該溝が圧延直角方向となす角度をθ(°)と定義した場合に、前記溝形成工程で形成される溝深さd(μm)が以下の式(2)に従って算出されたことを特徴とし、溝の幅Wが20~100μmである、項目[2]に記載の方向性電磁鋼板の製造方法

Figure 0007385098000001
ただし、
0≦θ≦30°
2≦p≦30
q=0.075
である。
[4]
前記溝形成工程が、前記冷間圧延工程後かつ前記脱炭焼鈍工程前であることを特徴とする項目[2]または[3]に記載の方向性電磁鋼板の製造方法。
[5]
前記溝形成工程が、張力被膜形成工程後であることを特徴とする項目[2]または[3]に記載の方向性電磁鋼板の製造方法。 The present invention provides the following aspects.
[1]
A groove having a chemical composition in which Si: 2.00 to 7.00% is contained in mass %, the balance being Fe and impurities, and the direction intersecting the rolling direction and the groove depth direction is the plate thickness direction. A steel plate having regular intervals,
The magnetic flux density when the steel plate is excited at 800 (A/m) is defined as B8(T), B8(T) of the steel plate with the groove removed is defined as B8n(T), and the depth of the groove is d (μm), the interval between the grooves is p (mm), and the angle between the grooves and the direction perpendicular to the rolling direction is defined as θ (°). Grain-oriented electrical steel sheet with a width W of 20 to 100 μm
B8n+{0.1428+0.0032*d-(0.0722+0.0024*d)*B8n}*(3/p)*e^(-qθ)≧1.87 … (1)
However, B8n≧1.90(T)
0≦θ≦30°
2≦p≦30
q=0.075
It is.
[2]
A method for producing a grain-oriented electrical steel sheet having a casting process, a hot rolling process, a cold rolling process, a decarburization annealing process, and a finish annealing process, the method comprising: a direction intersecting the rolling direction and a groove depth after the cold rolling process; Including a groove forming process in which grooves are formed at regular intervals with the horizontal direction being the plate thickness direction,
The magnetic flux density when the steel plate is excited at 800 (A/m) is defined as B8 (T), and the depth d (μm) of the groove is determined by the target B8 (T) for the grooved material and the target B8 (T) for the non-grooved material. A method for manufacturing a grain-oriented electrical steel sheet, characterized in that it is determined from B8 (T).
[3]
The target B8(T) of the grooved material is defined as B8m(T), the B8(T) of the non-grooved material is defined as B8n(T), the interval between the grooves is p (mm), and the groove is rolled. The groove depth d (μm) formed in the groove forming step is calculated according to the following formula (2), where the angle formed with the perpendicular direction is defined as θ (°), and the groove width The method for producing grain-oriented electrical steel sheet according to item [2], in which W is 20 to 100 μm
Figure 0007385098000001
however,
0≦θ≦30°
2≦p≦30
q=0.075
It is.
[4]
The method for producing a grain-oriented electrical steel sheet according to item [2] or [3], wherein the groove forming step is performed after the cold rolling step and before the decarburization annealing step.
[5]
The method for producing a grain-oriented electrical steel sheet according to item [2] or [3], wherein the groove forming step is performed after the tension coating forming step.

本発明により、方向性電磁鋼板の製品板(張力被膜を形成された方向性電磁鋼板)に溝を形成して磁区制御する場合において、溝形成後の磁束密度が十分高く、かつ低鉄損の方向性電磁鋼板を得ることができる。 According to the present invention, when forming grooves in a product sheet of grain-oriented electrical steel sheet (grain-oriented electrical steel sheet on which a tension coating is formed) to control magnetic domains, the magnetic flux density after groove formation is sufficiently high and the iron loss is low. A grain-oriented electrical steel sheet can be obtained.

図1は、溝深さdに対する磁束密度の低下量の実験値を整理したチャートである。FIG. 1 is a chart arranging experimental values of the amount of decrease in magnetic flux density with respect to groove depth d. 図2は、溝形成前の磁束密度B8と、溝形成による磁束密度低下量ΔB8を整理したチャートである。FIG. 2 is a chart arranging the magnetic flux density B8 before groove formation and the magnetic flux density reduction amount ΔB8 due to groove formation.

本発明の一態様による方向性電磁鋼板は、質量%で、Si:2.00~7.00%を含有し、残部がFe及び不純物である化学組成を有し、鋼板表面に鋼板圧延方向と交差する方向かつ溝深さ方向が板厚方向となる溝を一定間隔で有することによって磁区制御を施したものである。
本発明の一態様による溝の深さd(μm)は、以下の式(1)を満足する。
B8n+{0.1428+0.0032*d-(0.0722+0.0024*d)*B8n}*(3/p)*e^(-qθ)≧1.87 … (1)
ここで、B8n(T)とは、溝を除去した鋼板を800(A/m)で励磁した場合の磁束密度である。また、θは、溝が圧延直角方向と交差する角度(°)であり、溝が圧延方向と直交する(鋼板の幅方向である)場合、θ=0(°)である。pは溝の間隔(mm)であり、qは係数であり、以下を満足する。
2≦p≦30
q=0.075
溝により、溝方向に延伸する還流磁区が形成されて、溝の形成前に存在した180°磁区が細分化され、鉄損を下げる効果を持つ。この点で、溝の方向は、鋼板圧延方向に対して直交する方向であることが好ましいが、溝の方向はある程度圧延方向に傾いてもよく、θは0~30°の間で選択することができる。
ここで、qは以下のようにして定めた。まず溝形成前のB8が1.90Tから1.96Tの間にある試料を大量に準備し、これにd=15μmの溝を形成した。ただしθは0から30°とした。これら溝形成後の試料を歪取り焼鈍した後再度B8を測定し、これをB8m(θ)とした。さらにこれら試料の溝を除去、歪取り焼鈍した後再度B8を測定してB8n(θ)とした。
ΔB8(θ)=B8n(θ)-B8m(θ)とした。なお、それぞれに(θ)をつけているのはθの関数であることを示す。
次に、ΔB8(0)で規格化したΔB8(θ)をθに対してプロットし、このプロットをθ=0で1となるようe^(-qθ)でフィッティングしてqを定めた。ここでqは0.075であった。
溝の深さdは(1)式を満足するべきであるが、溝の幅Wは20μmから100μmの間で選択することができる。ここで溝の幅Wは溝形成方向と90°を成す角で観察した断面の平均の幅であり、平均の幅の定義については溝の断面形状が占める面積を溝の最大深さで除した値であり、たとえば溝断面の形状が矩形であれば鋼板表面における溝の幅がそのままWとなり、溝断面の形状が三角形であれば、鋼板表面における溝の幅の1/2がWとなる。
ここで、Wが小さすぎると磁区制御による鉄損低減効果を得ることができなくなり、Wが大きすぎると本発明により溝の深さを制御したとしてもB8の低下を回避することが困難となるため、Wを20μmから100μmの間にする。
A grain-oriented electrical steel sheet according to one embodiment of the present invention has a chemical composition in which the steel sheet surface contains Si: 2.00 to 7.00%, and the balance is Fe and impurities, and the steel sheet surface has a direction in which the steel sheet is rolled. Magnetic domain control is performed by having grooves at regular intervals in which the intersecting directions and the groove depth direction are in the plate thickness direction.
The depth d (μm) of the groove according to one embodiment of the present invention satisfies the following formula (1).
B8n+{0.1428+0.0032*d-(0.0722+0.0024*d)*B8n}*(3/p)*e^(-qθ)≧1.87 … (1)
Here, B8n(T) is the magnetic flux density when the steel plate from which the grooves have been removed is excited at 800 (A/m). Further, θ is the angle (°) at which the groove intersects the direction perpendicular to the rolling direction, and when the groove is perpendicular to the rolling direction (in the width direction of the steel plate), θ=0 (°). p is the groove spacing (mm), and q is a coefficient, which satisfies the following.
2≦p≦30
q=0.075
The grooves form reflux magnetic domains extending in the direction of the grooves, and the 180° magnetic domains that existed before the grooves were formed are subdivided, which has the effect of lowering iron loss. In this regard, the direction of the groove is preferably perpendicular to the rolling direction of the steel plate, but the direction of the groove may be inclined to the rolling direction to some extent, and θ should be selected between 0 and 30 degrees. Can be done.
Here, q was determined as follows. First, a large number of samples whose B8 before groove formation was between 1.90T and 1.96T were prepared, and grooves of d=15 μm were formed on them. However, θ was set from 0 to 30°. After these grooved samples were annealed to remove strain, B8 was measured again, and this was defined as B8m(θ). Furthermore, after removing the grooves of these samples and annealing them to remove strain, B8 was measured again and found to be B8n(θ).
ΔB8(θ)=B8n(θ)−B8m(θ). Note that the addition of (θ) to each indicates that it is a function of θ.
Next, ΔB8(θ) normalized by ΔB8(0) was plotted against θ, and q was determined by fitting this plot with e^(-qθ) so that it becomes 1 when θ=0. Here q was 0.075.
The depth d of the groove should satisfy equation (1), but the width W of the groove can be selected between 20 μm and 100 μm. Here, the width W of the groove is the average width of the cross section observed at an angle forming 90° with the groove forming direction, and the definition of the average width is the area occupied by the cross-sectional shape of the groove divided by the maximum depth of the groove. For example, if the cross-sectional shape of the groove is rectangular, the width of the groove on the surface of the steel plate is W as is, and if the cross-section of the groove is triangular, W is 1/2 of the width of the groove on the steel plate surface.
Here, if W is too small, it will not be possible to obtain the iron loss reduction effect by magnetic domain control, and if W is too large, it will be difficult to avoid a decrease in B8 even if the groove depth is controlled by the present invention. Therefore, W should be between 20 μm and 100 μm.

式(1)によって規定される溝深さdを有する電磁鋼板について説明する。
前述のとおり、溝形成による磁区制御法では、溝の存在により磁束密度が低下するという問題があり、加えて、溝形成による磁束密度低下量はばらつくことがある。そのため、実際的な運用では、出荷規格値までの十分なマージンを取って溝の深さを決めている。
An electromagnetic steel sheet having a groove depth d defined by formula (1) will be explained.
As described above, the magnetic domain control method using groove formation has the problem that the magnetic flux density decreases due to the presence of the groove, and in addition, the amount of decrease in magnetic flux density due to groove formation may vary. Therefore, in practical operation, the depth of the groove is determined with a sufficient margin up to the shipping standard value.

一般に、磁束密度の出荷規格は、製品グレードに応じて、定められている。ここでは、以下の磁束密度の出荷規格を用いて説明をする。
B8≧1.87(T) … <1>
B8とは、鋼板を800(A/m)で励磁した場合の磁束密度である。なお、本明細書では、溝を除去した鋼板のB8(T)をB8n(T)と称することがある。溝を除去する手段として、研削または酸洗で鋼板表面を板厚方向に溝底まで全面的に除去する。さらに、研削による歪が残存する場合は、歪取り焼鈍を実施する。歪取り焼鈍の熱処理条件は、通常実施される条件で十分であり、たとえば800℃まで加熱した後2時間保定後、300℃以下まで15時間以上の時間で冷却するとよい。加熱速度はオーバーシュートが数十℃以内に収まるようにすれば、特に制限はない。雰囲気は非酸化雰囲気とすることが必要であり、たとえば水素75体積%、残部窒素としてもよい。
溝を除去する場合は鋼板の厚みを著しく減じることの無いよう、除去する鋼板の厚さは数十μm程度にとどめるようにする。これは、鋼板の板厚を大きく減じると磁気特性が変化する可能性があるためである。このような点に気を付ければ、鉄損や磁束密度等の特性は、溝の存在によって変化するとみなせるので、溝を除去した鋼板は、溝を形成する前の鋼板と、実質的に同等の特性(鉄損や磁束密度等)を有するものと扱うことができる。
また、本明細書では、溝未形成材(形成された溝を除去した電磁鋼板、または溝を形成する前の電磁鋼板)のB8をB8nと称し、溝形成材(溝を形成した後の電磁鋼板)の目標のB8をB8mと称することがある。
Generally, shipping standards for magnetic flux density are determined depending on the product grade. Here, explanation will be given using the following shipping standards for magnetic flux density.
B8≧1.87(T) … <1>
B8 is the magnetic flux density when the steel plate is excited at 800 (A/m). Note that in this specification, B8(T) of the steel plate from which the grooves have been removed may be referred to as B8n(T). As a means of removing the grooves, the surface of the steel plate is completely removed in the thickness direction down to the bottom of the grooves by grinding or pickling. Furthermore, if distortion due to grinding remains, distortion relief annealing is performed. The heat treatment conditions for the strain relief annealing are usually normally used. For example, it is preferable to heat the material to 800°C, hold it for 2 hours, and then cool it to 300°C or less over a period of 15 hours or more. The heating rate is not particularly limited as long as the overshoot is within several tens of degrees Celsius. The atmosphere needs to be non-oxidizing, and may be, for example, 75% by volume hydrogen and the balance nitrogen.
When removing the grooves, the thickness of the steel plate to be removed should be limited to about several tens of μm so as not to significantly reduce the thickness of the steel plate. This is because the magnetic properties may change if the thickness of the steel plate is significantly reduced. If you pay attention to these points, it can be assumed that properties such as iron loss and magnetic flux density change due to the presence of grooves, so the steel plate from which the grooves have been removed will be substantially equivalent to the steel plate before the grooves were formed. It can be treated as having characteristics (iron loss, magnetic flux density, etc.).
In addition, in this specification, B8 of the non-grooved material (electromagnetic steel sheet from which the formed grooves have been removed or the electromagnetic steel sheet before forming the grooves) is referred to as B8n, and B8 of the groove-formed material (the electromagnetic steel sheet after forming the grooves) The target B8 of steel plate) is sometimes referred to as B8m.

従来の実際的な運用の一例として、溝の深さd(μm)は以下のように決められる。
図1は、θが0°、p=3mmの場合の溝深さdに対する磁束密度の低下量の実験値を整理したチャートである。このような経験データに基づいて、溝深さdを決定することができる。
溝形成前の平均的な磁束密度B8nが1.905T程度である場合、<1>式の条件を満たすためにはΔB8(磁束密度B8の低下量)は0.035T(1.905-1.87=0.035)まで許容できるはずである。図1のチャートに基づくと、ΔB8が0.035Tとなる溝の深さは、おおよそ25μm超になる。
As an example of conventional practical operation, the depth d (μm) of the groove is determined as follows.
FIG. 1 is a chart arranging experimental values of the amount of decrease in magnetic flux density with respect to groove depth d when θ is 0° and p=3 mm. Based on such empirical data, the groove depth d can be determined.
If the average magnetic flux density B8n before groove formation is about 1.905T, ΔB8 (decrease in magnetic flux density B8) is allowed up to 0.035T (1.905-1.87=0.035) in order to satisfy the condition of formula <1>. It should be possible. Based on the chart in FIG. 1, the depth of the groove at which ΔB8 is 0.035T is approximately over 25 μm.

しかし、実際には、溝形成による磁束密度の低下量はばらつきが大きく、同一溝深さの加工を行っても、B8の低下量(ΔB8)は一定ではない。このことから、ΔB8の上限値として、0.035Tは採用せずに、<1>式に対して0.01T程度のマージンを取って溝深さを定めている。その結果、ΔB8として0.025Tを採用し、図1に基づいて、溝の深さを20μm程度としている。 However, in reality, the amount of decrease in magnetic flux density due to groove formation varies widely, and even if the same groove depth is processed, the amount of decrease in B8 (ΔB8) is not constant. For this reason, 0.035T is not adopted as the upper limit value of ΔB8, but the groove depth is determined by taking a margin of about 0.01T with respect to formula <1>. As a result, 0.025T was adopted as ΔB8, and the depth of the groove was set to about 20 μm based on FIG.

上記のようなマージンを考慮して決定された溝深さは、鉄損改善の観点からは好ましくない。前述のとおり、溝形成による磁区制御では、磁気特性のみを考慮した最適な溝深さがあるからである。つまり、溝深さを最適化することにより、より良好な鉄損が得られるはずである。 The groove depth determined in consideration of the above margin is not preferable from the viewpoint of iron loss improvement. This is because, as described above, in magnetic domain control by groove formation, there is an optimum groove depth that takes only the magnetic properties into consideration. In other words, better iron loss should be obtained by optimizing the groove depth.

また、前述のとおり、最適な溝深さは励磁する磁束密度との関係があり、概して、最適な溝深さは励磁する磁束密度が高いほど小さい。言い換えると、励磁する磁束密度が高いほど、溝形成による単位深さあたりの鉄損改善効果は、大きくなる傾向がある。この結果、<1>の条件よりも高いB8を示す素材では、より深い溝を形成することにより、より良好な鉄損が得られる効果が、より顕著に得られる。 Further, as described above, the optimal groove depth has a relationship with the exciting magnetic flux density, and generally speaking, the higher the exciting magnetic flux density, the smaller the optimal groove depth. In other words, the higher the magnetic flux density to be excited, the greater the iron loss improvement effect per unit depth by groove formation tends to be. As a result, in the case of a material exhibiting B8 higher than the condition <1>, the effect of obtaining better iron loss by forming deeper grooves can be more significantly obtained.

本発明者らは、溝深さを最適化して、良好な鉄損を得るためには、溝による磁束密度の低下量のばらつきの原因または実態を明らかにする必要があると考え、鋭意検討の結果、溝による磁束密度低下量はB8n(溝未形成材(溝を形成する前の鋼板)または溝を除去した鋼板のB8)への依存性があることを見出した。図2は、その一例証である。 The present inventors believe that in order to optimize the groove depth and obtain good iron loss, it is necessary to clarify the cause or actual state of the variation in the amount of decrease in magnetic flux density due to grooves, and have conducted extensive studies. As a result, it was found that the amount of decrease in magnetic flux density due to grooves was dependent on B8n (B8 of the non-grooved material (steel plate before grooves were formed) or the steel plate with grooves removed). FIG. 2 is an example of this.

図2は、溝未形成材(溝を形成する前の鋼板)または溝を除去した鋼板の磁束密度B8nと、θ=0°、p=3mm、W=50μmの溝による磁束密度低下量ΔB8を表したチャート例であり、溝の深さdでグループ分けされている。図2の例や、各種材料での試験を繰り返して、同一の溝深さでは、磁束密度B8nが高いほど溝による磁束密度低下ΔB8が大きいことが確認された。 Figure 2 shows the magnetic flux density B8n of a material without grooves (a steel plate before forming grooves) or a steel plate with grooves removed, and the magnetic flux density decrease ΔB8 due to grooves with θ=0°, p=3mm, and W=50μm. This is an example of a chart, which is divided into groups by groove depth d. By repeating the example in FIG. 2 and tests with various materials, it was confirmed that at the same groove depth, the higher the magnetic flux density B8n, the greater the magnetic flux density drop ΔB8 due to the groove.

また、図2の例や、各種材料での試験を繰り返して、溝未形成材(溝を形成する前の鋼板)または溝を除去した鋼板の磁束密度B8 nに対するΔB8 は溝深さdによって異なることが確認された。概して、溝深さdが大きいほど、ΔB8が大きいことが確認された。 In addition, by repeating the example in Fig. 2 and tests with various materials, we found that ΔB8 for the magnetic flux density B8 n of a material without grooves (a steel plate before forming grooves) or a steel plate with grooves removed differs depending on the groove depth d. This was confirmed. In general, it was confirmed that the larger the groove depth d, the larger ΔB8.

上記の知見に基づいて、本発明者らは、溝による磁束密度低下量ΔB8と、溝未形成材(溝を形成する前の鋼板)または溝を除去した鋼板の磁束密度B8nとの関係式を以下のように立式することを着想した。
ΔB8=a×B8n+b … <2>
a=h×d+i … <3>
b=j×d+k … <4>
Based on the above findings, the present inventors developed a relational expression between the magnetic flux density reduction amount ΔB8 due to grooves and the magnetic flux density B8n of a material without grooves (a steel plate before forming grooves) or a steel plate with grooves removed. I came up with the idea of arranging it as follows.
ΔB8=a×B8n+b … <2>
a=h×d+i … <3>
b=j×d+k … <4>

上記の式<2>~<4>において、h、i、j、kは、図2の例や、各種材料での試験を繰り返して得られたデータに基づいて、溝深さdの直線回帰から決定することができる。その場合、<3>、<4>は以下の<5>、<6>に書き換えられる。
a=0.0024*d+0.0722 … <5>
b=-0.0032*d-0.1428 … <6>
In the above equations <2> to <4>, h, i, j, and k are determined by linear regression of groove depth d based on the example in Figure 2 and data obtained from repeated tests with various materials. It can be determined from In that case, <3> and <4> will be rewritten as <5> and <6> below.
a=0.0024*d+0.0722 … <5>
b=-0.0032*d-0.1428 … <6>

溝形成材(本発明の対象である、溝を形成した後の電磁鋼板)の磁束密度をB8mとすると、ΔB8は下記<7>式となる。
ΔB8=B8n-B8m …<7>
<2>式に<5>~<7>を代入することにより、本発明が規定するB8mを得るためのdを求める下記<8>式を得ることができる。

Figure 0007385098000002
Assuming that the magnetic flux density of the groove forming material (the electrical steel sheet after forming the grooves, which is the subject of the present invention) is B8 m , ΔB8 is expressed by the following formula <7>.
ΔB8=B8n-B8 m …<7>
By substituting <5> to <7> into equation <2>, the following equation <8> can be obtained to obtain d to obtain B8 m defined by the present invention.
Figure 0007385098000002

<8>の式により、溝未形成材(溝を形成する前の電磁鋼板)または溝を除去した電磁鋼板の磁束密度B8nと溝形成材(溝を形成した後の電磁鋼板)の磁束密度B8mと最適な溝深さdの関係を決めることができる。すなわち、溝形成後の高磁束密度、かつ低鉄損の観点で最適な深さの溝が形成された磁区制御方向性電磁鋼板を得ることができる。 According to the formula <8>, the magnetic flux density B8n of the non-grooved material (electromagnetic steel sheet before forming grooves) or the electromagnetic steel sheet with grooves removed and the magnetic flux density B8 of the grooved material (electromagnetic steel sheet after forming grooves) The relationship between m and the optimal groove depth d can be determined. That is, it is possible to obtain a domain-controlled grain-oriented electrical steel sheet in which grooves are formed with grooves having an optimal depth from the viewpoint of high magnetic flux density after groove formation and low iron loss.

より具体的には、磁束密度がB8nである溝未形成材(溝を形成する前の電磁鋼板)に、最適な溝深さdの溝を形成した場合には、溝形成材(発明鋼板、溝を形成した後の電磁鋼板)の磁束密度B8mは<8>式を満たすものとなり、その鋼板は、磁束密度と低鉄損の観点で最適な深さの溝が形成された磁区制御方向性電磁鋼板となる。 More specifically, when grooves with the optimum groove depth d are formed in an ungrooved material (an electrical steel sheet before forming grooves) with a magnetic flux density of B8n, the grooved material (invented steel sheet, The magnetic flux density B8 m of the electromagnetic steel sheet (after forming the grooves) satisfies the formula <8>, and the steel sheet has a magnetic domain control direction in which grooves of optimal depth are formed from the viewpoint of magnetic flux density and low core loss. It becomes a magnetic electrical steel sheet.

また、<8>式を変形することにより、dを変数として溝形成材の磁束密度B8mを求める式<9>を導くこともできる。
B8m=(0.9278-0.0024*d)*B8n+0.0032*d+0.1428 … <9>
本発明は、磁束密度が十分に高い電磁鋼板を対象とし、本発明による電磁鋼板(溝を有する電磁鋼板)の磁束密度B8mを、B8m≧1.87と規定する。なお、B8mの上限は特に限定するものではなく、B8mの上限値が1.93(T)であってもよい。したがって、本願発明による電磁鋼板は下記式<10>を満たす。
(0.9278-0.0024*d)*B8n+0.0032*d+0.1428 ≧1.87 … <10>
なお、上記の式を適用できるB8nの範囲は特に限定するものではないが、B8nが極端に低い材料や極端に高い材料では上記式による溝深さの最適化にずれが生じることが考えられる。これを考慮すると、適用可能なB8nの範囲の目途として、B8nの下限値は、1.90(T)以下を採用してもよいが、1.91(T)としてもよい。また、B8nの上限値は、1.95(T)以上を採用してもよいが、1.94(T)としてもよい。
Furthermore, by modifying equation <8>, equation <9> can be derived to obtain the magnetic flux density B8 m of the groove forming material using d as a variable.
B8 m =(0.9278-0.0024*d)*B8n+0.0032*d+0.1428 … <9>
The present invention targets an electromagnetic steel sheet having a sufficiently high magnetic flux density, and defines the magnetic flux density B8 m of the electromagnetic steel sheet (electromagnetic steel sheet having grooves) as B8 m ≧1.87. Note that the upper limit of B8m is not particularly limited, and the upper limit of B8m may be 1.93 (T). Therefore, the electrical steel sheet according to the present invention satisfies the following formula <10>.
(0.9278-0.0024*d)*B8n+0.0032*d+0.1428 ≧1.87 … <10>
Note that the range of B8n to which the above formula can be applied is not particularly limited, but it is conceivable that optimization of the groove depth by the above formula may be deviated in materials where B8n is extremely low or extremely high. Considering this, as a target for the applicable range of B8n, the lower limit of B8n may be set to 1.90(T) or less, or may be set to 1.91(T). Further, the upper limit value of B8n may be 1.95(T) or more, or may be 1.94(T).

さらに、溝角度θ(°)と溝ピッチp(mm)の影響を検討した結果、0°≦θ≦30°の範囲で<11>式とするとよいことが明らかになった。
B8n+{0.1428+0.0032*d-(0.0722+0.0024*d)*B8n}*(3/p)*e^(-qθ)≧1.87 …<11>
ただし、
B8n≧1.90(T)
2≦p≦30
q=0.075
である。
ここでpを2mmから30mmの間に限ったのは、2mmに満たないと溝形成によって鉄損がかえって悪化し、また30mmを超えると溝形成による鉄損改善効果が十分に得られなくなるためである。
Furthermore, as a result of examining the influence of the groove angle θ (°) and the groove pitch p (mm), it became clear that formula <11> should be used in the range of 0°≦θ≦30°.
B8n+{0.1428+0.0032*d-(0.0722+0.0024*d)*B8n}*(3/p)*e^(-qθ)≧1.87 …<11>
however,
B8n≧1.90(T)
2≦p≦30
q=0.075
It is.
The reason why p is limited to between 2 mm and 30 mm is because if it is less than 2 mm, the iron loss will worsen due to groove formation, and if it exceeds 30 mm, the iron loss improvement effect by groove formation will not be sufficiently obtained. be.

本願明細書において、鉄損はW17/50(W/kg)によって評価される。鉄損は小さいほど好ましく、本願発明による電磁鋼板の鉄損は、たとえば板厚が0.23mmの場合は0.84以下であってもよく、より好ましくは0.78以下であってもよく、さらに好ましくは0.75以下であってもよい。 In this specification, iron loss is evaluated by W17/50 (W/kg). The iron loss is preferably smaller, and the iron loss of the electrical steel sheet according to the present invention may be, for example, 0.84 or less when the plate thickness is 0.23 mm, more preferably 0.78 or less, and even more preferably 0.75 or less. It may be.

本発明の一態様である電磁鋼板の化学組成について説明する。
本発明に係る方向性電磁鋼板は、化学組成として、質量分率で、Si:2.00%~7.00%を含有し、残部がFeおよび不純物である。
The chemical composition of the electrical steel sheet that is one embodiment of the present invention will be explained.
The grain-oriented electrical steel sheet according to the present invention contains, as a chemical composition, Si: 2.00% to 7.00% in mass fraction, and the remainder is Fe and impurities.

上記の化学組成は、結晶方位を{110}<001>方位に集積させるよう制御するために好ましい化学組成である。 The above chemical composition is a preferable chemical composition for controlling the crystal orientation to be concentrated in the {110}<001> orientation.

また、本発明に係る方向性電磁鋼板は、磁気特性の改善を目的として、Feの一部に代えて、公知の任意元素を含有してもよい。Feの一部に代えて含有される任意元素として、例えば、次の元素が挙げられる。各数値は、それらの元素が任意元素として含有された場合の、上限値を意味する。
質量%で、
C:0.005%以下
Mn:1.00%以下、
S及びSe:合計で0.015以下、
Al:0.065以下、
N:0.005%以下
Cu:0.40%以下、
Bi:0.010%以下、
B:0.080%以下、
P:0.50%以下、
Ti:0.015%以下、
Sn:0.10%以下、
Sb:0.10%以下、
Cr:0.30%以下、
Ni:1.00%以下、
Nb、V、Mo、Ta、及びWのうちの一種または二種以上:合計で0.030%以下。
これら任意元素は、公知の目的に応じて含有させればよいため、任意元素の含有量の下限値を設ける必要はなく、下限値が0%でもよい。
Further, the grain-oriented electrical steel sheet according to the present invention may contain a known arbitrary element in place of a part of Fe for the purpose of improving magnetic properties. Examples of optional elements contained in place of a part of Fe include the following elements. Each numerical value means the upper limit when those elements are contained as optional elements.
In mass%,
C: 0.005% or less Mn: 1.00% or less,
S and Se: 0.015 or less in total,
Al: 0.065 or less,
N: 0.005% or less Cu: 0.40% or less,
Bi: 0.010% or less,
B: 0.080% or less,
P: 0.50% or less,
Ti: 0.015% or less,
Sn: 0.10% or less,
Sb: 0.10% or less,
Cr: 0.30% or less,
Ni: 1.00% or less,
One or more of Nb, V, Mo, Ta, and W: 0.030% or less in total.
These arbitrary elements may be contained according to known purposes, so there is no need to set a lower limit for the content of the arbitrary elements, and the lower limit may be 0%.

なお、不純物とは、上記に例示した任意元素に限らず、含有されても本発明の効果を損わない元素を意味する。意図的に添加する場合に限らず、鋼板を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境等から不可避的に混入する元素も含む。不純物の合計含有量の上限の目途としては、5%程度が挙げられる。 Note that impurities are not limited to the above-mentioned arbitrary elements, but also mean elements that do not impair the effects of the present invention even if they are contained. It is not limited to cases where it is added intentionally, but also includes elements that are unavoidably mixed in from ores used as raw materials, scraps, or the manufacturing environment when industrially manufacturing steel sheets. The estimated upper limit of the total content of impurities is about 5%.

注意を要するのは、方向性電磁鋼板では、脱炭焼鈍および二次再結晶時の純化焼鈍を経ることが一般的であり、比較的大きな化学組成の変化(含有量の低下)が起きることである。元素によっては、50ppm以下に低減され、純化焼鈍を十分に行えば、一般的な分析では検出できない程度(1ppm以下)にまで達することもある。
本発明に係る方向性電磁鋼板の上記化学成分は、最終製品における化学組成であり、出発素材でもある後述するスラブの組成とは異なることを申し添えておく。
It should be noted that grain-oriented electrical steel sheets generally undergo decarburization annealing and purification annealing during secondary recrystallization, which causes a relatively large change in chemical composition (reduction in content). be. Depending on the element, the content may be reduced to 50 ppm or less, and if purification annealing is performed sufficiently, it may even reach a level that cannot be detected by general analysis (1 ppm or less).
It should be noted that the above chemical composition of the grain-oriented electrical steel sheet according to the present invention is the chemical composition of the final product, and is different from the composition of the later-described slab, which is also the starting material.

本発明に係る方向性電磁鋼板の化学成分は、鋼の一般的な分析方法によって測定すればよい。例えば、方向性電磁鋼板の化学成分は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。具体的には、方向性電磁鋼板から採取した35mm角の試験片を、島津製作所製ICPS-8100等(測定装置)により、予め作成した検量線に基づいた条件で測定することにより、化学組成が特定される。なお、CおよびSは燃焼-赤外線吸収法を用いて測定し、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。 The chemical components of the grain-oriented electrical steel sheet according to the present invention may be measured by a general steel analysis method. For example, the chemical composition of a grain-oriented electrical steel sheet may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Specifically, a 35 mm square test piece taken from a grain-oriented electrical steel sheet is measured using a Shimadzu ICPS-8100 (measuring device) under conditions based on a pre-prepared calibration curve to determine the chemical composition. be identified. Note that C and S may be measured using a combustion-infrared absorption method, and N may be measured using an inert gas melting-thermal conductivity method.

本発明に係る方向性電磁鋼板の表面に、一般的に方向性電磁鋼板に設けられる被膜を、形成してもよい。これらは、例えば、グラス被膜、絶縁被膜、張力被膜などと呼ばれる。 A coating generally provided on grain-oriented electrical steel sheets may be formed on the surface of the grain-oriented electrical steel sheet according to the present invention. These are called, for example, glass coatings, insulation coatings, tension coatings, and the like.

ただし、これらの被膜は、本発明に係る方向性電磁鋼板の必須の要素ではない。本発明に係る方向性電磁鋼板の上記の化学組成は、被膜を有する方向性電磁鋼板においては、その基材となる鋼成分の組成であり、表面の絶縁被膜を研削等により除去した後に測定するものとする。 However, these coatings are not essential elements of the grain-oriented electrical steel sheet according to the present invention. The above chemical composition of the grain-oriented electrical steel sheet according to the present invention is the composition of the steel component that is the base material of the grain-oriented electrical steel sheet with a coating, and is measured after removing the surface insulation coating by grinding etc. shall be taken as a thing.

次に、本発明に係る方向性電磁鋼板の製造方法の一態様について説明する。本発明に係る方向性電磁鋼板の製造方法は、鋳造工程、熱間圧延工程、冷間圧延工程、脱炭焼鈍工程、仕上焼鈍工程を有し、冷間圧延工程以降に圧延方向と交差する方向かつ溝深さ方向が板厚方向となる溝を一定間隔で形成する工程を含み、
溝の深さd(μm)が溝形成材のB8(T)と溝未形成材のB8(T)から決定される。なお、ここで、B8(T)とは、鋼板を800(A/m)で励磁した場合の磁束密度である。
Next, one embodiment of the method for manufacturing a grain-oriented electrical steel sheet according to the present invention will be described. The method for producing a grain-oriented electrical steel sheet according to the present invention includes a casting process, a hot rolling process, a cold rolling process, a decarburization annealing process, and a finish annealing process, and after the cold rolling process, the direction intersecting the rolling direction is and includes a step of forming grooves at regular intervals in which the groove depth direction is in the plate thickness direction,
The depth d (μm) of the groove is determined from B8(T) of the grooved material and B8(T) of the grooved material. Note that here, B8(T) is the magnetic flux density when the steel plate is excited at 800 (A/m).

以下に示す工程及び各工程での定量的な条件は、本発明の実施可能性を示すために採用した一例であり、本発明は、これら工程及び定量値に限定されるものではない。本発明に係る方向性電磁鋼板の製造方法は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。 The steps and quantitative conditions in each step shown below are examples adopted to demonstrate the feasibility of implementing the present invention, and the present invention is not limited to these steps and quantitative values. The method for manufacturing a grain-oriented electrical steel sheet according to the present invention may employ various conditions as long as the purpose of the present invention is achieved without departing from the gist of the present invention.

(鋳造工程)
鋳造工程では、スラブを準備する。スラブの製造方法の一例は次のとおりである。溶鋼を製造(溶製)する。溶鋼を用いてスラブを製造する。連続鋳造法によりスラブを製造してもよい。溶鋼を用いてインゴットを製造し、インゴットを分塊圧延してスラブを製造してもよい。スラブの厚さは、特に限定されない。スラブの厚さは、例えば、150mm~350mmである。スラブの厚さは、好ましくは、220mm~280mmである。スラブとして、厚さが10mm~70mmの、いわゆる薄スラブを用いてもよい。薄スラブを用いる場合、熱間工程において、仕上げ圧延前の粗圧延を省略できる。
(Casting process)
In the casting process, a slab is prepared. An example of a method for manufacturing a slab is as follows. Manufacture (melting) molten steel. Manufacture slabs using molten steel. The slab may be manufactured by continuous casting. An ingot may be manufactured using molten steel, and the ingot may be subjected to blooming rolling to manufacture a slab. The thickness of the slab is not particularly limited. The thickness of the slab is, for example, 150 mm to 350 mm. The thickness of the slab is preferably between 220 mm and 280 mm. As the slab, a so-called thin slab having a thickness of 10 mm to 70 mm may be used. When using a thin slab, rough rolling before finish rolling can be omitted in the hot process.

スラブの化学組成は、一般的な方向性電磁鋼板の製造に用いられるスラブの化学組成を用いることができる。スラブの化学組成は、例えば、次の元素を含有する。 As the chemical composition of the slab, the chemical composition of a slab used in the production of general grain-oriented electrical steel sheets can be used. The chemical composition of the slab contains, for example, the following elements.

C:0.085%以下、
Cは、製造工程においては一次再結晶組織の制御に有効な元素であるものの、最終製品への含有量が過剰であると磁気特性に悪影響を及ぼす。したがって、C含有量は0.085%以下である。C含有量の好ましい上限は0.075%である。Cは主に後述の脱炭焼鈍工程で除去され、仕上げ焼鈍工程後には0.005%以下となる。Cを含む場合、工業生産における生産性を考慮すると、C含有量の下限は0%超であってもよく、0.001%であってもよい。
C: 0.085% or less,
Although C is an effective element for controlling the primary recrystallized structure in the manufacturing process, if the content in the final product is excessive, it will adversely affect the magnetic properties. Therefore, the C content is 0.085% or less. A preferable upper limit of the C content is 0.075%. C is mainly removed in the decarburization annealing process described below, and becomes 0.005% or less after the final annealing process. When C is included, the lower limit of the C content may be more than 0%, and may be 0.001%, considering productivity in industrial production.

Si:2.00%~7.00%
シリコン(Si)は、方向性電磁鋼板の電気抵抗を高めて鉄損を低下させる。Si含有量が2.00%未満であると、仕上げ焼鈍時にγ変態が生じて、方向性電磁鋼板の結晶方位が損なわれてしまう。一方、Si含有量が7.00%を超えると、冷間加工性が低下して、冷間圧延時に割れが発生しやすくなる。Si含有量の好ましい下限は2.50%であり、さらに好ましくは3.00%である。Si含有量の好ましい上限は4.50%であり、さらに好ましくは4.00%である。
Si: 2.00% to 7.00%
Silicon (Si) increases the electrical resistance of grain-oriented electrical steel sheets and reduces core loss. If the Si content is less than 2.00%, γ transformation occurs during final annealing, and the crystal orientation of the grain-oriented electrical steel sheet is impaired. On the other hand, if the Si content exceeds 7.00%, cold workability decreases and cracks are likely to occur during cold rolling. The lower limit of the Si content is preferably 2.50%, more preferably 3.00%. A preferable upper limit of the Si content is 4.50%, more preferably 4.00%.

Mn:0.05%~1.00%
マンガン(Mn)はS又はSeと結合して、MnS、又は、MnSeを生成し、インヒビターとして機能する。Mnを含有させる場合、Mn含有量が0.05%~1.00%の範囲内にある場合に、二次再結晶が安定する。インヒビターの機能の一部を窒化物によって担う場合は、インヒビターとしてのMnS、又は、MnSe強度は弱めに制御する。このため、Mn含有量の好ましい上限は0.50%であり、さらに好ましくは0.20%である。
Mn: 0.05% to 1.00%
Manganese (Mn) combines with S or Se to produce MnS or MnSe, which functions as an inhibitor. When Mn is included, secondary recrystallization is stabilized when the Mn content is within the range of 0.05% to 1.00%. When a part of the inhibitor function is performed by nitride, the strength of MnS or MnSe as an inhibitor is controlled to be weak. Therefore, the preferable upper limit of the Mn content is 0.50%, and more preferably 0.20%.

S及びSe:合計で0.003%~0.035%
硫黄(S)及びセレン(Se)は、Mnと結合して、MnS又はMnSeを生成し、インヒビターとして機能する。S及びSeの少なくとも一方を含有させる場合、S及びSeの含有量が合計で0.003%~0.035%であると、二次再結晶が安定する。インヒビターの機能の一部を窒化物によって担う場合は、インヒビターとしてのMnS、又は、MnSe強度は弱めに制御する。このため、S及びSe含有量の合計の好ましい上限は0.025%であり、さらに好ましくは0.010%である。S及びSeは仕上げ焼鈍後に残留すると化合物を形成し、鉄損を劣化させる。そのため、仕上げ焼鈍中の純化により、S及びSeをできるだけ少なくすることが好ましい。
S and Se: 0.003% to 0.035% in total
Sulfur (S) and selenium (Se) combine with Mn to produce MnS or MnSe, which functions as an inhibitor. When at least one of S and Se is contained, secondary recrystallization is stabilized when the total content of S and Se is 0.003% to 0.035%. When a part of the inhibitor function is performed by nitride, the strength of MnS or MnSe as an inhibitor is controlled to be weak. Therefore, a preferable upper limit of the total S and Se content is 0.025%, more preferably 0.010%. When S and Se remain after final annealing, they form a compound and deteriorate iron loss. Therefore, it is preferable to reduce S and Se as much as possible by purification during final annealing.

ここで、「S及びSeの含有量が合計で0.003%~0.035%」であるとは、スラブの化学組成がS又はSeのいずれか一方のみを含有し、S又はSeのいずれか一方の含有量が合計で0.003%~0.035%であってもよいし、スラブがS及びSeの両方を含有し、S及びSeの含有量が合計で0.003%~0.035%であってもよい。 Here, "the total content of S and Se is 0.003% to 0.035%" means that the chemical composition of the slab contains only either S or Se, and neither S nor Se The content of either one may be 0.003% to 0.035% in total, or the slab may contain both S and Se, and the content of S and Se may be 0.003% to 0 in total. It may be .035%.

Al:0.010%~0.065%
アルミニウム(Al)は、Nと結合して(Al、Si)Nとして析出し、インヒビターとして機能する。Alを含有させる場合、Alの含有量が0.010%~0.065%の範囲内にある場合に、後述の窒化により形成されるインヒビターとしてのAlNは二次再結晶温度域を拡大し、特に高温域での二次再結晶が安定する。したがって、Alの含有量は0.010%~0.065%である。Al含有量の好ましい下限は0.020%であり、さらに好ましくは0.025%である。二次再結晶の安定性の観点から、Al含有量の好ましい上限は0.040%であり、さらに好ましくは0.030%である。
Al: 0.010% to 0.065%
Aluminum (Al) combines with N to precipitate as (Al, Si)N, and functions as an inhibitor. When containing Al, when the Al content is within the range of 0.010% to 0.065%, AlN as an inhibitor formed by nitriding described below expands the secondary recrystallization temperature range, In particular, secondary recrystallization is stabilized at high temperatures. Therefore, the Al content is 0.010% to 0.065%. A preferable lower limit of the Al content is 0.020%, more preferably 0.025%. From the viewpoint of stability of secondary recrystallization, the preferable upper limit of the Al content is 0.040%, more preferably 0.030%.

N:0.012%以下
窒素(N)は、Alと結合してインヒビターとして機能する。Nは製造工程の途中で窒化により含有させることが可能であるため下限は規定しない。一方、Nを含有させる場合、N含有量が0.012%を超えると、鋼板中に欠陥の一種であるブリスタが発生しやすくなる。N含有量の好ましい上限は0.010%であり、さらに好ましくは0.009%である。Nは仕上げ焼鈍工程で純化され、仕上げ焼鈍工程後には0.005%以下であってもよい。
N: 0.012% or less Nitrogen (N) combines with Al and functions as an inhibitor. Since N can be contained by nitriding during the manufacturing process, no lower limit is specified. On the other hand, when N is included, if the N content exceeds 0.012%, blisters, which are a type of defect, are likely to occur in the steel sheet. A preferable upper limit of the N content is 0.010%, more preferably 0.009%. N is purified in the final annealing process, and may be 0.005% or less after the final annealing process.

スラブの化学組成の残部はFe及び不純物からなる。なお、ここでいう「不純物」は、スラブを工業的に製造する際に、原材料に含まれる成分、又は製造の過程で混入する成分から不可避的に混入し、本発明の効果に実質的に影響を与えない元素を意味する。 The remainder of the chemical composition of the slab consists of Fe and impurities. In addition, "impurities" as used herein are unavoidable components contained in raw materials or components mixed in during the manufacturing process when slabs are manufactured industrially, and which substantially affect the effects of the present invention. means an element that does not give

スラブの化学組成は、製造上の課題解決のほか、化合物形成によるインヒビター機能の強化や磁気特性への影響を考慮して、Feの一部に代えて、公知の任意元素を含有してもよい。Feの一部に代えて含有される任意元素として、例えば、次の元素が挙げられる。各数値は、それらの元素が任意元素として含有された場合の、上限値を意味する。
質量%で、
Cu:0.40%以下、
Bi:0.010%以下、
B:0.080%以下、
P:0.50%以下、
Ti:0.015%以下、
Sn:0.10%以下、
Sb:0.10%以下、
Cr:0.30%以下、
Ni:1.00%以下、
Nb、V、Mo、Ta、及びWのうちの一種または二種以上:合計で0.030%以下。
これら任意元素は、公知の目的に応じて含有させればよいため、任意元素の含有量の下限値を設ける必要はなく、下限値が0%でもよい。
The chemical composition of the slab may contain known arbitrary elements in place of a portion of Fe, in order to solve manufacturing problems, strengthen the inhibitor function through compound formation, and consider the effect on magnetic properties. . Examples of optional elements contained in place of a part of Fe include the following elements. Each numerical value means the upper limit when those elements are contained as optional elements.
In mass%,
Cu: 0.40% or less,
Bi: 0.010% or less,
B: 0.080% or less,
P: 0.50% or less,
Ti: 0.015% or less,
Sn: 0.10% or less,
Sb: 0.10% or less,
Cr: 0.30% or less,
Ni: 1.00% or less,
One or more of Nb, V, Mo, Ta, and W: 0.030% or less in total.
These arbitrary elements may be contained according to known purposes, so there is no need to set a lower limit for the content of the arbitrary elements, and the lower limit may be 0%.

(熱間圧延工程)
熱間圧延工程は、所定の温度(例えば1100℃~1400℃)に加熱されたスラブの熱間圧延を行い、熱間圧延鋼板を得る工程である。熱間圧延工程では、例えば、加熱工程で加熱された珪素鋼素材(スラブ)の粗圧延を行った後、仕上げ圧延を行って所定厚さ、例えば、1.8mm~3.5mmの熱間圧延鋼板とする。仕上げ圧延終了後、熱間圧延鋼板を所定の温度で巻き取ってもよい。
(Hot rolling process)
The hot rolling step is a step of hot rolling a slab heated to a predetermined temperature (for example, 1100° C. to 1400° C.) to obtain a hot rolled steel plate. In the hot rolling process, for example, the silicon steel material (slab) heated in the heating process is roughly rolled, and then finish rolled to a predetermined thickness, for example, 1.8 mm to 3.5 mm. Use steel plate. After finish rolling, the hot rolled steel sheet may be rolled up at a predetermined temperature.

インヒビターとしてのMnS強度がそれほど必要でない場合は、生産性を考慮すれば、スラブ加熱温度は1100℃~1280℃とすることが好ましい。 When the strength of MnS as an inhibitor is not so necessary, the slab heating temperature is preferably 1100° C. to 1280° C. in consideration of productivity.

(熱延板焼鈍工程)
本発明の一態様による製造方法は、熱延板焼鈍工程を含んでもよい。熱延板焼鈍工程は、熱間圧延工程で得た熱間圧延鋼板を所定の温度条件(例えば750℃~1200℃で、30秒間~10分間)で焼鈍して、焼鈍鋼板を得る工程である。
熱延板焼鈍工程は、高温スラブ加熱プロセスにおいてはAlNなどの析出物の形態を最終的に制御する工程であり、均一かつ微細に析出するように条件調整することができる。
(Hot rolled plate annealing process)
The manufacturing method according to one aspect of the present invention may include a hot rolled sheet annealing step. The hot rolled plate annealing process is a process of annealing the hot rolled steel plate obtained in the hot rolling process under predetermined temperature conditions (for example, 750 ° C to 1200 ° C, for 30 seconds to 10 minutes) to obtain an annealed steel plate. .
The hot-rolled plate annealing process is a process that ultimately controls the form of precipitates such as AlN in the high-temperature slab heating process, and conditions can be adjusted so that the precipitates are uniform and fine.

(冷間圧延工程)
冷間圧延工程は、熱間圧延工程で得た熱間圧延鋼板、または熱延板焼鈍工程で得た焼鈍鋼板を、1回の冷間圧延、又は焼鈍(中間焼鈍)を介して複数回(2回以上)の冷間圧延(例えば総冷延率で80%~95%)により、例えば、0.10mm~0.50mmの厚さを有する冷間圧延鋼板を得る工程である。
(cold rolling process)
In the cold rolling process, the hot rolled steel plate obtained in the hot rolling process or the annealed steel plate obtained in the hot rolled plate annealing process is cold rolled once or multiple times (through annealing (intermediate annealing)). This is a process of obtaining a cold rolled steel sheet having a thickness of, for example, 0.10 mm to 0.50 mm by cold rolling (for example, at a total cold rolling rate of 80% to 95%) (two or more times).

(脱炭焼鈍工程)
脱炭焼鈍工程は、冷間圧延工程で得た冷間圧延鋼板に脱炭焼鈍(例えば700℃~900℃で1分間~3分間)を行い、一次再結晶が生じた脱炭焼鈍鋼板を得る工程である。冷間圧延鋼板に脱炭焼鈍を行うことで、冷間圧延鋼板中に含まれるCが除去される。脱炭焼鈍は、冷間圧延鋼板中に含まれる「C」を除去するために、湿潤雰囲気中で行うことが好ましい。
(Decarburization annealing process)
In the decarburization annealing process, the cold rolled steel plate obtained in the cold rolling process is subjected to decarburization annealing (for example, at 700°C to 900°C for 1 minute to 3 minutes) to obtain a decarburized annealed steel plate in which primary recrystallization has occurred. It is a process. By performing decarburization annealing on the cold rolled steel sheet, C contained in the cold rolled steel sheet is removed. The decarburization annealing is preferably performed in a humid atmosphere in order to remove "C" contained in the cold rolled steel sheet.

(窒化処理)
本発明の一態様による製造方法は、窒化処理工程を含んでもよい。窒化処理は、二次再結晶におけるインヒビターの強度を調整するため、必要に応じて実施する工程である。窒化処理は、脱炭処理の開始から、仕上げ焼鈍における二次再結晶の開始までの間に、鋼板の窒素量を40ppm~200ppm程度増加させる。窒化処理としては、例えば、アンモニア等の窒化能のあるガスを含有する雰囲気中で焼鈍する処理、MnN等の窒化能を有する粉末を含む焼鈍分離剤を塗布した脱炭焼鈍鋼板を仕上げ焼鈍する処理等が例示される。
(Nitriding treatment)
The manufacturing method according to one embodiment of the present invention may include a nitriding step. The nitriding treatment is a process that is performed as necessary to adjust the strength of the inhibitor in secondary recrystallization. The nitriding treatment increases the amount of nitrogen in the steel sheet by about 40 ppm to 200 ppm between the start of decarburization treatment and the start of secondary recrystallization in final annealing. Examples of the nitriding treatment include annealing in an atmosphere containing a gas with nitriding ability such as ammonia, and finish annealing of a decarburized annealed steel sheet coated with an annealing separator containing a powder with nitriding ability such as MnN. etc. are exemplified.

(焼鈍分離剤塗布工程)
焼鈍分離剤塗布工程は、脱炭焼鈍鋼板に焼鈍分離剤を塗布する工程であり、必要に応じて実施する工程である。焼鈍分離剤としては、例えば、MgOを主成分とする焼鈍分離剤を用いることができる。焼鈍分離剤を塗布後の脱炭焼鈍鋼板は、コイル状に巻取った状態で、次の仕上げ焼鈍工程で仕上げ焼鈍される。
(Annealing separator application process)
The annealing separator application process is a process of applying an annealing separator to a decarburized annealed steel plate, and is a process that is performed as necessary. As the annealing separator, for example, an annealing separator containing MgO as a main component can be used. The decarburized and annealed steel sheet coated with the annealing separator is wound up into a coil and is finish annealed in the next finish annealing step.

(仕上げ焼鈍工程)
仕上げ焼鈍工程は、脱炭焼鈍鋼板、焼鈍分離剤が塗布された脱炭焼鈍鋼板に仕上げ焼鈍を施し、二次再結晶を生じさせる工程である。この工程は、一次再結晶粒の成長をインヒビターにより抑制した状態で二次再結晶を進行させることによって、{100}<001>方位粒を優先成長させ、磁束密度を飛躍的に向上させる。
(Final annealing process)
The final annealing step is a step in which a decarburized annealed steel sheet or a decarburized annealed steel sheet coated with an annealing separator is subjected to final annealing to cause secondary recrystallization. In this step, by proceeding with secondary recrystallization while suppressing the growth of primary recrystallized grains with an inhibitor, {100}<001> oriented grains grow preferentially, and the magnetic flux density is dramatically improved.

(張力被膜形成工程)
鋼板に、コーティング溶液(例えば、りん酸又はりん酸塩、無水クロム酸又はクロム酸塩、及びコロイド状シリカを含むコーティング溶液)を塗布して焼き付けて(例えば、350℃~1150℃で、5秒間~300秒間)、張力被膜を形成してもよい。
(Tension film formation process)
A coating solution (e.g., containing phosphoric acid or phosphates, chromic acid or chromate anhydride, and colloidal silica) is applied to a steel plate and baked (e.g., at 350°C to 1150°C for 5 seconds). 300 seconds) to form a tension coating.

(溝形成工程)
方向性電磁鋼板には、磁区制御(磁区細分化)を目的として、冷間圧延後の工程で、レーザー、電子ビーム、プラズマ、機械的方法、エッチングなど、公知の手法により、局所的な溝が形成される。一般的には、深さがおよそ数μmから数十μmの溝が、圧延直角方向と0~50°の角度をなす方向に延伸して、およそ数mmから数十mmの間の一定の間隔で形成される。本発明の一態様での溝の深さd(mm)については後述する。また、本発明の一態様では、溝は圧延直角方向と0~30°の角度をなす方向に延伸して、およそ2mmから30mmの間の一定の間隔で形成されるとよい。ここで一定とは、上記で規定した間隔に対し、実際の各溝の間の間隔が規定した値に対し±10%以内の変動の中に納まることを意味する。また、溝幅は、20μmから100μmであるとよい。なお溝幅は溝形成方向と垂直な断面における平均寸法を指す。
溝を形成するタイミングは冷間圧延直後かつ脱炭焼鈍前、脱炭焼鈍後、仕上焼鈍後、張力被膜形成後などが挙げられ、任意のタイミングで溝を形成すれば良い。
本発明は形成される溝の深さを溝を形成した状態および溝を形成しない状態の電磁鋼板の磁束密度との関係で規定するものである。
(Groove formation process)
For the purpose of magnetic domain control (magnetic domain refining), grain-oriented electrical steel sheets are made with local grooves using known methods such as laser, electron beam, plasma, mechanical methods, and etching in the post-cold rolling process. It is formed. Generally, grooves with a depth of approximately several μm to several tens of μm extend in a direction that makes an angle of 0 to 50 degrees with the direction perpendicular to the rolling direction, and at regular intervals of approximately several mm to several tens of mm. is formed. The depth d (mm) of the groove in one embodiment of the present invention will be described later. Further, in one aspect of the present invention, the grooves may extend in a direction forming an angle of 0 to 30 degrees with the direction perpendicular to the rolling direction, and be formed at regular intervals of about 2 mm to 30 mm. Here, "constant" means that the actual spacing between each groove is within ±10% of the prescribed value with respect to the spacing prescribed above. Further, the groove width is preferably from 20 μm to 100 μm. Note that the groove width refers to the average dimension in a cross section perpendicular to the groove forming direction.
The grooves may be formed at any timing, such as immediately after cold rolling and before decarburization annealing, after decarburization annealing, after final annealing, or after the formation of a tension film.
In the present invention, the depth of the grooves to be formed is defined in relation to the magnetic flux density of the electromagnetic steel sheet with and without grooves.

本発明の一態様によれば、溝の深さd(μm)が下記式(2)を満たすものであってもよい。

Figure 0007385098000003
ここで、B8(T)は鋼板を800(A/m)で励磁した場合の磁束密度であり、B8nは溝未形成材または溝を除去した鋼板の磁束密度B8であり、B8mは溝形成材の磁束密度B8である。
この式(2)によれば、溝未形成材(溝を形成する前の電磁鋼板)または溝を除去した電磁鋼板(素材)の磁束密度B8n、および溝形成材(溝を形成した後の電磁鋼板)の磁束密度B8mから、本発明が規定するB8mを得るための溝の深さdを求めることができる。言い換えると、式(2)を満たす溝の深さdの溝を形成することにより、溝形成材(溝を形成した後の電磁鋼板)のB8mを得ることができる。また、(2)式を満たす溝の深さdを有する鋼板であれば、鉄損を小さくすることができる。溝形成材のB8mは、1.93≧B8m≧1.87であってもよい。また、溝未形成材のB8nの下限値は、1.90(T)以下を採用してもよいが、1.91(T)としてもよい。また、B8nの上限値は、1.95(T)以上を採用してもよいが、1.94(T)としてもよい。 According to one aspect of the present invention, the depth d (μm) of the groove may satisfy the following formula (2).
Figure 0007385098000003
Here, B8(T) is the magnetic flux density when the steel plate is excited at 800 (A/m), B8n is the magnetic flux density B8 of the non-grooved material or the steel plate from which the grooves have been removed, and B8m is the magnetic flux density of the grooved material. The magnetic flux density is B8.
According to this equation (2), the magnetic flux density B8n of the non-grooved material (electromagnetic steel sheet before forming grooves) or the electromagnetic steel sheet (material) with grooves removed, and the magnetic flux density B8n of the grooved material (electromagnetic steel sheet after forming grooves) From the magnetic flux density B8 m of the steel plate), the depth d of the groove to obtain B8 m defined by the present invention can be determined. In other words, by forming a groove with a groove depth d that satisfies formula (2), B8 m of the groove forming material (electromagnetic steel sheet after forming the groove) can be obtained. In addition, iron loss can be reduced if the steel plate has a groove depth d that satisfies equation (2). B8 m of the groove forming material may be 1.93≧B8 m ≧1.87. Further, the lower limit value of B8n of the non-grooved material may be 1.90 (T) or less, or may be 1.91 (T). Further, the upper limit value of B8n may be 1.95(T) or more, or may be 1.94(T).

本発明について、以下の実施例を用いて説明する。ただし、本発明は、この実施例に限定して解釈されるべきものではない。 The present invention will be explained using the following examples. However, the present invention should not be interpreted as being limited to this example.

通常の方法で製造された、張力被膜を形成された板厚0.23mmの方向性電磁鋼板(Si含有率2.00~7.00%、残部がFeおよび不純物である化学組成を有する)を数種類用意した。電磁鋼板は溝形成前のB8nが1.90~1.96(T)であった。各電磁鋼板に、板幅方向にほぼ平行に、間隔5mmにて歯車ロールにより幅50μmの溝を導入した。このとき、歯車ロールに付与する圧力を変化させ、溝深さdを表1に記載の様々な深さになるように制御した。溝形成後の試料について、溝形成後のB8k(T)および鉄損W17/50(W/kg)を測定した。測定結果を表1に示す。
なお、表1の評価<1>は、溝形成後のB8k(T)が下記式を満たすものを『〇』とし、満たさないものは『-』とした。『〇』は、溝形成による磁束密度の低下が小さいことを意味する。
B8k(T)≧1.87(T)
また、表1の評価<2>は、鉄損W17/50(W/kg)が、0.84超のものを『-』、0.84以下のものを『〇』、0.78以下のものを『◎』、0.72以下のものを『☆』とした。
本発明によれば、溝形成による磁束密度の低下が小さく、低鉄損である、電磁鋼板が得られる。
A grain-oriented electrical steel sheet (with a chemical composition of 2.00 to 7.00% Si content, the balance being Fe and impurities) with a thickness of 0.23 mm and which has a tension coating formed thereon is produced by a conventional method. Several types were prepared. The B8n of the electromagnetic steel sheet before groove formation was 1.90 to 1.96 (T). Grooves with a width of 50 μm were introduced into each electromagnetic steel sheet substantially parallel to the sheet width direction at intervals of 5 mm using a gear roll. At this time, the pressure applied to the gear roll was changed to control the groove depth d to be the various depths listed in Table 1. B8k (T) and iron loss W17/50 (W/kg) after groove formation were measured for the sample after groove formation. The measurement results are shown in Table 1.
For evaluation <1> in Table 1, those whose B8k(T) after groove formation satisfies the following formula are marked as "O", and those that do not meet are marked as "-". “〇” means that the decrease in magnetic flux density due to groove formation is small.
B8k(T)≧1.87(T)
In addition, for evaluation <2> in Table 1, iron loss W17/50 (W/kg) is ``-'' if it is over 0.84, ``〇'' if it is 0.84 or less, and ``〇'' if it is 0.78 or less. Those with a score of 0.72 or less were marked with a "◎" and those with a score of 0.72 or less were marked with a "☆."
According to the present invention, it is possible to obtain an electromagnetic steel sheet in which the decrease in magnetic flux density due to groove formation is small and the iron loss is low.

Figure 0007385098000004
Figure 0007385098000004

通常の方法で製造された、張力被膜を形成された板厚0.23mmの方向性電磁鋼板(Si含有率2.00~7.00%、残部がFeおよび不純物である化学組成を有する)を数種類用意した。電磁鋼板は溝形成前のB8naが1.90~1.91(T)であった。各電磁鋼板に、板幅方向にほぼ平行に、間隔5mmにて歯車ロールにより幅50μmの溝を導入した。本発明例で導入する溝の深さdは、溝形成後のB8ma(T)を設定し、上記の溝形成前のB8naと合わせて、下記式に代入することにより、決定した。

Figure 0007385098000005
ただし、θ=0°、p=5mmである。
溝を導入する際に、決定した溝深さdとなるように、歯車ロールに付与する圧力を変化させた。同一の条件で100回の再現試験を繰り返した。溝形成後の試料について、溝形成後のB8ka(T)および鉄損W17/50(W/kg)を測定した。B8ka(T)の平均値および、鉄損W17/50が0.8(W/kg)以下の収率の結果を表2に示す。ここで、収率が95%以上であった場合に○、95%未満であった場合に-とした。なお、比較例は図1を用いて従来通りの方法で溝を形成した結果である。
本発明によれば、溝形成による磁束密度の低下が小さく、低鉄損の電磁鋼板が、高収率で得られる。 A grain-oriented electrical steel sheet (with a chemical composition of 2.00 to 7.00% Si content, the balance being Fe and impurities) with a thickness of 0.23 mm and which has a tension coating formed thereon is produced by a conventional method. Several types were prepared. The electromagnetic steel sheet had a B8na of 1.90 to 1.91 (T) before groove formation. Grooves with a width of 50 μm were introduced into each electromagnetic steel sheet substantially parallel to the sheet width direction at intervals of 5 mm using a gear roll. The depth d of the groove introduced in the example of the present invention was determined by setting B8ma(T) after groove formation and substituting it into the following formula together with B8na before groove formation.
Figure 0007385098000005
However, θ=0° and p=5 mm.
When introducing the grooves, the pressure applied to the gear roll was varied so that the determined groove depth d was achieved. The reproduction test was repeated 100 times under the same conditions. B8ka (T) and iron loss W17/50 (W/kg) after groove formation were measured for the sample after groove formation. Table 2 shows the average value of B8ka (T) and the results of yields with iron loss W17/50 of 0.8 (W/kg) or less. Here, when the yield was 95% or more, it was marked as ○, and when it was less than 95%, it was marked as -. Note that the comparative example is the result of forming grooves using a conventional method using FIG.
According to the present invention, an electromagnetic steel sheet with a small decrease in magnetic flux density due to groove formation and a low core loss can be obtained at a high yield.

Figure 0007385098000006
Figure 0007385098000006

通常の方法で製造された、張力被膜を形成された板厚0.23mmの方向性電磁鋼板(Si含有率3.20%、残部がFeおよび不純物である化学組成を有する)を用意した。電磁鋼板は溝形成前のB8nが1.90(T)であった。各電磁鋼板に、板幅方向にほぼ平行に、間隔5mmにて歯車ロールにより溝を導入した。このとき、歯車ロールに付与する圧力を変化させ、溝深さdをほぼ20μmに調整した。
表3に記載の様々な溝幅Wになるように制御した。溝形成後の試料について、溝形成後のB8k(T)および鉄損W17/50(W/kg)を測定した。測定結果を表3に示す。
なお、表3の評価<1>は、溝形成後のB8k(T)が下記式を満たすものを『〇』とし、満たさないものは『-』とした。『〇』は、溝形成による磁束密度の低下が小さいことを意味する。
B8k(T)≧1.87(T)
また、表3の評価<2>は、鉄損W17/50(W/kg)が、0.84超のものを『-』、0.84以下のものを『〇』、0.78以下のものを『◎』、0.72以下のものを『☆』とした。
本発明によれば、溝形成による磁束密度の低下が小さく、低鉄損である、電磁鋼板が得られる。
A grain-oriented electrical steel sheet (having a chemical composition of 3.20% Si content and the balance being Fe and impurities) having a thickness of 0.23 mm and having a tension coating formed thereon was prepared by a conventional method. The B8n of the electromagnetic steel sheet before groove formation was 1.90 (T). Grooves were introduced into each electromagnetic steel sheet approximately parallel to the sheet width direction at intervals of 5 mm using a gear roll. At this time, the groove depth d was adjusted to approximately 20 μm by changing the pressure applied to the gear roll.
The groove widths W were controlled to be various as shown in Table 3. B8k (T) and iron loss W17/50 (W/kg) after groove formation were measured for the sample after groove formation. The measurement results are shown in Table 3.
For evaluation <1> in Table 3, those whose B8k(T) after groove formation satisfies the following formula are marked as "O", and those that do not meet are marked as "-". “〇” means that the decrease in magnetic flux density due to groove formation is small.
B8k(T)≧1.87(T)
In addition, for evaluation <2> in Table 3, iron loss W17/50 (W/kg) is "-" if it is over 0.84, "○" if it is 0.84 or less, and "〇" if it is 0.78 or less. Those with a score of 0.72 or less were marked with a "◎" and those with a score of 0.72 or less were marked with a "☆."
According to the present invention, it is possible to obtain an electromagnetic steel sheet in which the decrease in magnetic flux density due to groove formation is small and the iron loss is low.

Figure 0007385098000007
Figure 0007385098000007

通常の方法で製造された、張力被膜を形成された板厚0.23mmの方向性電磁鋼板(Si含有率3.20%、残部がFeおよび不純物である化学組成を有する)を用意した。電磁鋼板は溝形成前のB8nが1.90(T)であった。各電磁鋼板に、板幅方向にほぼ平行に、間隔1.5~40mmにて歯車ロールにより溝を導入した。このとき、歯車ロールに付与する圧力を制御し、溝深さdをほぼ20μmに調整した。
表4に記載の様々な溝間隔pになるように制御した。溝形成後の試料について、溝形成後のB8k(T)および鉄損W17/50(W/kg)を測定した。測定結果を表4に示す。
なお、表4の評価<1>は、溝形成後のB8k(T)が下記式を満たすものを『〇』とし、満たさないものは『-』とした。『〇』は、溝形成による磁束密度の低下が小さいことを意味する。
B8k(T)≧1.87(T)
また、表4の評価<2>は、鉄損W17/50(W/kg)が、0.84超のものを『-』、0.84以下のものを『〇』、0.78以下のものを『◎』、0.72以下のものを『☆』とした。
本発明によれば、溝形成による磁束密度の低下が小さく、低鉄損である、電磁鋼板が得られる。
A grain-oriented electrical steel sheet (having a chemical composition of 3.20% Si content and the balance being Fe and impurities) having a thickness of 0.23 mm and having a tension coating formed thereon was prepared by a conventional method. The B8n of the electromagnetic steel sheet before groove formation was 1.90 (T). Grooves were introduced into each electromagnetic steel sheet approximately parallel to the width direction of the sheet at intervals of 1.5 to 40 mm using a gear roll. At this time, the pressure applied to the gear roll was controlled to adjust the groove depth d to approximately 20 μm.
The groove spacing p was controlled to be various as shown in Table 4. B8k (T) and iron loss W17/50 (W/kg) after groove formation were measured for the sample after groove formation. The measurement results are shown in Table 4.
For evaluation <1> in Table 4, those whose B8k(T) after groove formation satisfies the following formula are marked as "O", and those that do not meet are marked as "-". “〇” means that the decrease in magnetic flux density due to groove formation is small.
B8k(T)≧1.87(T)
In addition, for evaluation <2> in Table 4, iron loss W17/50 (W/kg) is ``-'' if it is over 0.84, ``〇'' if it is 0.84 or less, and ``○'' if it is 0.78 or less. Those with a score of 0.72 or less were marked with a "◎" and those with a score of 0.72 or less were marked with a "☆."
According to the present invention, it is possible to obtain an electromagnetic steel sheet in which the decrease in magnetic flux density due to groove formation is small and the iron loss is low.

Figure 0007385098000008
Figure 0007385098000008

Claims (1)

鋳造工程、熱間圧延工程、冷間圧延工程、脱炭焼鈍工程、仕上焼鈍工程を有する、質量%で、Si:2.00~7.00%を含有し、残部がFe及び不純物である化学組成を有する方向性電磁鋼板の製造方法であって、冷間圧延工程以降に圧延方向と交差する方向かつ溝深さ方向が板厚方向となる溝を一定間隔で形成する溝形成工程を含み、
前記溝形成工程が、張力被膜形成工程後であり、
前記鋼板を800(A/m)で励磁した場合の磁束密度をB8(T)と定義し、
溝形成材の目標B8(T)をB8m(T)と定義し、溝未形成材のB8(T)をB8n(T)と定義し、該溝の間隔をp(mm)、該溝が圧延直角方向となす角度をθ(°)と定義した場合に、前記溝形成工程で形成される溝深さd(μm)が以下の式(2)に従って算出されたことを特徴とし、溝の幅Wが20~100μmである、方向性電磁鋼板の製造方法。
ここで
B8n≧1.90(T)、B8m≧1.87(T)
0≦θ≦30°
2≦p≦30
q=0.075である。
A chemical that includes a casting process, a hot rolling process, a cold rolling process, a decarburization annealing process, and a final annealing process, and contains Si: 2.00 to 7.00% by mass %, and the balance is Fe and impurities. A method for producing a grain-oriented electrical steel sheet having a composition, comprising a groove forming step of forming grooves at regular intervals in a direction intersecting the rolling direction and with the groove depth direction in the sheet thickness direction after the cold rolling step,
The groove forming step is after the tension coating forming step,
The magnetic flux density when the steel plate is excited at 800 (A/m) is defined as B8 (T),
The target B8(T) of the grooved material is defined as B8m(T), the B8(T) of the non-grooved material is defined as B8n(T), the interval between the grooves is p (mm), and the groove is rolled. The groove depth d (μm) formed in the groove forming step is calculated according to the following formula (2), where the angle formed with the perpendicular direction is defined as θ (°), and the groove width A method for producing a grain-oriented electrical steel sheet in which W is 20 to 100 μm.
here
B8n≧1.90(T), B8m≧1.87(T)
0≦θ≦30°
2≦p≦30
q=0.075.
JP2019039058A 2019-03-04 2019-03-04 Grain-oriented electrical steel sheet with good iron loss and its manufacturing method Active JP7385098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019039058A JP7385098B2 (en) 2019-03-04 2019-03-04 Grain-oriented electrical steel sheet with good iron loss and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019039058A JP7385098B2 (en) 2019-03-04 2019-03-04 Grain-oriented electrical steel sheet with good iron loss and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020143314A JP2020143314A (en) 2020-09-10
JP7385098B2 true JP7385098B2 (en) 2023-11-22

Family

ID=72353368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019039058A Active JP7385098B2 (en) 2019-03-04 2019-03-04 Grain-oriented electrical steel sheet with good iron loss and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7385098B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144251A (en) 1998-11-09 2000-05-26 Nippon Steel Corp Manufacture of grain oriented silicon steel having stress relief annealing resistance and low core loss
JP2000173814A (en) 1998-12-04 2000-06-23 Nippon Steel Corp Manufacture of small iron loss unidirectional electromagnetic steel sheet
JP2002220642A (en) 2001-01-29 2002-08-09 Kawasaki Steel Corp Grain-oriented electromagnetic steel sheet with low iron loss and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125621A (en) * 1986-11-15 1988-05-28 Nippon Steel Corp Production of low iron loss grain oriented electrical steel sheet
JPH086140B2 (en) * 1990-08-01 1996-01-24 川崎製鉄株式会社 Method for manufacturing low iron loss grain-oriented electrical steel sheet
JPH10183251A (en) * 1996-12-19 1998-07-14 Nippon Steel Corp Production of low core loss grain oriented silicon steel sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144251A (en) 1998-11-09 2000-05-26 Nippon Steel Corp Manufacture of grain oriented silicon steel having stress relief annealing resistance and low core loss
JP2000173814A (en) 1998-12-04 2000-06-23 Nippon Steel Corp Manufacture of small iron loss unidirectional electromagnetic steel sheet
JP2002220642A (en) 2001-01-29 2002-08-09 Kawasaki Steel Corp Grain-oriented electromagnetic steel sheet with low iron loss and manufacturing method therefor

Also Published As

Publication number Publication date
JP2020143314A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
KR101445467B1 (en) Process for producing grain-oriented magnetic steel sheet
JP5772410B2 (en) Method for producing grain-oriented electrical steel sheet
CN109844156B (en) Hot-rolled steel sheet for producing electromagnetic steel sheet and method for producing same
JP5446377B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2012177149A (en) Grain-oriented silicon steel sheet, and method for manufacturing the same
RU2610204C1 (en) Method of making plate of textured electrical steel
KR101389248B1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
WO2012001952A1 (en) Oriented electromagnetic steel plate and production method for same
JP7393698B2 (en) Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
KR101351956B1 (en) Grain-oriented electrical steel sheets having excellent magnetic properties and method for manufacturing the same
WO2007136137A1 (en) Process for producing grain-oriented magnetic steel sheet with high magnetic flux density
JP5782527B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
EP1162280A2 (en) Method for producing a grain-oriented electrical steel sheet excellent in magnetic properties
JP6856179B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5757693B2 (en) Low iron loss unidirectional electrical steel sheet manufacturing method
WO2019146694A1 (en) Grain-oriented electromagnetic steel sheet
JP2024503998A (en) Grain-oriented electrical steel sheet and its manufacturing method
JP6607010B2 (en) Method for producing grain-oriented electrical steel sheet
JP4932544B2 (en) Method for producing grain-oriented electrical steel sheet capable of stably obtaining magnetic properties in the plate width direction
WO2012001957A1 (en) Oriented magnetic steel sheet and production method thereof
JP7385098B2 (en) Grain-oriented electrical steel sheet with good iron loss and its manufacturing method
JPH09256051A (en) Production of grain oriented silicon steel sheet
JP2024502756A (en) Grain-oriented electrical steel sheet and its manufacturing method
JP6879320B2 (en) Manufacturing method of grain-oriented electrical steel sheet
US20230243010A1 (en) Production method for grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230823

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R151 Written notification of patent or utility model registration

Ref document number: 7385098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151