JP2020143314A - Directional electromagnetic steel plate having good iron loss and producing method thereof - Google Patents

Directional electromagnetic steel plate having good iron loss and producing method thereof Download PDF

Info

Publication number
JP2020143314A
JP2020143314A JP2019039058A JP2019039058A JP2020143314A JP 2020143314 A JP2020143314 A JP 2020143314A JP 2019039058 A JP2019039058 A JP 2019039058A JP 2019039058 A JP2019039058 A JP 2019039058A JP 2020143314 A JP2020143314 A JP 2020143314A
Authority
JP
Japan
Prior art keywords
groove
steel sheet
grooves
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019039058A
Other languages
Japanese (ja)
Other versions
JP7385098B2 (en
Inventor
史明 高橋
Fumiaki Takahashi
史明 高橋
濱村 秀行
Hideyuki Hamamura
秀行 濱村
新井 聡
Satoshi Arai
聡 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019039058A priority Critical patent/JP7385098B2/en
Publication of JP2020143314A publication Critical patent/JP2020143314A/en
Application granted granted Critical
Publication of JP7385098B2 publication Critical patent/JP7385098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

To provide a directional electromagnetic steel plate, in which grooves for a purpose of magnetic domain control are formed on the surface of the steel plate, which has a sufficiently high magnetic flux density after the groove formation, and has low iron loss.SOLUTION: There is provided a steel plate, which has a chemical composition of Si:2.00 to 7.00% of mass% and Fe and impurities as balances, and has grooves with a constant interval, which is a direction intersecting the rolling direction and whose plate a groove depth direction is a thickness direction. When the magnetic field density when the steel sheet is excited at 800(A/m) is defined at B8 (T), B8 (T) is defined as B8n(T) in a case where the grooves are removed from the steel plate, the groove depth is defined at d (μm), the interval between the grooves is defined at p (mm), and an angel and the angle between the grooves and the direction perpendicular to rolling is defined at θ (°), the directional electromagnetic steel plate satisfies the following formula (1) and has a groove width W of 20 to 100 μm: (1) B8n+{0.1428+0.0032*d-(0.0722+0.0024*d)*B8n}*(3/p)*e^(-qθ)≥1.87 (provided that B8n≥1.90(T), 0≤θ≤30°, 2≤p≤30, and q=0.075).SELECTED DRAWING: Figure 2

Description

本発明は、溝による磁区細分化処理を施す方向性電磁鋼板に関するものであり、特に溝深さを規定することにより、溝形成後の磁束密度が十分高く、かつ低鉄損の方向性電磁鋼板、およびその製造方法に関するものである。 The present invention relates to a grain-oriented electrical steel sheet that is subjected to magnetic domain subdivision processing by grooves. In particular, by defining the groove depth, the magnetic flux density after groove formation is sufficiently high and the grain-oriented electrical steel sheet has low iron loss. , And its manufacturing method.

一方向性電磁鋼板はエネルギー節約の観点から鉄損を低減することが要望されている。特に巻き鉄心トランス用としては、人為的に溝を導入することにより歪取り焼鈍後にも磁区細分化効果を維持する手段が特許文献1に開示されている。この方法は、歯形ロール等の機械的手段により鋼板に溝を導入し磁区細分化を図るものである。 One-way electrical steel sheets are required to reduce iron loss from the viewpoint of energy saving. In particular, for wound iron core transformers, Patent Document 1 discloses a means for maintaining the magnetic domain subdivision effect even after strain removal annealing by artificially introducing a groove. In this method, a groove is introduced into the steel sheet by a mechanical means such as a tooth profile roll to subdivide the magnetic domain.

また、上記の機械的手段以外にも、エッチングによる手段として、特許文献2、特許文献3に開示された技術が存在するが、いずれも溝を導入し、歪取り焼鈍後にも磁区細分化効果を発揮するという点で機械的手段と同様の技術である。 In addition to the above mechanical means, there are techniques disclosed in Patent Documents 2 and 3 as means by etching, but in each case, a groove is introduced to obtain a magnetic domain subdivision effect even after strain removal annealing. It is a technology similar to mechanical means in that it is exerted.

特開平1−252726号公報Japanese Unexamined Patent Publication No. 1-252726 特開昭62−179105号公報Japanese Unexamined Patent Publication No. 62-179105 特開平4−88121号公報Japanese Unexamined Patent Publication No. 4-88121

方向性電磁鋼板では、圧延方向と交差する方向に溝を形成して磁区制御を行うことにより、鉄損を低減することが知られている。 It is known that in grain-oriented electrical steel sheets, iron loss is reduced by forming grooves in a direction intersecting the rolling direction and controlling magnetic domains.

溝形成による磁区制御では、溝を形成することによる鉄損改善(鉄損低下)というメリットはあるが、一方で、溝の存在により磁束密度が低下するという問題がある。実用的には磁束密度の低下を許容できる範囲で調整されるが、明確な設計指針は確立されておらず、最適な形成条件が選定されているとは言えない。 Magnetic domain control by groove formation has the advantage of improving iron loss (reducing iron loss) by forming grooves, but on the other hand, there is a problem that the magnetic flux density decreases due to the presence of grooves. Practically, it is adjusted within an allowable range of decrease in magnetic flux density, but a clear design guideline has not been established, and it cannot be said that the optimum formation conditions have been selected.

本発明者は各種材料の溝の深さと磁気特性の関連を調査するうち、溝の深さと鉄損改善効果の関係には、励磁される磁束密度に応じて変化する溝の深さの最適値が存在することを知見した。例えば特定の試験材において、1.7T励磁での溝深さの最適値は30μm程度であるのに対して、1.5T励磁での溝深さの最適値は35μmを超えていた。 The present inventor investigated the relationship between the groove depth and the magnetic properties of various materials, and found that the relationship between the groove depth and the iron loss improving effect is the optimum value of the groove depth that changes according to the magnetic flux density to be excited. Was found to exist. For example, in a specific test material, the optimum value of the groove depth at 1.7 T excitation was about 30 μm, while the optimum value of the groove depth at 1.5 T excitation exceeded 35 μm.

これらの知見から、本発明者は、磁区制御のために形成する溝の深さの最適値を、鋼板の磁気特性、特に磁束密度との関係で決定することに想い至った。そして、溝の深さだけでなく、溝の配置(溝の間隔、溝と鋼板圧延方向とのなす角度)を、鋼板を800(A/m)で励磁した場合の磁束密度B8(T)との関連で最適化することに成功した。 From these findings, the present inventor has come up with the idea of determining the optimum value of the groove depth formed for magnetic domain control in relation to the magnetic characteristics of the steel sheet, particularly the magnetic flux density. Then, not only the depth of the groove but also the arrangement of the grooves (the distance between the grooves and the angle formed by the groove and the rolling direction of the steel sheet) are set to the magnetic flux density B8 (T) when the steel sheet is excited at 800 (A / m). Succeeded in optimizing in relation to.

本発明は、上記の知見をもととして達成されたものであり、磁区制御を目的として鋼板表面に溝が形成された方向性電磁鋼板において、溝形成後の磁束密度が十分高く、かつ低鉄損の方向性電磁鋼板を得ることを、目的とする。 The present invention has been achieved based on the above findings. In a grain-oriented electrical steel sheet in which grooves are formed on the surface of the steel sheet for the purpose of controlling magnetic domains, the magnetic flux density after the groove formation is sufficiently high and low iron. Direction of loss The purpose is to obtain electrical steel sheets.

本発明により、以下の態様が提供される。
[1]
質量%で、Si:2.00〜7.00%を含有し、残部がFe及び不純物である化学組成を有し、圧延方向と交差する方向かつ溝深さ方向が板厚方向となる溝を一定間隔で有する鋼板であって、
鋼板を800(A/m)で励磁した場合の磁束密度をB8(T)と定義し、前記溝を除去した鋼板のB8(T)をB8n(T)と定義し、該溝の深さをd(μm)と定義し、該溝の間隔をp(mm)、該溝が圧延直角方向となす角度をθ(°)と定義したときに、以下の式(1)を満足し、溝の幅Wが20〜100μmである、方向性電磁鋼板
B8n+{0.1428+0.0032*d-(0.0722+0.0024*d)*B8n}*(3/p)*e^(-qθ)≧1.87 … (1)
ただし、B8n≧1.90(T)
0≦θ≦30°
2≦p≦30
q=0.075
である。
[2]
鋳造工程、熱間圧延工程、冷間圧延工程、脱炭焼鈍工程、仕上焼鈍工程を有する方向性電磁鋼板の製造方法であって、冷間圧延工程以降に、圧延方向と交差する方向かつ溝深さ方向が板厚方向となる溝を一定間隔で形成する溝形成工程を含み、
前記鋼板を800(A/m)で励磁した場合の磁束密度をB8(T)と定義し、該溝の深さd(μm)を溝形成材の目標B8(T)と溝未形成材のB8(T)から決めることを特徴とする方向性電磁鋼板の製造方法。
[3]
溝形成材の目標B8(T)をB8m(T)と定義し、溝未形成材のB8(T)をB8n(T)と定義し、該溝の間隔をp(mm)、該溝が圧延直角方向となす角度をθ(°)と定義した場合に、前記溝形成工程で形成される溝深さd(μm)が以下の式(2)に従って算出されたことを特徴とし、溝の幅Wが20〜100μmである、項目[2]に記載の方向性電磁鋼板の製造方法

Figure 2020143314
ただし、
0≦θ≦30°
2≦p≦30
q=0.075
である。
[4]
前記溝形成工程が、前記冷間圧延工程後かつ前記脱炭焼鈍工程前であることを特徴とする項目[2]または[3]に記載の方向性電磁鋼板の製造方法。
[5]
前記溝形成工程が、張力被膜形成工程後であることを特徴とする項目[2]または[3]に記載の方向性電磁鋼板の製造方法。 The present invention provides the following aspects.
[1]
Grooves containing Si: 2.00 to 7.00% by mass, having a chemical composition in which the balance is Fe and impurities, and having a direction intersecting the rolling direction and a groove depth direction being the plate thickness direction. It is a steel plate held at regular intervals and
The magnetic flux density when the steel sheet is excited at 800 (A / m) is defined as B8 (T), the B8 (T) of the steel sheet from which the grooves are removed is defined as B8n (T), and the depth of the grooves is defined as B8n (T). When defined as d (μm), the distance between the grooves is defined as p (mm), and the angle formed by the grooves in the direction perpendicular to rolling is defined as θ (°), the following equation (1) is satisfied, and the groove Directional electromagnetic steel sheet with width W of 20 to 100 μm
B8n + {0.1428 + 0.0032 * d- (0.0722 + 0.0024 * d) * B8n} * (3 / p) * e ^ (-qθ) ≧ 1.87… (1)
However, B8n ≥ 1.90 (T)
0 ≤ θ ≤ 30 °
2 ≤ p ≤ 30
q = 0.075
Is.
[2]
A method for manufacturing a directional electromagnetic steel plate having a casting process, a hot rolling process, a cold rolling process, a decarburization annealing process, and a finish annealing process. After the cold rolling process, the direction intersects the rolling direction and the groove depth. Including a groove forming step of forming grooves whose vertical direction is the thickness direction at regular intervals.
The magnetic flux density when the steel sheet is excited at 800 (A / m) is defined as B8 (T), and the groove depth d (μm) is defined as the target B8 (T) of the groove forming material and the groove unformed material. A method for manufacturing a directional electromagnetic steel sheet, which comprises determining from B8 (T).
[3]
The target B8 (T) of the groove forming material is defined as B8m (T), the B8 (T) of the ungrooved material is defined as B8n (T), the interval between the grooves is p (mm), and the grooves are rolled. When the angle formed in the perpendicular direction is defined as θ (°), the groove depth d (μm) formed in the groove forming step is calculated according to the following equation (2), and the width of the groove is characterized. The method for manufacturing a directional electromagnetic steel sheet according to item [2], wherein W is 20 to 100 μm.
Figure 2020143314
However,
0 ≤ θ ≤ 30 °
2 ≤ p ≤ 30
q = 0.075
Is.
[4]
The method for producing a grain-oriented electrical steel sheet according to item [2] or [3], wherein the groove forming step is after the cold rolling step and before the decarburization annealing step.
[5]
The method for manufacturing a grain-oriented electrical steel sheet according to item [2] or [3], wherein the groove forming step is after the tension film forming step.

本発明により、方向性電磁鋼板の製品板(張力被膜を形成された方向性電磁鋼板)に溝を形成して磁区制御する場合において、溝形成後の磁束密度が十分高く、かつ低鉄損の方向性電磁鋼板を得ることができる。 According to the present invention, when a groove is formed in a product plate of a grain-oriented electrical steel sheet (a grain-oriented electrical steel sheet having a tension film formed) to control a magnetic domain, the magnetic flux density after the groove formation is sufficiently high and the iron loss is low. A grain-oriented electrical steel sheet can be obtained.

図1は、溝深さdに対する磁束密度の低下量の実験値を整理したチャートである。FIG. 1 is a chart in which experimental values of the amount of decrease in magnetic flux density with respect to the groove depth d are arranged. 図2は、溝形成前の磁束密度B8と、溝形成による磁束密度低下量ΔB8を整理したチャートである。FIG. 2 is a chart in which the magnetic flux density B8 before groove formation and the amount of decrease in magnetic flux density ΔB8 due to groove formation are arranged.

本発明の一態様による方向性電磁鋼板は、質量%で、Si:2.00〜7.00%を含有し、残部がFe及び不純物である化学組成を有し、鋼板表面に鋼板圧延方向と交差する方向かつ溝深さ方向が板厚方向となる溝を一定間隔で有することによって磁区制御を施したものである。
本発明の一態様による溝の深さd(μm)は、以下の式(1)を満足する。
B8n+{0.1428+0.0032*d-(0.0722+0.0024*d)*B8n}*(3/p)*e^(-qθ)≧1.87 … (1)
ここで、B8n(T)とは、溝を除去した鋼板を800(A/m)で励磁した場合の磁束密度である。また、θは、溝が圧延直角方向と交差する角度(°)であり、溝が圧延方向と直交する(鋼板の幅方向である)場合、θ=0(°)である。pは溝の間隔(mm)であり、qは係数であり、以下を満足する。
2≦p≦30
q=0.075
溝により、溝方向に延伸する還流磁区が形成されて、溝の形成前に存在した180°磁区が細分化され、鉄損を下げる効果を持つ。この点で、溝の方向は、鋼板圧延方向に対して直交する方向であることが好ましいが、溝の方向はある程度圧延方向に傾いてもよく、θは0〜30°の間で選択することができる。
ここで、qは以下のようにして定めた。まず溝形成前のB8が1.90Tから1.96Tの間にある試料を大量に準備し、これにd=15μmの溝を形成した。ただしθは0から30°とした。これら溝形成後の試料を歪取り焼鈍した後再度B8を測定し、これをB8m(θ)とした。さらにこれら試料の溝を除去、歪取り焼鈍した後再度B8を測定してB8n(θ)とした。
ΔB8(θ)=B8n(θ)-B8m(θ)とした。なお、それぞれに(θ)をつけているのはθの関数であることを示す。
次に、ΔB8(0)で規格化したΔB8(θ)をθに対してプロットし、このプロットをθ=0で1となるようe^(-qθ)でフィッティングしてqを定めた。ここでqは0.075であった。
溝の深さdは(1)式を満足するべきであるが、溝の幅Wは20μmから100μmの間で選択することができる。ここで溝の幅Wは溝形成方向と90°を成す角で観察した断面の平均の幅であり、平均の幅の定義については溝の断面形状が占める面積を溝の最大深さで除した値であり、たとえば溝断面の形状が矩形であれば鋼板表面における溝の幅がそのままWとなり、溝断面の形状が三角形であれば、鋼板表面における溝の幅の1/2がWとなる。
ここで、Wが小さすぎると磁区制御による鉄損低減効果を得ることができなくなり、Wが大きすぎると本発明により溝の深さを制御したとしてもB8の低下を回避することが困難となるため、Wを20μmから100μmの間にする。
The directional electromagnetic steel sheet according to one aspect of the present invention has a chemical composition containing Si: 2.00 to 7.00% in mass% and the balance being Fe and impurities, and has a steel sheet rolling direction on the surface of the steel sheet. Magnetic zone control is performed by having grooves at regular intervals in which the intersecting direction and the groove depth direction are the plate thickness direction.
The groove depth d (μm) according to one aspect of the present invention satisfies the following equation (1).
B8n + {0.1428 + 0.0032 * d- (0.0722 + 0.0024 * d) * B8n} * (3 / p) * e ^ (-qθ) ≧ 1.87… (1)
Here, B8n (T) is the magnetic flux density when the steel sheet from which the grooves have been removed is excited at 800 (A / m). Further, θ is an angle (°) at which the groove intersects the rolling perpendicular direction, and θ = 0 (°) when the groove is orthogonal to the rolling direction (in the width direction of the steel sheet). p is the groove spacing (mm) and q is the coefficient, satisfying the following.
2 ≤ p ≤ 30
q = 0.075
The groove forms a reflux magnetic domain extending in the groove direction, and the 180 ° magnetic domain that existed before the formation of the groove is subdivided, which has the effect of reducing iron loss. In this respect, the direction of the groove is preferably a direction orthogonal to the rolling direction of the steel sheet, but the direction of the groove may be inclined to some extent in the rolling direction, and θ should be selected between 0 and 30 °. Can be done.
Here, q is defined as follows. First, a large number of samples in which B8 before groove formation was between 1.90T and 1.96T were prepared, and a groove with d = 15 μm was formed in this sample. However, θ was set to 0 to 30 °. After straining and annealing the sample after forming these grooves, B8 was measured again, and this was defined as B8 m (θ). Further, after removing the grooves of these samples, removing strain and annealing, B8 was measured again to obtain B8n (θ).
ΔB8 (θ) = B8n (θ) -B8m (θ). In addition, it is shown that it is a function of θ that (θ) is attached to each.
Next, ΔB8 (θ) normalized by ΔB8 (0) was plotted against θ, and this plot was fitted with e ^ (-qθ) so that it became 1 at θ = 0 to determine q. Where q was 0.075.
The groove depth d should satisfy equation (1), but the groove width W can be selected from 20 μm to 100 μm. Here, the width W of the groove is the average width of the cross section observed at an angle forming 90 ° with the groove formation direction, and for the definition of the average width, the area occupied by the cross-sectional shape of the groove is divided by the maximum depth of the groove. It is a value. For example, if the shape of the groove cross section is rectangular, the width of the groove on the steel plate surface is W as it is, and if the shape of the groove cross section is triangular, 1/2 of the width of the groove on the steel plate surface is W.
Here, if W is too small, the iron loss reduction effect by magnetic domain control cannot be obtained, and if W is too large, it becomes difficult to avoid a decrease in B8 even if the groove depth is controlled by the present invention. Therefore, W should be between 20 μm and 100 μm.

式(1)によって規定される溝深さdを有する電磁鋼板について説明する。
前述のとおり、溝形成による磁区制御法では、溝の存在により磁束密度が低下するという問題があり、加えて、溝形成による磁束密度低下量はばらつくことがある。そのため、実際的な運用では、出荷規格値までの十分なマージンを取って溝の深さを決めている。
An electromagnetic steel sheet having a groove depth d defined by the equation (1) will be described.
As described above, the magnetic domain control method by groove formation has a problem that the magnetic flux density decreases due to the presence of the groove, and in addition, the amount of decrease in the magnetic flux density due to the groove formation may vary. Therefore, in practical operation, the groove depth is determined with a sufficient margin up to the shipping standard value.

一般に、磁束密度の出荷規格は、製品グレードに応じて、定められている。ここでは、以下の磁束密度の出荷規格を用いて説明をする。
B8≧1.87(T) … <1>
B8とは、鋼板を800(A/m)で励磁した場合の磁束密度である。なお、本明細書では、溝を除去した鋼板のB8(T)をB8n(T)と称することがある。溝を除去する手段として、研削または酸洗で鋼板表面を板厚方向に溝底まで全面的に除去する。さらに、研削による歪が残存する場合は、歪取り焼鈍を実施する。歪取り焼鈍の熱処理条件は、通常実施される条件で十分であり、たとえば800℃まで加熱した後2時間保定後、300℃以下まで15時間以上の時間で冷却するとよい。加熱速度はオーバーシュートが数十℃以内に収まるようにすれば、特に制限はない。雰囲気は非酸化雰囲気とすることが必要であり、たとえば水素75体積%、残部窒素としてもよい。
溝を除去する場合は鋼板の厚みを著しく減じることの無いよう、除去する鋼板の厚さは数十μm程度にとどめるようにする。これは、鋼板の板厚を大きく減じると磁気特性が変化する可能性があるためである。このような点に気を付ければ、鉄損や磁束密度等の特性は、溝の存在によって変化するとみなせるので、溝を除去した鋼板は、溝を形成する前の鋼板と、実質的に同等の特性(鉄損や磁束密度等)を有するものと扱うことができる。
また、本明細書では、溝未形成材(形成された溝を除去した電磁鋼板、または溝を形成する前の電磁鋼板)のB8をB8nと称し、溝形成材(溝を形成した後の電磁鋼板)の目標のB8をB8mと称することがある。
Generally, the shipping standard of magnetic flux density is set according to the product grade. Here, the description will be given using the following shipping standards for magnetic flux density.
B8 ≧ 1.87 (T)… <1>
B8 is the magnetic flux density when the steel sheet is excited at 800 (A / m). In the present specification, B8 (T) of the steel sheet from which the grooves have been removed may be referred to as B8n (T). As a means for removing the groove, the surface of the steel sheet is completely removed to the bottom of the groove in the plate thickness direction by grinding or pickling. Further, if the strain due to grinding remains, strain relief annealing is performed. The heat treatment conditions for strain removal annealing are usually sufficient. For example, it is preferable to heat to 800 ° C., retain for 2 hours, and then cool to 300 ° C. or lower for 15 hours or more. The heating rate is not particularly limited as long as the overshoot is within several tens of degrees Celsius. The atmosphere needs to be a non-oxidizing atmosphere, for example, 75% by volume of hydrogen and residual nitrogen may be used.
When removing the grooves, the thickness of the steel sheet to be removed should be limited to about several tens of μm so that the thickness of the steel sheet is not significantly reduced. This is because the magnetic characteristics may change if the thickness of the steel sheet is greatly reduced. If you pay attention to these points, it can be considered that the characteristics such as iron loss and magnetic flux density change depending on the existence of grooves. Therefore, the steel sheet from which the grooves have been removed is substantially equivalent to the steel sheet before the grooves are formed. It can be treated as having characteristics (iron loss, magnetic flux density, etc.).
Further, in the present specification, B8 of the non-grooved material (electrical steel sheet from which the formed groove is removed or electrical steel sheet before forming the groove) is referred to as B8n, and the groove-forming material (electromagnetic steel after forming the groove) is referred to as B8n. The target B8 of (steel plate) is sometimes called B8m.

従来の実際的な運用の一例として、溝の深さd(μm)は以下のように決められる。
図1は、θが0°、p=3mmの場合の溝深さdに対する磁束密度の低下量の実験値を整理したチャートである。このような経験データに基づいて、溝深さdを決定することができる。
溝形成前の平均的な磁束密度B8nが1.905T程度である場合、<1>式の条件を満たすためにはΔB8(磁束密度B8の低下量)は0.035T(1.905-1.87=0.035)まで許容できるはずである。図1のチャートに基づくと、ΔB8が0.035Tとなる溝の深さは、おおよそ25μm超になる。
As an example of the conventional practical operation, the groove depth d (μm) is determined as follows.
FIG. 1 is a chart in which experimental values of the amount of decrease in magnetic flux density with respect to the groove depth d when θ is 0 ° and p = 3 mm are arranged. The groove depth d can be determined based on such empirical data.
When the average magnetic flux density B8n before groove formation is about 1.905T, ΔB8 (decrease in magnetic flux density B8) is allowed up to 0.035T (1.905-1.87 = 0.035) in order to satisfy the condition of Eq. <1>. You should be able to. Based on the chart of FIG. 1, the depth of the groove where ΔB8 is 0.035T is approximately more than 25 μm.

しかし、実際には、溝形成による磁束密度の低下量はばらつきが大きく、同一溝深さの加工を行っても、B8の低下量(ΔB8)は一定ではない。このことから、ΔB8の上限値として、0.035Tは採用せずに、<1>式に対して0.01T程度のマージンを取って溝深さを定めている。その結果、ΔB8として0.025Tを採用し、図1に基づいて、溝の深さを20μm程度としている。 However, in reality, the amount of decrease in magnetic flux density due to groove formation varies widely, and the amount of decrease in B8 (ΔB8) is not constant even if the same groove depth is processed. For this reason, 0.035T is not adopted as the upper limit of ΔB8, and the groove depth is determined by taking a margin of about 0.01T with respect to Eq. <1>. As a result, 0.025T was adopted as ΔB8, and the groove depth was set to about 20 μm based on FIG.

上記のようなマージンを考慮して決定された溝深さは、鉄損改善の観点からは好ましくない。前述のとおり、溝形成による磁区制御では、磁気特性のみを考慮した最適な溝深さがあるからである。つまり、溝深さを最適化することにより、より良好な鉄損が得られるはずである。 The groove depth determined in consideration of the above margin is not preferable from the viewpoint of improving iron loss. As described above, in the magnetic domain control by groove formation, there is an optimum groove depth in consideration of only the magnetic characteristics. That is, by optimizing the groove depth, better iron loss should be obtained.

また、前述のとおり、最適な溝深さは励磁する磁束密度との関係があり、概して、最適な溝深さは励磁する磁束密度が高いほど小さい。言い換えると、励磁する磁束密度が高いほど、溝形成による単位深さあたりの鉄損改善効果は、大きくなる傾向がある。この結果、<1>の条件よりも高いB8を示す素材では、より深い溝を形成することにより、より良好な鉄損が得られる効果が、より顕著に得られる。 Further, as described above, the optimum groove depth is related to the magnetic flux density to be excited, and generally, the optimum groove depth is smaller as the exciting magnetic flux density is higher. In other words, the higher the magnetic flux density to be excited, the greater the effect of improving iron loss per unit depth by groove formation tends to be. As a result, in the material showing B8 higher than the condition of <1>, the effect of obtaining a better iron loss can be obtained more remarkably by forming a deeper groove.

本発明者らは、溝深さを最適化して、良好な鉄損を得るためには、溝による磁束密度の低下量のばらつきの原因または実態を明らかにする必要があると考え、鋭意検討の結果、溝による磁束密度低下量はB8n(溝未形成材(溝を形成する前の鋼板)または溝を除去した鋼板のB8)への依存性があることを見出した。図2は、その一例証である。 The present inventors consider that it is necessary to clarify the cause or the actual condition of the variation in the amount of decrease in the magnetic flux density due to the groove in order to optimize the groove depth and obtain a good iron loss. As a result, it was found that the amount of decrease in magnetic flux density due to the groove depends on B8n (B8 of the ungrooved material (steel plate before forming the groove) or the steel plate having the groove removed). FIG. 2 is an example of this.

図2は、溝未形成材(溝を形成する前の鋼板)または溝を除去した鋼板の磁束密度B8nと、θ=0°、p=3mm、W=50μmの溝による磁束密度低下量ΔB8を表したチャート例であり、溝の深さdでグループ分けされている。図2の例や、各種材料での試験を繰り返して、同一の溝深さでは、磁束密度B8nが高いほど溝による磁束密度低下ΔB8が大きいことが確認された。 FIG. 2 shows the magnetic flux density B8n of the ungrooved material (steel plate before forming the groove) or the steel plate from which the groove has been removed, and the amount of decrease in magnetic flux density ΔB8 due to the grooves of θ = 0 °, p = 3 mm, and W = 50 μm. This is an example of the chart shown, and is grouped by the groove depth d. By repeating the example of FIG. 2 and the tests with various materials, it was confirmed that the higher the magnetic flux density B8n is, the larger the decrease in magnetic flux density ΔB8 due to the groove is at the same groove depth.

また、図2の例や、各種材料での試験を繰り返して、溝未形成材(溝を形成する前の鋼板)または溝を除去した鋼板の磁束密度B8 nに対するΔB8 は溝深さdによって異なることが確認された。概して、溝深さdが大きいほど、ΔB8が大きいことが確認された。 Further, ΔB8 with respect to the magnetic flux density B8 n of the ungrooved material (steel plate before forming the groove) or the steel plate from which the groove has been removed differs depending on the groove depth d by repeating the test of the example of FIG. 2 and various materials. It was confirmed that. In general, it was confirmed that the larger the groove depth d, the larger ΔB8.

上記の知見に基づいて、本発明者らは、溝による磁束密度低下量ΔB8と、溝未形成材(溝を形成する前の鋼板)または溝を除去した鋼板の磁束密度B8nとの関係式を以下のように立式することを着想した。
ΔB8=a×B8n+b … <2>
a=h×d+i … <3>
b=j×d+k … <4>
Based on the above findings, the present inventors have established a relational expression between the amount of decrease in magnetic flux density ΔB8 due to the groove and the magnetic flux density B8n of the ungrooved material (steel plate before forming the groove) or the steel plate from which the groove has been removed. I came up with the idea of formulating as follows.
ΔB8 = a × B8n + b… <2>
a = h × d + i… <3>
b = j × d + k… <4>

上記の式<2>〜<4>において、h、i、j、kは、図2の例や、各種材料での試験を繰り返して得られたデータに基づいて、溝深さdの直線回帰から決定することができる。その場合、<3>、<4>は以下の<5>、<6>に書き換えられる。
a=0.0024*d+0.0722 … <5>
b=-0.0032*d-0.1428 … <6>
In the above equations <2> to <4>, h, i, j, and k are linear regressions of groove depth d based on the example of FIG. 2 and the data obtained by repeating the tests with various materials. Can be determined from. In that case, <3> and <4> are rewritten to the following <5> and <6>.
a = 0.0024 * d + 0.0722… <5>
b = -0.0032 * d-0.1428… <6>

溝形成材(本発明の対象である、溝を形成した後の電磁鋼板)の磁束密度をB8mとすると、ΔB8は下記<7>式となる。
ΔB8=B8n-B8m …<7>
<2>式に<5>〜<7>を代入することにより、本発明が規定するB8mを得るためのdを求める下記<8>式を得ることができる。

Figure 2020143314
Assuming that the magnetic flux density of the groove forming material (the electromagnetic steel sheet after forming the groove, which is the object of the present invention) is B8 m , ΔB8 is given by the following equation <7>.
ΔB8 = B8n-B8 m … <7>
By substituting <5> to <7> into the equation <2>, the following equation <8> for obtaining d for obtaining B8 m specified by the present invention can be obtained.
Figure 2020143314

<8>の式により、溝未形成材(溝を形成する前の電磁鋼板)または溝を除去した電磁鋼板の磁束密度B8nと溝形成材(溝を形成した後の電磁鋼板)の磁束密度B8mと最適な溝深さdの関係を決めることができる。すなわち、溝形成後の高磁束密度、かつ低鉄損の観点で最適な深さの溝が形成された磁区制御方向性電磁鋼板を得ることができる。 According to the formula <8>, the magnetic flux density B8n of the non-grooved material (the electrical steel sheet before forming the groove) or the magnetic steel sheet from which the groove has been removed and the magnetic flux density B8 of the grain-forming material (the electrical steel sheet after forming the groove) The relationship between m and the optimum groove depth d can be determined. That is, it is possible to obtain a magnetic domain control directional electromagnetic steel sheet in which a groove having an optimum depth is formed from the viewpoint of high magnetic flux density after groove formation and low iron loss.

より具体的には、磁束密度がB8nである溝未形成材(溝を形成する前の電磁鋼板)に、最適な溝深さdの溝を形成した場合には、溝形成材(発明鋼板、溝を形成した後の電磁鋼板)の磁束密度B8mは<8>式を満たすものとなり、その鋼板は、磁束密度と低鉄損の観点で最適な深さの溝が形成された磁区制御方向性電磁鋼板となる。 More specifically, when a groove having an optimum groove depth d is formed in a groove-unformed material having a magnetic flux density of B8n (an electromagnetic steel sheet before forming the groove), the groove-forming material (invented steel sheet, The magnetic flux density B8 m of the magnetic steel sheet after forming the groove) satisfies the equation <8>, and the steel sheet has a magnetic domain control direction in which a groove having an optimum depth is formed from the viewpoint of magnetic flux density and low iron loss. It becomes a grain-oriented electrical steel sheet.

また、<8>式を変形することにより、dを変数として溝形成材の磁束密度B8mを求める式<9>を導くこともできる。
B8m=(0.9278-0.0024*d)*B8n+0.0032*d+0.1428 … <9>
本発明は、磁束密度が十分に高い電磁鋼板を対象とし、本発明による電磁鋼板(溝を有する電磁鋼板)の磁束密度B8mを、B8m≧1.87と規定する。なお、B8mの上限は特に限定するものではなく、B8mの上限値が1.93(T)であってもよい。したがって、本願発明による電磁鋼板は下記式<10>を満たす。
(0.9278-0.0024*d)*B8n+0.0032*d+0.1428 ≧1.87 … <10>
なお、上記の式を適用できるB8nの範囲は特に限定するものではないが、B8nが極端に低い材料や極端に高い材料では上記式による溝深さの最適化にずれが生じることが考えられる。これを考慮すると、適用可能なB8nの範囲の目途として、B8nの下限値は、1.90(T)以下を採用してもよいが、1.91(T)としてもよい。また、B8nの上限値は、1.95(T)以上を採用してもよいが、1.94(T)としてもよい。
Further, by modifying the equation <8>, it is possible to derive the equation <9> for obtaining the magnetic flux density B8 m of the groove forming material with d as a variable.
B8 m = (0.9278-0.0024 * d) * B8n + 0.0032 * d + 0.1428… <9>
The present invention targets an electromagnetic steel sheet having a sufficiently high magnetic flux density, and defines the magnetic flux density B8 m of the electromagnetic steel sheet (electrical steel sheet having a groove) according to the present invention as B8 m ≥ 1.87. The upper limit of B8m is not particularly limited, and the upper limit of B8m may be 1.93 (T). Therefore, the electromagnetic steel sheet according to the present invention satisfies the following formula <10>.
(0.9278-0.0024 * d) * B8n + 0.0032 * d + 0.1428 ≧ 1.87… <10>
The range of B8n to which the above formula can be applied is not particularly limited, but it is conceivable that the optimization of the groove depth by the above formula may deviate in the material having extremely low B8n or extremely high B8n. Considering this, the lower limit of B8n may be 1.90 (T) or less, but may be 1.91 (T) as the target of the applicable range of B8n. Further, the upper limit value of B8n may be 1.95 (T) or more, but may be 1.94 (T).

さらに、溝角度θ(°)と溝ピッチp(mm)の影響を検討した結果、0°≦θ≦30°の範囲で<11>式とするとよいことが明らかになった。
B8n+{0.1428+0.0032*d-(0.0722+0.0024*d)*B8n}*(3/p)*e^(-qθ)≧1.87 …<11>
ただし、
B8n≧1.90(T)
2≦p≦30
q=0.075
である。
ここでpを2mmから30mmの間に限ったのは、2mmに満たないと溝形成によって鉄損がかえって悪化し、また30mmを超えると溝形成による鉄損改善効果が十分に得られなくなるためである。
Furthermore, as a result of examining the effects of the groove angle θ (°) and the groove pitch p (mm), it was clarified that the <11> equation should be used in the range of 0 ° ≤ θ ≤ 30 °.
B8n + {0.1428 + 0.0032 * d- (0.0722 + 0.0024 * d) * B8n} * (3 / p) * e ^ (-qθ) ≧ 1.87… <11>
However,
B8n ≧ 1.90 (T)
2 ≤ p ≤ 30
q = 0.075
Is.
The reason why p is limited to between 2 mm and 30 mm here is that if it is less than 2 mm, the iron loss will worsen due to groove formation, and if it exceeds 30 mm, the iron loss improvement effect due to groove formation will not be sufficiently obtained. is there.

本願明細書において、鉄損はW17/50(W/kg)によって評価される。鉄損は小さいほど好ましく、本願発明による電磁鋼板の鉄損は、たとえば板厚が0.23mmの場合は0.84以下であってもよく、より好ましくは0.78以下であってもよく、さらに好ましくは0.75以下であってもよい。 In the specification of the present application, iron loss is evaluated by W17 / 50 (W / kg). The smaller the iron loss, the more preferable, and the iron loss of the electromagnetic steel sheet according to the present invention may be 0.84 or less, more preferably 0.78 or less, still more preferably 0.75 or less when the plate thickness is 0.23 mm, for example. It may be.

本発明の一態様である電磁鋼板の化学組成について説明する。
本発明に係る方向性電磁鋼板は、化学組成として、質量分率で、Si:2.00%〜7.00%を含有し、残部がFeおよび不純物である。
The chemical composition of an electromagnetic steel sheet, which is one aspect of the present invention, will be described.
The grain-oriented electrical steel sheet according to the present invention contains Si: 2.00% to 7.00% in terms of mass fraction as a chemical composition, and the balance is Fe and impurities.

上記の化学組成は、結晶方位を{110}<001>方位に集積させるよう制御するために好ましい化学組成である。 The above chemical composition is a preferable chemical composition for controlling the crystal orientation to be accumulated in the {110} <001> orientation.

また、本発明に係る方向性電磁鋼板は、磁気特性の改善を目的として、Feの一部に代えて、公知の任意元素を含有してもよい。Feの一部に代えて含有される任意元素として、例えば、次の元素が挙げられる。各数値は、それらの元素が任意元素として含有された場合の、上限値を意味する。
質量%で、
C:0.005%以下
Mn:1.00%以下、
S及びSe:合計で0.015以下、
Al:0.065以下、
N:0.005%以下
Cu:0.40%以下、
Bi:0.010%以下、
B:0.080%以下、
P:0.50%以下、
Ti:0.015%以下、
Sn:0.10%以下、
Sb:0.10%以下、
Cr:0.30%以下、
Ni:1.00%以下、
Nb、V、Mo、Ta、及びWのうちの一種または二種以上:合計で0.030%以下。
これら任意元素は、公知の目的に応じて含有させればよいため、任意元素の含有量の下限値を設ける必要はなく、下限値が0%でもよい。
Further, the grain-oriented electrical steel sheet according to the present invention may contain a known arbitrary element instead of a part of Fe for the purpose of improving magnetic properties. Examples of the optional element contained in place of a part of Fe include the following elements. Each numerical value means an upper limit value when those elements are contained as arbitrary elements.
By mass%
C: 0.005% or less Mn: 1.00% or less,
S and Se: 0.015 or less in total,
Al: 0.065 or less,
N: 0.005% or less Cu: 0.40% or less,
Bi: 0.010% or less,
B: 0.080% or less,
P: 0.50% or less,
Ti: 0.015% or less,
Sn: 0.10% or less,
Sb: 0.10% or less,
Cr: 0.30% or less,
Ni: 1.00% or less,
One or more of Nb, V, Mo, Ta, and W: 0.030% or less in total.
Since these arbitrary elements may be contained according to a known purpose, it is not necessary to set a lower limit value for the content of the arbitrary element, and the lower limit value may be 0%.

なお、不純物とは、上記に例示した任意元素に限らず、含有されても本発明の効果を損わない元素を意味する。意図的に添加する場合に限らず、鋼板を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境等から不可避的に混入する元素も含む。不純物の合計含有量の上限の目途としては、5%程度が挙げられる。 The impurity is not limited to the optional elements exemplified above, but means an element that does not impair the effect of the present invention even if it is contained. Not limited to the case of intentional addition, it also includes ore as a raw material, scrap, or an element unavoidably mixed from the manufacturing environment when the steel sheet is industrially manufactured. The upper limit of the total content of impurities is about 5%.

注意を要するのは、方向性電磁鋼板では、脱炭焼鈍および二次再結晶時の純化焼鈍を経ることが一般的であり、比較的大きな化学組成の変化(含有量の低下)が起きることである。元素によっては、50ppm以下に低減され、純化焼鈍を十分に行えば、一般的な分析では検出できない程度(1ppm以下)にまで達することもある。
本発明に係る方向性電磁鋼板の上記化学成分は、最終製品における化学組成であり、出発素材でもある後述するスラブの組成とは異なることを申し添えておく。
It should be noted that grain-oriented electrical steel sheets generally undergo decarburization annealing and purification annealing during secondary recrystallization, resulting in a relatively large change in chemical composition (decrease in content). is there. Depending on the element, it is reduced to 50 ppm or less, and if purified annealing is sufficiently performed, it may reach a level that cannot be detected by general analysis (1 ppm or less).
It should be added that the above-mentioned chemical composition of the grain-oriented electrical steel sheet according to the present invention is the chemical composition in the final product and is different from the composition of the slab described later which is also the starting material.

本発明に係る方向性電磁鋼板の化学成分は、鋼の一般的な分析方法によって測定すればよい。例えば、方向性電磁鋼板の化学成分は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。具体的には、方向性電磁鋼板から採取した35mm角の試験片を、島津製作所製ICPS-8100等(測定装置)により、予め作成した検量線に基づいた条件で測定することにより、化学組成が特定される。なお、CおよびSは燃焼−赤外線吸収法を用いて測定し、Nは不活性ガス融解−熱伝導度法を用いて測定すればよい。 The chemical composition of the grain-oriented electrical steel sheet according to the present invention may be measured by a general method for analyzing steel. For example, the chemical composition of the grain-oriented electrical steel sheet may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Specifically, a 35 mm square test piece collected from a grain-oriented electrical steel sheet is measured with an ICPS-8100 or the like (measuring device) manufactured by Shimadzu Corporation under conditions based on a calibration curve prepared in advance to obtain a chemical composition. Be identified. C and S may be measured by using the combustion-infrared absorption method, and N may be measured by using the inert gas melting-thermal conductivity method.

本発明に係る方向性電磁鋼板の表面に、一般的に方向性電磁鋼板に設けられる被膜を、形成してもよい。これらは、例えば、グラス被膜、絶縁被膜、張力被膜などと呼ばれる。 On the surface of the grain-oriented electrical steel sheet according to the present invention, a film generally provided on the grain-oriented electrical steel sheet may be formed. These are called, for example, a glass coating, an insulating coating, a tension coating, and the like.

ただし、これらの被膜は、本発明に係る方向性電磁鋼板の必須の要素ではない。本発明に係る方向性電磁鋼板の上記の化学組成は、被膜を有する方向性電磁鋼板においては、その基材となる鋼成分の組成であり、表面の絶縁被膜を研削等により除去した後に測定するものとする。 However, these coatings are not essential elements of the grain-oriented electrical steel sheet according to the present invention. The above-mentioned chemical composition of the grain-oriented electrical steel sheet according to the present invention is the composition of the steel component which is the base material of the grain-oriented electrical steel sheet having a coating film, and is measured after removing the insulating coating on the surface by grinding or the like. It shall be.

次に、本発明に係る方向性電磁鋼板の製造方法の一態様について説明する。本発明に係る方向性電磁鋼板の製造方法は、鋳造工程、熱間圧延工程、冷間圧延工程、脱炭焼鈍工程、仕上焼鈍工程を有し、冷間圧延工程以降に圧延方向と交差する方向かつ溝深さ方向が板厚方向となる溝を一定間隔で形成する工程を含み、
溝の深さd(μm)が溝形成材のB8(T)と溝未形成材のB8(T)から決定される。なお、ここで、B8(T)とは、鋼板を800(A/m)で励磁した場合の磁束密度である。
Next, one aspect of the method for manufacturing a grain-oriented electrical steel sheet according to the present invention will be described. The method for producing a directional electromagnetic steel sheet according to the present invention includes a casting step, a hot rolling step, a cold rolling step, a decarburization annealing step, and a finish annealing step, and a direction intersecting the rolling direction after the cold rolling step. In addition, it includes a step of forming grooves having a groove depth direction in the plate thickness direction at regular intervals.
The groove depth d (μm) is determined from the groove forming material B8 (T) and the groove non-forming material B8 (T). Here, B8 (T) is the magnetic flux density when the steel sheet is excited at 800 (A / m).

以下に示す工程及び各工程での定量的な条件は、本発明の実施可能性を示すために採用した一例であり、本発明は、これら工程及び定量値に限定されるものではない。本発明に係る方向性電磁鋼板の製造方法は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。 The steps shown below and the quantitative conditions in each step are examples adopted to show the feasibility of the present invention, and the present invention is not limited to these steps and quantitative values. The method for producing a grain-oriented electrical steel sheet according to the present invention does not deviate from the gist of the present invention, and various conditions can be adopted as long as the object of the present invention is achieved.

(鋳造工程)
鋳造工程では、スラブを準備する。スラブの製造方法の一例は次のとおりである。溶鋼を製造(溶製)する。溶鋼を用いてスラブを製造する。連続鋳造法によりスラブを製造してもよい。溶鋼を用いてインゴットを製造し、インゴットを分塊圧延してスラブを製造してもよい。スラブの厚さは、特に限定されない。スラブの厚さは、例えば、150mm〜350mmである。スラブの厚さは、好ましくは、220mm〜280mmである。スラブとして、厚さが10mm〜70mmの、いわゆる薄スラブを用いてもよい。薄スラブを用いる場合、熱間工程において、仕上げ圧延前の粗圧延を省略できる。
(Casting process)
In the casting process, slabs are prepared. An example of a slab manufacturing method is as follows. Manufacture (melt) molten steel. Manufacture slabs using molten steel. The slab may be manufactured by a continuous casting method. An ingot may be produced using molten steel, and the ingot may be block-rolled to produce a slab. The thickness of the slab is not particularly limited. The thickness of the slab is, for example, 150 mm to 350 mm. The thickness of the slab is preferably 220 mm to 280 mm. As the slab, a so-called thin slab having a thickness of 10 mm to 70 mm may be used. When a thin slab is used, rough rolling before finish rolling can be omitted in the hot process.

スラブの化学組成は、一般的な方向性電磁鋼板の製造に用いられるスラブの化学組成を用いることができる。スラブの化学組成は、例えば、次の元素を含有する。 As the chemical composition of the slab, the chemical composition of the slab used in the production of general grain-oriented electrical steel sheets can be used. The chemical composition of the slab contains, for example, the following elements:

C:0.085%以下、
Cは、製造工程においては一次再結晶組織の制御に有効な元素であるものの、最終製品への含有量が過剰であると磁気特性に悪影響を及ぼす。したがって、C含有量は0.085%以下である。C含有量の好ましい上限は0.075%である。Cは主に後述の脱炭焼鈍工程で除去され、仕上げ焼鈍工程後には0.005%以下となる。Cを含む場合、工業生産における生産性を考慮すると、C含有量の下限は0%超であってもよく、0.001%であってもよい。
C: 0.085% or less,
Although C is an element effective in controlling the primary recrystallization structure in the manufacturing process, if the content in the final product is excessive, it adversely affects the magnetic properties. Therefore, the C content is 0.085% or less. The preferred upper limit of the C content is 0.075%. C is mainly removed in the decarburization annealing step described later, and becomes 0.005% or less after the finish annealing step. When C is contained, the lower limit of the C content may be more than 0% or 0.001% in consideration of productivity in industrial production.

Si:2.00%〜7.00%
シリコン(Si)は、方向性電磁鋼板の電気抵抗を高めて鉄損を低下させる。Si含有量が2.00%未満であると、仕上げ焼鈍時にγ変態が生じて、方向性電磁鋼板の結晶方位が損なわれてしまう。一方、Si含有量が7.00%を超えると、冷間加工性が低下して、冷間圧延時に割れが発生しやすくなる。Si含有量の好ましい下限は2.50%であり、さらに好ましくは3.00%である。Si含有量の好ましい上限は4.50%であり、さらに好ましくは4.00%である。
Si: 2.00% to 7.00%
Silicon (Si) increases the electrical resistance of grain-oriented electrical steel sheets and reduces iron loss. If the Si content is less than 2.00%, γ transformation occurs during finish annealing, and the crystal orientation of the grain-oriented electrical steel sheet is impaired. On the other hand, if the Si content exceeds 7.00%, the cold workability is lowered and cracks are likely to occur during cold rolling. The preferred lower limit of the Si content is 2.50%, more preferably 3.00%. The preferred upper limit of the Si content is 4.50%, more preferably 4.00%.

Mn:0.05%〜1.00%
マンガン(Mn)はS又はSeと結合して、MnS、又は、MnSeを生成し、インヒビターとして機能する。Mnを含有させる場合、Mn含有量が0.05%〜1.00%の範囲内にある場合に、二次再結晶が安定する。インヒビターの機能の一部を窒化物によって担う場合は、インヒビターとしてのMnS、又は、MnSe強度は弱めに制御する。このため、Mn含有量の好ましい上限は0.50%であり、さらに好ましくは0.20%である。
Mn: 0.05% to 1.00%
Manganese (Mn) binds to S or Se to produce MnS or MnSe and functions as an inhibitor. When Mn is contained, the secondary recrystallization is stable when the Mn content is in the range of 0.05% to 1.00%. When a part of the function of the inhibitor is carried out by the nitride, the MnS or MnSe intensity as the inhibitor is controlled to be weak. Therefore, the preferable upper limit of the Mn content is 0.50%, and more preferably 0.20%.

S及びSe:合計で0.003%〜0.035%
硫黄(S)及びセレン(Se)は、Mnと結合して、MnS又はMnSeを生成し、インヒビターとして機能する。S及びSeの少なくとも一方を含有させる場合、S及びSeの含有量が合計で0.003%〜0.035%であると、二次再結晶が安定する。インヒビターの機能の一部を窒化物によって担う場合は、インヒビターとしてのMnS、又は、MnSe強度は弱めに制御する。このため、S及びSe含有量の合計の好ましい上限は0.025%であり、さらに好ましくは0.010%である。S及びSeは仕上げ焼鈍後に残留すると化合物を形成し、鉄損を劣化させる。そのため、仕上げ焼鈍中の純化により、S及びSeをできるだけ少なくすることが好ましい。
S and Se: 0.003% to 0.035% in total
Sulfur (S) and selenium (Se) combine with Mn to produce MnS or MnSe, which functions as an inhibitor. When at least one of S and Se is contained, the secondary recrystallization is stable when the total content of S and Se is 0.003% to 0.035%. When a part of the function of the inhibitor is carried out by the nitride, the strength of MnS or MnSe as the inhibitor is controlled to be weak. Therefore, the preferable upper limit of the total S and Se contents is 0.025%, and more preferably 0.010%. When S and Se remain after finish annealing, they form compounds and deteriorate iron loss. Therefore, it is preferable to reduce S and Se as much as possible by purifying during finish annealing.

ここで、「S及びSeの含有量が合計で0.003%〜0.035%」であるとは、スラブの化学組成がS又はSeのいずれか一方のみを含有し、S又はSeのいずれか一方の含有量が合計で0.003%〜0.035%であってもよいし、スラブがS及びSeの両方を含有し、S及びSeの含有量が合計で0.003%〜0.035%であってもよい。 Here, "the total content of S and Se is 0.003% to 0.035%" means that the chemical composition of the slab contains only one of S and Se, and either S or Se. The total content of one of them may be 0.003% to 0.035%, or the slab contains both S and Se, and the total content of S and Se is 0.003% to 0. It may be .035%.

Al:0.010%〜0.065%
アルミニウム(Al)は、Nと結合して(Al、Si)Nとして析出し、インヒビターとして機能する。Alを含有させる場合、Alの含有量が0.010%〜0.065%の範囲内にある場合に、後述の窒化により形成されるインヒビターとしてのAlNは二次再結晶温度域を拡大し、特に高温域での二次再結晶が安定する。したがって、Alの含有量は0.010%〜0.065%である。Al含有量の好ましい下限は0.020%であり、さらに好ましくは0.025%である。二次再結晶の安定性の観点から、Al含有量の好ましい上限は0.040%であり、さらに好ましくは0.030%である。
Al: 0.010% to 0.065%
Aluminum (Al) binds to N and precipitates as (Al, Si) N, and functions as an inhibitor. When Al is contained, when the Al content is in the range of 0.010% to 0.065%, AlN as an inhibitor formed by nitriding described later expands the secondary recrystallization temperature range. In particular, secondary recrystallization is stable in the high temperature range. Therefore, the Al content is 0.010% to 0.065%. The lower limit of the Al content is preferably 0.020%, more preferably 0.025%. From the viewpoint of stability of secondary recrystallization, the preferable upper limit of the Al content is 0.040%, more preferably 0.030%.

N:0.012%以下
窒素(N)は、Alと結合してインヒビターとして機能する。Nは製造工程の途中で窒化により含有させることが可能であるため下限は規定しない。一方、Nを含有させる場合、N含有量が0.012%を超えると、鋼板中に欠陥の一種であるブリスタが発生しやすくなる。N含有量の好ましい上限は0.010%であり、さらに好ましくは0.009%である。Nは仕上げ焼鈍工程で純化され、仕上げ焼鈍工程後には0.005%以下であってもよい。
N: 0.012% or less Nitrogen (N) binds to Al and functions as an inhibitor. Since N can be contained by nitriding in the middle of the manufacturing process, the lower limit is not specified. On the other hand, when N is contained, if the N content exceeds 0.012%, blister, which is a kind of defect, is likely to occur in the steel sheet. The preferred upper limit of the N content is 0.010%, more preferably 0.009%. N is purified in the finish annealing step and may be 0.005% or less after the finish annealing step.

スラブの化学組成の残部はFe及び不純物からなる。なお、ここでいう「不純物」は、スラブを工業的に製造する際に、原材料に含まれる成分、又は製造の過程で混入する成分から不可避的に混入し、本発明の効果に実質的に影響を与えない元素を意味する。 The rest of the chemical composition of the slab consists of Fe and impurities. It should be noted that the "impurities" referred to here are unavoidably mixed from the components contained in the raw materials or the components mixed in the manufacturing process when the slab is industrially manufactured, and substantially affects the effect of the present invention. Means an element that does not give.

スラブの化学組成は、製造上の課題解決のほか、化合物形成によるインヒビター機能の強化や磁気特性への影響を考慮して、Feの一部に代えて、公知の任意元素を含有してもよい。Feの一部に代えて含有される任意元素として、例えば、次の元素が挙げられる。各数値は、それらの元素が任意元素として含有された場合の、上限値を意味する。
質量%で、
Cu:0.40%以下、
Bi:0.010%以下、
B:0.080%以下、
P:0.50%以下、
Ti:0.015%以下、
Sn:0.10%以下、
Sb:0.10%以下、
Cr:0.30%以下、
Ni:1.00%以下、
Nb、V、Mo、Ta、及びWのうちの一種または二種以上:合計で0.030%以下。
これら任意元素は、公知の目的に応じて含有させればよいため、任意元素の含有量の下限値を設ける必要はなく、下限値が0%でもよい。
The chemical composition of the slab may contain a known arbitrary element instead of a part of Fe in consideration of the enhancement of the inhibitor function by compound formation and the influence on the magnetic properties in addition to solving the manufacturing problem. .. Examples of the optional element contained in place of a part of Fe include the following elements. Each numerical value means an upper limit value when those elements are contained as arbitrary elements.
By mass%
Cu: 0.40% or less,
Bi: 0.010% or less,
B: 0.080% or less,
P: 0.50% or less,
Ti: 0.015% or less,
Sn: 0.10% or less,
Sb: 0.10% or less,
Cr: 0.30% or less,
Ni: 1.00% or less,
One or more of Nb, V, Mo, Ta, and W: 0.030% or less in total.
Since these arbitrary elements may be contained according to a known purpose, it is not necessary to set a lower limit value for the content of the arbitrary element, and the lower limit value may be 0%.

(熱間圧延工程)
熱間圧延工程は、所定の温度(例えば1100℃〜1400℃)に加熱されたスラブの熱間圧延を行い、熱間圧延鋼板を得る工程である。熱間圧延工程では、例えば、加熱工程で加熱された珪素鋼素材(スラブ)の粗圧延を行った後、仕上げ圧延を行って所定厚さ、例えば、1.8mm〜3.5mmの熱間圧延鋼板とする。仕上げ圧延終了後、熱間圧延鋼板を所定の温度で巻き取ってもよい。
(Hot rolling process)
The hot rolling step is a step of hot rolling a slab heated to a predetermined temperature (for example, 1100 ° C. to 1400 ° C.) to obtain a hot rolled steel sheet. In the hot rolling step, for example, the silicon steel material (slab) heated in the heating step is roughly rolled and then finished rolled to have a predetermined thickness, for example, 1.8 mm to 3.5 mm. Use a steel plate. After the finish rolling is completed, the hot-rolled steel sheet may be wound at a predetermined temperature.

インヒビターとしてのMnS強度がそれほど必要でない場合は、生産性を考慮すれば、スラブ加熱温度は1100℃〜1280℃とすることが好ましい。 When the MnS strength as an inhibitor is not so required, the slab heating temperature is preferably 1100 ° C. to 1280 ° C. in consideration of productivity.

(熱延板焼鈍工程)
本発明の一態様による製造方法は、熱延板焼鈍工程を含んでもよい。熱延板焼鈍工程は、熱間圧延工程で得た熱間圧延鋼板を所定の温度条件(例えば750℃〜1200℃で、30秒間〜10分間)で焼鈍して、焼鈍鋼板を得る工程である。
熱延板焼鈍工程は、高温スラブ加熱プロセスにおいてはAlNなどの析出物の形態を最終的に制御する工程であり、均一かつ微細に析出するように条件調整することができる。
(Hot rolled plate annealing process)
The production method according to one aspect of the present invention may include a hot-rolled plate annealing step. The hot-rolled sheet annealing step is a step of annealing the hot-rolled steel sheet obtained in the hot-rolling step under predetermined temperature conditions (for example, 750 ° C. to 1200 ° C. for 30 seconds to 10 minutes) to obtain an annealed steel sheet. ..
The hot-rolled plate annealing step is a step of finally controlling the morphology of precipitates such as AlN in the high-temperature slab heating process, and the conditions can be adjusted so that the precipitates are uniformly and finely deposited.

(冷間圧延工程)
冷間圧延工程は、熱間圧延工程で得た熱間圧延鋼板、または熱延板焼鈍工程で得た焼鈍鋼板を、1回の冷間圧延、又は焼鈍(中間焼鈍)を介して複数回(2回以上)の冷間圧延(例えば総冷延率で80%〜95%)により、例えば、0.10mm〜0.50mmの厚さを有する冷間圧延鋼板を得る工程である。
(Cold rolling process)
In the cold rolling step, the hot rolled steel sheet obtained in the hot rolling step or the annealed steel sheet obtained in the hot rolled sheet annealing step is subjected to one cold rolling or annealing (intermediate annealing) a plurality of times ( This is a step of obtaining a cold-rolled steel sheet having a thickness of, for example, 0.10 mm to 0.50 mm by cold rolling (for example, 80% to 95% in total cold rolling ratio) by cold rolling (twice or more).

(脱炭焼鈍工程)
脱炭焼鈍工程は、冷間圧延工程で得た冷間圧延鋼板に脱炭焼鈍(例えば700℃〜900℃で1分間〜3分間)を行い、一次再結晶が生じた脱炭焼鈍鋼板を得る工程である。冷間圧延鋼板に脱炭焼鈍を行うことで、冷間圧延鋼板中に含まれるCが除去される。脱炭焼鈍は、冷間圧延鋼板中に含まれる「C」を除去するために、湿潤雰囲気中で行うことが好ましい。
(Decarburization annealing process)
In the decarburization annealing step, the cold-rolled steel sheet obtained in the cold rolling step is decarburized and annealed (for example, at 700 ° C. to 900 ° C. for 1 minute to 3 minutes) to obtain a decarburized annealed steel sheet in which primary recrystallization has occurred. It is a process. By decarburizing and annealing the cold-rolled steel sheet, C contained in the cold-rolled steel sheet is removed. Decarburization annealing is preferably performed in a moist atmosphere in order to remove "C" contained in the cold-rolled steel sheet.

(窒化処理)
本発明の一態様による製造方法は、窒化処理工程を含んでもよい。窒化処理は、二次再結晶におけるインヒビターの強度を調整するため、必要に応じて実施する工程である。窒化処理は、脱炭処理の開始から、仕上げ焼鈍における二次再結晶の開始までの間に、鋼板の窒素量を40ppm〜200ppm程度増加させる。窒化処理としては、例えば、アンモニア等の窒化能のあるガスを含有する雰囲気中で焼鈍する処理、MnN等の窒化能を有する粉末を含む焼鈍分離剤を塗布した脱炭焼鈍鋼板を仕上げ焼鈍する処理等が例示される。
(Nitriding treatment)
The production method according to one aspect of the present invention may include a nitriding treatment step. The nitriding treatment is a step carried out as necessary in order to adjust the strength of the inhibitor in the secondary recrystallization. The nitriding treatment increases the amount of nitrogen in the steel sheet by about 40 ppm to 200 ppm from the start of the decarburization treatment to the start of secondary recrystallization in finish annealing. The nitriding treatment includes, for example, a treatment of annealing in an atmosphere containing a nitriding gas such as ammonia, and a treatment of finishing and annealing a decarburized annealed steel sheet coated with an annealing separator containing a nitriding powder such as MnN. Etc. are exemplified.

(焼鈍分離剤塗布工程)
焼鈍分離剤塗布工程は、脱炭焼鈍鋼板に焼鈍分離剤を塗布する工程であり、必要に応じて実施する工程である。焼鈍分離剤としては、例えば、MgOを主成分とする焼鈍分離剤を用いることができる。焼鈍分離剤を塗布後の脱炭焼鈍鋼板は、コイル状に巻取った状態で、次の仕上げ焼鈍工程で仕上げ焼鈍される。
(Annealing separator application process)
The annealing separator coating step is a step of applying an annealing separator to a decarburized annealed steel sheet, and is a step to be carried out as necessary. As the annealing separator, for example, an annealing separator containing MgO as a main component can be used. The decarburized annealed steel sheet after applying the annealing separating agent is subjected to finish annealing in the next finish annealing step in a coiled state.

(仕上げ焼鈍工程)
仕上げ焼鈍工程は、脱炭焼鈍鋼板、焼鈍分離剤が塗布された脱炭焼鈍鋼板に仕上げ焼鈍を施し、二次再結晶を生じさせる工程である。この工程は、一次再結晶粒の成長をインヒビターにより抑制した状態で二次再結晶を進行させることによって、{100}<001>方位粒を優先成長させ、磁束密度を飛躍的に向上させる。
(Finish annealing process)
The finish annealing step is a step of subjecting a decarburized annealed steel sheet and a decarburized annealed steel sheet coated with an annealing separator to finish annealing to generate secondary recrystallization. In this step, the {100} <001> oriented grains are preferentially grown and the magnetic flux density is dramatically improved by advancing the secondary recrystallization in a state where the growth of the primary recrystallized grains is suppressed by the inhibitor.

(張力被膜形成工程)
鋼板に、コーティング溶液(例えば、りん酸又はりん酸塩、無水クロム酸又はクロム酸塩、及びコロイド状シリカを含むコーティング溶液)を塗布して焼き付けて(例えば、350℃〜1150℃で、5秒間〜300秒間)、張力被膜を形成してもよい。
(Tension film forming process)
A coating solution (eg, a coating solution containing phosphoric acid or phosphate, chromic anhydride or chromate, and colloidal silica) is applied to the steel sheet and baked (for example, at 350 ° C to 1150 ° C for 5 seconds). A tension film may be formed for ~ 300 seconds).

(溝形成工程)
方向性電磁鋼板には、磁区制御(磁区細分化)を目的として、冷間圧延後の工程で、レーザー、電子ビーム、プラズマ、機械的方法、エッチングなど、公知の手法により、局所的な溝が形成される。一般的には、深さがおよそ数μmから数十μmの溝が、圧延直角方向と0〜50°の角度をなす方向に延伸して、およそ数mmから数十mmの間の一定の間隔で形成される。本発明の一態様での溝の深さd(mm)については後述する。また、本発明の一態様では、溝は圧延直角方向と0〜30°の角度をなす方向に延伸して、およそ2mmから30mmの間の一定の間隔で形成されるとよい。ここで一定とは、上記で規定した間隔に対し、実際の各溝の間の間隔が規定した値に対し±10%以内の変動の中に納まることを意味する。また、溝幅は、20μmから100μmであるとよい。なお溝幅は溝形成方向と垂直な断面における平均寸法を指す。
溝を形成するタイミングは冷間圧延直後かつ脱炭焼鈍前、脱炭焼鈍後、仕上焼鈍後、張力被膜形成後などが挙げられ、任意のタイミングで溝を形成すれば良い。
本発明は形成される溝の深さを溝を形成した状態および溝を形成しない状態の電磁鋼板の磁束密度との関係で規定するものである。
(Groove formation process)
For the purpose of magnetic domain control (magnetic domain subdivision), the directional electromagnetic steel plate has local grooves in the process after cold rolling by known methods such as laser, electron beam, plasma, mechanical method, and etching. It is formed. In general, grooves with a depth of about several μm to several tens of μm are stretched in a direction forming an angle of 0 to 50 ° with the rolling perpendicular direction, and have a constant interval between about several mm and several tens of mm. Is formed by. The groove depth d (mm) in one aspect of the present invention will be described later. Further, in one aspect of the present invention, the grooves may be stretched in a direction forming an angle of 0 to 30 ° with the direction perpendicular to rolling, and may be formed at regular intervals between about 2 mm and 30 mm. Here, constant means that the actual spacing between the grooves is within ± 10% of the specified value with respect to the spacing specified above. The groove width is preferably 20 μm to 100 μm. The groove width refers to the average dimension in the cross section perpendicular to the groove forming direction.
The timing of forming the groove includes immediately after cold rolling and before decarburization annealing, after decarburization annealing, after finish annealing, after forming a tension film, and the like, and the groove may be formed at any timing.
The present invention defines the depth of the groove to be formed in relation to the magnetic flux density of the magnetic steel sheet in the state where the groove is formed and the state where the groove is not formed.

本発明の一態様によれば、溝の深さd(μm)が下記式(2)を満たすものであってもよい。

Figure 2020143314
ここで、B8(T)は鋼板を800(A/m)で励磁した場合の磁束密度であり、B8nは溝未形成材または溝を除去した鋼板の磁束密度B8であり、B8mは溝形成材の磁束密度B8である。
この式(2)によれば、溝未形成材(溝を形成する前の電磁鋼板)または溝を除去した電磁鋼板(素材)の磁束密度B8n、および溝形成材(溝を形成した後の電磁鋼板)の磁束密度B8mから、本発明が規定するB8mを得るための溝の深さdを求めることができる。言い換えると、式(2)を満たす溝の深さdの溝を形成することにより、溝形成材(溝を形成した後の電磁鋼板)のB8mを得ることができる。また、(2)式を満たす溝の深さdを有する鋼板であれば、鉄損を小さくすることができる。溝形成材のB8mは、1.93≧B8m≧1.87であってもよい。また、溝未形成材のB8nの下限値は、1.90(T)以下を採用してもよいが、1.91(T)としてもよい。また、B8nの上限値は、1.95(T)以上を採用してもよいが、1.94(T)としてもよい。 According to one aspect of the present invention, the groove depth d (μm) may satisfy the following equation (2).
Figure 2020143314
Here, B8 (T) is the magnetic flux density when the steel sheet is excited at 800 (A / m), B8n is the magnetic flux density B8 of the ungrooved material or the steel sheet from which the grooves are removed, and B8m is the groove-forming material. The magnetic flux density of B8.
According to this equation (2), the magnetic flux density B8n of the non-grooved material (electrical steel sheet before forming the groove) or the magnetic steel sheet (material) from which the groove is removed, and the groove forming material (electromagnetic steel after forming the groove). From the magnetic flux density B8 m of the steel sheet), the groove depth d for obtaining B8 m specified by the present invention can be obtained. In other words, by forming a groove having a groove depth d satisfying the equation (2), B8 m of the groove forming material (electrical steel sheet after forming the groove) can be obtained. Further, if the steel sheet has a groove depth d satisfying the equation (2), the iron loss can be reduced. The B8 m of the groove forming material may be 1.93 ≧ B8 m ≧ 1.87. Further, the lower limit value of B8n of the non-grooved material may be 1.90 (T) or less, but may be 1.91 (T). Further, the upper limit value of B8n may be 1.95 (T) or more, but may be 1.94 (T).

本発明について、以下の実施例を用いて説明する。ただし、本発明は、この実施例に限定して解釈されるべきものではない。 The present invention will be described with reference to the following examples. However, the present invention should not be construed as being limited to this example.

通常の方法で製造された、張力被膜を形成された板厚0.23mmの方向性電磁鋼板(Si含有率2.00〜7.00%、残部がFeおよび不純物である化学組成を有する)を数種類用意した。電磁鋼板は溝形成前のB8nが1.90〜1.96(T)であった。各電磁鋼板に、板幅方向にほぼ平行に、間隔5mmにて歯車ロールにより幅50μmの溝を導入した。このとき、歯車ロールに付与する圧力を変化させ、溝深さdを表1に記載の様々な深さになるように制御した。溝形成後の試料について、溝形成後のB8k(T)および鉄損W17/50(W/kg)を測定した。測定結果を表1に示す。
なお、表1の評価<1>は、溝形成後のB8k(T)が下記式を満たすものを『〇』とし、満たさないものは『−』とした。『〇』は、溝形成による磁束密度の低下が小さいことを意味する。
B8k(T)≧1.87(T)
また、表1の評価<2>は、鉄損W17/50(W/kg)が、0.84超のものを『−』、0.84以下のものを『〇』、0.78以下のものを『◎』、0.72以下のものを『☆』とした。
本発明によれば、溝形成による磁束密度の低下が小さく、低鉄損である、電磁鋼板が得られる。
A grain-oriented electrical steel sheet (Si content 2.00 to 7.00%, having a chemical composition in which the balance is Fe and impurities) having a thickness of 0.23 mm and having a tension film formed by a usual method. I prepared several types. The B8n of the electromagnetic steel sheet before groove formation was 1.90 to 1.96 (T). Grooves having a width of 50 μm were introduced into each electromagnetic steel sheet by gear rolls at intervals of 5 mm substantially parallel to the plate width direction. At this time, the pressure applied to the gear roll was changed to control the groove depth d so as to have various depths shown in Table 1. For the sample after groove formation, B8k (T) and iron loss W17 / 50 (W / kg) after groove formation were measured. The measurement results are shown in Table 1.
In the evaluation <1> in Table 1, those in which B8k (T) after groove formation satisfied the following formula were designated as “◯”, and those in which the following formula was not satisfied were designated as “−”. “○” means that the decrease in magnetic flux density due to groove formation is small.
B8k (T) ≥ 1.87 (T)
In addition, the evaluation <2> in Table 1 shows that the iron loss W17 / 50 (W / kg) is "-" for those with an iron loss of more than 0.84, "○" for those with an iron loss of 0.84 or less, and 0.78 or less. Those with a value of 0.72 or less were designated as "◎", and those with a value of 0.72 or less were designated as "☆".
According to the present invention, an electromagnetic steel sheet having a small decrease in magnetic flux density due to groove formation and low iron loss can be obtained.

Figure 2020143314
Figure 2020143314

通常の方法で製造された、張力被膜を形成された板厚0.23mmの方向性電磁鋼板(Si含有率2.00〜7.00%、残部がFeおよび不純物である化学組成を有する)を数種類用意した。電磁鋼板は溝形成前のB8naが1.90〜1.91(T)であった。各電磁鋼板に、板幅方向にほぼ平行に、間隔5mmにて歯車ロールにより幅50μmの溝を導入した。本発明例で導入する溝の深さdは、溝形成後のB8ma(T)を設定し、上記の溝形成前のB8naと合わせて、下記式に代入することにより、決定した。

Figure 2020143314
ただし、θ=0°、p=5mmである。
溝を導入する際に、決定した溝深さdとなるように、歯車ロールに付与する圧力を変化させた。同一の条件で100回の再現試験を繰り返した。溝形成後の試料について、溝形成後のB8ka(T)および鉄損W17/50(W/kg)を測定した。B8ka(T)の平均値および、鉄損W17/50が0.8(W/kg)以下の収率の結果を表2に示す。ここで、収率が95%以上であった場合に○、95%未満であった場合に−とした。なお、比較例は図1を用いて従来通りの方法で溝を形成した結果である。
本発明によれば、溝形成による磁束密度の低下が小さく、低鉄損の電磁鋼板が、高収率で得られる。 A grain-oriented electrical steel sheet (Si content 2.00 to 7.00%, having a chemical composition in which the balance is Fe and impurities) having a thickness of 0.23 mm and having a tension film formed by a usual method. I prepared several types. The B8na of the electromagnetic steel sheet before groove formation was 1.90 to 1.91 (T). Grooves having a width of 50 μm were introduced into each electromagnetic steel sheet by gear rolls at intervals of 5 mm substantially parallel to the plate width direction. The groove depth d introduced in the example of the present invention was determined by setting B8ma (T) after groove formation and substituting it into the following formula together with B8na before groove formation.
Figure 2020143314
However, θ = 0 ° and p = 5 mm.
When the groove was introduced, the pressure applied to the gear roll was changed so as to have the determined groove depth d. The reproduction test was repeated 100 times under the same conditions. For the sample after groove formation, B8ka (T) and iron loss W17 / 50 (W / kg) after groove formation were measured. Table 2 shows the average value of B8ka (T) and the result of the yield of iron loss W17 / 50 of 0.8 (W / kg) or less. Here, when the yield was 95% or more, it was evaluated as ◯, and when it was less than 95%, it was evaluated as −. The comparative example is the result of forming the groove by the conventional method using FIG.
According to the present invention, an electromagnetic steel sheet having a small decrease in magnetic flux density due to groove formation and a low iron loss can be obtained in a high yield.

Figure 2020143314
Figure 2020143314

通常の方法で製造された、張力被膜を形成された板厚0.23mmの方向性電磁鋼板(Si含有率3.20%、残部がFeおよび不純物である化学組成を有する)を用意した。電磁鋼板は溝形成前のB8nが1.90(T)であった。各電磁鋼板に、板幅方向にほぼ平行に、間隔5mmにて歯車ロールにより溝を導入した。このとき、歯車ロールに付与する圧力を変化させ、溝深さdをほぼ20μmに調整した。
表3に記載の様々な溝幅Wになるように制御した。溝形成後の試料について、溝形成後のB8k(T)および鉄損W17/50(W/kg)を測定した。測定結果を表3に示す。
なお、表3の評価<1>は、溝形成後のB8k(T)が下記式を満たすものを『〇』とし、満たさないものは『−』とした。『〇』は、溝形成による磁束密度の低下が小さいことを意味する。
B8k(T)≧1.87(T)
また、表3の評価<2>は、鉄損W17/50(W/kg)が、0.84超のものを『−』、0.84以下のものを『〇』、0.78以下のものを『◎』、0.72以下のものを『☆』とした。
本発明によれば、溝形成による磁束密度の低下が小さく、低鉄損である、電磁鋼板が得られる。
A grain-oriented electrical steel sheet having a thickness of 0.23 mm (Si content: 3.20%, the balance having a chemical composition of Fe and impurities) produced by a usual method and having a tension film formed was prepared. The B8n of the electromagnetic steel sheet before groove formation was 1.90 (T). Grooves were introduced into each electrical steel sheet by gear rolls at intervals of 5 mm substantially parallel to the plate width direction. At this time, the pressure applied to the gear roll was changed to adjust the groove depth d to approximately 20 μm.
It was controlled so as to have various groove widths W shown in Table 3. For the sample after groove formation, B8k (T) and iron loss W17 / 50 (W / kg) after groove formation were measured. The measurement results are shown in Table 3.
In the evaluation <1> of Table 3, those in which B8k (T) after groove formation satisfied the following formula were designated as “◯”, and those in which the following formula was not satisfied were designated as “−”. “○” means that the decrease in magnetic flux density due to groove formation is small.
B8k (T) ≥ 1.87 (T)
In addition, the evaluation <2> in Table 3 shows that the iron loss W17 / 50 (W / kg) is "-" for those with an iron loss of more than 0.84, "○" for those with an iron loss of 0.84 or less, and 0.78 or less. Those with a value of 0.72 or less were designated as "◎", and those with a value of 0.72 or less were designated as "☆".
According to the present invention, an electromagnetic steel sheet having a small decrease in magnetic flux density due to groove formation and low iron loss can be obtained.

Figure 2020143314
Figure 2020143314

通常の方法で製造された、張力被膜を形成された板厚0.23mmの方向性電磁鋼板(Si含有率3.20%、残部がFeおよび不純物である化学組成を有する)を用意した。電磁鋼板は溝形成前のB8nが1.90(T)であった。各電磁鋼板に、板幅方向にほぼ平行に、間隔1.5〜40mmにて歯車ロールにより溝を導入した。このとき、歯車ロールに付与する圧力を制御し、溝深さdをほぼ20μmに調整した。
表4に記載の様々な溝間隔pになるように制御した。溝形成後の試料について、溝形成後のB8k(T)および鉄損W17/50(W/kg)を測定した。測定結果を表4に示す。
なお、表4の評価<1>は、溝形成後のB8k(T)が下記式を満たすものを『〇』とし、満たさないものは『−』とした。『〇』は、溝形成による磁束密度の低下が小さいことを意味する。
B8k(T)≧1.87(T)
また、表4の評価<2>は、鉄損W17/50(W/kg)が、0.84超のものを『−』、0.84以下のものを『〇』、0.78以下のものを『◎』、0.72以下のものを『☆』とした。
本発明によれば、溝形成による磁束密度の低下が小さく、低鉄損である、電磁鋼板が得られる。
A grain-oriented electrical steel sheet having a thickness of 0.23 mm (Si content: 3.20%, the balance having a chemical composition of Fe and impurities) produced by a usual method and having a tension film formed was prepared. The B8n of the electromagnetic steel sheet before groove formation was 1.90 (T). Grooves were introduced into each electrical steel sheet by gear rolls at intervals of 1.5 to 40 mm substantially parallel to the plate width direction. At this time, the pressure applied to the gear roll was controlled to adjust the groove depth d to approximately 20 μm.
It was controlled so as to have various groove spacings p shown in Table 4. For the sample after groove formation, B8k (T) and iron loss W17 / 50 (W / kg) after groove formation were measured. The measurement results are shown in Table 4.
In the evaluation <1> in Table 4, those in which B8k (T) after groove formation satisfied the following formula were designated as “◯”, and those in which the following formula was not satisfied were designated as “−”. “○” means that the decrease in magnetic flux density due to groove formation is small.
B8k (T) ≥ 1.87 (T)
In addition, the evaluation <2> in Table 4 shows that the iron loss W17 / 50 (W / kg) is "-" for those with an iron loss of more than 0.84, "○" for those with an iron loss of 0.84 or less, and 0.78 or less. Those with a value of 0.72 or less were designated as "◎", and those with a value of 0.72 or less were designated as "☆".
According to the present invention, an electromagnetic steel sheet having a small decrease in magnetic flux density due to groove formation and low iron loss can be obtained.

Figure 2020143314
Figure 2020143314

Claims (5)

質量%で、Si:2.00〜7.00%を含有し、残部がFe及び不純物である化学組成を有し、圧延方向と交差する方向かつ溝深さ方向が板厚方向となる溝を一定間隔で有する鋼板であって、
鋼板を800(A/m)で励磁した場合の磁束密度をB8(T)と定義し、前記溝を除去した鋼板のB8(T)をB8n(T)と定義し、該溝の深さをd(μm)と定義し、該溝の間隔をp(mm)、該溝が圧延直角方向となす角度をθ(°)と定義したときに、以下の式(1)を満足し、溝の幅Wが20〜100μmである、方向性電磁鋼板

B8n+{0.1428+0.0032*d-(0.0722+0.0024*d)*B8n}*(3/p)*e^(-qθ)≧1.87 … (1)

ただし、B8n≧1.90(T)
0≦θ≦30°
2≦p≦30
q=0.075である。
Grooves containing Si: 2.00 to 7.00% by mass, having a chemical composition in which the balance is Fe and impurities, and having a direction intersecting the rolling direction and a groove depth direction being the plate thickness direction. It is a steel plate held at regular intervals and
The magnetic flux density when the steel sheet is excited at 800 (A / m) is defined as B8 (T), the B8 (T) of the steel sheet from which the grooves are removed is defined as B8n (T), and the depth of the grooves is defined as B8n (T). When defined as d (μm), the distance between the grooves is defined as p (mm), and the angle formed by the grooves in the direction perpendicular to rolling is defined as θ (°), the following equation (1) is satisfied, and the groove Directional electromagnetic steel sheet with width W of 20 to 100 μm

B8n + {0.1428 + 0.0032 * d- (0.0722 + 0.0024 * d) * B8n} * (3 / p) * e ^ (-qθ) ≧ 1.87… (1)

However, B8n ≥ 1.90 (T)
0 ≤ θ ≤ 30 °
2 ≤ p ≤ 30
q = 0.075.
鋳造工程、熱間圧延工程、冷間圧延工程、脱炭焼鈍工程、仕上焼鈍工程を有する方向性電磁鋼板の製造方法であって、冷間圧延工程以降に圧延方向と交差する方向かつ溝深さ方向が板厚方向となる溝を一定間隔で形成する溝形成工程を含み、
前記鋼板を800(A/m)で励磁した場合の磁束密度をB8(T)と定義し、該溝の深さd(μm)を溝形成材のB8(T)と溝未形成材のB8(T)から決めることを特徴とする方向性電磁鋼板の製造方法。
A method for manufacturing a directional electromagnetic steel plate having a casting process, a hot rolling process, a cold rolling process, a decarburization annealing process, and a finish annealing process, in a direction intersecting the rolling direction and a groove depth after the cold rolling process. Includes a groove forming step of forming grooves whose direction is the thickness direction at regular intervals.
The magnetic flux density when the steel sheet is excited at 800 (A / m) is defined as B8 (T), and the groove depth d (μm) is defined as the groove forming material B8 (T) and the groove unformed material B8. A method for manufacturing a grain-oriented electrical steel sheet, which is characterized by determining from (T).
溝形成材のB8(T)をB8m(T)と定義し、溝未形成材のB8(T)をB8n(T)と定義し、該溝の間隔をp(mm)、該溝が圧延直角方向となす角度をθ(°)と定義した場合に、前記溝形成工程で形成される溝深さd(μm)が以下の式(2)に従って算出されたことを特徴とし、溝の幅Wが20〜100μmである、請求項2に記載の方向性電磁鋼板の製造方法。
Figure 2020143314
ここで
0≦θ≦30°
2≦p≦30
q=0.075である。
B8 (T) of the groove forming material is defined as B8m (T), B8 (T) of the ungrooved material is defined as B8n (T), the interval between the grooves is p (mm), and the grooves are at right angles to rolling. When the angle formed with the direction is defined as θ (°), the groove depth d (μm) formed in the groove forming step is calculated according to the following equation (2), and the groove width W The method for manufacturing a directional electromagnetic steel sheet according to claim 2, wherein the thickness is 20 to 100 μm.
Figure 2020143314
here
0 ≤ θ ≤ 30 °
2 ≤ p ≤ 30
q = 0.075.
前記溝形成工程が、前記冷間圧延工程後かつ前記脱炭焼鈍工程前であることを特徴とする請求項2または3に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 2 or 3, wherein the groove forming step is after the cold rolling step and before the decarburization annealing step. 前記溝形成工程が、張力被膜形成工程後であることを特徴とする請求項2または3に記載の方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to claim 2 or 3, wherein the groove forming step is after the tension film forming step.
JP2019039058A 2019-03-04 2019-03-04 Grain-oriented electrical steel sheet with good iron loss and its manufacturing method Active JP7385098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019039058A JP7385098B2 (en) 2019-03-04 2019-03-04 Grain-oriented electrical steel sheet with good iron loss and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019039058A JP7385098B2 (en) 2019-03-04 2019-03-04 Grain-oriented electrical steel sheet with good iron loss and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020143314A true JP2020143314A (en) 2020-09-10
JP7385098B2 JP7385098B2 (en) 2023-11-22

Family

ID=72353368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019039058A Active JP7385098B2 (en) 2019-03-04 2019-03-04 Grain-oriented electrical steel sheet with good iron loss and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7385098B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125621A (en) * 1986-11-15 1988-05-28 Nippon Steel Corp Production of low iron loss grain oriented electrical steel sheet
JPH0488121A (en) * 1990-08-01 1992-03-23 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet reduced in iron loss
JPH10183251A (en) * 1996-12-19 1998-07-14 Nippon Steel Corp Production of low core loss grain oriented silicon steel sheet
JP2000144251A (en) * 1998-11-09 2000-05-26 Nippon Steel Corp Manufacture of grain oriented silicon steel having stress relief annealing resistance and low core loss
JP2000173814A (en) * 1998-12-04 2000-06-23 Nippon Steel Corp Manufacture of small iron loss unidirectional electromagnetic steel sheet
JP2002220642A (en) * 2001-01-29 2002-08-09 Kawasaki Steel Corp Grain-oriented electromagnetic steel sheet with low iron loss and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125621A (en) * 1986-11-15 1988-05-28 Nippon Steel Corp Production of low iron loss grain oriented electrical steel sheet
JPH0488121A (en) * 1990-08-01 1992-03-23 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet reduced in iron loss
JPH10183251A (en) * 1996-12-19 1998-07-14 Nippon Steel Corp Production of low core loss grain oriented silicon steel sheet
JP2000144251A (en) * 1998-11-09 2000-05-26 Nippon Steel Corp Manufacture of grain oriented silicon steel having stress relief annealing resistance and low core loss
JP2000173814A (en) * 1998-12-04 2000-06-23 Nippon Steel Corp Manufacture of small iron loss unidirectional electromagnetic steel sheet
JP2002220642A (en) * 2001-01-29 2002-08-09 Kawasaki Steel Corp Grain-oriented electromagnetic steel sheet with low iron loss and manufacturing method therefor

Also Published As

Publication number Publication date
JP7385098B2 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
RU2550675C1 (en) Manufacturing method of plate from grain-oriented electrical steel
KR101445467B1 (en) Process for producing grain-oriented magnetic steel sheet
RU2524026C1 (en) Texture electric steel sheet and method of its production
JP7028327B2 (en) Directional electrical steel sheet
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5446377B2 (en) Oriented electrical steel sheet and manufacturing method thereof
US6613160B2 (en) Method to produce grain-oriented electrical steel sheet having high magnetic flux density
EP0390140B1 (en) Process for producing grain-oriented electrical steel sheet having excellent magnetic characteristic
KR101389248B1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
JPH09118964A (en) Grain-directional silicon steel having high volume resistivity
WO2012001952A1 (en) Oriented electromagnetic steel plate and production method for same
EP4123038A1 (en) Grain-oriented electromagnetic steel sheet, and method for manufacturing grain-oriented electromagnetic steel sheet
EP1162280A2 (en) Method for producing a grain-oriented electrical steel sheet excellent in magnetic properties
JP7319523B2 (en) Oriented electrical steel sheet
US4773948A (en) Method of producing silicon iron sheet having excellent soft magnetic properties
JP4932544B2 (en) Method for producing grain-oriented electrical steel sheet capable of stably obtaining magnetic properties in the plate width direction
WO2020218329A1 (en) Method for producing grain-oriented electromagnetic steel sheet
EP4174194A1 (en) Production method for grain-oriented electrical steel sheet
JPH0567683B2 (en)
JP5691265B2 (en) Method for producing grain-oriented electrical steel sheet
JP2000045052A (en) Low core loss and grain-oriented silicon steel sheet excellent in shape in edge part in width direction of coil and its production
JP7385098B2 (en) Grain-oriented electrical steel sheet with good iron loss and its manufacturing method
JP4905374B2 (en) Unidirectional electrical steel sheet and manufacturing method thereof
JPH08134551A (en) Production of grain oriented silicon steel sheet excellent in iron loss and magnetostrictive characteristic
JP2011208196A (en) Method for manufacturing grain-oriented electromagnetic steel sheet having considerably low iron loss

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230823

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R151 Written notification of patent or utility model registration

Ref document number: 7385098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151