JP7384514B2 - 浸透コーティング及び反応性相スプレー配合コーティングを含むコーティングシステム - Google Patents

浸透コーティング及び反応性相スプレー配合コーティングを含むコーティングシステム Download PDF

Info

Publication number
JP7384514B2
JP7384514B2 JP2019207872A JP2019207872A JP7384514B2 JP 7384514 B2 JP7384514 B2 JP 7384514B2 JP 2019207872 A JP2019207872 A JP 2019207872A JP 2019207872 A JP2019207872 A JP 2019207872A JP 7384514 B2 JP7384514 B2 JP 7384514B2
Authority
JP
Japan
Prior art keywords
coating
thermal barrier
barrier coating
pores
reactive phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019207872A
Other languages
English (en)
Other versions
JP2020090722A (ja
JP2020090722A5 (ja
Inventor
ヒリシケシュ・ケシャヴァン
バーナード・パトリック・ビューレイ
ホセ・サンチェス
マージョー・ウォレス
バイロン・プリッチャード
アンバリッシュ・クルカルニ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2020090722A publication Critical patent/JP2020090722A/ja
Publication of JP2020090722A5 publication Critical patent/JP2020090722A5/ja
Application granted granted Critical
Publication of JP7384514B2 publication Critical patent/JP7384514B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • C23C18/1266Particles formed in situ
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6011Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment

Description

本明細書に記載の主題は、反応性コーティングに関する。
コーティングは、タービンエンジンが動作しているときにタービンエンジンの様々な表面を保護するために、航空機エンジンや産業用ガスタービンなどのタービンエンジンで広く使用されている。コーティングの一例は、遮熱コーティングである。コーティングは、タービンエンジンの使用中に、剥離(spallation)、損傷などにより劣化することがよくある。剥離は、遮熱コーティングに浸透して遮熱コーティングを侵す可能性のある遮熱コーティング上の埃やカルシア・マグネシウム・シリカ(CMAS)の堆積物の蓄積によっても引き起こされる場合がある。
一実施形態において、方法は、物品の遮熱コーティング上に浸透コーティングを適用することを含む。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔に浸透する。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔内で分解して、遮熱コーティングの少なくとも幾つかの気孔の一部を被覆する。浸透コーティングは、遮熱コーティングの気孔率を減少させる。本方法はまた、遮熱コーティング上に反応性相スプレー配合コーティング(reactive phase spray formulation coating)を適用することも含む。反応性相スプレー配合コーティングは、遮熱コーティング上の埃堆積物と反応する。
一実施形態において、物品の遮熱コーティングに適用されるように構成されたコーティングシステムは、遮熱コーティングに適用されるように構成された浸透コーティングを含む。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔に浸透する。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔内で分解して、遮熱コーティングの少なくとも幾つかの気孔の一部を被覆する。浸透コーティングは、遮熱コーティングの気孔率を減少させる。本コーティングシステムはまた、遮熱コーティングに適用されるように構成された反応性相スプレー配合コートも含む。反応性相スプレー配合コーティングは、遮熱コーティング上の埃堆積物と反応する。
一実施形態において、方法は、物品の遮熱コーティング上に浸透コーティングを堆積させることを含む。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔に浸透する。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔内で分解して、遮熱コーティングの少なくとも幾つかの気孔の一部を被覆する。浸透コーティングは、遮熱コーティングの気孔率を減少させる。本方法はまた、遮熱コーティング上に反応性相スプレー配合コーティングを堆積させることも含む。反応性相スプレー配合コーティングは、ベース材料とバインダー材料とを含む。ベース材料は、バインダー材料のコンプライアンス(compliance)よりも高いコンプライアンスを有する。バインダー材料は、ベース材料の凝集強度よりも大きい凝集強度を有する。バインダー材料は、ベース材料の接着強度よりも大きい接着強度を有する。バインダー材料は、ベース材料の表面積よりも大きい少なくとも10平方メートル/グラムの表面積を有する。浸透コーティング及び反応性相スプレー配合コーティングは、浸透コーティング又は反応性相スプレー配合コーティングの1つ以上が遮熱コーティング上に堆積されていない場合と比較して、遮熱コーティングの剥離量を減少させるように構成される。
一実施形態において、システムは、遮熱コーティングを含む物品と、物品の遮熱コーティング上に堆積されたコーティングシステムとを含む。コーティングシステムは、遮熱コーティング上に堆積されるように構成された浸透コーティングを含む。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔に浸透する。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔内で分解して、遮熱コーティングの少なくとも幾つかの気孔の一部を被覆する。浸透コーティングは、遮熱コーティングの気孔率を減少させる。本コーティングシステムはまた、遮熱コーティング上に堆積されるように構成された反応性相スプレー配合コーティングも含む。反応性相スプレー配合コーティングは、遮熱コーティング上の埃堆積物と反応する。浸透コーティング及び反応性相スプレー配合コーティングは、浸透コーティング又は反応性相スプレー配合コーティングの1つ以上が遮熱コーティング上に堆積されていない場合と比較して、遮熱コーティングの剥離量を減少させるように構成される。
本発明の主題は、添付の図面を参照して、非限定的な実施形態の以下の説明を読むことにより、より良く理解されるであろう。
一実施形態によるコーティングシステムの断面図を示す。 一実施形態による図1のコーティングシステム100の一部の拡大断面図を示す。 一実施形態による遮熱コーティングに入り込む浸透コーティングの量のグラフを示す。 一実施形態による、物理蒸着プロセスによって適用された遮熱コーティングに適用された浸透コーティングを示す。 一実施形態による、プラズマスプレープロセスによって適用された遮熱コーティングに適用された浸透コーティングを示す。 一実施形態による反応性相スプレー配合コーティング100の拡大図を示す。 物品に適用された遮熱コーティングの既知の反応を示す。 一実施形態による、遮熱コーティングと物品に適用されたコーティングシステムとの反応を示す。 一実施形態による、ジェットエンジン熱衝撃(JETS)試験からの結果のグラフを示す。
本明細書に記載の本発明の主題の1つ以上の実施形態は、遮熱コーティングの寿命を延ばすことができるコーティングシステムを提供する。具体的には、1つ以上の実施形態は、浸透コーティング手順、後続の遮熱コーティング上への反応性相配合コーティングの適用を提供する。浸透コーティングは、液体溶液として遮熱コーティング上に適用され、遮熱コーティングに入り込んで遮熱コーティングのバルクの幾つかの気孔に浸透し、遮熱コーティングの気孔率を変化させる。次いで、液体溶液は分解されて、遮熱コーティングの気孔を被覆し、かつ遮熱コーティングの気孔率を再び変化させる固体酸化物粒子を形成する。続いて、反応性相スプレー配合コーティングが遮熱コーティング上に適用され、遮熱コーティングの外面に懸濁されるか、又は残る。
遮熱コーティングのバルクを処理する浸透コーティングと、遮熱コーティングの表面を処理する反応性相スプレー配合コーティングとの組み合わせは、遮熱コーティングの寿命を向上させる。組み合わせのコーティング処理は、遮熱コーティング上の埃堆積物が多孔質構造内に浸透して剥離を引き起こす場合に、遮熱コーティングを有する部品に発生する可能性のある損傷の低減を改善する。
1つ以上の実施形態において、反応性相配合コーティングは、大きいセラミック粒子(例えば、1~10ミクロンのサイズを有する粒子)と非常に細かいセラミック粒子(例えば、1ミクロン未満のサイズを有する粒子)との組み合わせからなる。非常に細かいセラミック粒子は、大きいセラミック粒子のバインダーとして機能する。大きいセラミック粒子と細かいセラミック粒子との組み合わせを調整して、次の特性:接着強度、凝集強度、及びコンプライアンス、の好ましい組み合わせを提供することができる。
埃堆積物及び/又はカルシア・マグネシウム・シリカ(CMAS)堆積物は、タービンエンジンなどのシステムの動作中に遮熱コーティング上に層を形成する。埃堆積物は、遮熱コーティングに浸透し、タービンエンジンの使用中に遮熱コーティングを劣化及び/又は損傷させる。これらの問題の1つ又は複数に対処するために、本明細書に記載の主題の一実施形態は、浸透コーティングを生成するための化学浸透手順、後続の既存の遮熱コーティング上への反応性相スプレー配合コーティングの適用の使用を含む、コーティングシステムを含む。
1つ以上の実施形態において、反応性相スプレー配合コーティングは、ベース材料(例えば、大きいセラミック粒子)とバインダー材料(例えば、細かいセラミック粒子)とを含み得る。ベース材料は、バインダー材料のバインダーコンプライアンスよりも高いベースコンプライアンスを有する。バインダー材料は、ベース材料の凝集強度よりも大きい凝集強度を有する。バインダー材料はまた、ベース材料の接着強度よりも大きい接着強度を有する。バインダー材料の粒子はまた、ベース材料の粒子の表面積よりも大きい少なくとも10平方メートル/グラム(m/g)の表面積を有する。ベース材料及びバインダー材料の配合物又は組み合わせは、物品の遮熱コーティング上に反応性相スプレー配合コーティングを形成するために、物品(例えば、タービンエンジンの表面)の遮熱コーティング上に適用又は堆積される。
バインダー材料は、バインダー材料を含まない反応性相スプレー配合コーティングと比較して、反応性相スプレー配合コーティングの凝集強度レベルを向上させ、反応性相スプレー配合コーティングの接着強度レベルを向上させ、遮熱コーティングの反応性相スプレー配合コーティングのコンプライアンスを向上させる。
浸透コーティングの適用と、後続の反応性相スプレー配合コーティングの適用との組み合わせは、新しい予想外の結果をもたらした。本明細書に記載の主題の少なくとも1つの技術的効果は、コーティングシステムに浸透コーティング又は反応性相スプレー配合コーティングの一方が適用されていない場合と比較して、航空機の翼から又は陸上ガスタービン設備においてタービンエンジンを取り外すことなく遮熱コーティングの寿命を向上させることを含む。本明細書に記載の主題の別の技術的効果は、コーティングシステムが遮熱コーティング上への浸透コーティング又は反応性相スプレー配合コーティングの一方の適用を含まない場合と比較した、部品損傷の低減の改善、修理及び/又は交換コストの低減の改善、又はタービンエンジンの停止間の時間の改善を含む。本明細書に記載の主題の別の技術的効果は、熱処理又は熱プロセスなしで、遮熱コーティングに対する反応性相スプレー配合コーティングの接着強度レベルを向上させることを含む。
図1は、一実施形態によるコーティングシステム100の断面図を示す。図2は、一実施形態による図1のコーティングシステム100の一部の拡大断面図を示す。コーティングシステム100は、物品(図示せず)の遮熱コーティング106に適用された浸透コーティング122及び反応性相スプレー配合コーティング102を含む。一実施形態において、物品はタービンエンジンの表面とすることができ、遮熱コーティング106は、タービンエンジンの1つ以上の表面に適用されるセラミック遮熱コーティング、セラミックコーティングなどとすることができる。コーティングシステム100は、新しいパーツ(例えば、タービンエンジンの新しい部品)の遮熱コーティング106、修理されたパーツ(例えば、タービンエンジンの既存の及び/又は使用済の部品)の遮熱コーティング106上に適用されてもよく、現場又はメンテナンス場所などで修理されたパーツ上に適用されてもよい。1つ以上の実施形態において、遮熱コーティング106は、物理蒸着(PVD)法などによって適用されてもよい。追加的又は代替的に、遮熱コーティング106は、限定はされないが、空気プラズマスプレー(APS)、電子ビーム物理蒸着(EBPVD)、指向性蒸着(DVD)、懸濁プラズマスプレー(SPS)などの1つ又は複数のプロセスによって、物品上に堆積され得る。
遮熱コーティング106は、上面又は外面108を含み、遮熱コーティング106のバルク120は、外面108から離れて物品(図示せず)に向かって距離を延ばす。遮熱コーティング106のバルク120は、遮熱コーティング106のバルク120全体に分散された幾つかの気孔124を含む。浸透コーティング122は、液体溶液として遮熱コーティング106の外面108上に適用される。
1つ以上の実施形態において、浸透コーティング122は、限定はされないが、土類酸化物(earth oxide)、アルミナなどの別の酸化物などであってもよい。任意に、浸透コーティング122は、硝酸アルミニウム、硝酸ガドリニウムアルミニウム、硝酸イットリウム、タンタルエトキシド、硝酸ストロンチウムなどを含むことができる。浸透コーティング122は、外面108から外面108から離れた距離まで、遮熱コーティング106の気孔124の少なくとも幾つかに入り込む。例えば、浸透コーティング122は、バルク120の開いた空隙に入り込むことができ、遮熱コーティング106の外面108において1つ以上の孔又は亀裂を介して気孔124の幾つかを充填することができる。あるいは、浸透コーティング122は、切り離された(closed off)又は閉じた空隙である他の気孔124を充填することができない場合がある。
遮熱コーティング106は、遮熱コーティング106を適用するために使用されるプロセスに基づいて、バルク120内に異なる多孔性構造を有してもよい。例えば、電子ビーム物理蒸着プロセス(EBPVD)によって適用された遮熱コーティング106は、異なるプロセス(例えば、物理蒸着プロセス、空気プラズマスプレープロセス、指向性蒸着プロセス、懸濁プラズマスプレープロセスなど)によって適用された遮熱コーティング106の多孔性構造とは異なる多孔性構造を有してもよい。EBPVDプロセスによって適用された遮熱コーティング106は、垂直又は円柱アーキテクチャ多孔性構造を有することができ、それにより、浸透コーティング122は、バルク120と外面108との間のほぼ垂直の柱状に延びる気孔124を充填する。あるいは、空気プラズマスプレープロセスによって適用された遮熱コーティング106は、ランダムな多孔性構造を有し得る。例えば、浸透コーティング122は、遮熱コーティング106が物品上に適用されるプロセスに基づいて、バルク120の異なる気孔124に入り込むことができる場合がある。
浸透コーティング122の液体溶液が気孔124の少なくとも幾つかに入り込んだ後、浸透コーティング122は分解され、液体溶液は固体酸化物粒子に変化する。例えば、浸透コーティング122の液体溶液が浸透コーティング122の異なる状態に分解すると、コーティングは分解する。1つ以上の実施形態において、浸透コーティング122は、浸透コーティング122を加熱することにより分解される。例えば、炉、ヒートガン、加熱ランプ又は石英ランプ、トーチなどによって、コーティングシステム100に熱を適用することができる。任意に、物品の1つ以上のシステムを操作することにより、コーティングシステム100に熱を適用してもよい。浸透コーティング122を、約200℃、350℃、500℃、1000℃の温度、又は規定の温度値の約2%以内に加熱して、液体溶液の固体酸化物粒子への分解をもたらすことができる。1つ以上の実施形態において、浸透コーティング122は、航空機の1つ以上の表面(例えば、翼など)に適用されてもよく、コーティング122は、エンジンの始動サイクル中のエンジンの動作によって発生する熱によって分解されてもよい。1つ以上の実施形態において、液体溶液は部分的に分解され得る。例えば、液体溶液の一部は固体酸化物粒子に分解する場合があり、液体溶液の別の部分は分解しない場合がある。浸透コーティング122の分解された固体酸化物粒子は、遮熱コーティング106の気孔124を被覆する。例えば、浸透コーティング122の固体酸化物粒子は、遮熱コーティング106と一体化する。
液体溶液が反応性固体酸化物粒子に分解する結果、遮熱コーティング106のバルク120内の浸透コーティング122の体積が変化する。例えば、浸透コーティング122が遮熱コーティング106上に適用される前に、遮熱コーティング106は、第1の気孔率値を有する初期又は第1の気孔率を有する。気孔率値はまた、遮熱コーティング106のバルク120の開気孔体積とも呼ばれ得る。例えば、より大きな気孔率値は、より小さな気孔率値を有する遮熱コーティング106と比較して、より多くの気孔があること(例えば、より多数の気孔又は気孔のより大きな割合など)、より大きな気孔があること(例えば、サイズ、面積など)、又はそれらの組み合わせを意味することができる。遮熱コーティング106の気孔124の少なくとも幾つかに浸透コーティング122の液体溶液が入り込む結果、浸透コーティング122の液体溶液は、バルク120の気孔率を、初期又は第1の気孔率値から第1の気孔率値よりも小さい第2の気孔率値に減少させる。その後、液体溶液が固体酸化物粒子に分解する結果、浸透コーティング122の固体酸化物粒子は、バルク120の気孔率を、第2の気孔率値から第2の気孔率値よりも小さい第3の気孔率値に減少させる。例えば、浸透コーティング122の液体溶液は、遮熱コーティング106の気孔124の一部を充填し、分解された浸透コーティング122の固体酸化物粒子は、浸透コーティング122の液体溶液によって充填された部分よりも少ない気孔124の部分を充填する。例えば、浸透コーティング122が分解すると、遮熱コーティング106のバルク120内の浸透コーティング122の体積が変化する。
一実施形態において、遮熱コーティング106は、遮熱コーティングのバルク120において約25%である気孔率の初期又は第1の気孔率値を有し得る。浸透コーティング122の液体溶液は、バルク120の利用可能な空隙の利用可能な25%のうちの約40%を占めるか、又は充填することができる。例えば、浸透コーティング122の液体溶液は、バルク120の全空隙の約10%の第2の気孔率値を有することができる(例えば、25%のうちの0.4を充填することができる)。浸透コーティング122の分解された固体酸化物粒子は、遮熱コーティングの第1の気孔率である体積の約25%を占めるか、又は充填することができる。例えば、浸透コーティング122の固体酸化物粒子は、バルク120の全空隙の約6%の第3の気孔率値(例えば、25%のうちの0.25)を有することができる。1つ以上の代替実施形態では、液体溶液及び/又は固体酸化物粒子は、遮熱コーティング106の空隙の異なる体積を充填することができる。
浸透コーティング122は、遮熱コーティング106のバルク120内に入り込む浸透コーティング122の量を増加させるために、複数の操作で遮熱コーティング106上に適用されてもよい。例えば、浸透コーティング122は、一連の複数の別個のスプレー又はコーティング操作で外面108にスプレーされ得る。バルク120に入り込むコーティング122の量を増加させることはまた、浸透コーティング122が分解した後に気孔124を被覆する固体酸化物粒子の量も増加させる。1つ以上の実施形態において、浸透コーティング122は、限定はされないがスプレープロセス、スラリープロセスなどである低温及び/又は非熱プロセスで、遮熱コーティング106上に適用、堆積、スプレーされ得る。
図3は、遮熱コーティング106のバルク120内に入り込んだ浸透コーティング122の質量又は量のグラフ300を示す。水平軸302は、増加する浸透サイクル数を示し、垂直軸304は、遮熱コーティング106のバルク120の気孔124内に被覆された固体酸化物粒子の増加する質量を示す。データ線306は、空気プラズマスプレープロセスによって適用された遮熱コーティングの新たな適用を含む第1のサンプル物品を表す。データ線308は、空気プラズマスプレープロセスによって適用された遮熱コーティングの経年又は既存の適用を含む第2のサンプル物品を表す。データ線310は、物理蒸着(PVD)プロセスによって適用された遮熱コーティングの新たな適用を含む第3のサンプル物品を表す。
PVDプロセスによって適用された遮熱コーティングは、垂直又は柱状アーキテクチャ多孔性構造を有する遮熱コーティングをもたらし、空気プラズマスプレープロセスは、ランダムな多孔性構造を有する遮熱コーティングをもたらす。グラフ300に示すように、第3のサンプルのデータ線310は、第1及び第2のサンプルと比較して、遮熱コーティング106のバルク120内の固体酸化物粒子の質量を増加させるために、より多数の浸透スプレーサイクルを要することを示す。加えて、データ線306及び308は、遮熱コーティングが新たな適用であるか既存の又は古い適用であるかにかかわらず、固体酸化物サンプルの質量が比較的共通の状態であることを示している。
図1の図示の実施形態では、遮熱コーティング106と反応性相スプレー配合コーティング102との間に埃堆積物104の層が配置される。例えば、試験サイクル、動作サイクル、使用サイクルなどの間のタービンエンジンの動作に応答して、遮熱コーティング106上のタービンエンジンの1つ又は複数の表面上に埃堆積物が収集され、形成されるなどすることがある。任意に、埃堆積物104の層は、遮熱コーティング106上に収集されないか、又は形成されないこともある。追加的又は代替的に、カルシア・マグネシア・アルミナ・シリカ(CMAS)堆積物の層も、遮熱コーティング106上のタービンエンジンの1つ又は複数の表面上に収集され、形成されるなどされ得る。浸透コーティング122が遮熱コーティング106の気孔124内で分解した後、反応性相スプレー配合コーティング102が遮熱コーティングに適用される。
図4は、物理蒸着プロセス(PVD)によって適用された遮熱コーティング106に適用された浸透コーティング122の一実施形態を示す。例えば、電子ビーム物理蒸着(EBPVD)プロセスなどのPVDプロセスによって適用された遮熱コーティング106は、垂直又は円柱アーキテクチャ多孔性構造を有する。図4は、説明のみを目的として拡大されており、縮尺通りに描かれていない。402において、遮熱コーティング106の拡大図は、コーティング106の2つの柱を示す。開気孔410は、遮熱コーティング106の2つの柱の間で実質的に垂直に延びている。コーティング106はまた、遮熱コーティング106全体にわたって配置された複数の孤立気孔412も含む。例えば、孤立気孔412は、開気孔410から分離されている。図示の実施形態では、開気孔410は、遮熱コーティング106のバルクの空隙の約75%を占め、孤立気孔412は、遮熱コーティング106のバルクの空隙の約25%を占める。任意に、遮熱コーティング106は、異なる割合の開気孔410及び/又は孤立気孔412からなる空隙を有してもよい。
1つ以上の実施形態において、遮熱コーティング106は、遮熱コーティング106のほぼ頂面(top surface)、上面(upper surface)、又は外面から、頂面又は外面から離れて約50ミクロン、100ミクロン、200ミクロンなどの距離までの厚さを有する。遮熱コーティング106の各柱は、幅が約4ミクロンから12ミクロンであってもよい。例えば、実質的に垂直な柱のそれぞれの幅は、約10ミクロンであり得る。任意に、幅は、10ミクロン幅より大きくても小さくてもよい。加えて、実質的に垂直な柱のうちの2つの間の開気孔410の間隔は、約1ミクロン、2ミクロン、4ミクロンなどの幅であり得る。例えば、遮熱コーティング106の2つの柱の間の開気孔410の幅は、1ミクロン幅未満であってもよく、1~2ミクロンの間の幅であってもよく、2ミクロンなどよりも大きくてもよい。任意に、遮熱コーティング柱及び/又は柱間の間隔の1つ又は複数は、任意の代替サイズを有してもよい。
404において、浸透コーティングの液体溶液420が遮熱コーティング106上に適用される。液体溶液420は、遮熱コーティング106の実質的に垂直な柱状構造に沿って、遮熱コーティング106の開気孔410に浸透する。液体溶液420は、遮熱コーティングの空隙の一部に浸透して、遮熱コーティングの気孔率値を変化させる。例えば、液体溶液420は、開気孔410に浸透するが、遮熱コーティング106の孤立気孔412には浸透しない。
406において、液体溶液420は分解して、浸透コーティングの固体酸化物粒子430を形成する。固体酸化物粒子430は、遮熱コーティング106の開気孔410を被覆する。例えば、固体酸化物粒子430は、開気孔410の1つ以上の表面を被覆して、遮熱コーティング106と一体化する。1つ以上の実施形態において、固体酸化物粒子430は、遮熱コーティング106の実質的に垂直な柱のうちの2つの間の開気孔410の間隔の幅の約20%以下を覆うか又は被覆し、柱の壁の約10%以下を被覆し得る。例えば、固体酸化物粒子430は、遮熱コーティング106の面内せん断弾性率の増加を防ぐために、開気孔410の一部のみを被覆してもよい。1つ以上の実施形態において、固体酸化物粒子430は、遮熱コーティング106の開気孔410の約100から250ナノメートルまでを被覆してもよい。ステップ402、404、406は、多数の浸透適用サイクルで何度でも繰り返されて、遮熱コーティング106の開気孔410内に浸透する浸透コーティングの固体酸化物粒子430の体積を増加させることができる。
固体酸化物粒子430は、浸透コーティングの液体溶液420によって変化した遮熱コーティング106の気孔率に対して、遮熱コーティング106の気孔率を変化させる。例えば、遮熱コーティング106は、浸透コーティングの液体溶液420が開気孔410に浸透する前に第1の気孔率値を有する。液体溶液420は、遮熱コーティング106のバルクの気孔率を、第1の気孔率値から第1の気孔率値よりも小さい第2の気孔率値に減少させる。続いて、浸透コーティングが固体酸化物粒子430に分解することは、遮熱コーティング506のバルクの気孔率を、第2の気孔率値から第2の気孔率値よりも小さい第3の気孔率値に減少させる。
図5は、プラズマスプレープロセスによって適用された遮熱コーティング506に適用された浸透コーティング122の一実施形態を示す。図4に示した実施形態とは異なり、空気プラズマスプレープロセスなどのプラズマスプレープロセスによって適用された遮熱コーティング506は、柱状アーキテクチャ構造の代わりにランダムな多孔性構造を有する。502において、物品510上に配置された遮熱コーティング506は、遮熱コーティング506のバルク全体にランダムに配置された複数の気孔512及びスプラット境界514を含む。幾つかの気孔512は、スプラット境界514を介して他の気孔512に接続される。
504において、浸透コーティングの液体溶液520が遮熱コーティング506上に適用され、遮熱コーティング506の表面518から表面518から離れる距離まで、遮熱コーティング506に入り込む。液体溶液520は、遮熱コーティングの空隙の一部に浸透して、遮熱コーティング506の気孔率値を変化させる。例えば、液体溶液520は、開気孔512及びスプラット境界514を介して接続された気孔512に浸透するが、孤立気孔516には浸透しない。1つ以上の実施形態において、開気孔512は、遮熱コーティング506の空隙の約30%を占めてもよく、孤立気孔516は、遮熱コーティング506の空隙の約70%を占めてもよい。任意に、遮熱コーティング506は、遮熱コーティング506の空隙の様々な割合の開気孔512及び孤立気孔516の空隙を有することができる。
507において、液体溶液は分解して、浸透コーティングの固体酸化物粒子530を形成する。固体酸化物粒子530は、開気孔512及びスプラット境界514を被覆する。固体酸化物粒子530は、浸透コーティングの液体溶液520によって変化した遮熱コーティング506の気孔率に対して、遮熱コーティング506の気孔率を変化させる。例えば、遮熱コーティング506は、浸透コーティングの液体溶液520が開気孔512に浸透する前に第1の気孔率値を有する。液体溶液520は、遮熱コーティング506のバルクの気孔率を、第1の気孔率値から第1の気孔率値よりも小さい第2の気孔率値に減少させる。続いて、浸透コーティングを固体酸化物粒子530に分解することは、遮熱コーティング506のバルクの気孔率を、第2の気孔率値から第2の気孔率値よりも小さい第3の気孔率値に減少させる。ステップ502、504、506は、遮熱コーティング506の開気孔512に浸透する浸透コーティングの固体酸化物粒子530の体積を増加させるために、多数の浸透スプレーサイクルで何度でも繰り返され得る。
図6は、一実施形態による反応性相スプレー配合コーティング102の拡大図を示す。反応性相スプレー配合物は、外面108上に適用され、遮熱コーティング106の外面108に懸濁したままである。例えば、浸透コーティング122は遮熱コーティングに浸透し、浸透コーティング122が分解した後、遮熱コーティング106と一体化する。浸透コーティング122は、遮熱コーティング106のバルク120を処理する。代替的に、反応性相スプレー配合コーティング102は、遮熱コーティング106の表面に残り、遮熱コーティング106の外面108を処理する。
反応性相スプレー配合コーティング102は、バインダー材料605と組み合わされたベース材料603を含む。一実施形態において、反応性相スプレー配合コーティング102は、1%から75%のバインダー材料605を含み、残りはベース材料603である。好適な実施形態では、反応性相スプレー配合コーティング102は、3%から50%のバインダー材料605を含み、残りはベース材料603である。さらにより好適な実施形態では、反応性相スプレー配合コーティング102は、5%から45%のバインダー材料605を含み、残りはベース材料603である。任意に、反応性相スプレー配合コーティング102は、任意の代替の重量百分率で、ベース材料603及び/又はバインダー材料605を含むことができる。
1つ以上の実施形態において、ベース材料603は、本明細書ではベースセラミック材料と呼ばれることがある。ベース材料603は、限定はされないがイットリウム(Y)、ガドリニウム(Gd)、ジルコニウム(Zr)、酸素(O)などの土類酸化物であってもよい。ベース材料603は、代替のベース材料603の融点相よりも高い融点相を形成又は生成するために、CMASと反応する。例えば、ベース材料603とCMASとの間の反応は、CMASの化学的性質又は化学組成を変化させ得る。一実施形態では、ベース材料603は、1ミクロン未満から25ミクロンの間の粒径を有する。好適な実施形態では、ベース材料603は、1ミクロンから10ミクロンの間の粒径を有する。任意に、ベース材料603は、代替の粒径を有してもよい。
1つ以上の実施形態において、バインダー材料605は、本明細書では、セラミックバインダー材料、セラミック粉末バインダー、セラミックバインダーなどと呼ばれることもある。バインダー材料605は、ベース材料603の化学的構成と同様の化学的構成を有する。例えば、バインダー材料605は、限定はされないがイットリウム(Y)、ガドリニウム(Gd)、ジルコニウム(Zr)、酸素(O)などの土類酸化物であってもよい。一実施形態では、バインダー材料605は、5ナノメートルよりも大きく1ミクロンまでの間のサイズである粒径を有する。好適な実施形態では、バインダー材料605は、5ナノメートルよりも大きく1ミクロン未満の粒径を有する。任意に、バインダー材料605は、代替の粒径を有してもよい。1つ以上の実施形態において、バインダー材料605は、非球形、球形、角形などの形態を有してもよい。好適な実施形態では、バインダー材料605の粒子は球形ではない。
一実施形態において、バインダー材料605は、1平方メートル/グラム(m/g)と無限サイズの間の表面積を有する。より好適な実施形態では、バインダー材料605は、5m/gから10m/gの間の表面積を有する。さらにより好適な実施形態では、バインダー材料605は、少なくとも10m/g以上の(例えば、10m/gよりも大きい)表面積を有する。任意に、バインダー材料605は、代替の表面積を有してもよい。
バインダー材料605の表面積は、ベース材料603の表面積よりも大きい。さらに、バインダー材料605は、ベース材料603の凝集強度よりも大きい凝集強度を有する。1つ以上の実施形態において、ベース材料603の凝集強度は、本明細書ではベース凝集強度とも呼ばれ、バインダー材料605の凝集強度は、本明細書ではバインダー凝集強度とも呼ばれる。バインダー材料605のより大きな表面積の粒子は、バインダー材料605の他のより大きな直径の粒子に結合する。例えば、バインダー材料605の粒子のより大きな表面積は、バインダー材料605を含まない反応性相スプレー配合コーティング102と比較して、反応性相スプレー配合コーティング102の凝集強度レベルを向上させる。さらに、バインダー材料605は、バインダー材料605を含まない反応性相スプレー配合コーティング102と比較して、反応性相スプレー配合コーティング102の熱暴露後の遮熱コーティング106上の反応性相スプレー配合コーティング102の凝集強度レベルを向上させる。
バインダー材料605の粒径は、ベース材料603の粒径よりも小さい。さらに、バインダー材料605は、ベース材料603の接着強度よりも大きい接着強度を有する。例えば、バインダー材料605のより小さな粒径は、バインダー材料605を含まない反応性相スプレー配合コーティング102と比較して、反応性相スプレー配合コーティング102の接着強度レベルを向上させる。1つ以上の実施形態において、ベース材料603の接着強度は、本明細書ではベース接着強度とも呼ばれ、バインダー材料605の接着強度は、本明細書ではバインダー接着強度とも呼ばれる。ベース材料603に対するバインダー材料605のより小さな粒径及びより大きな表面積は、バインダー材料605を含まない反応性相スプレー配合コーティング102と比較して、遮熱コーティング106に対する反応性相スプレー配合コーティング102の接着を向上させる。さらに、バインダー材料605は、バインダー材料605を含まない反応性相スプレー配合コーティング102と比較して、反応性相スプレー配合コーティング102の熱暴露後の遮熱コーティング106上の反応性相スプレー配合コーティング102の接着強度レベルを向上させる。
一実施形態において、本発明者らは、バインダー材料605を含まない反応性相スプレー配合コーティング102と比較して、熱処理、熱プロセスなどなしに、バインダー材料605が遮熱コーティングに対する反応性相スプレー配合コーティング102の接着強度レベルを予想外に向上させ、反応性相スプレー配合コーティング102の凝集強度レベルを予想外に向上させることを見出した。例えば、(例えば、ベース粒子の小さな表面積に対する)バインダー粒子の大きな表面積の大きな表面エネルギー成分は、隣接する表面に対するバインダー粒子の低温焼結及び/又は結合を促進する。低温焼結は、バインダー材料605を含まない反応性相スプレー配合コーティング102と比較して、反応性相スプレー配合コーティング102の凝集強度レベルを向上させ、遮熱コーティング106に対する反応性相スプレー配合コーティング102の接着強度レベルを向上させる。1つ以上の実施形態において、反応性相スプレー配合コーティング102は、限定はされないがスプレープロセス、スラリープロセスなどの低温及び/又は非熱プロセスで、遮熱コーティング106上に適用、堆積などすることができる。
ベース材料603は、バインダー材料605の化学的構成と同様の化学的構成を有する。例えば、ベース材料603及びバインダー材料605は両方とも、ジルコニア-イットリア配合物を含む化学的構成を有してもよい。一実施形態では、ベース材料603は、ジルコニア-55%イットリア配合物(55YSZ)を有してもよく、バインダー材料605は、ジルコニア-8%イットリア配合物(8YSZ)、ジルコニア-20%イットリア配合物(20YSZ)、又は任意の代替ジルコニア-イットリア配合物を有してもよい。任意に、ベース材料603及びバインダー材料605は、アルファ酸化アルミニウム配合物、二酸化シリコーン、CMAS、ストロンチウム・アルミニウム・ガーネット(SAG)、ガリウム・アルミナ・ペロブスカイト(GAP)、ガドリニア・ジルコニア(GdZr)などのうちの1つ以上を含む代替の化学配合物を有してもよい。
一実施形態において、反応性相スプレー配合コーティング102は、10ミクロン未満の中央粒径及び1m/gと2m/gの間の表面積を有する約70グラムの55YSZの化学的構成を有するベース材料603を含んでもよい。ベース材料603は、1ミクロン未満の中央粒径及び15m/gを超える表面積を有する約30グラムの8YSZの化学的構成を有するバインダー材料605と組み合わせることができる。反応性相スプレー配合コーティング102は、少なくとも7部のベース材料603と少なくとも3部のバインダー材料605との比を有する。例えば、反応性相スプレー配合コーティング102は、約45%のバインダー材料605を含むことができ、残りはベース材料603である。遮熱コーティング106上に適用された反応性相スプレー配合コーティング102は、約5ミクロン、約10ミクロン、約12ミクロン、約15ミクロンなどの厚さを有し得る。任意に、反応性相スプレー配合コーティング102は、異なる量のベース材料603及び/又はバインダー材料605を含むことができ、ベース材料603及び/又はバインダー材料605は、代替の粒径、表面積、化学的構成、又はそれらの代替の組み合わせを有することができる。
一実施形態において、反応性相スプレー配合コーティング102は、10ミクロン未満の中央粒径及び1m/gと2m/gの間の表面積を有する約95グラムの55YSZの化学的構成を有するベース材料603を含んでもよい。ベース材料603は、1ミクロン未満の中央粒径及び15m/gを超える表面積を有する約5グラムの8YSZの化学的構成を有するバインダー材料605と組み合わせることができる。反応性相スプレー配合コーティング102は、少なくとも19部のベース材料603と少なくとも1部のバインダー材料605との比を有する。例えば、反応性相スプレー配合コーティング102は、約5%のバインダー材料605を含むことができ、残りはベース材料603である。遮熱コーティング106上に適用された反応性相スプレー配合コーティング102は、約5ミクロン、約10ミクロン、約12ミクロン、約15ミクロンなどの厚さを有し得る。任意に、反応性相スプレー配合コーティング102は、異なる量のベース材料603及び/又はバインダー材料605を含むことができ、ベース材料603及び/又はバインダー材料605は、代替の粒径、表面積、化学的構成、又はそれらの代替の組み合わせを有することができる。
一実施形態において、反応性相スプレー配合コーティング102は、約50m/gである表面積を有する酸化アルミニウム(Al)を形成するために空気中でか焼された100グラムの擬ベーマイトの化学的構成を有するベース材料603を含むことができる。ベース材料603は、1ミクロン未満の中央粒径を有する約100グラムのAlの化学的構成を有するバインダー材料605と組み合わせることができる。遮熱コーティング106上に適用された反応性相スプレー配合コーティング102は、約5ミクロン、約10ミクロン、約12ミクロン、約15ミクロンなどの厚さを有し得る。
ベース材料603は、バインダー材料605のコンプライアンスよりも高いコンプライアンスを有する。例えば、ベース材料603は、バインダー材料605の弾性率(modulus of elasticity)率及び剛性(stiffness)よりも小さい弾性率及び剛性を有する。1つ以上の実施形態において、ベース材料603のコンプライアンスは、本明細書ではベースコンプライアンスとも呼ばれ、バインダー材料605のコンプライアンスは、本明細書ではバインダーコンプライアンスとも呼ばれる。反応性相スプレー配合コーティング102は、遮熱コーティング106上への配合コーティング102の適用、タービンエンジンの動作に応答する熱暴露、及び遮熱コーティング106上に堆積された埃堆積物104との反応に応答して、実質的に順応性である(compliant)ままである。1つ以上の実施形態において、反応性相スプレー配合コーティング102は、100ギガパスカル(GPa)未満の面内弾性率を有する。好適な実施形態では、反応性相スプレー配合コーティング102は、80GPa未満の面内弾性率を有する。さらにより好適な実施形態では、反応性相スプレー配合コーティング102は、60GPa未満の面内弾性率を有する。例えば、60GPaを超える面内弾性率を有する反応性相スプレー配合コーティング102は、タービンエンジンの熱サイクル中の埃堆積物104との反応に応答して、反応性相スプレー配合コーティング102の剥離を引き起こす場合がある。
配合コーティング102におけるより大きな粒径(例えば、1ミクロン超)のベース材料とバインダー材料605との反応によって生成又は形成された反応性相スプレー配合コーティング102、及び遮熱コーティング106に入射した埃堆積物104は、タービンエンジンの熱サイクルの際に周期的歪みが配合コーティング102の剥離を生じさせないように順応性である必要がある。タービンエンジンの動作によるスプレー配合コーティング102の熱暴露に応答して、より大きなベース材料603の粒子は、熱サイクル中に形態変化、粗大化などを経験するより小さなバインダー材料605の粒子よりも影響を受けない。ベース材料603のコンプライアンスは、反応性相スプレー配合コーティング102の面内弾性率を60GPa未満に実質的に維持する。
1つ以上の実施形態において、コーティングシステム100は、浸透コーティング122と、ベース材料を含むがバインダー材料を含まない反応性相スプレー配合コーティングとを含むことができる。例えば、反応性相スプレー配合コーティングのベース材料は、遮熱コーティング106上の埃又はCMASと反応し得る。
一実施形態において、本発明者らは、浸透コーティング122と反応性相スプレー配合コーティング102との組み合わせを含むコーティングシステム100が、浸透コーティング122及び/又は反応性相スプレー配合コーティング102が遮熱コーティング106上に堆積されていない場合と比較して、埃及び/又はCMASに起因する遮熱コーティングの剥離の減少を予想外に改善することを見出した。
図7は、物品702に適用された遮熱コーティング106の既知の反応を示す。1つ以上の実施形態において、物品702は、タービンエンジンの表面、タービンブレード又はエーロフォイルなどのタービンエンジンの1つ以上の部品の表面などであり得る。遮熱コーティング106のバルク120は、物品702上に堆積され、物品702から離れる距離に延びる。710において、埃堆積物104の層が遮熱コーティング106上に配置される。例えば、試験サイクル、動作サイクルなどの間に動作するタービンエンジンに応答して、遮熱コーティング106上のタービンエンジンの1つ又は複数の表面に埃堆積物が収集され、形成されるなどされ得る。
712において、埃堆積物104及び/又はCMAS堆積物は、タービンエンジンの使用中又は動作中に遮熱コーティング106に浸透する。例えば、遮熱コーティング106が分解し始め、埃堆積物104が遮熱コーティング106の中及び/又はそれを通って移動し始める。遮熱コーティング106に浸透する埃堆積物104は、遮熱コーティング106の安定性を損なう。714において、遮熱コーティング106は、埃堆積物104及び/又はCMASの蓄積及び浸透に応答して剥離し始める。遮熱コーティング106の剥離は、剥離の位置で物品702を露出させ、それにより、物品702が剥離の位置で損傷されることがある。
代替的に、図8は、一実施形態による、遮熱コーティング106と物品702に適用されたコーティングシステム100との反応を示す。810に示された実施形態において、浸透コーティング122の液体溶液は、遮熱コーティング106上に形成された埃堆積物104の層に適用、堆積、スプレーなどされる。任意に、浸透コーティング122は、遮熱コーティング106上に直接適用されてもよい。例えば、外面は、埃及び/又はCMASの層を有していなくてもよい。1つ以上の実施形態において、浸透コーティング122は、複数のコーティング適用で、遮熱コーティング106に適用されてもよい。浸透コーティング122の液体溶液は、遮熱コーティング106と物品702との間の遮熱コーティング106に入り込む。浸透コーティング122の液体溶液は、遮熱コーティング106の気孔の一部を充填する。その後、浸透コーティング122は(例えば、熱の適用により)分解し、浸透コーティング122は、液体溶液から遮熱コーティング106の気孔を被覆する固体酸化物粒子に変化する。
812において、浸透コーティング122が遮熱コーティング106内で分解した後、反応性相スプレー配合コーティング102は、埃堆積物104の層に適用、堆積、スプレーなどされる。(例えば、それぞれベース材料603及びバインダー材料605を含む)反応性相スプレー配合コーティング102は、遮熱コーティング106の上部に懸濁したままである。例えば、浸透コーティング122は、遮熱コーティング106のバルク120を処理し、反応性相スプレー配合コーティング102は、遮熱コーティング106の表面を処理する。
814において、試験サイクル、動作サイクルなどの間のタービンエンジン動作中又はそれに応答して、反応性相スプレー配合コーティング102は、埃堆積物104及び/又はCMAS堆積物と反応する。配合コーティング102とCMAS堆積物との間の反応は、CMAS堆積物の融解温度を上昇させる。配合コーティング102と埃堆積物104との間の反応の結果、配合コーティング102及び埃堆積物104の反応性デブリ820は、遮熱コーティング106から剥落又は脱落し、遮熱コーティング106に浸透しない。加えて、浸透コーティング122は、埃堆積物が遮熱コーティング106の表面から脱落した場所で、遮熱コーティング106の完全性を維持する。浸透コーティング122及び反応性相スプレー配合コーティング102を含むコーティングシステム100は、浸透コーティング122又は反応性相スプレー配合コーティング102の一方を含まないコーティングシステム100と比較して、埃及び/又はCMASによる遮熱コーティング106の剥離量を減少させる。
図9は、ジェットエンジン熱衝撃(JETS)試験からの結果のグラフ900を示す。標準CMAS埃に代表されるような大気埃が存在する温度での複数の熱衝撃に耐える能力を評価するために、試験クーポンを試験した。JETS試験では、各試験クーポンの厚さにわたる温度勾配を使用する。使用される温度勾配は、エンジンの動作中の温度勾配を代表するものであり得る。例えば、CMAS埃の存在下での熱衝撃試験は、航空機の一般的な操作で航空機エンジンのタービンセクションで部品が受ける熱サイクル及び環境埃暴露をシミュレートする。1つ以上の実施形態において、公称のCMASは、モル百分率で全ての百分率を有する以下の組成を有し得る:41.6%のシリカ(SiO)、29.3%のカルシア(CaO)、12.5%のアルミナ(AlO1.5)、9.1%のマグネシア(MgO)、6.0%酸化鉄(FeO1.5)、及び1.5%の酸化ニッケル(NiO)。この定義で与えられた公称のCMAS組成は、他の物質のCMAS反応性と比較できる方法で、物質のCMAS反応性のベンチマークを定義するための参照組成を表すと理解される。この参照組成の使用は、エンジンの動作中にコーティング上に堆積され始めることがある取り入れた(ingested)材料の実際の組成を制限するものではない。
水平軸902は、増加する熱衝撃試験の数を表す。垂直軸904は、増加する剥離の体積を表す。グラフは、試験された異なる試験クーポンのそれぞれを表す複数のデータ線910、912、914、916、918、920、922を含む。第1のデータ線910は、物品上に堆積された遮熱コーティングの層を有する物品を含むベースラインサンプルAを表す。第2のデータ線912及び第3のデータ線914は、それぞれサンプルB及びCを表し、それぞれが、遮熱コーティングと、サンプルB及びCのそれぞれに適用された反応性相スプレー配合コーティングとを有する物品を含む。例えば、サンプルBとCは、浸透コーティングを含まない。第4のデータ線916及び第5のデータ線918は、それぞれサンプルD及びEを表し、それぞれが、遮熱コーティングと、サンプルD及びEのそれぞれに適用された浸透コーティングとを有する物品を含む。例えば、サンプルD及びEは、反応性相スプレー配合コーティングを含まない。第6のデータ線920及び第7のデータ線922は、それぞれサンプルF及びGを表し、それぞれが、遮熱コーティングと、コーティングシステム(例えば、浸透コーティング及び反応性相スプレー配合コーティング)とを有する物品を含む。各データ線910-922のそれぞれで表される各クーポンは、上記のようにJETS試験された。グラフ900の結果は、コーティングシステム(例えば、浸透コーティング及び反応性相スプレー配合コーティング)を有するサンプルF及びGが、浸透コーティング又は反応相スプレー配合コーティングの一方を有さない試験サンプル(例えば、サンプルB、C、D、及びE)よりも大幅に優れており、コーティングシステムを有さないベースラインサンプル(例えば、サンプルA)よりも大幅に優れていることを示す。
1つ以上の実施形態において、コーティングシステム100は、新しいパーツ(例えば、タービンエンジンの新しい部品)の遮熱コーティング上に適用されてもよく、コーティングシステム100は、修理されたパーツ(例えば、タービンエンジンの既存の及び/又は使用済の部品)の遮熱コーティング上に適用されてもよく、現場又はメンテナンス場所などで新しい及び/又は修理されたパーツ上に適用されてもよい。例えば、既存のパーツの遮熱コーティングを修復又は復元するために、第1の配合を有するコーティングシステム100を新しいパーツに適用し、異なる第2の配合を有するコーティングシステム100を既存のパーツに適用してもよい。第1の配合は、第2の配合が既存のパーツの遮熱コーティングを復元するように適合されるか、又は特に構成されるように、第2の配合の化学組成とは異なる化学組成を有し得る。任意に、第1の配合は、第2の配合の浸透コーティングの第2の体積及び/又は反応性相スプレー配合コーティングの第2の体積とは異なる浸透コーティングの第1の体積の及び/又は反応性相スプレー配合コーティングの第1の体積を含むことができる。
コーティングシステム100を適用する適用ステップの順序は、1つ以上の要因に基づいて変化し得る。前述のように、コーティングシステム100は、浸透コーティング122の適用と、後続の反応性相スプレー配合コーティング102の適用とを含むことができる。一実施形態において、浸透コーティング122、後続の反応性相スプレー配合コーティング102は、新しい部品、新しいピースパーツ、既存のピースパーツ、部品レベルの修復などに適用することができる。1つ以上の代替実施形態において、反応性相スプレー配合コーティング102、後続の浸透コーティング122は、新しい部品、新しいピースパーツ、既存のピースパーツ、部品レベルの修復などに適用することができる。部品レベルの修復は、現場、メンテナンス施設などで完了することができる。任意に、部品レベルの修復は、システム(例えば、タービンエンジン)を分解せずに完了するか、又はシステムの分解が必要になる場合がある。
1つ以上の実施形態において、物品は、遮熱コーティング106上に適用された反応性相スプレー配合コーティング102の層を含むことができる。物品は、モジュールレベルの修復のためのオーバーホールショップでの浸透コーティング122の適用と、後続の反応性相スプレー配合コーティング102の適用とを含み得るメンテナンスを必要とする場合がある。任意に、浸透コーティング122、後続の反応性相スプレー配合コーティング102は、遮熱コーティング102の除去を伴う又は伴わないピースパーツの修復として適用されてもよく、現場又はオーバーホールショップなどでの部品レベルの修復として適用されてもよい。
1つ以上の実施形態において、新しい物品又は新しい部品は、浸透コーティング122、後続の反応性相スプレー配合コーティング102の堆積を含むことができる。物品は、オーバーホール又はメンテナンス施設での浸透コーティング122の適用のみを必要とし得るメンテナンスを、システムなどの分解のない現場でのモジュールレベルの修復として必要とする場合がある。別の実施形態において、物品は、オーバーホール又はメンテナンス施設での浸透コーティング122、後続の反応性相スプレー配合コーティング102の適用を必要とし得るメンテナンスを、現場においてモジュールレベルの修復などとして必要とする場合がある。別の実施形態において、物品は、遮熱コーティング106を除去した後のピースパーツでの浸透コーティング122、後続の反応性相スプレー配合コーティング102の適用を必要とし得るメンテナンスを、部品レベルの修復として必要とする場合がある。
1つ以上の実施形態において、コーティングシステム100は、例えば航空機の翼などの翼の修復として、現場(例えば、メンテナンス施設の外)で適用されてもよい。浸透コーティング122、後続の反応性相スプレー配合コーティング102は、翼の1つ又は複数の表面に適用することができ、反応性相スプレー配合コーティング102、後続の浸透コーティング122を適用してもよく、浸透コーティング122のみを適用してもよく、又はそれらの任意の組み合わせでもよい。任意に、コーティングシステム100、又はコーティングシステム100の1つ以上の部品は、新しい部品として、物品のメンテナンスなどとして、任意の順序又は組み合わせで物品に適用されてもよい。
本明細書に記載の主題の一実施形態において、方法は、物品の遮熱コーティング上に浸透コーティングを適用することを含む。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔に浸透する。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔内で分解して、遮熱コーティングの少なくとも幾つかの気孔の一部を被覆する。浸透コーティングは、遮熱コーティングの気孔率を減少させる。本方法はまた、遮熱コーティング上に反応性相スプレー配合コーティングを適用することも含む。反応性相スプレー配合コーティングは、遮熱コーティング上の埃堆積物と反応する。
任意に、浸透コーティングは、遮熱コーティングの表面から遮熱コーティングの表面から離れた距離まで、遮熱コーティングに入り込む。
任意に、浸透コーティングは、浸透コーティングが遮熱コーティングの少なくとも幾つかの気孔内で分解した後、遮熱コーティングと一体化する。
任意に、遮熱コーティングのバルクは、第1の気孔率値を有する気孔率を有する。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔に浸透して、遮熱コーティングのバルクの気孔率を、第1の気孔率値から第1の気孔率値よりも小さい第2の気孔率値に減少させるように構成される。
任意に、遮熱コーティングの少なくとも幾つかの気孔内で浸透コーティングを分解することは、遮熱コーティングのバルクの気孔率を、第2の気孔率値から第2の気孔率値よりも小さい第3の気孔率値に減少させる。
任意に、浸透コーティングは、浸透コーティングを加熱することにより分解するように構成される。浸透コーティングを加熱すると、浸透コーティングが液体溶液から固体酸化物粒子に変化する。
任意に、浸透コーティングの液体溶液は、遮熱コーティングの少なくとも幾つかの気孔の一部を充填するように構成される。分解された浸透コーティングの固体酸化物粒子は、浸透コーティングの液体溶液によって充填された部分よりも少ない遮熱コーティングの少なくとも幾つかの気孔の部分を充填するように構成される。
任意に、反応性相スプレー配合コーティングは、遮熱コーティングの表面上に残る。
任意に、浸透コーティング及び反応性相スプレー配合コーティングは、浸透コーティング又は反応性相スプレー配合コーティングの1つ以上が遮熱コーティングに適用されてない場合と比較して、遮熱コーティングの剥離量を減少させるように構成される。
任意に、反応性相スプレー配合コーティングは、ベース材料とバインダー材料とを含む。
任意に、ベース材料は、バインダー材料のコンプライアンスよりも高いコンプライアンスを有し、バインダー材料は、ベース材料の凝集強度よりも大きい凝集強度を有し、バインダー材料は、ベース材料の接着強度よりも大きい接着強度を有し、バインダー材料は、ベース材料の表面積よりも大きい少なくとも10平方メートル/グラムの表面積を有する。
任意に、物品はタービンアセンブリの表面である。
任意に、浸透コーティングは、複数のコーティング適用により遮熱コーティングに適用されるように構成される。
任意に、浸透コーティング及び反応性相スプレー配合コーティングは、非熱プロセスで遮熱コーティングに適用されるように構成される。
任意に、遮熱コーティングは、電子ビーム物理蒸着プロセス、物理蒸着プロセス、空気プラズマスプレープロセス、指向性蒸着プロセス、又は懸濁プラズマスプレープロセスによって物品上に堆積されるように構成される。
任意に、電子ビーム物理蒸着プロセスによって堆積された遮熱コーティングは、物理蒸着プロセス、空気プラズマスプレープロセス、指向性蒸着プロセス、又は懸濁プラズマスプレープロセスのうちの1つ以上によって堆積された遮熱コーティングの多孔性構造とは異なる多孔性構造を有するように構成される。
本明細書に記載の主題の一実施形態において、物品の遮熱コーティングに適用されるように構成されたコーティングシステムは、遮熱コーティングに適用されるように構成された浸透コーティングを含む。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔に浸透する。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔内で分解して、遮熱コーティングの少なくとも幾つかの気孔の一部を被覆する。浸透コーティングは、遮熱コーティングの気孔率を減少させる。本コーティングシステムはまた、遮熱コーティングに適用されるように構成された反応性相スプレー配合コートも含む。反応性相スプレー配合コーティングは、遮熱コーティング上の埃堆積物と反応する。
任意に、浸透コーティング及び反応性相スプレー配合コーティングは、浸透コーティング又は反応性相スプレー配合コーティングの1つ以上が遮熱コーティングに適用されてない場合と比較して、遮熱コーティングの剥離量を減少させるように構成される。
任意に、浸透コーティングは、浸透コーティングが遮熱コーティングの少なくとも幾つかの気孔内で分解した後、遮熱コーティングと一体化する。
任意に、浸透コーティングは、浸透コーティングを加熱することにより分解するように構成され、浸透コーティングを加熱すると、浸透コーティングが液体溶液から固体酸化物粒子に変化する。
任意に、浸透コーティングの液体溶液は、遮熱コーティングの少なくとも幾つかの気孔の一部を充填するように構成され、分解された浸透コーティングの固体酸化物粒子は、浸透コーティングの液体溶液によって充填された部分よりも少ない遮熱コーティングの少なくとも幾つかの気孔の部分を充填するように構成される。
任意に、遮熱コーティングのバルクは、第1の気孔率値を有する気孔率を有し、浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔に浸透して、遮熱コーティングのバルクの気孔率を、第1の気孔率値から第1の気孔率値よりも小さい第2の気孔率値に減少させるように構成される。
任意に、遮熱コーティングの少なくとも幾つかの気孔内で浸透コーティングを分解することは、遮熱コーティングのバルクの気孔率を、第2の気孔率値から第2の気孔率値よりも小さい第3の気孔率値に減少させる。
任意に、浸透コーティングは、遮熱コーティングの表面から遮熱コーティングの表面から離れた距離まで、遮熱コーティングに入り込むように構成される。
任意に、反応性相スプレー配合コーティングは、遮熱コーティングの表面上に残るように構成される。
任意に、反応性相スプレー配合コーティングは、ベース材料とバインダー材料とを含む。
任意に、ベース材料は、バインダー材料のコンプライアンスよりも高いコンプライアンスを有し、バインダー材料は、ベース材料の凝集強度よりも大きい凝集強度を有し、バインダー材料は、ベース材料の接着強度よりも大きい接着強度を有し、バインダー材料は、ベース材料の表面積よりも大きい少なくとも10平方メートル/グラムの表面積を有する。
任意に、物品はタービンアセンブリの表面である。
任意に、浸透コーティングは、複数のコーティング適用により遮熱コーティングに適用されるように構成される。
任意に、浸透コーティング及び反応性相スプレー配合コーティングは、非熱プロセスで遮熱コーティングに適用されるように構成される。
任意に、遮熱コーティングは、電子ビーム物理蒸着プロセス、物理蒸着プロセス、空気プラズマスプレープロセス、指向性蒸着プロセス、又は懸濁プラズマスプレープロセスによって物品上に堆積されるように構成される。
任意に、電子ビーム物理蒸着プロセスによって堆積された遮熱コーティングは、物理蒸着プロセス、空気プラズマスプレープロセス、指向性蒸着プロセス、又は懸濁プラズマスプレープロセスのうちの1つ以上によって堆積された遮熱コーティングの多孔性構造とは異なる多孔性構造を有するように構成される。
本明細書に記載の主題の一実施形態において、方法は、物品の遮熱コーティング上に浸透コーティングを堆積させることを含む。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔に浸透する。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔内で分解して、遮熱コーティングの少なくとも幾つかの気孔の一部を被覆する。浸透コーティングは、遮熱コーティングの気孔率を減少させる。本方法はまた、遮熱コーティング上に反応性相スプレー配合コーティングを堆積させることも含む。反応性相スプレー配合コーティングは、ベース材料とバインダー材料とを含む。ベース材料は、バインダー材料のコンプライアンスよりも高いコンプライアンスを有する。バインダー材料は、ベース材料の凝集強度よりも大きい凝集強度を有する。バインダー材料は、ベース材料の接着強度よりも大きい接着強度を有する。バインダー材料は、ベース材料の表面積よりも大きい少なくとも10平方メートル/グラムの表面積を有する。浸透コーティング及び反応性相スプレー配合コーティングは、浸透コーティング又は反応性相スプレー配合コーティングの1つ以上が遮熱コーティング上に堆積されてない場合と比較して、遮熱コーティングの剥離量を減少させるように構成される。
任意に、反応性相スプレー配合コーティングは、遮熱コーティングの表面上に残るように構成される。
任意に、浸透コーティングは、複数のコーティング適用により遮熱コーティング上に堆積されるように構成される。
任意に、遮熱コーティングのバルクは、第1の気孔率値を有する気孔率を有し、遮熱コーティングの少なくとも幾つかの気孔に浸透することは、遮熱コーティングの気孔率を、第1の気孔率値よりも小さい第2の気孔率値に減少させ、遮熱コーティングの少なくとも幾つかの気孔の一部を被覆することは、遮熱コーティングの気孔率を、第2の気孔率値よりも小さい第3の気孔率値に減少させる。
本明細書に記載の主題の一実施形態において、システムは、遮熱コーティングを含む物品と、物品の遮熱コーティング上に堆積されたコーティングシステムとを含む。コーティングシステムは、遮熱コーティング上に堆積されるように構成された浸透コーティングを含む。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔に浸透する。浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔内で分解して、遮熱コーティングの少なくとも幾つかの気孔の一部を被覆する。浸透コーティングは、遮熱コーティングの気孔率を減少させる。本コーティングシステムはまた、遮熱コーティング上に堆積されるように構成された反応性相スプレー配合コーティングも含む。反応性相スプレー配合コーティングは、遮熱コーティング上の埃堆積物と反応する。浸透コーティング及び反応性相スプレー配合コーティングは、浸透コーティング又は反応性相スプレー配合コーティングの1つ以上が遮熱コーティング上に堆積されてない場合と比較して、遮熱コーティングの剥離量を減少させるように構成される。
本明細書で使用されるように、単数形で記載され、単語「a」又は「an」で始まる要素又はステップは、そのような除外が明示的に述べられない限り、複数の前記要素又はステップを除外しないと理解されるべきである。さらに、現在説明されている主題の「一実施形態」への言及は、記載された特徴も組み込む追加の実施形態の存在を除外するものとして解釈されることを意図していない。さらに、そうではないと明示的に述べられていない限り、特定の特性を有する1つの要素又は複数の要素を「含む」又は「有する」実施形態は、その特性を有さない追加のそのような要素を含み得る。
上記の説明は例示的であり、限定的ではないことを意図していることを理解されたい。例えば、上述の実施形態(及び/又はその態様)は、互いに組み合わせて使用されてもよい。さらに、特定の状況又は材料を、その範囲から逸脱することなく、本明細書に記載の主題の教示に適合させるために、多くの修正を加えることができる。本明細書に記載の材料の寸法及び種類は、開示された主題のパラメータを定義することを意図しているが、それらは決して限定するものではなく、例示的な実施形態である。上記の説明を検討すると、当業者には他の多くの実施形態が明らかであろう。従って、本明細書に記載の主題の範囲は、添付の特許請求の範囲を参照して、そのような特許請求の範囲が権利を与えられる同等物の全範囲とともに決定されるべきである。添付の特許請求の範囲において、「含む(including)」及び「ここで(in which)」との用語は、「含む(comprising)」及び「ここで(wherein)」との各用語の平易な英語の同等物として使用されている。さらに、以下の特許請求の範囲において、「第1」、「第2」、及び「第3」などの用語は単にラベルとしてのみ使用され、それらの物体に数値要件を課すことを意図するものではない。さらに、以下の特許請求の範囲の制限は、ミーンズプラスファンクション形式で書かれておらず、そのような特許請求の範囲の制限が、その後にさらなる構造を伴わない機能の記述が続く「~のための手段(means for)」との句を明示的に使用していない限り、35U.S.C§112(f)に基づいて解釈されることを意図していない。
この書面による説明は、最良のモードを含む本明細書に記載の主題の幾つかの実施形態を開示し、またデバイス又はシステムの作製及び使用、並びに方法の実施を含む開示された主題の実施形態を当業者が実施することができるように、実施例を使用している。本明細書に記載の主題の特許性のある範囲は、特許請求の範囲によって定義され、当業者が思い付く他の例を含み得る。そのような他の例は、それらが特許請求の範囲の文言とは異ならない構造要素を有する場合、又はそれらが特許請求の範囲の文言と実質的な差異を有さない同等の構造要素を含む場合、特許請求の範囲内にあることが意図される。
本発明のさらなる態様は、以下の項の主題によって提供される。
[項1]物品の遮熱コーティング上に浸透コーティングを適用することであって、浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔に浸透するように構成され、浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔内で分解して、遮熱コーティングの少なくとも幾つかの気孔の一部を被覆するように構成され、浸透コーティングは、遮熱コーティングの気孔率を減少させるように構成される、ことと、
遮熱コーティング上に反応性相スプレー配合コーティングを適用することであって、反応性相スプレー配合コーティングは、遮熱コーティング上の埃堆積物と反応するように構成される、ことと、
を含む方法。
[項2]浸透コーティングは、遮熱コーティングの表面から遮熱コーティングの表面から離れる距離まで、遮熱コーティングに入り込むように構成される、任意の前項に記載の方法。
[項3]浸透コーティングは、浸透コーティングが遮熱コーティングの少なくとも幾つかの気孔内で分解した後、遮熱コーティングと一体化する、任意の前項に記載の方法。
[項4]遮熱コーティングのバルクは、第1の気孔率値を有する気孔率を有し、浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔に浸透して、遮熱コーティングのバルクの気孔率を、第1の気孔率値から第1の気孔率値よりも小さい第2の気孔率値に減少させるように構成される、任意の前項に記載の方法。
[項5]遮熱コーティングの少なくとも幾つかの気孔内で浸透コーティングを分解することは、遮熱コーティングのバルクの気孔率を、第2の気孔率値から第2の気孔率値よりも小さい第3の気孔率値に減少させる、任意の前項に記載の方法。
[項6]浸透コーティングは、浸透コーティングを加熱することにより分解するように構成され、浸透コーティングを加熱すると、浸透コーティングが液体溶液から固体酸化物粒子に変化する、任意の前項に記載の方法。
[項7]浸透コーティングの液体溶液は、遮熱コーティングの少なくとも幾つかの気孔の一部を充填するように構成され、分解された浸透コーティングの固体酸化物粒子は、浸透コーティングの液体溶液によって充填された部分よりも少ない遮熱コーティングの少なくとも幾つかの気孔の部分を充填するように構成される、任意の前項に記載の方法。
[項8]反応性相スプレー配合コーティングは、遮熱コーティングの表面上に残るように構成される、任意の前項に記載の方法。
[項9]浸透コーティング及び反応性相スプレー配合コーティングは、浸透コーティング又は反応性相スプレー配合コーティングの1つ以上が遮熱コーティングに適用されてない場合と比較して、遮熱コーティングの剥離量を減少させるように構成される、任意の前項に記載の方法。
[項10]反応性相スプレー配合コーティングは、ベース材料とバインダー材料とを含む、任意の前項に記載の方法。
[項11]ベース材料は、バインダー材料のコンプライアンスよりも高いコンプライアンスを有し、バインダー材料は、ベース材料の凝集強度よりも大きい凝集強度を有し、バインダー材料は、ベース材料の接着強度よりも大きい接着強度を有し、バインダー材料は、ベース材料の表面積よりも大きい少なくとも10平方メートル/グラムの表面積を有する、任意の前項に記載の方法。
[項12]物品はタービンアセンブリの表面である、任意の前項に記載の方法。
[項13]浸透コーティングは、複数のコーティング適用により遮熱コーティングに適用されるように構成される、任意の前項に記載の方法。
[項14]浸透コーティング及び反応性相スプレー配合コーティングは、非熱プロセスで遮熱コーティングに適用されるように構成される、任意の前項に記載の方法。
[項15]遮熱コーティングは、電子ビーム物理蒸着プロセス、物理蒸着プロセス、空気プラズマスプレープロセス、指向性蒸着プロセス、又は懸濁プラズマスプレープロセスによって物品上に堆積されるように構成される、任意の前項に記載の方法。
[項16]電子ビーム物理蒸着プロセスによって堆積された遮熱コーティングは、物理蒸着プロセス、空気プラズマスプレープロセス、指向性蒸着プロセス、又は懸濁プラズマスプレープロセスのうちの1つ以上によって堆積された遮熱コーティングの多孔性構造とは異なる多孔性構造を有するように構成される、任意の前項に記載の方法。
[項17]物品の遮熱コーティングに適用されるように構成されたコーティングシステムであって、
遮熱コーティングに適用されるように構成された浸透コーティングであって、遮熱コーティングの少なくとも幾つかの気孔に浸透するように構成され、遮熱コーティングの少なくとも幾つかの気孔内で分解して、遮熱コーティングの少なくとも幾つかの気孔の一部を被覆するように構成され、遮熱コーティングの気孔率を減少させるように構成される、浸透コーティングと、
遮熱コーティングに適用されるように構成された反応性相スプレー配合コーティングであって、遮熱コーティング上の埃堆積物と反応するように構成される、反応性相スプレー配合コーティングと、
を含むコーティングシステム。
[項18]浸透コーティング及び反応性相スプレー配合コーティングは、浸透コーティング又は反応性相スプレー配合コーティングの1つ以上が遮熱コーティングに適用されてない場合と比較して、遮熱コーティングの剥離量を減少させるように構成される、任意の前項に記載のコーティングシステム。
[項19]浸透コーティングは、浸透コーティングが遮熱コーティングの少なくとも幾つかの気孔内で分解した後、遮熱コーティングと一体化する、任意の前項に記載のコーティングシステム。
[項20]浸透コーティングは、浸透コーティングを加熱することにより分解するように構成され、浸透コーティングを加熱すると、浸透コーティングが液体溶液から固体酸化物粒子に変化する、任意の前項に記載のコーティングシステム。
[項21]浸透コーティングの液体溶液は、遮熱コーティングの少なくとも幾つかの気孔の一部を充填するように構成され、分解された浸透コーティングの固体酸化物粒子は、浸透コーティングの液体溶液によって充填された部分よりも少ない遮熱コーティングの少なくとも幾つかの気孔の部分を充填するように構成される、任意の前項に記載のコーティングシステム。
[項22]遮熱コーティングのバルクは、第1の気孔率値を有する気孔率を有し、浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔に浸透して、遮熱コーティングのバルクの気孔率を、第1の気孔率値から第1の気孔率値よりも小さい第2の気孔率値に減少させるように構成される、任意の前項に記載のコーティングシステム。
[項23]遮熱コーティングの少なくとも幾つかの気孔内で浸透コーティングを分解することは、遮熱コーティングのバルクの気孔率を、第2の気孔率値から第2の気孔率値よりも小さい第3の気孔率値に減少させる、任意の前項に記載のコーティングシステム。
[項24]浸透コーティングは、遮熱コーティングの表面から遮熱コーティングの表面から離れた距離まで、遮熱コーティングに入り込むように構成される、任意の前項に記載のコーティングシステム。
[項25]反応性相スプレー配合コーティングは、遮熱コーティングの表面上に残るように構成される、任意の前項に記載のコーティングシステム。
[項26]反応性相スプレー配合コーティングは、ベース材料とバインダー材料とを含む、任意の前項に記載のコーティングシステム。
[項27]ベース材料は、バインダー材料のコンプライアンスよりも高いコンプライアンスを有し、バインダー材料は、ベース材料の凝集強度よりも大きい凝集強度を有し、バインダー材料は、ベース材料の接着強度よりも大きい接着強度を有し、バインダー材料は、ベース材料の表面積よりも大きい少なくとも10平方メートル/グラムの表面積を有する、任意の前項に記載のコーティングシステム。
[項28]物品はタービンアセンブリの表面である、任意の前項に記載のコーティングシステム。
[項29]浸透コーティングは、複数のコーティング適用により遮熱コーティングに適用されるように構成される、任意の前項に記載のコーティングシステム。
[項30]浸透コーティング及び反応性相スプレー配合コーティングは、非熱プロセスで遮熱コーティングに適用されるように構成される、任意の前項に記載のコーティングシステム。
[項31]遮熱コーティングは、電子ビーム物理蒸着プロセス、物理蒸着プロセス、空気プラズマスプレープロセス、指向性蒸着プロセス、又は懸濁プラズマスプレープロセスによって物品上に堆積されるように構成される、任意の前項に記載のコーティングシステム。
[項32]電子ビーム物理蒸着プロセスによって堆積された遮熱コーティングは、物理蒸着プロセス、空気プラズマスプレープロセス、指向性蒸着プロセス、又は懸濁プラズマスプレープロセスのうちの1つ以上によって堆積された遮熱コーティングの多孔性構造とは異なる多孔性構造を有するように構成される、任意の前項に記載のコーティングシステム。
[項33]物品の遮熱コーティング上に浸透コーティングを堆積させることであって、浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔に浸透するように構成され、浸透コーティングは、遮熱コーティングの少なくとも幾つかの気孔内で分解して、遮熱コーティングの少なくとも幾つかの気孔の一部を被覆するように構成され、浸透コーティングは、遮熱コーティングの気孔率を減少させるように構成される、ことと、
遮熱コーティング上に反応性相スプレー配合コーティングを堆積させることであって、反応性相スプレー配合コーティングは、ベース材料とバインダー材料とを含み、ベース材料は、バインダー材料のコンプライアンスよりも高いコンプライアンスを有し、バインダー材料は、ベース材料の凝集強度よりも大きい凝集強度を有し、バインダー材料は、ベース材料の接着強度よりも大きい接着強度を有し、バインダー材料は、ベース材料の表面積よりも大きい少なくとも10平方メートル/グラムの表面積を有する、ことと、
を含み、
浸透コーティング及び反応性相スプレー配合コーティングは、浸透コーティング又は反応性相スプレー配合コーティングの1つ以上が遮熱コーティング上に堆積されてない場合と比較して、遮熱コーティングの剥離量を減少させるように構成される、方法。
[項34]反応性相スプレー配合コーティングは、遮熱コーティングの表面上に残るように構成される、任意の前項に記載の方法。
[項35]浸透コーティングは、複数のコーティング適用により遮熱コーティング上に堆積されるように構成される、任意の前項に記載の方法。
[項36]遮熱コーティングのバルクは、第1の気孔率値を有する気孔率を有し、遮熱コーティングの少なくとも幾つかの気孔に浸透することは、遮熱コーティングの気孔率を、第1の気孔率値よりも小さい第2の気孔率値に減少させ、遮熱コーティングの少なくとも幾つかの気孔の一部を被覆することは、遮熱コーティングの気孔率を、第2の気孔率値よりも小さい第3の気孔率値に減少させる、任意の前項に記載の方法。
[項37]遮熱コーティングを含む物品と、
物品の遮熱コーティング上に堆積されるように構成されたコーティングシステムと、
を含むシステムであって、
コーティングシステムは、
遮熱コーティング上に堆積されるように構成された浸透コーティングであって、遮熱コーティングの少なくとも幾つかの気孔に浸透するように構成され、遮熱コーティングの少なくとも幾つかの気孔内で分解して、遮熱コーティングの少なくとも幾つかの気孔の一部を被覆するように構成され、遮熱コーティングの気孔率を減少させるように構成される、浸透コーティングと、
遮熱コーティング上に堆積されるように構成された反応性相スプレー配合コーティングであって、遮熱コーティング上の埃堆積物と反応するように構成される、反応性相スプレー配合コーティングと、
を含み、
浸透コーティング及び反応性相スプレー配合コーティングは、浸透コーティング又は反応性相スプレー配合コーティングの1つ以上が遮熱コーティング上に堆積されてない場合と比較して、遮熱コーティングの剥離量を減少させるように構成される、
システム。
100 コーティングシステム
102 反応性相スプレー配合コーティング
104 埃堆積物
106、506 遮熱コーティング
108 上面又は外面
120 バルク
122 浸透コーティング
124、512 気孔
410、512 開気孔
412、516 孤立気孔
420、520 液体溶液
430、530 固体酸化物粒子
510、702 物品
514 スプラット境界
518 遮熱コーティング506の表面
603 ベース材料
605 バインダー材料
820 反応性デブリ

Claims (9)

  1. 物品(510)の遮熱コーティング(106)上に浸透コーティング(122)を適用することであって、前記浸透コーティング(122)を形成する液体溶液は、溶媒に溶解された、硝酸アルミニウム、硝酸ガドリニウムアルミニウム、硝酸イットリウム、タンタルエトキシド、硝酸ストロンチウムの少なくとも1つを含む溶質を含み、前記液体溶液はスプレーによって適用されて前記遮熱コーティング(106)の少なくとも幾つかの気孔(124)に浸透するように構成され、前記浸透コーティング(122)を形成する液体溶液は、前記遮熱コーティング(106)の前記少なくとも幾つかの気孔(124)内で加熱によって前記溶媒を除去し、前記溶質を酸化することによって固体酸化物粒子からなる浸透コーティング(122)が形成され、前記遮熱コーティング(106)の前記少なくとも幾つかの気孔(124)の一部を被覆するように構成され、前記浸透コーティング(122)は、前記遮熱コーティング(106)の気孔率を減少させるように構成される、ことと、
    前記遮熱コーティング(106)上に反応性相スプレー配合コーティング(102)を適用することであって、前記反応性相スプレー配合コーティング(102)は、前記遮熱コーティング(106)上の埃堆積物(104)と反応するように構成される、ことと、
    を含む方法。
  2. 前記浸透コーティング(122)は、前記遮熱コーティング(106)の表面(518)から前記遮熱コーティング(106)の前記表面(518)から離れる距離まで、前記遮熱コーティング(106)に入り込むように構成される、請求項1に記載の方法。
  3. 前記浸透コーティング(122)は、前記浸透コーティング(122)を形成する液体溶液が前記遮熱コーティング(106)の前記少なくとも幾つかの気孔(124)内で分解した後、前記遮熱コーティング(106)と一体化する、請求項1又は2に記載の方法。
  4. 前記遮熱コーティング(106)のバルク(120)は、第1の気孔率値を有する気孔率を有し、前記浸透コーティング(122)を形成する液体溶液は、前記遮熱コーティング(106)の前記少なくとも幾つかの気孔(124)に浸透して、前記遮熱コーティング(106)の前記バルク(120)の気孔率を、前記第1の気孔率値から前記第1の気孔率値よりも小さい第2の気孔率値に減少させるように構成される、請求項1から3の何れか一項に記載の方法。
  5. 前記浸透コーティング(122)は、前記浸透コーティング(122)を形成する液体溶液を加熱することにより分解するように構成され、前記浸透コーティング(122)を形成する液体溶液を加熱すると、前記浸透コーティング(122)を形成する液体溶液が液体溶液(420、520)から固体酸化物粒子(430、530)に変化する、請求項1からの何れか一項に記載の方法。
  6. 前記浸透コーティング(122)を形成する液体溶液(420、520)は、前記遮熱コーティング(106)の前記少なくとも幾つかの気孔(124)の一部を充填するように構成され、分解された前記浸透コーティング(122)の前記固体酸化物粒子(430、530)は、前記浸透コーティング(122)を形成する液体溶液(420、520)によって充填された部分よりも少ない前記遮熱コーティング(106)の前記少なくとも幾つかの気孔(124、512)の部分を充填するように構成される、請求項に記載の方法。
  7. 前記反応性相スプレー配合コーティング(102)は、前記遮熱コーティング(106)の表面(518)上に残るように構成される、請求項1からの何れか一項に記載の方法。
  8. 前記反応性相スプレー配合コーティング(102)は、ベース材料(603)とバインダー材料(605)とを含む、請求項1からの何れか一項に記載の方法。
  9. 前記ベース材料(603)は、前記バインダー材料(605)のコンプライアンスよりも高いコンプライアンスを有し、前記バインダー材料(605)は、前記ベース材料(603)の凝集強度よりも大きい凝集強度を有し、前記バインダー材料(605)は、前記ベース材料(603)の接着強度よりも大きい接着強度を有し、前記バインダー材料(605)は、前記ベース材料(603)の表面積よりも大きい少なくとも10平方メートル/グラムの表面積を有する、請求項に記載の方法。
JP2019207872A 2018-12-04 2019-11-18 浸透コーティング及び反応性相スプレー配合コーティングを含むコーティングシステム Active JP7384514B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/208,605 US11028486B2 (en) 2018-12-04 2018-12-04 Coating systems including infiltration coatings and reactive phase spray formulation coatings
US16/208,605 2018-12-04

Publications (3)

Publication Number Publication Date
JP2020090722A JP2020090722A (ja) 2020-06-11
JP2020090722A5 JP2020090722A5 (ja) 2022-06-10
JP7384514B2 true JP7384514B2 (ja) 2023-11-21

Family

ID=68766604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019207872A Active JP7384514B2 (ja) 2018-12-04 2019-11-18 浸透コーティング及び反応性相スプレー配合コーティングを含むコーティングシステム

Country Status (5)

Country Link
US (2) US11028486B2 (ja)
EP (1) EP3663432B1 (ja)
JP (1) JP7384514B2 (ja)
CN (1) CN111270217B (ja)
CA (1) CA3062047C (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180119270A1 (en) 2016-10-31 2018-05-03 General Electric Company Articles for high temperature service and methods for making

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2922721A (en) 1956-04-02 1960-01-26 Sintercast Corp America Method for coating and infiltrating a porous refractory body
JPH07504946A (ja) 1992-03-20 1995-06-01 ランキサイド テクノロジー カンパニー,リミティド パートナーシップ 反応浸透による物体の製造方法
US5366686A (en) 1993-03-19 1994-11-22 Massachusetts Institute Of Technology, A Massachusetts Corporation Method for producing articles by reactive infiltration
US5509555A (en) 1994-06-03 1996-04-23 Massachusetts Institute Of Technology Method for producing an article by pressureless reactive infiltration
US6228453B1 (en) 1995-06-07 2001-05-08 Lanxide Technology Company, Lp Composite materials comprising two jonal functions and methods for making the same
US6465090B1 (en) * 1995-11-30 2002-10-15 General Electric Company Protective coating for thermal barrier coatings and coating method therefor
US6582779B2 (en) 1999-08-11 2003-06-24 Alliedsignal, Inc. Silicon nitride components with protective coating
US6720038B2 (en) 2002-02-11 2004-04-13 General Electric Company Method of forming a coating resistant to deposits and coating formed thereby
US6627323B2 (en) 2002-02-19 2003-09-30 General Electric Company Thermal barrier coating resistant to deposits and coating method therefor
US20070116883A1 (en) * 2005-11-22 2007-05-24 General Electric Company Process for forming thermal barrier coating resistant to infiltration
US7807231B2 (en) 2005-11-30 2010-10-05 General Electric Company Process for forming thermal barrier coating resistant to infiltration
FR2921284B1 (fr) * 2007-09-26 2009-12-11 Snecma Procede de recuperation d'elements de turbomachine
EP2128299B1 (en) * 2008-05-29 2016-12-28 General Electric Technology GmbH Multilayer thermal barrier coating
US9194242B2 (en) 2010-07-23 2015-11-24 Rolls-Royce Corporation Thermal barrier coatings including CMAS-resistant thermal barrier coating layers
CA2760005A1 (en) 2010-12-21 2012-06-21 Sulzer Metco Ag Method for the manufacture of a thermal barrier coating structure
FR3002952B1 (fr) 2013-03-08 2015-10-30 Commissariat Energie Atomique Procede de preparation d'un revetement multicouche de ceramiques carbures sur, et eventuellement dans, une piece en un materiau carbone, par une technique d'infiltration reactive a l'etat fondu rmi.
US9701578B2 (en) 2013-03-15 2017-07-11 Rolls-Royce Corporation Reactive melt infiltrated-ceramic matrix composite
WO2015116300A2 (en) 2013-12-06 2015-08-06 United Technologies Corporation Calcium-magnesium alumino-silicate (cmas) resistant thermal barrier coatings, systems, and methods of production thereof
US9869188B2 (en) 2014-12-12 2018-01-16 General Electric Company Articles for high temperature service and method for making
US10201831B2 (en) * 2015-12-09 2019-02-12 General Electric Company Coating inspection method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180119270A1 (en) 2016-10-31 2018-05-03 General Electric Company Articles for high temperature service and methods for making

Also Published As

Publication number Publication date
JP2020090722A (ja) 2020-06-11
CN111270217B (zh) 2022-08-30
US20210277523A1 (en) 2021-09-09
CN111270217A (zh) 2020-06-12
EP3663432A2 (en) 2020-06-10
US20200173033A1 (en) 2020-06-04
EP3663432B1 (en) 2021-07-14
US11028486B2 (en) 2021-06-08
CA3062047C (en) 2022-01-18
US11946146B2 (en) 2024-04-02
CA3062047A1 (en) 2020-06-04
EP3663432A3 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
JP7271429B2 (ja) セラミック化合物を含む層を有する固体基材の表面をコーティングする方法、及び該方法で得られたコーティング基材
JP6342379B2 (ja) 高温使用のための物品および製造方法
US20130260132A1 (en) Hybrid thermal barrier coating
CA2708940C (en) Methods for repairing barrier coatings
US20210221747A1 (en) Protective Internal Coatings for Porous Substrates
US20090162556A1 (en) Methods for making tape cast barrier coatings, components comprising the same and tapes made according to the same
JP2007192219A (ja) タービンエンジンコンポーネント、その保護方法およびコーティング系
US20090162674A1 (en) Tapes comprising barrier coating compositions and components comprising the same
RU2764153C2 (ru) Деталь с покрытием для газотурбинного двигателя и способ её изготовления
US20180154392A1 (en) Cmas barrier coating and method of applying the same
US20220136095A1 (en) Reactive phase spray formulation coatings
Bal et al. The effect of CMAS interaction on thermal cycle lifetime of YSZ based thermal barrier coatings
JP7384514B2 (ja) 浸透コーティング及び反応性相スプレー配合コーティングを含むコーティングシステム
JP2020090722A5 (ja)
Ling et al. Thermal Properties of Plasma-Sprayed (La0. 4Sm0. 5Yb0. 1) 2-Zr2O7 Coatings on NiCrCoAlY Bond Coats
US11512383B2 (en) CMAS-resistant protective layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220221

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20220513

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220513

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220601

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220606

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220617

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220627

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220808

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221011

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230213

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230410

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231102

R150 Certificate of patent or registration of utility model

Ref document number: 7384514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150