JP7383412B2 - New memory applications for AGIQ-containing compositions - Google Patents

New memory applications for AGIQ-containing compositions Download PDF

Info

Publication number
JP7383412B2
JP7383412B2 JP2019130801A JP2019130801A JP7383412B2 JP 7383412 B2 JP7383412 B2 JP 7383412B2 JP 2019130801 A JP2019130801 A JP 2019130801A JP 2019130801 A JP2019130801 A JP 2019130801A JP 7383412 B2 JP7383412 B2 JP 7383412B2
Authority
JP
Japan
Prior art keywords
agiq
fear
expression
composition
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019130801A
Other languages
Japanese (ja)
Other versions
JP2021011466A (en
Inventor
玲奈 岡田
康哲 増渕
淳 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
San Ei Gen FFI Inc
Original Assignee
San Ei Gen FFI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by San Ei Gen FFI Inc filed Critical San Ei Gen FFI Inc
Publication of JP2021011466A publication Critical patent/JP2021011466A/en
Application granted granted Critical
Publication of JP7383412B2 publication Critical patent/JP7383412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

本発明は、α-グリコシルイソクエルシトリンの新たな用途に関する。 The present invention relates to new uses of α-glycosylisoquercitrin.

生体内では、代謝の過程で活性酸素という分子が産生されている。活性酸素は、直接あるいは複数の経路を介して細胞質内のたんぱく質やDNAを傷害するため、生体にはこれに対する抗酸化防御機能が備わっている。しかし、産生と防御のバランスが崩れると、細胞や組織の障害が進み、酸化性ストレスと呼ばれる状態に陥ってしまい、これが生活習慣病、発がん、脳卒中等の様々な疾患の一因になっていることが明らかになってきている。 In living organisms, molecules called active oxygen are produced during the metabolic process. Active oxygen species damage proteins and DNA in the cytoplasm either directly or through multiple routes, so living bodies are equipped with antioxidant defense functions against them. However, when the balance between production and defense is disrupted, cell and tissue damage progresses, leading to a state called oxidative stress, which contributes to various diseases such as lifestyle-related diseases, cancer, and stroke. This is becoming clear.

脳においては、側頭葉に海馬と呼ばれる学習や記憶に関わる重要な領域がある。海馬では生後に新しい神経細胞が産生されるため、高酸素要求性であり、海馬局所に活性酸素が生じる。このため、海馬領域は常に酸化性ストレスに曝されている状態であるといえる。従って、例えば抗酸化物質などで、海馬領域での酸化性ストレス状態を抑制することで、記憶や学習を含む脳機能に関わる疾患の予防または改善、または脳機能の向上が期待される。こうした観点から、例えば、特許文献1には、有効成分としてケルセチン-3-グルクロニドやケルシトリン等を含むポリゴナミ・ミナス抽出物(植物抽出物)が、その高い活性酸素吸収能力から認知機能を促進し、記憶や学習能力を改善することが記載されている。また、特許文献2には、カテキンやクエルセチン等のフラボノイド化合物を含むピナスの樹皮抽出物がヒトの認知能力(記憶、学習能力)の低下の改善または予防に有効であることが記載されている。また認知機能改善作用が知られているイチョウ葉には、抗酸化作用やラジカル(一酸化窒素等)消去作用が知られているクエルシトリンやケンフェロールが含まれていることが知られている(非特許文献1)。また、抗酸化物質の作用により、海馬における神経保護作用が生じたり、シナプス可塑性が増強することにより、神経傷害に起因する記憶や学習能力が改善されることも報告されている(非特許文献2)。 In the brain, there is an important region involved in learning and memory called the hippocampus in the temporal lobe. Since new neurons are produced in the hippocampus after birth, there is a high oxygen demand, and active oxygen is generated locally in the hippocampus. Therefore, it can be said that the hippocampal region is constantly exposed to oxidative stress. Therefore, by suppressing the oxidative stress state in the hippocampal region using, for example, antioxidants, it is expected to prevent or ameliorate diseases related to brain function, including memory and learning, or improve brain function. From this perspective, for example, Patent Document 1 states that Polygonami minas extract (plant extract) containing quercetin-3-glucuronide, quercitrin, etc. as active ingredients promotes cognitive function due to its high active oxygen absorption ability, It has been described to improve memory and learning abilities. Further, Patent Document 2 describes that a pinus bark extract containing flavonoid compounds such as catechin and quercetin is effective in improving or preventing a decline in human cognitive ability (memory, learning ability). Furthermore, ginkgo biloba, which is known to improve cognitive function, is known to contain quercitrin and kaempferol, which are known to have antioxidant and radical (nitric oxide, etc.) scavenging effects ( Non-patent document 1). It has also been reported that the action of antioxidants produces neuroprotective effects in the hippocampus and enhances synaptic plasticity, thereby improving memory and learning ability caused by nerve injury (Non-patent Document 2). ).

特表2015-526511号公報Special Publication No. 2015-526511 特表2008-542263号公報Special Publication No. 2008-542263

志村不二夫「脳における機能をめざすハーブ性栄養補助食品」、栄養学雑誌、Vol.58、No.4、151-160(2000)Fujio Shimura, “Herbal nutritional supplements aimed at improving brain function,” Journal of Nutrition, Vol. 58, No. 4, 151-160 (2000) Ma et al., 「Melatonin Alleviates the Epilepsy-Associated Impairments in Hippocampal LTP and Spatial Learning Through Rescue of Surface GluR2 Expression at Hippocampal CA1 Synapses」,Neurochem. Res. 42(5):1438-1448 (2017)Ma et al., “Melatonin Alleviates the Epilepsy-Associated Impairments in Hippocampal LTP and Spatial Learning Through Rescue of Surface GluR2 Expression at Hippocampal CA1 Synapses”, Neurochem. Res. 42(5):1438-1448 (2017)

このように抗酸化物質には従来より多くの薬理学的用途があることが知られている。本発明は抗酸化物質のうち、特に食品素材として食経験があり、しかも体内への吸収性の高いα-グリコシルイソクエルシトリン(α-glycosyl isoquercitrin:以下、単に「AGIQ」と称する)に関して新たな用途を提供することを課題とする。特に、本発明はAGIQについて、海馬を中心とした脳の高次機能に関する新たな用途を提供することを課題とする。 As described above, antioxidants are known to have many pharmacological uses. Among antioxidants, the present invention provides new information regarding α-glycosyl isoquercitrin (hereinafter simply referred to as "AGIQ"), which has been eaten as a food material and is highly absorbable into the body. The challenge is to provide applications. In particular, an object of the present invention is to provide a new use for AGIQ related to higher brain functions centered on the hippocampus.

本発明者らは、上記課題を解決すべく鋭意検討を重ねていたところ、後述する実験例に示すように、ラットにAGIQを継続的に摂取させることで、海馬にて、シナプス可塑性のマーカーの一つであるc-FOS陽性細胞数の有意な増加が認められ、また扁桃体にて、Grin2dというグルタミン酸作動性ニューロンの受容体遺伝子のmRNA発現増加が認められた。c-FOSは神経細胞活性化の指標であり、その発現は様々な学習における記憶形成に重要であることが知られている。またGRIN2Dは長期記憶に関連するシナプス可塑性の増強に機能することが知られている。さらにAGIQを継続的に摂取させたラットは、文脈的恐怖条件付け試験において、恐怖記憶の消去学習能力が有意に促進していることが確認された。またこれらの一連の現象は、AGIQを継続的に摂取させたラットに特有に認められた現象であり、AGIQと同様に抗酸化作用を有するα-リポ酸の継続的摂取では認められなかった。これらのことから、c-FOS陽性細胞数の増加及びGrin2d発現亢進と、恐怖記憶の消去学習の促進とがどのように関係しているかは必ずしも明らかではないものの、AGIQ摂取による恐怖記憶の消去学習促進効果には、海馬及び扁桃体におけるシナプス可塑性の向上が関係している可能性が示唆された。またこれは抗酸化物質全般に認められるものではなく、AGIQ固有の作用メカニズムによるものであると考えられる。これらの一連の知見から、本発明者らはAGIQは恐怖記憶を原因とする精神的後遺症である心的外傷後ストレス障害(PTSD)の発症予防また改善に有効に作用する可能性を見出した。 The present inventors have conducted intensive studies to solve the above problems, and found that by continuously ingesting AGIQ in rats, markers of synaptic plasticity were reduced in the hippocampus, as shown in the experimental example described below. A significant increase in the number of c-FOS positive cells was observed, and an increase in mRNA expression of a glutamatergic neuron receptor gene called Grin2d was also observed in the amygdala. c-FOS is an indicator of neuronal activation, and its expression is known to be important for memory formation in various types of learning. GRIN2D is also known to function in enhancing synaptic plasticity associated with long-term memory. Furthermore, it was confirmed that the ability of rats to continuously ingest AGIQ to learn to erase fear memories was significantly enhanced in a contextual fear conditioning test. Furthermore, these series of phenomena were unique to rats that were continuously ingested with AGIQ, and were not observed in rats that were continuously ingested with α-lipoic acid, which has an antioxidant effect like AGIQ. From these results, although it is not necessarily clear how the increase in the number of c-FOS-positive cells and the enhancement of Grin2d expression are related to the promotion of extinction learning of fear memory, AGIQ ingestion may significantly improve extinction learning of fear memory. It was suggested that the facilitative effect may be related to improved synaptic plasticity in the hippocampus and amygdala. Moreover, this is not observed among antioxidants in general, but is thought to be due to the action mechanism unique to AGIQ. From these series of findings, the present inventors have discovered that AGIQ may effectively prevent or improve the onset of post-traumatic stress disorder (PTSD), which is a psychological aftereffect caused by fearful memories.

本発明は、上記一連の知見からさらに検討を重ねることで完成したものであり、下記の実施形態を包含するものである。
項1.AGIQを有効成分とする、海馬におけるc-FOS発現亢進用組成物。
項2.AGIQを有効成分とする、扁桃体におけるGrin2d発現亢進用組成物。
項3.AGIQを有効成分とする、恐怖記憶の消去学習促進用組成物。
項4.AGIQを有効成分とする、心的外傷後ストレス障害の発症予防または改善のための組成物。以下、これを単に「抗心的外傷後ストレス障害用組成物」または「抗PDST用組成物」と略称する場合がある。
項5.経口的に摂取または投与される医薬品、医薬部外品、または飲食品である、項1~4のいずれかに記載する組成物。
The present invention was completed through further studies based on the above series of findings, and includes the following embodiments.
Item 1. A composition for enhancing c-FOS expression in the hippocampus, which contains AGIQ as an active ingredient.
Item 2. A composition for enhancing Grin2d expression in the amygdala, which contains AGIQ as an active ingredient.
Item 3. A composition for promoting learning to erase fear memories, containing AGIQ as an active ingredient.
Item 4. A composition for preventing or improving the onset of post-traumatic stress disorder, which contains AGIQ as an active ingredient. Hereinafter, this may be simply referred to as "composition for anti-post-traumatic stress disorder" or "composition for anti-PDST."
Item 5. Item 5. The composition according to any one of Items 1 to 4, which is a pharmaceutical, quasi-drug, or food or drink that is orally ingested or administered.

実験例における実験スキームを示す。具体的には、ラット(母ラット、児ラット)に対する、α-グリコシルイソクエルシトリン(AGIQ)またはα-リポ酸(ALA)の混餌投与の連続投与スケジュールを示した図である。An experimental scheme in an experimental example is shown. Specifically, it is a diagram showing a continuous administration schedule of mixed diet administration of α-glycosylisoquercitrin (AGIQ) or α-lipoic acid (ALA) to rats (mother rat, baby rat). 実験例で行った文脈的恐怖条件付け試験の結果を示す。図中、「Acquisition」は恐怖記憶の獲得時、「Extinction 1」、「Extinction 2」及び「Extinction 3」は、それぞれ恐怖条件付けから4日後、6日後、及び8日後に条件刺激のみを与えた時点(恐怖記憶の消去時)を意味する。縦軸は、試行時間に対する凍結行為時間の割合(%)を示す。試行時間とは、実験箱に動物を入れていた時間を指し、今回は5分間である。The results of a contextual fear conditioning test conducted in an experimental example are shown. In the figure, "Acquisition" is the time of acquisition of fear memory, "Extinction 1", "Extinction 2", and "Extinction 3" are the time points when only the conditioned stimulus was given 4 days, 6 days, and 8 days after fear conditioning, respectively. (when the fear memory is erased). The vertical axis indicates the ratio (%) of freezing action time to trial time. The trial time refers to the time the animal was placed in the experimental box, which in this case was 5 minutes. ヘマトキシン及びエオシンで染色した雄性ラットの海馬形成の概要を示す。倍率×40、バー長さは200μm。図中の挿入部分の倍率は×400、バー長さは50μm。図中、「Cornu ammonis」(略称CA)はアンモン角、「Granule cell layer」は顆粒細胞層、「Subgranular zone」は顆粒細胞層下帯、「Molecular cell layer」は分子細胞層、「Hilus」は門をそれぞれ意味する。An overview of hippocampal formation in male rats stained with hematoxin and eosin is shown. Magnification ×40, bar length 200 μm. The magnification of the inserted part in the figure is ×400, and the bar length is 50 μm. In the figure, "Cornu ammonis" (abbreviation CA) is Ammon's horn, "Granule cell layer" is the granule cell layer, "Subgranular zone" is the subgranular cell layer, "Molecular cell layer" is the molecular cell layer, and "Hilus" is Each means a gate.

本発明が対象とするc-FOS発現亢進用組成物、Grin2d発現亢進用組成物、恐怖記憶の消去学習促進用組成物、及び抗心的外傷後ストレス障害用組成物は、いずれもAGIQを有効成分とすることを特徴とする。以下、この有効成分AGIQ、並びにその各用途について順番に説明する。なお、通常、ラットという動物種の場合、遺伝子名は最初だけ大文字のイタリック表記をし、また分子名は、遺伝子名に倣った略称記載の場合は、全て大文字でノン・イタリック表記をする。本書ではイタリック表記に代えて、遺伝子名には下線を引いている。 The composition for increasing c-FOS expression, the composition for increasing Grin2d expression, the composition for promoting extinction learning of fear memory, and the composition for anti-post-traumatic stress disorder, all of which are targeted by the present invention, are effective against AGIQ. It is characterized by being an ingredient. The active ingredient AGIQ and its uses will be explained in order below. In the case of the animal species rat, the gene name is usually written in italics with only the first letter capitalized, and when the molecule name is written as an abbreviation that follows the gene name, it is written in all capital letters and non-italics. In this book, gene names are underlined instead of italicized.

(1)α-グリコシルイソクエルシトリン(AGIQ)
AGIQは、下式で示される構造を有するフラボノイド配糖体である。
ここで式中、Glcはグルコース残基、nは1以上の整数を示す。具体的には、AGIQは上記式で示されるように、ケルセリンの3位にグルコース(Glc)1つがβ結合したイソクエルシトリン(以下、単に「IQC」とも称する)の当該グルコース残基に、さらに1つ以上のグルコース残基がα-1,4結合で付加してなる構造を有するフラボノイド配糖体である。n数としては、制限されないものの、好ましくは20以下、より好ましくは10以下、特に好ましくは7以下を例示することができる。なお、AGIQは、上記化学式で示される化合物単品であってもよいし、またnが1以上である化合物の混合物であってもよい。好ましくはnが1~10、より好ましくはnが1~7の化合物の混合物である。また混合物であるAGIQには、上記式においてnが0であるIQCが含まれていてもよい。
(1) α-glycosylisoquercitrin (AGIQ)
AGIQ is a flavonoid glycoside having the structure shown by the following formula.
In the formula, Glc represents a glucose residue, and n represents an integer of 1 or more. Specifically, as shown in the above formula, AGIQ is a glucose residue of isoquercitrin (hereinafter also simply referred to as "IQC") in which one glucose (Glc) is beta-bonded to the 3rd position of querserin, and further It is a flavonoid glycoside with a structure in which one or more glucose residues are attached via an α-1,4 bond. Although the number n is not limited, it is preferably 20 or less, more preferably 10 or less, particularly preferably 7 or less. Note that AGIQ may be a single compound represented by the above chemical formula, or may be a mixture of compounds where n is 1 or more. Preferably, it is a mixture of compounds in which n is 1 to 10, more preferably n is 1 to 7. Further, the mixture AGIQ may include IQC in which n is 0 in the above formula.

AGIQは、その形態や製造方法によって何ら制限されるものではない。例えば、製造方法としては、制限されないものの、例えばエンジュという落葉樹の芽や花から抽出されるルチンを原料として、これを酵素処理して製造する方法を例示することができる。制限されないものの、具体的には、例えば特公昭54-32073号公報、またはWO2005/030975号パンフレットなどに記載されているように、イソクエルシトリン等の反応基質と澱粉質やそれを含むグルコース供与体を含有する溶液に、αグルコシダーゼやシクロマルトデキストリングルカノトランスフェラーゼ等の糖転移酵素を作用させることで、イソクエルシトリンにグルコース残基を等モル以上転移させ、次いで、アミラーゼを作用する方法が例示される。この方法によって製造されるAGIQは、酵素処理イソクエルシトリン(enzyme-modified isoquercitrin: EMIQ)とも呼ばれる。なお、AGIQとEMIQとは同義であり、本発明においてAGIQはEMIQを包含する意味で用いられる。なお、糖転移酵素、及びそれに続くアミラーゼ処理により生成されるAGIQは、必要により、これをさらに多孔性合成吸着剤等に接触させるまでの任意に精製処理に供することで、精製することもできる。このようにして調製されるAGIQは、その形態を特に制限されず、溶液状態、その濃縮物、乾燥物、または乾燥粉末物のいずれの形状にも調製することが可能である。 AGIQ is not limited in any way by its form or manufacturing method. For example, the production method is not limited, but can be exemplified by a method in which rutin extracted from the buds and flowers of a deciduous tree called Japanese apricot is used as a raw material and rutin is treated with an enzyme. Although not limited, specifically, as described in Japanese Patent Publication No. 54-32073 or WO2005/030975 pamphlet, a reaction substrate such as isoquercitrin and starch or a glucose donor containing the same can be used. A method is exemplified in which a glycosyltransferase such as α-glucosidase or cyclomaltodextrin glucanotransferase is applied to a solution containing α-glucosidase to transfer equimolar or more glucose residues to isoquercitrin, and then amylase is applied. Ru. AGIQ produced by this method is also called enzyme-modified isoquercitrin (EMIQ). Note that AGIQ and EMIQ have the same meaning, and in the present invention, AGIQ is used to include EMIQ. Note that AGIQ produced by the glycosyltransferase and subsequent amylase treatment can be purified, if necessary, by further subjecting it to an optional purification treatment before contacting it with a porous synthetic adsorbent or the like. The form of AGIQ prepared in this manner is not particularly limited, and it can be prepared in the form of a solution, a concentrate, a dried product, or a dry powder.

かかるAGIQは、簡便には商業的に入手することができ、例えば商品名サンメリン(登録商標)AO-3000、商品名サンメリン(登録商標)パウダーC-10、商品名サンエミック(登録商標)P15、及び商品名サンエミック(登録商標)R-20(以上、いずれも三栄源エフ・エフ・アイ株式会社製)を例示することができる。 Such AGIQ can be easily obtained commercially, such as Sunmelin (registered trademark) AO-3000, Sunmelin (registered trademark) Powder C-10, Sunemic (registered trademark) P15, and Sunmelin (registered trademark) P15. An example is the product name Sunemic (registered trademark) R-20 (all of the above are manufactured by San-Ei Gen FFI Co., Ltd.).

(2)c-FOS発現亢進用組成物
AGIQは、海馬におけるc-FOS発現を亢進するための組成物の有効成分として有用である。つまり、AGIQを有する組成物は海馬におけるc-FOS発現亢進用組成物として有効に使用することができる。後述する実験例に示すように、AGIQ投与により、海馬におけるFosのmRNAの発現(遺伝子レベルでの発現)が亢進し、それに伴いc-FOSの発現(タンパク質レベルでの発現)も増加し、c-FOS陽性細胞の数が増加する。このため、本発明において「c-FOS発現亢進」とは、タンパク質レベルでの発現を意味するものの、その前提として遺伝子レベルでの発現亢進も包含するものである。
(2) Composition for enhancing c-FOS expression AGIQ is useful as an active ingredient of a composition for enhancing c-FOS expression in the hippocampus. In other words, a composition having AGIQ can be effectively used as a composition for enhancing c-FOS expression in the hippocampus. As shown in the experimental examples described later, AGIQ administration increases the expression of Fos mRNA (expression at the gene level) in the hippocampus, and accordingly increases the expression of c-FOS (expression at the protein level). -The number of FOS positive cells increases. Therefore, in the present invention, "enhanced c-FOS expression" means expression at the protein level, but also includes enhanced expression at the gene level.

海馬は、側頭葉に位置する重要な脳領域であり、認知、学習及び記憶形成に関わっている。海馬では歯状回(dentate gyrus:DG)と呼ばれる小領域内の顆粒細胞層下帯(subgranular zone:SGZ)において、生後に新しい神経細胞が産生される。これを生体神経新生と呼ぶ。神経新生は、幹細胞の自己複製、新たな顆粒細胞を産生するための前駆細胞の継続的な分裂、それに続く細胞の分化、及び顆粒細胞層(granule cell layer:GCL)への移動といった、いくつかの発達段階を含む複数のプロセスからなる。海馬歯状回門において、一部のGABA性介在ニューロンは顆粒細胞系譜の細胞集団を刺激し、SGZにおける神経新生を制御する。GABA性介在ニューロンの一種では細胞外糖タンパク質であるReelinを産生する。Reelinは顆粒細胞系譜を含む神経細胞の移動と正しい位置の決定に不可欠である。GABA性介在ニューロンによる入力に加え、SGZ外からは様々な種類の神経が海馬歯状回内の神経細胞への神経接続を作っている。例えばSGZへのグルタミン酸作動性神経の入力は顆粒細胞系譜の適切な分裂及び分化の維持に重要である。海馬新生ニューロンは顆粒細胞として機能するが、その機能は周囲の成熟顆粒細胞とは異なり、むしろ発達期に多い幼若ニューロンに近く、シナプス可塑性に富む。新生ニューロンはNMDA型グルタミン酸受容体を介したシナプス可塑性に富んでおり、空間記憶におけるパターン分離を司っている。さらに、新生ニューロンには記憶をアップデートする機能や、過去の記憶を整理するストレス応答を緩和する働きがある。 The hippocampus is an important brain region located in the temporal lobe and is involved in cognition, learning, and memory formation. In the hippocampus, new neurons are produced after birth in the subgranular zone (SGZ) within a small region called the dentate gyrus (DG). This is called biological neurogenesis. Neurogenesis involves several processes, including self-renewal of stem cells, continuous division of progenitor cells to produce new granule cells, subsequent cell differentiation, and migration into the granule cell layer (GCL). It consists of multiple processes including developmental stages. In the hippocampal dentate gyrus, some GABAergic interneurons stimulate cell populations of the granule cell lineage and control neurogenesis in the SGZ. One type of GABAergic interneuron produces the extracellular glycoprotein Reelin. Reelin is essential for the migration and correct positioning of neurons, including the granule cell lineage. In addition to inputs from GABAergic interneurons, various types of nerves from outside the SGZ make neural connections to neurons within the hippocampal dentate gyrus. For example, glutamatergic neural input to the SGZ is important for maintaining proper division and differentiation of the granule cell lineage. Neonatal hippocampal neurons function as granule cells, but their function is different from that of surrounding mature granule cells, and is more similar to that of young neurons that are often in the developmental stage, and is rich in synaptic plasticity. Newly generated neurons are rich in synaptic plasticity mediated by NMDA-type glutamate receptors, and are responsible for pattern separation in spatial memory. Furthermore, new neurons have the function of updating memories and alleviating the stress response that organizes past memories.

c-FOSはシナプス可塑性のマーカー遺伝子の一つである。またc-FOSは記憶や不安関連の行動実験をした際に、その刺激に対して反応した神経細胞では、約30分後にはmRNAレベルで、1~2時間後にはタンパク質レベルでの発現上昇がみられるとされ、神経細胞活動性の指標として用いられている(特集「脳神経系の情報伝達と疾患」実験医学増刊Vol.28, No.5(2010)参照)。後述する実験例に示すように、AGIQ投与群に、認知、学習及び記憶形成に関わる脳の重要な領域である海馬において、c-FOS陽性細胞の数が有意に増加していることが確認された。このことから、AGIQ(投与・摂取)は、脳の神経細胞活動性の向上、および/または、シナプス可塑性向上に有用であると考えられる。これに対して、AGIQと同じく抗酸化作用を有するALAの投与群では、c-FOS陽性細胞の増加が認められなかった。このことから、海馬におけるタンパク質レベルでのc-FOS発現亢進作用、およびこれから派生する作用効果(例えば、脳の神経細胞活動性の向上、および/または、シナプス可塑性向上)は、抗酸化物質のなかでもAGIQ特有の作用効果であると認められる。 c-FOS is one of the marker genes for synaptic plasticity. In addition, c-FOS is expressed at the mRNA level after about 30 minutes and at the protein level after 1 to 2 hours in neurons that responded to the stimulus during behavioral experiments related to memory and anxiety. It is used as an indicator of neuronal activity (see special feature "Information Transmission and Diseases in the Brain and Nervous System", Experimental Medicine Special Issue Vol. 28, No. 5 (2010)). As shown in the experimental examples below, it was confirmed that the number of c-FOS-positive cells was significantly increased in the hippocampus, which is an important area of the brain involved in cognition, learning, and memory formation, in the AGIQ administration group. Ta. From this, AGIQ (administration/intake) is considered to be useful for improving brain neuron activity and/or synaptic plasticity. In contrast, no increase in c-FOS-positive cells was observed in the group treated with ALA, which has an antioxidant effect like AGIQ. From this, the effect of enhancing c-FOS expression at the protein level in the hippocampus and the effects derived from this (e.g., improving brain neuron activity and/or synaptic plasticity) are among the antioxidants. However, it is recognized that this is an action and effect unique to AGIQ.

なお、海馬歯状回におけるc-FOS発現亢進は、文脈学習用に重要であることが知られている。具体的には、Arias N.らにより、ラットを用いた新規物体・新規文脈探索試験により、物体のみが変わる場合と比べて、物体及び文脈が変わる場合に、海馬歯状回におけるc-FOS陽性細胞が有意に増加することが報告されている(Arias N et al., Behavioural Brain Research 2015, 292, 44-49)。また、Rechard Lらの文献では、海馬歯状回傷害度物では、文脈情報を含む新規物体の探索に障害が生じることが報告されている(Rechard L. Dees et al., Neurobiology of Learning and Memory 2013, 106, 112-117)。また海馬歯状回におけるc-FOS発現亢進は、恐怖学習(恐怖記憶の想起)に関係していることが言われている。具体的には、Xu Liu らにより、恐怖条件付け時にc-FOSが発現した神経細胞を光遺伝学的に標識し、海馬歯状回へのレーザー照射によって強制的に同じ神経細胞を活性化すると、通常は恐怖反応を誘発しない文脈でも恐怖反応を誘発できることが報告されている(Xu Liu et al., Nature 2012, 484, 381-385)。 Incidentally, increased expression of c-FOS in the hippocampal dentate gyrus is known to be important for context learning. Specifically, in a novel object/novel context search test using rats, Arias N. et al. found that c-FOS positivity in the hippocampal dentate gyrus was found to be higher when the object and context were changed compared to when only the object was changed. It has been reported that the number of cells increases significantly (Arias N et al., Behavioral Brain Research 2015, 292, 44-49). Furthermore, in the literature by Richard L. Dees et al., it has been reported that severe damage to the hippocampal dentate gyrus causes impairment in the exploration of novel objects containing contextual information (Richard L. Dees et al., Neurobiology of Learning and Memory 2013, 106, 112-117). Furthermore, increased expression of c-FOS in the hippocampal dentate gyrus is said to be related to fear learning (recall of fear memory). Specifically, Xu Liu et al. found that by optogenetically labeling neurons that expressed c-FOS during fear conditioning and forcibly activating the same neurons by laser irradiation to the hippocampal dentate gyrus, It has been reported that fear responses can be elicited even in contexts that do not normally elicit fear responses (Xu Liu et al., Nature 2012, 484, 381-385).

このように、本発明のc-FOS発現亢進用組成物によれば、海馬におけるc-FOS発現を亢進するとともに、それから派生する種々の作用効果を発揮することができる。前述するようにc-FOSは神経細胞活性化の指標であり、学習における記憶形成に関与していると考えられている。海馬におけるc-FOS発現の亢進は、ALA投与では認められず、AGIQ投与により特有に認められることから、それから派生する作用効果には、他の抗酸化物質では認められないAGIQ特有の作用効果が含まれると考えられる。なお、海馬歯状回におけるc-FOS発現が恐怖条件付けや消去学習後に上昇することは知られているものの、恐怖記憶の消去学習にc-FOS発現増加が関係することは知られていない。ただ、c-FOSは記憶形成に関係していることから、恐怖学習においてもその記憶、特に後述する消去学習の促進に関係しているものと推察される。 As described above, the composition for enhancing c-FOS expression of the present invention can enhance c-FOS expression in the hippocampus and exhibit various effects derived therefrom. As mentioned above, c-FOS is an indicator of neuronal activation and is thought to be involved in memory formation during learning. Enhancement of c-FOS expression in the hippocampus is not observed with ALA administration, but is uniquely observed with AGIQ administration, so the effects derived from it are unique to AGIQ and not observed with other antioxidants. It is considered to be included. Although it is known that c-FOS expression in the hippocampal dentate gyrus increases after fear conditioning or extinction learning, it is not known that increased c-FOS expression is related to extinction learning of fear memory. However, since c-FOS is involved in memory formation, it is inferred that it is also involved in the promotion of fear learning, especially extinction learning, which will be described later.

(3)Grin2d発現亢進用組成物
AGIQは、扁桃体におけるGrin2d発現を亢進するための組成物の有効成分として有用である。つまり、AGIQを有する組成物は扁桃体におけるGrin2d発現亢進用組成物として有効に使用することができる。なお、ここでGrin2d発現は、Grin2d mRNAの発現(遺伝子レベルでの発現)を意味する。
(3) Composition for enhancing Grin2d expression AGIQ is useful as an active ingredient of a composition for enhancing Grin2d expression in the amygdala. In other words, a composition having AGIQ can be effectively used as a composition for enhancing Grin2d expression in the amygdala. In addition, Grin2d expression here means the expression of Grin2d mRNA (expression at the gene level).

GRIN2Dは、グルタミン作動性ニューロンのNMDA型受容体のひとつであり、長期記憶に関連するシナプス可塑性の増強に機能することが知られている。後述する実験例に示すように、扁桃体では、AGIQ投与群でのみ、当該Grid2dの発現増加が認められ、ALA投与群では認められなかった。このため長期記憶に関して、単に抗酸化作用だけからは説明できないAGIQ特有の作用メカニズムが存在するものと考えられる。 GRIN2D is one of the NMDA-type receptors on glutamatergic neurons, and is known to function in enhancing synaptic plasticity associated with long-term memory. As shown in the experimental examples described below, in the amygdala, increased expression of Grid2d was observed only in the AGIQ administration group, but not in the ALA administration group. Therefore, regarding long-term memory, it is thought that there is a mechanism of action unique to AGIQ that cannot be explained solely by its antioxidant effect.

このように、本発明のGrin2d発現亢進用組成物によれば、扁桃体におけるGrin2d発現を亢進するとともに、それから派生する種々の作用効果を発揮することができる。扁桃体における恐怖記憶貯蔵の機序は、グルタミン酸神経入力による長期増強(LTP)であると考えられている。このLTPの発生にはNMDA型グルタミン酸神経入力が必須であることから、GRIN2Dは、LTPを介した消去記憶の強化に関与している可能性がある。実際に、NMDA型グルタミン酸受容体サブタイプの一つであるGrid2bのノックアウトマウスでは、恐怖条件付き及びLTP発生が阻害されることが知られ、逆にGRIN2Bの過剰発現は恐怖学習を促進することが知られている。また、一般に扁桃体におけるNMDA型グルタミン酸受容体は恐怖の獲得あるいは消去に関与すると考えられている。 Thus, according to the composition for enhancing Grin2d expression of the present invention, it is possible to enhance Grin2d expression in the amygdala and to exhibit various effects derived therefrom. The mechanism of fear memory storage in the amygdala is thought to be long-term potentiation (LTP) via glutamatergic neural input. Since NMDA-type glutamate neural input is essential for the generation of LTP, GRIN2D may be involved in strengthening extinction memory via LTP. In fact, it is known that fear conditioning and LTP generation are inhibited in Grid2b knockout mice, which is one of the NMDA-type glutamate receptor subtypes, and conversely, overexpression of GRIN2B promotes fear learning. Are known. Furthermore, it is generally believed that NMDA-type glutamate receptors in the amygdala are involved in the acquisition or extinction of fear.

以上のことから、本発明のGrin2d発現亢進用組成物は、扁桃体におけるGrin2d発現を亢進するとともに、それから派生する種々の作用効果として、長期記憶強化や、後述する実験例で認められた恐怖記憶消去学習の強化などに作用するものと考えられる。なお、扁桃体におけるGrin2d発現の亢進は、ALA投与では認められず、AGIQ投与により特有に認められることから、それから派生する作用効果には、他の抗酸化物質では認められないAGIQ特有の作用効果が含まれると考えられる。 From the above, the composition for enhancing Grin2d expression of the present invention not only enhances Grin2d expression in the amygdala, but also has various effects derived therefrom, such as long-term memory enhancement and fear memory erasure as observed in the experimental examples described below. It is thought that it acts to strengthen learning. In addition, the enhancement of Grin2d expression in the amygdala is not observed with ALA administration, but is uniquely observed with AGIQ administration, so the effects derived from it are unique to AGIQ, which are not observed with other antioxidants. It is considered to be included.

(4)恐怖記憶の消去学習促進用組成物
AGIQは、恐怖記憶の消去学習促進用組成物の有効成分として有用である。つまり、AGIQを有する組成物は恐怖記憶の消去学習促進用組成物として有効に使用することができる。
(4) A composition for promoting learning to erase fear memories AGIQ is useful as an active ingredient of a composition for promoting learning to erase fear memories. In other words, a composition having AGIQ can be effectively used as a composition for promoting extinction learning of fear memory.

恐怖条件付け試験は電気ショックを用いた恐怖記憶の獲得と、その後のその恐怖記憶の消去を学習する2段階からなる。通常では、電気ショックを与えると恐怖により動けなくなってしまいフリージング(凍結行動)を示す。これが恐怖記憶の獲得である。その後も通常では、電気ショックを与えなくても同じ環境下に置くと恐怖による凍結行動を示す。しかし、何日も電気ショックを与えない状況を続けると、電気ショックが来ないことを学習して凍結行動が減少する。後述する実験例に示すように、無処置対照群、AGIQ投与群、及びAGIQ投与に代えてAGIQと同様に抗酸化作用を有するα-リポ酸を投与した群(ALA投与群)の三者間で、恐怖記憶の獲得に差異は認められなかった。一方、恐怖記憶の消去学習に関しては、AGIQ投与群において凍結行動の有意な減少が認められた。これに対して、ALA投与群では凍結行動の減少は認められなかったことから、恐怖記憶の消去学習の促進はAGIQ投与によるもの、つまりAGIQ特有の作用メカニズムに基づく結果であると考えられる。 The fear conditioning test consists of two stages: learning to acquire a fear memory using electric shock, and then learning to erase that fear memory. Normally, when given an electric shock, animals become immobile due to fear and exhibit freezing behavior. This is the acquisition of fear memory. Even after that, they usually exhibit freezing behavior due to fear when placed in the same environment even if no electric shock is given. However, if you continue for several days without applying electric shocks, they will learn that no electric shocks will come and their freezing behavior will decrease. As shown in the experimental examples described below, the three-way study included an untreated control group, an AGIQ administration group, and a group in which α-lipoic acid, which has an antioxidant effect similar to AGIQ, was administered instead of AGIQ administration (ALA administration group). No difference was observed in the acquisition of fear memory. On the other hand, regarding extinction learning of fear memories, a significant decrease in freezing behavior was observed in the AGIQ administration group. On the other hand, since no decrease in freezing behavior was observed in the ALA-administered group, it is considered that the promotion of extinction learning of fear memories is due to AGIQ administration, that is, a result based on the mechanism of action unique to AGIQ.

なお、拘束されるものではないか、こうしたAGIQ投与群でみられた恐怖記憶の消去学習促進は、前述する海馬および/または扁桃体でのシナプス可塑性向上によるものとも考えられる。従来、抗酸化物質による海馬におけるシナプス可塑性の増強が、毒性物質による神経傷害に起因して低下した記憶や学習能力を改善するという多くの報告がある。これに対して、本発明で行った実験は、正常動物(正常哺乳類)を対象とし、しかも毒性物質を投与することなく実施されたものであることから、その結果は当該動物に留まるものではなく、ヒトにも適用することが可能である。 However, the facilitation of extinction learning of fear memories observed in the AGIQ administration group may be due to the aforementioned improvement in synaptic plasticity in the hippocampus and/or amygdala. There have been many reports that enhancement of synaptic plasticity in the hippocampus by antioxidants improves memory and learning abilities that have deteriorated due to nerve damage caused by toxic substances. In contrast, the experiments conducted in the present invention were conducted on normal animals (normal mammals) without administering toxic substances, so the results are not limited to the animals concerned. , it can also be applied to humans.

(5)抗心的外傷後ストレス障害用組成物
AGIQは、抗心的外傷後ストレス障害用組成物の有効成分として有用である。つまり、AGIQを有する組成物は抗心的外傷後ストレス障害用組成物として有効に使用することができる。
(5) Composition for anti-post-traumatic stress disorder AGIQ is useful as an active ingredient of a composition for anti-post-traumatic stress disorder. In other words, a composition having AGIQ can be effectively used as a composition for treating post-traumatic stress disorder.

心的外傷後ストレス障害(post-traumatic stress disorder;PTSD)は、恐怖記憶を原因とするヒトの精神疾患である。具体的には、震災、事故、暴力、虐待等、強いストレスを引き起こす外傷的出来事によってもたらされる精神的後遺症である。例えば、強いショック(ストレス)を受けた経験(恐怖経験)が、その後も何度も思い出されて、恐怖を感じ続ける。PTSD発症には、恐怖記憶制御の異常が関係すると考えられているが、詳細はいまだ不明であり、恐怖記憶制御の観点からPTSD発症のメカニズムの解明が期待されている。 Post-traumatic stress disorder (PTSD) is a human mental illness caused by fearful memories. Specifically, it is the mental aftereffects caused by traumatic events that cause strong stress, such as earthquakes, accidents, violence, and abuse. For example, an experience of receiving a strong shock (stress) (a fear experience) is remembered over and over again, and the person continues to feel fear. Although abnormalities in fear memory control are thought to be related to the onset of PTSD, the details are still unclear, and elucidation of the mechanism of PTSD onset is expected from the perspective of fear memory control.

後述する実験例で示すように、また前述するように、AGIQは、恐怖記憶の消去学習を促進する作用がある。一般に外傷的出来事から時間が経つにつれてPTSD症状は軽快するが、発症後6年以上経過しても3分の1は症状が持続していることが知られている。本発明の組成物は、PTSD症状を有する者に対して適用することで、その有効成分であるAGIQが有する恐怖記憶の消去学習促進作用に基づいて、PTSD症状が軽快するのを早めることが可能になる。つまり本発明の組成物によれば、早期にPTSD症状が軽快することを補助することができる。また本発明は、未だPTSDを発症していなくても、外傷的出来事等により強いショック(ストレス)を受けたる者(恐怖記憶を有する者)に対して適用することで、恐怖記憶の消去を促進し、PTSDの発症を予防することも可能である。 As shown in the experimental examples described later and as described above, AGIQ has the effect of promoting extinction learning of fear memories. Although PTSD symptoms generally improve as time passes after a traumatic event, it is known that in one-third of cases, symptoms persist even 6 years or more after onset. By applying the composition of the present invention to a person with PTSD symptoms, it is possible to hasten the relief of PTSD symptoms based on the effect of the active ingredient AGIQ that promotes learning to erase fear memories. become. In other words, the composition of the present invention can help alleviate PTSD symptoms at an early stage. Furthermore, the present invention can be applied to people who have received strong shock (stress) due to traumatic events, etc. (those with fear memories) even if they have not yet developed PTSD, thereby promoting the erasure of fear memories. However, it is also possible to prevent the onset of PTSD.

PTSDの治療は、未だ確立しておらず、現在は選択的セロトニン再取り込み阻害剤、及びセロトニン-ノルエピネフリン再取り込み阻害剤と呼ばれる抗うつ薬が用いられている。本発明の抗PTSD用組成物は、AGIQだけを有効成分とするものであってもよいが、前記の抗うつ薬とは作用メカニズムを異にするため、当該抗うつ薬の一方または両方をAGIQと併用することで、少ない量で高い効果を得ることができると考えられる。 Treatment for PTSD has not yet been established, and antidepressants called selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors are currently used. The anti-PTSD composition of the present invention may contain only AGIQ as an active ingredient, but since the mechanism of action is different from the above-mentioned antidepressants, one or both of the anti-PTSD It is thought that by using it in combination, high effects can be obtained with a small amount.

(6)経口組成物(飲食品、医薬部外品、医薬品)
前述したc-FOS発現亢進用組成物、Grin2d発現亢進用組成物、恐怖記憶の消去学習促進用組成物、及び抗心的外傷後ストレス障害用組成物は、いずれも経口組成物の形態に調製され、被験体に経口的に投与することができる。ここで経口組成物には、飲食品、医薬部外品、及び医薬品が含まれる。好ましくは飲食物である。なお、本明細書において、「投与」という用語には、摂取及び服用の意味がいずれも包含される。被験体としては、ヒトを含む哺乳類を挙げることができる。好ましくはヒトである。また、用途(c-FOS発現亢進用、Grin2d発現亢進用、恐怖記憶の消去学習促進用、及び抗心的外傷後ストレス障害用)に応じて、投与の対象とする被験体を選択しまた設定することもできる。
(6) Oral compositions (food and beverages, quasi-drugs, pharmaceuticals)
The composition for enhancing c-FOS expression, the composition for enhancing Grin2d expression, the composition for promoting extinction learning of fear memory, and the composition for anti-post-traumatic stress disorder described above are all prepared in the form of an oral composition. and can be administered orally to a subject. Oral compositions include foods and drinks, quasi-drugs, and pharmaceuticals. Preferably it is food and drink. In addition, in this specification, the term "administration" includes both the meanings of ingestion and administration. The subject can include mammals including humans. Preferably it is a human. In addition, depending on the intended use (for increasing c-FOS expression, for increasing Grin2d expression, for promoting extinction learning of fear memory, and for anti-post-traumatic stress disorder), the subjects to be administered are selected and set. You can also.

本発明の経口組成物におけるAGIQの含有割合は、100質量%を限度とし、また前記の各作用効果を奏する範囲であれば、特に制限されない。好ましくは固形換算で1質量%以上である。より好ましくは固形換算で1~80質量%を例示することができ、さらに好ましくは1~50質量%、特に好ましくは1~30質量%である。 The content of AGIQ in the oral composition of the present invention is at most 100% by mass, and is not particularly limited as long as it achieves the above-mentioned effects. Preferably, it is 1% by mass or more in solid terms. More preferably, the content is 1 to 80% by mass in terms of solids, still more preferably 1 to 50% by mass, particularly preferably 1 to 30% by mass.

本発明の経口組成物を特にヒト(成人)を対象として投与する場合、AGIQの総配合量としては、制限されないものの、好ましくは、例えば50kgの成人の場合、1日当り1mg~30gの範囲で適宜選択設定することができる。投与は継続して長期に亘り行うことが有効な効果を得るうえで好ましい。 When the oral composition of the present invention is administered to humans (adults) in particular, the total amount of AGIQ to be incorporated is not limited, but is preferably in the range of 1 mg to 30 g per day for an adult weighing 50 kg. Selective settings can be made. In order to obtain effective effects, it is preferable to continue administering the drug over a long period of time.

本発明の経口組成物を飲食品の形態で製造し、また提供する場合、その形態は、錠剤、カプセル剤、粉末剤、顆粒剤、ドリンク剤(溶液剤及び懸濁液剤が含まれる)等のいわゆるサプリメントのように製剤形態で提供することも、また清涼飲料、茶飲料、コーヒー飲料、ノンアルコール飲料、ビールテイスト飲料等の飲料類、ヨーグルトや乳酸菌飲料等の乳製品、調味料、加工食品、デザート類、菓子(例えば、ガム、キャンディ、ゼリー)等の一般の飲食物の形態に製造して提供することが可能であり、また、これらに限定されない。なお、本発明が対象とする飲食品には健康食品が含まれる。健康食品とは、一般に「広く健康の保持増進に資する食品として販売・利用されるもの全般」と考えられている。本発明の経口組成物は、有効成分として含有するAGIQの前記生理作用によりヒトの健康増進を図ることができるため、健康食品として有用である。行政の定めた規格や基準を満たす食品については保健機能を表示することができる「保険機能食品制度」があり、これには「特定保健用食品」、「機能性表示食品」、及び「栄養機能食品」が含まれる。健康食品には他にも「栄養補助食品」、「健康補助食品」、「機能性食品」、「特別用途食品」、「健康志向食品」等があり、サプリメントも健康食品に含まれる。なお、本発明が対象とする健康食品は、一般的な飲食品の形態を有するものであっても、また、錠剤、カプセル剤、粉末や顆粒剤等の医薬品と同様の製剤形態を有するのであってもよい。 When the oral composition of the present invention is manufactured and provided in the form of food or drink, the form may be tablets, capsules, powders, granules, drinks (including solutions and suspensions), etc. It can also be provided in the form of formulations like so-called supplements, as well as beverages such as soft drinks, tea drinks, coffee drinks, non-alcoholic drinks, beer-taste drinks, dairy products such as yogurt and lactic acid bacteria drinks, seasonings, processed foods, It can be manufactured and provided in the form of general food and drink such as desserts and confectionery (eg, gum, candy, jelly), but is not limited thereto. Note that the food and drink products targeted by the present invention include health foods. Health foods are generally considered to be ``general foods that are widely sold and used as foods that contribute to maintaining and promoting health.'' The oral composition of the present invention is useful as a health food because it can promote human health through the physiological action of AGIQ contained as an active ingredient. There is an ``insurance functional food system'' that allows foods that meet government-defined standards and standards to display health functions. Includes food. Health foods also include ``nutritional supplements,'' ``health supplements,'' ``functional foods,'' ``foods for special purposes,'' and ``health-oriented foods,'' and supplements are also included in health foods. Note that the health foods targeted by the present invention may have the form of general food and drink products, or may have the same formulation form as pharmaceuticals such as tablets, capsules, powders, and granules. You can.

本発明が対象とする飲食品には、AGIQ以外に、各用途の作用効果を妨げないことを限度として、必要に応じて、飲食可能な酸類、脂肪酸、糖類、糖アルコール、アルコール類、抗酸化剤、高甘味度甘味料、タンパク質、ペプチド類、アミノ酸類、ビタミン類、ミネラル類、栄養成分、増粘安定剤、界面活性剤の1種または2種以上を配合することができる。また、製剤化において配合される賦形剤、結合剤、乳化剤、緊張化剤(等張化剤)、緩衝剤、溶解補助剤、防腐剤、安定化剤、抗酸化剤、着色剤、凝固剤、コーティング剤などを適宜配合することもできる。 In addition to AGIQ, the food and drink products targeted by the present invention may include edible acids, fatty acids, saccharides, sugar alcohols, alcohols, and antioxidants, as necessary, as long as they do not interfere with the effects of each use. One or more of the following may be blended: agents, high-intensity sweeteners, proteins, peptides, amino acids, vitamins, minerals, nutritional components, thickening stabilizers, and surfactants. In addition, excipients, binders, emulsifiers, tonicity agents, buffers, solubilizing agents, preservatives, stabilizers, antioxidants, coloring agents, and coagulants that are included in formulations. , a coating agent, etc. may be added as appropriate.

また本発明の経口組成物を医薬品また医薬部外品の形態で製造し、また提供する場合、その形態は、錠剤、カプセル剤、粉末剤、顆粒剤、ドリンク剤(溶液剤及び懸濁液剤が含まれる)等の定法の製剤形態で提供することができる。この場合、本発明が対象とする医薬品また医薬部外品には、AGIQ以外に、各用途の作用効果を妨げないことを限度として、必要に応じて、任意の薬効成分を配合することができるほか、製剤化において配合される賦形剤、結合剤、乳化剤、緊張化剤(等張化剤)、緩衝剤、溶解補助剤、防腐剤、安定化剤、抗酸化剤、着色剤、凝固剤、コーティング剤などを適宜配合することもできる。 In addition, when the oral composition of the present invention is manufactured and provided in the form of a drug or quasi-drug, the form may be tablets, capsules, powders, granules, drinks (solutions or suspensions). It can be provided in a standard formulation such as (including). In this case, the pharmaceuticals and quasi-drugs targeted by the present invention may contain any medicinal ingredients other than AGIQ, as necessary, as long as they do not interfere with the effects of each use. In addition, excipients, binders, emulsifiers, tonicity agents, buffers, solubilizers, preservatives, stabilizers, antioxidants, colorants, and coagulants used in formulation. , a coating agent, etc. may be added as appropriate.

以下、本発明を実施例を用いて具体的に説明する。但し、本発明はこれらの実施例によって何ら制限されるものではない。なお、以下の実験において、特に言及しない限り、「%」は「質量%」を、「部」は「質量部」を意味する。 Hereinafter, the present invention will be specifically explained using examples. However, the present invention is not limited to these Examples in any way. In the following experiments, "%" means "% by mass" and "parts" means "parts by mass" unless otherwise specified.

以下の実験は、抗酸化物質の一つであるα-グルコシルイソクエルシトリン(AGIQ)について、ラットに対して発達期から成熟期にいたるまで持続的に投与することにより、脳機能に有用な作用をもたらすか否かを明らかにするために行った。具体的には、空間学習と長期連合学習に関する神経行動試験;前頭前野、海馬歯状回、扁桃体を対象とした免疫染色;リアルタイムRT-PCRによるシナプス可塑性に関わるグルタミン酸作動性シグナル、コリン作動性シグナル、神経成長因子や最初期遺伝子などの発現を検討した。なお、AGIQによる神経保護作用の比較対照として、AGIQと同様に抗酸化物質として知られているα-リポ酸(DL体)(以下、「ALA」と称する)を用いた。ALAは高脂溶性の抗酸化物質であり、血液脳関門を容易に通過することが知られていることから、脳に対する神経作用を評価するうえで有効な比較物質であると考えられる。 The following experiment showed that alpha-glucosylisoquercitrin (AGIQ), an antioxidant, was continuously administered to rats from the developmental period to adulthood to show its beneficial effects on brain function. This was done to find out whether or not it would bring about this. Specifically, neurobehavioral tests related to spatial learning and long-term associative learning; immunostaining targeting the prefrontal cortex, hippocampal dentate gyrus, and amygdala; glutamatergic signals and cholinergic signals related to synaptic plasticity using real-time RT-PCR. , the expression of nerve growth factors and immediate early genes was investigated. As a control for comparing the neuroprotective effect of AGIQ, α-lipoic acid (DL form) (hereinafter referred to as "ALA"), which is known as an antioxidant like AGIQ, was used. Since ALA is a highly lipid-soluble antioxidant and is known to easily pass through the blood-brain barrier, it is considered to be an effective comparative substance for evaluating neural effects on the brain.

なお、試験の全手順は、「動物実験の適正な実施のためのガイドライン(日本学術会議、2006年6月1日)」および東京農工大学動物衛生使用審査委員会の承認を受けたプロトコールに従って実施した。 All test procedures were conducted in accordance with the "Guidelines for the Proper Conduct of Animal Experiments" (Science Council of Japan, June 1, 2006) and the protocol approved by the Tokyo University of Agriculture and Technology Animal Health Use Review Committee. did.

実験例
(1)試験方法
(1-1)AGIQの投与
交配後1日目の雌Sprague Dawley(SD)ラットを、日本SLC(浜松)から購入し、無作為に3群(無処置対照群[n=13]、AGIQ投与群[n=19]、ALA投与群[n=19])に分けた。なお、以下の実験において、AGIQ投与群にはAGIQを0.5%濃度で含有する混餌を、またALA投与群にはALAを0.2%濃度で含有する混餌飼料をそれぞれ摂食させた。また無処置対照群には、AGIQ及びALAを含まない通常の餌を摂食させた。なお、上記AGIQ及びALAの投与用量は、ラットを用いた二段階肝発がん性試験において発がんプロモーション作用を抑制した混餌用量を設定根拠として決定した(Kimura, M, et al., Exp.Toxicol.Pathol. 65, 979-988, 2013;Fujii, Y. et al.,Chem.Biol.interact. 205, 108-118, 2013;Fujii, Y. et al., Toxicology 305, 30-40, 2013)。
Experimental example (1) Test method (1-1) Administration of AGIQ Female Sprague Dawley (SD) rats 1 day after mating were purchased from Japan SLC (Hamamatsu) and randomly divided into 3 groups (untreated control group [ [n = 13], AGIQ administration group [n = 19], and ALA administration group [n = 19]). In the following experiment, the AGIQ administration group was fed a mixed feed containing AGIQ at a concentration of 0.5%, and the ALA administration group was fed a mixed feed containing ALA at a concentration of 0.2%. In addition, an untreated control group was fed normal food containing neither AGIQ nor ALA. The doses of AGIQ and ALA mentioned above were determined based on the dietary dose that suppressed the carcinogenic promotion effect in a two-stage liver carcinogenicity test using rats (Kimura, M, et al., Exp. Toxicol. Pathol. 65, 979-988, 2013;Fujii, Y. et al.,Chem.Biol.interact. 205, 108-118, 2013;Fujii, Y. et al., Toxicology 305, 30-40, 2013).

混餌の投与開始は妊娠6日目(GD6)とし、妊娠6日目のラット(母親)にAGIQまたはALAをそれぞれ混餌投与し、離乳時である出産後21日目(PND21)まで混餌投与を継続した(母親への投与期間:妊娠中~離乳)。各群(AGIQ投与群、ALA投与群)の児ラット(雄児)は、それぞれAGIQまたはALAを投与する群(投与群)と投与しない群(非投与群)の2群にわけ、各群の投与群(雄児ラット)に対して、生後21日目(PND21)から77日目(PND77)まで同様にAGIQまたはALAを継続して混餌投与した(図1参照)。 Administration of the mixed diet was started on the 6th day of pregnancy (GD6), and AGIQ or ALA was administered to the rat (mother) on the 6th day of pregnancy, and the mixed diet administration was continued until the 21st day after birth (PND21), which is the time of weaning. (period of administration to mothers: from pregnancy to weaning). The rat pups (male offspring) in each group (AGIQ administration group, ALA administration group) were divided into two groups: a group to which AGIQ or ALA was administered (administration group) and a group not administered (non-administration group). AGIQ or ALA was continuously administered in the diet to the group (male rats) from the 21st day (PND21) to the 77th day (PND77) after birth (see FIG. 1).

(1-2)行動実験(Y字迷路及び文脈的恐怖条件付け試験)
生後60日目(PND60)から70日目(PND70)の期間で雄児ラット(7匹/群)を対象として、行動実験としてY字迷路及び文脈的恐怖条件付け試験を実施した。なお、Y字迷路試験はラットの空間学習能力を評価する目的で、文脈的恐怖条件付け試験は記憶と学習能力を評価する目的で、実施した。
(1-2) Behavioral experiment (Y-maze and contextual fear conditioning test)
A Y-maze and a contextual fear conditioning test were conducted as behavioral experiments on male rat rats (7 rats/group) from postnatal day 60 (PND60) to postnatal day 70 (PND70). The Y-maze test was conducted to evaluate the spatial learning ability of rats, and the contextual fear conditioning test was conducted to evaluate memory and learning ability.

文脈的恐怖条件付け試験は、1日目に条件刺激として場所を含めた状況(文脈)と非条件刺激として電気ショックを与え、条件刺激と非条件刺激の関連を学習させた。恐怖条件付けの1日後に条件刺激のみを与えることで、非条件刺激を想起させ、恐怖反応として身動きひとつとらない状態(フリージング)を誘発し、その時間を測定した(恐怖記憶の獲得:Acquisition)。さらに、4日後(Extinction 1)、6日後(Extinction 2)、8日後(Extinction 3)にも、条件刺激のみ与えることで条件刺激に対して反応する必要がないことを新たに学習させ、恐怖反応が徐々に減弱する消去学習(恐怖記憶の消去)を検討した。全母親ラットは出産後21日目(PND21)に、またその児ラットは生後77日目(PND77)に安楽死させた。 In the contextual fear conditioning test, on the first day, a situation (context) including a place was given as a conditioned stimulus and an electric shock was given as an unconditioned stimulus, so that the subjects learned the association between the conditioned stimulus and the unconditioned stimulus. One day after fear conditioning, only the conditioned stimulus was given to remind the subjects of the unconditioned stimulus, induce a state of not moving as a fear response (freezing), and measure the duration (acquisition of fear memory). Furthermore, after 4 days (Extinction 1), 6 days (Extinction 2), and 8 days (Extinction 3), only the conditioned stimulus is given, allowing the child to learn that there is no need to respond to the conditioned stimulus and reinforcing the fear response. We investigated extinction learning (elimination of fear memory) in which fear gradually diminishes. All mothers were euthanized on postnatal day 21 (PND21) and their pups were euthanized on postnatal day 77 (PND77).

(1-3)遺伝子解析
恐怖記憶の回路は、海馬に、扁桃体と前頭前野の二部位を加えた三部位の連絡からなる。そこで、各群(無処置対照群、AGIQ投与群、ALA投与群)の生後77日目の雄児ラット(PND77)から脳を摘出し、海馬、扁桃体、及び前頭前野を用いて、遺伝子解析を実施した。具体的には、シナプス可塑性に対するAGIQまたはALAの作用を評価するために、海馬歯状回、扁桃体、及び前頭前野におけるmRNA発現解析を、リアルタイムRT-PCR法を用いて実施した(6匹/群)。対象とした遺伝子は以下の通りである。
アセチルコリン受容体:Chrm1Chrm2Chrna7
グルタミン酸受容体:Gria1Gria2Gria2aGria2d
グルタミン酸トランスポーター:Slc17a6Slc17a7
神経可塑性に関連する最初期遺伝子:FosArc
神経栄養因子関係:BdnfNtrk2
(1-3) Genetic analysis The fear memory circuit consists of connections between three areas: the hippocampus, the amygdala, and the prefrontal cortex. Therefore, we removed the brains from 77-day-old male rat rats (PND77) from each group (untreated control group, AGIQ administration group, ALA administration group) and conducted genetic analysis using the hippocampus, amygdala, and prefrontal cortex. did. Specifically, to evaluate the effects of AGIQ or ALA on synaptic plasticity, mRNA expression analysis in the hippocampal dentate gyrus, amygdala, and prefrontal cortex was performed using real-time RT-PCR (6 animals/group). ). The target genes are as follows.
Acetylcholine receptors: Chrm1 , Chrm2 , Chrna7
Glutamate receptors: Gria1 , Gria2 , Gria2a , Gria2d ,
Glutamate transporters: Slc17a6 , Slc17a7 ,
Immediate early genes related to neuroplasticity: Fos , Arc
Neurotrophic factor relationship: Bdnf , Ntrk2

各遺伝子のmRNA発現解析(リアルタイムRT-PCR)に使用したプライマーセットの塩基配列、並びに各遺伝子の正式名称を表1に示す。 Table 1 shows the base sequences of the primer sets used for mRNA expression analysis (real-time RT-PCR) of each gene and the official name of each gene.

(1-4)免疫組織染色及びアポトーシス解析
海馬歯状回については、免疫組織染色及びアポトーシス解析を実施した。免疫組織染色は、まず定法に従って処理してパラフィン包埋した脳の切片(3μm厚)を、発色色素として3,3’-diaminobenzidine(DAB)/Hを用いたVectastain(登録商標)Elite ABC キット用いて免疫組織化学的に検出を行い、次いでヘマトキシリン対比染色し、これを顕微鏡にて観察した。歯状回のSGZにおけるアポトーシス解析は、TUNEL(TdT-mediated dUTP nick end labeling)アッセイにより実施した。なお、TUNELアッセイは、発色色素としてDAB/Hを用いたApopTag In Situ Apoptois Detection Kit (ミリポア社製)を用いて実施した。免疫組織染色及びアポトーシス解析を実施して、顆粒細胞層下帯(SGZ)または顆粒細胞層(GCL)における顆粒細胞系譜指標(GFAP、SOX2、DCX、NeuN)、SGZにおける細胞増殖とアポトーシス指標(PCNA、TUNEL-assay)、歯状回門部におけるGABA性介在ニューロン指標(Reelin、Parvaibumin)、GCLにおけるシナプス可塑性に機能する最初期遺伝子産物(ARC、c-FOS、COX-2)の発現細胞の分布を確認した(10匹/群)。
(1-4) Immunohistological staining and apoptosis analysis For the hippocampal dentate gyrus, immunohistochemical staining and apoptosis analysis were performed. For immunohistochemical staining, brain sections (3 μm thick) that were processed according to the standard method and embedded in paraffin were stained with Vectastain (registered trademark) Elite using 3,3'-diaminobenzidine (DAB)/H 2 O 2 as a coloring dye. Immunohistochemical detection was performed using an ABC kit, followed by hematoxylin counterstaining and observation under a microscope. Apoptosis analysis in the SGZ of the dentate gyrus was performed by TUNEL (TdT-mediated dUTP nick end labeling) assay. The TUNEL assay was performed using ApopTag In Situ Apoptois Detection Kit (manufactured by Millipore) using DAB/H 2 O 2 as a coloring dye. Immunohistological staining and apoptosis analysis were performed to determine granule cell lineage indicators (GFAP, SOX2, DCX, NeuN) in the subgranular cell zone (SGZ) or granule cell layer (GCL), and cell proliferation and apoptosis indicators (PCNA) in the SGZ. , TUNEL-assay), GABA interneuron indicators (Reelin, Parvaibumin) in the hilus of the dentate gyrus, distribution of cells expressing the earliest gene products (ARC, c-FOS, COX-2) that function in synaptic plasticity in the GCL (10 animals/group).

免疫組織染色に使用した抗体を表2に示す。 Table 2 shows the antibodies used for immunohistological staining.

なお、以上の実験において得られた結果を、無処置対照群と各投与群(AGIQ投与群、ALA投与群)とで比較し、統計解析を実施した。統計解析は、まずBarlett検定により等分散性の検討を行い、等分散であった場合はDunnett検定、不等分散であった場合はSteel検定を行い、p値が0.05未満()、または0.01未満(**)である場合に、統計学的に有意であると判定した。 The results obtained in the above experiments were compared between the untreated control group and each administration group (AGIQ administration group, ALA administration group), and statistical analysis was performed. For statistical analysis, first examine homoscedasticity using the Barrett test, then perform the Dunnett test if the variances are equal, and the Steel test if the variances are unequal . Or less than 0.01 ( ** ), it was determined to be statistically significant.

(2)試験結果
(2-1)行動実験(Y字迷路及び文脈的恐怖条件付け試験)
行動実験のうち、ラットの空間学習能力を評価するY字迷路試験に関しては、無処置対照群と投与群(AGIQ投与群とALA投与群)との間で差異は認められなかった。このことから、AGIQを始めとする抗酸化物質は空間学習能力に影響しないものと考えられる。
(2) Test results (2-1) Behavioral experiment (Y-maze and contextual fear conditioning test)
Among the behavioral experiments, no difference was observed between the untreated control group and the treated groups (AGIQ-administered group and ALA-administered group) in the Y-maze test that evaluates the spatial learning ability of rats. This suggests that antioxidants such as AGIQ do not affect spatial learning ability.

一方、記憶及び学習能力を評価する文脈的恐怖条件付け試験の結果、恐怖記憶の獲得に関しては、無処置対照群と投与群(AGIQ投与群とALA投与群)とで大きな差は認められなかったものの、恐怖記憶の消去学習能力に関しては、AGIQ投与群で凍結行動の減少が認められた。特に恐怖条件付けから8日後に凍結行動の有意な減少が認められた(無処置対照群46.97% vs AGIQ 17.80% vs ALA 48.89 %)(p値:0.05未満)。結果を図2に示す。図2に示すように、AGIQと同様に抗酸化作用を有するALA投与群では凍結行動の減少が認められなかったことから、恐怖記憶の消去学習能力の亢進(促進)は、抗酸化作用によるものではなく、AGIQ特有の作用メカニズムによるものであると考えられる。 On the other hand, as a result of a contextual fear conditioning test that evaluates memory and learning ability, no major difference was observed between the untreated control group and the treated groups (AGIQ administration group and ALA administration group) regarding the acquisition of fear memory. Regarding fear memory extinction learning ability, a decrease in freezing behavior was observed in the AGIQ administration group. In particular, a significant decrease in freezing behavior was observed 8 days after fear conditioning (46.97% in untreated control group vs. 17.80% in AGIQ vs. 48.89% in ALA) (p value: less than 0.05). The results are shown in Figure 2. As shown in Figure 2, no decrease in freezing behavior was observed in the ALA administration group, which has an antioxidant effect like AGIQ, so the enhancement (promotion) of fear memory extinction learning ability is due to the antioxidant effect. Rather, it is thought that this is due to the mechanism of action unique to AGIQ.

(2-2)遺伝子解析
海馬歯状回における各遺伝子の転写発現の変化を表3に示す。各遺伝子の略称の意味(正式名称)は、「Gapdh」及び「Hprt1」を除いて、表1と同じである。表中、「Gapdh」の欄は、内在性コントロール(ハウスキーピング遺伝子)Gapdhに対して正規化した値を、「Hprt」の欄は、内在性コントロール(ハウスキーピング遺伝子)Hprt1に対して標準化した値を、それぞれ示す。
(2-2) Gene analysis Table 3 shows changes in transcriptional expression of each gene in the hippocampal dentate gyrus. The meanings (official names) of the abbreviations of each gene are the same as in Table 1, except for " Gapdh " and " Hprt1 ." In the table, the " Gapdh " column shows the values normalized to the endogenous control (housekeeping gene) Gapdh , and the "Hprt" column shows the values normalized to the endogenous control (housekeeping gene) Hprt1 . are shown respectively.

この結果から、わかるように、AGIQ投与群及びALA投与群では海馬歯状回において下記の遺伝子の発現が有意に増加していることが確認された。
AGIQ投与群:Fos(1.75倍増加**)、Slc17a6(3.84倍増加**)、Chrm2(2.00倍増加**)、Ntrk2(1.31倍増加
ALA投与群:Fos(1.64倍増加)、Slc17a6(3.90倍増加**)、Chrm2(2.19倍増加**)、Ntrk2(1.44倍増加**)。
As can be seen from these results, it was confirmed that the expression of the following genes was significantly increased in the hippocampal dentate gyrus in the AGIQ administration group and the ALA administration group.
AGIQ administration group: Fos (1.75-fold increase ** ), Slc17a6 (3.84-fold increase ** ), Chrm2 (2.00-fold increase ** ), Ntrk2 (1.31-fold increase * )
ALA administration group: Fos (1.64-fold increase * ), Slc17a6 (3.90-fold increase ** ), Chrm2 (2.19-fold increase ** ), Ntrk2 (1.44-fold increase ** ).

扁桃体における各遺伝子の転写発現の変化を表4に示す。各遺伝子の略称の意味(正式名称)は、表1及び3と同じである。
Table 4 shows changes in transcriptional expression of each gene in the amygdala. The meaning (official name) of each gene abbreviation is the same as in Tables 1 and 3.

この結果からわかるように、AGIQ投与群では扁桃体においてGrin2dの発現が有意に増加していることが確認された(1.5倍増加)。しかし、AGIQ投与群においては、検索した遺伝子について無処置対照群との関係で有意差は認められなかった。 さらに、前頭前野においては、AGIQ投与群及びALA投与群ともに、検索した遺伝子について無処置対照群との関係で有意差は認められなかった。 As can be seen from this result, it was confirmed that the expression of Grin2d was significantly increased in the amygdala in the AGIQ administration group (1.5-fold increase * ). However, in the AGIQ administration group, no significant difference was observed in relation to the untreated control group regarding the searched genes. Furthermore, in the prefrontal cortex, no significant difference was observed in the searched genes in both the AGIQ administration group and the ALA administration group in relation to the untreated control group.

(2-3)免疫組織染色及びアポトーシス解析
図3にヘマトキシン・エオシン染色切片における雄性ラットの海馬の概要を示す。ReelinまたはParvaibuminに対して免疫反応性を示す海馬歯状回門部(図3中、点線で囲んだところ)の細胞の数を計測し、歯状回門領域の単位面積当たりの数に標準化した(No./mm2 hilar region)。ReelinまたはParvaibuminに対して陽性の免疫反応性を示す小型細胞のみを数え上げ(RELN細胞、PVALB細胞)、より大きなcornu ammonis(CA)3ニューロンは除外した。図3中の挿入部分は、顆粒細胞層(Granule cell layer:GCL)及び顆粒細胞層下帯(Subgranular zone:SGZ)を拡大した画像である。GCL及びSGZにおけるGFAP、SOX2、DCX、NeuN、ARC、FOSまたはCOX2に対して免疫組織化学的に陽性を示す細胞、並びに増殖細胞またはTUNELアポトーシス細胞の数を数えて、SGZの長さで標準化した(No.mm SGZ length)。
(2-3) Immunohistological staining and apoptosis analysis Figure 3 shows an outline of the hippocampus of a male rat in a hematoxin-eosin stained section. The number of cells in the hilus of the hippocampal dentate gyrus (encircled by the dotted line in Figure 3) that showed immunoreactivity for Reelin or Parvaibumin was measured and normalized to the number per unit area of the hilus of the dentate gyrus. (No./mm 2 hilar region). Only small cells showing positive immunoreactivity for Reelin or Parvaibumin were enumerated (RELN + cells, PVALB + cells), and larger cornu ammonis (CA)3 neurons were excluded. The inserted part in FIG. 3 is an enlarged image of the granule cell layer (GCL) and the subgranular zone (SGZ). Count the number of cells immunohistochemically positive for GFAP, SOX2, DCX, NeuN, ARC, FOS or COX2, as well as proliferating or TUNEL + apoptotic cells in the GCL and SGZ and normalize to SGZ length. (No.mm SGZ length).

無処置対照群、AGIQ投与群、及びALA投与群について測定した結果を表5に示す。 Table 5 shows the measurement results for the untreated control group, the AGIQ administration group, and the ALA administration group.

この結果からわかるように、AGIQ投与群についてc-FOS陽性細胞が有意に増加していることが確認された(1.79倍増加**)。しかし、他のGFAP、SOX2、DCX、NeuN、PCNA、TUNEL、Reelin、Parvaibumin、ARC、またはCOX-2に対して陽性を示す細胞については、いずれも無処置対照群との間で陽性細胞数に有意差はなかった。また、ALA投与群については、c-FOSを含む全ての分子について陽性細胞数に無処置対照群との間で有意差はなかった。 As can be seen from this result, it was confirmed that c-FOS positive cells were significantly increased in the AGIQ administration group (1.79-fold increase ** ). However, regarding cells that are positive for other GFAP, SOX2, DCX, NeuN, PCNA, TUNEL, Reelin, Parvaibumin, ARC, or COX-2, the number of positive cells was lower than that of the untreated control group. There was no significant difference. Furthermore, in the ALA-administered group, there was no significant difference in the number of positive cells for all molecules including c-FOS compared to the untreated control group.

(3)考察
以上のことから、AGIQ投与群で恐怖記憶獲得に無処置対照群との間で差は認められなかったものの、条件付けから8日後に消去学習の促進が認められた。これに対してALA投与群では恐怖記憶獲得及び消去学習はともに無処置対照群との間で差は認められなかった。このことから、恐怖記憶消去学習能力の亢進(促進)は、単に抗酸化作用に留まらない、AGIQに特有の作用であると考えられる。
(3) Discussion From the above, although no difference was observed in fear memory acquisition in the AGIQ administration group and the untreated control group, promotion of extinction learning was observed 8 days after conditioning. On the other hand, in the ALA-administered group, no difference was observed in both fear memory acquisition and extinction learning compared to the untreated control group. From this, it is considered that the enhancement (promotion) of the fear memory erasure learning ability is an action specific to AGIQ that is not limited to just an antioxidant action.

遺伝子発現解析に於いては、海馬歯状回ではAGIQ投与群及びALA投与群ともに、最初期遺伝子のFosの他、グルタミン酸トランスポーター、アセチルコリン受容体、BDNFの受容体などの同一の遺伝子が発現増加を示したが、ALA投与群ではいずれの免疫組織染色で陽性細胞の増減を認めなかった。一方で、AGIQ投与群では、シナプス可塑性関連最初期遺伝子産物のうち、c-FOS発現顆粒細胞が増加し、遺伝子解析の結果(Fos mRNAの発現レベルの増加)と合致した。またAGIQ投与群では、扁桃体におけるグルタミン酸受容体Grin2dの発現レベルの有意な増加を認めた。GRIN2Dは、NMDA型グルタミン酸受容体の一つであり、長期記憶に関連するシナプス可塑性の増強に機能することが知られている。以上の結果に示すように、AGIQ投与群では恐怖記憶の消去学習の促進が認められ、電気刺激を与えていない状態で、c-FOS関連のシナプス可塑性の増強が認められた。 In gene expression analysis, in the hippocampal dentate gyrus, expression of the same genes such as the earliest gene Fos , glutamate transporter, acetylcholine receptor, and BDNF receptor was increased in both the AGIQ-administered group and the ALA-administered group. However, no increase or decrease in positive cells was observed in any immunohistochemical staining in the ALA-administered group. On the other hand, in the AGIQ administration group, c-FOS-expressing granule cells among the earliest gene products related to synaptic plasticity increased, which was consistent with the results of genetic analysis (increase in the expression level of Fos mRNA). Furthermore, in the AGIQ administration group, a significant increase in the expression level of the glutamate receptor Grin2d in the amygdala was observed. GRIN2D is one of the NMDA-type glutamate receptors and is known to function in enhancing synaptic plasticity associated with long-term memory. As shown in the above results, in the AGIQ administration group, promotion of extinction learning of fear memory was observed, and enhancement of c-FOS-related synaptic plasticity was observed in the absence of electrical stimulation.

恐怖条件付け試験は、恐怖記憶を原因とする精神疾患である心的外傷後ストレス障害(post-traumatic stress disorder;PTSD)との関連で議論される。即ち、PTSD発症には、恐怖記憶制御の異常が関係すると考えられており、恐怖記憶制御の観点からPTSD発症のメカニズムの解明が期待されている(Johansen et al., 2011; Johansen et al., 2012)。また、現在、PTSDの有効な治療法として認知行動療法「持続エクスポージャー療法」が知られている。この持続エクスポージャー療法による効果を促進し、PTSDの治療薬としての薬効を示す可能性が期待される。現在用いられているPTSDの治療薬は、SSRI(選択的セロトニン再取り込み阻害剤)及びSNRI(セロトニン-ノルエピネフリン再取り込み阻害剤)と呼ばれる抗うつ剤しかない。本発明のAGIQの顆粒細胞におけるc-FOS関連のシナプス可塑性増強作用は、これらのPTSDの治療薬とは異なるメカニズムによりPTSDに奏功すると考えられ、AGIQ単独で、または上記に掲げるPTSD治療薬と併用することでPTSDに対してより高い治療効果を発揮するものと考えられる。 Fear conditioning tests are discussed in the context of post-traumatic stress disorder (PTSD), a mental illness caused by fearful memories. In other words, abnormalities in fear memory control are thought to be related to the onset of PTSD, and elucidation of the mechanism of PTSD onset is expected from the perspective of fear memory control (Johansen et al., 2011; Johansen et al., 2012). Additionally, cognitive behavioral therapy ``sustained exposure therapy'' is currently known as an effective treatment for PTSD. It is expected that this drug will promote the effects of sustained exposure therapy and exhibit efficacy as a therapeutic agent for PTSD. The only treatments currently used for PTSD are antidepressants called SSRIs (selective serotonin reuptake inhibitors) and SNRIs (serotonin-norepinephrine reuptake inhibitors). The c-FOS-related synaptic plasticity-enhancing effect in granule cells of AGIQ of the present invention is thought to be effective against PTSD through a mechanism different from that of these PTSD therapeutics, and AGIQ alone or in combination with the above-mentioned PTSD therapeutics is thought to be effective against PTSD. By doing so, it is thought that a higher therapeutic effect on PTSD can be exhibited.

配列番号1~30は、海馬歯状回、扁桃体、及び前頭前野における各遺伝子のmRNA発現を解析するためにリアルタイムRT-PCR法で使用したプライマーの塩基配列を示す。具体的には、配列番号1及び2はArc用のフォワード及びリバースプライマー;配列番号3及び4はBdnf用のフォワード及びリバースプライマー;配列番号5及び6はChrm1用のフォワード及びリバースプライマー;配列番号7及び8はChrm2用のフォワード及びリバースプライマー;配列番号9及び10はChrna7用のフォワード及びリバースプライマー;配列番号11及び12はFos用のフォワード及びリバースプライマー;配列番号13及び14はGapdh用のフォワード及びリバースプライマー;配列番号15及び16はGria1用のフォワード及びリバースプライマー;配列番号17及び18はGria2用のフォワード及びリバースプライマー;配列番号19及び20はGrin2a用のフォワード及びリバースプライマー;配列番号21及び22はGrin2d用のフォワード及びリバースプライマー;配列番号23及び24はHprt1用のフォワード及びリバースプライマー;配列番号25及び26はNtrk2用のフォワード及びリバースプライマー;配列番号27及び28はSlc17a7用のフォワード及びリバースプライマー;及び配列番号29及び30はSlc17a6用のフォワード及びリバースプライマーを示す(表1参照)。 SEQ ID NOS: 1 to 30 show the base sequences of primers used in real-time RT-PCR to analyze the mRNA expression of each gene in the hippocampal dentate gyrus, amygdala, and prefrontal cortex. Specifically, SEQ ID NO: 1 and 2 are forward and reverse primers for Arc ; SEQ ID NO: 3 and 4 are forward and reverse primers for Bdnf ; SEQ ID NO: 5 and 6 are forward and reverse primers for Chrm1 ; SEQ ID NO: 7 and 8 are forward and reverse primers for Chrm2 ; SEQ ID NOS: 9 and 10 are forward and reverse primers for Chrna7 ; SEQ ID NOS: 11 and 12 are forward and reverse primers for Fos ; SEQ ID NOS: 13 and 14 are forward and reverse primers for Gapdh . Reverse primer; SEQ ID NOs: 15 and 16 are forward and reverse primers for Gria1 ; SEQ ID NOs: 17 and 18 are forward and reverse primers for Gria2 ; SEQ ID NOs: 19 and 20 are forward and reverse primers for Grin2a ; SEQ ID NOs: 21 and 22 are forward and reverse primers for Grin2d ; SEQ ID NOs: 23 and 24 are forward and reverse primers for Hprt1 ; SEQ ID NOs: 25 and 26 are forward and reverse primers for Ntrk2 ; SEQ ID NOs: 27 and 28 are forward and reverse primers for Slc17a7 . ; and SEQ ID NOs: 29 and 30 indicate forward and reverse primers for Slc17a6 (see Table 1).

Claims (5)

α-グリコシルイソクエルシトリンを有効成分とする、海馬におけるc-FOS発現亢進用組成物。 A composition for enhancing c-FOS expression in the hippocampus, which contains α-glycosylisoquercitrin as an active ingredient. α-グリコシルイソクエルシトリンを有効成分とする、扁桃体におけるGrin2d発現亢進用組成物。 A composition for enhancing Grin2d expression in the amygdala, which contains α-glycosylisoquercitrin as an active ingredient. α-グリコシルイソクエルシトリンを有効成分とする、恐怖記憶の消去学習促進用組成物。 A composition for promoting learning to erase fear memories, which contains α-glycosylisoquercitrin as an active ingredient. α-グリコシルイソクエルシトリンを有効成分とする、恐怖記憶の消去を促進し、心的外傷後ストレス障害の発症予防するための組成物。 A composition containing α-glycosylisoquercitrin as an active ingredient to promote erasure of fear memory and prevent the onset of post-traumatic stress disorder. 経口的に摂取または投与される医薬品、医薬部外品、または飲食品である、請求項1~4のいずれかに記載する組成物。 The composition according to any one of claims 1 to 4, which is a pharmaceutical, quasi-drug, or food or drink that is orally ingested or administered.
JP2019130801A 2018-07-17 2019-07-16 New memory applications for AGIQ-containing compositions Active JP7383412B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018134313 2018-07-17
JP2018134313 2018-07-17
JP2019130795 2019-07-16
JP2019130795 2019-07-16

Publications (2)

Publication Number Publication Date
JP2021011466A JP2021011466A (en) 2021-02-04
JP7383412B2 true JP7383412B2 (en) 2023-11-20

Family

ID=74227349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019130801A Active JP7383412B2 (en) 2018-07-17 2019-07-16 New memory applications for AGIQ-containing compositions

Country Status (1)

Country Link
JP (1) JP7383412B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029913A1 (en) 2008-09-11 2010-03-18 株式会社林原生物化学研究所 Mental vigor improver

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029913A1 (en) 2008-09-11 2010-03-18 株式会社林原生物化学研究所 Mental vigor improver

Also Published As

Publication number Publication date
JP2021011466A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
CA2946825C (en) Muscle atrophy inhibitor containing quercetin glycoside
ES2901901T3 (en) New nutraceutical compositions containing steviol and their use
ES2400491T3 (en) Compositions of protopanaxadiol ginsenosides and their uses
JP7379152B2 (en) Composition for inhibiting muscle fibrosis
JP2010518164A (en) Neurological compound
Son et al. Effects of supplementation with higher levels of manganese and magnesium on immune function
KR20080007098A (en) Composition containing metal-acidic amino acid chelate accelerating absorption of metal
KR20240057401A (en) Paraxanthin-based caffeine substitute composition and method of use thereof in slow caffeine metabolizers
KR102091620B1 (en) Pharmaceutical composition for prevention or treatment of blood brain barrier disorder comprising l-serine as an effective component and health functional food comprising the same
JP6735224B2 (en) Activator of glucose metabolism in astrocytes
Oršolić et al. Royal Jelly: Biological Action and Health Benefits
Seidel et al. Expression of purinergic receptors in the hypothalamus of the rat is modified by reduced food availability
JP7383412B2 (en) New memory applications for AGIQ-containing compositions
CN102038952A (en) Composition for improving the viability of nerve cells and use of the composition
CN111615392B (en) Autism spectrum disorder and mental disease improving agent
JP2007186431A (en) Antioxidation composition, cerebral nerve cell-protecting pharmaceutical composition, antioxidation agent, cerebral nerve cell-protecting agent and use thereof
JP2013018731A (en) Agent for improving brain function and food and drink for improving brain function
AU2018238285B2 (en) Nutraceutical, dietetic and nutritional composition with antioxidant activity
Murray Pyrroloquinoline quinone (PQQ): The next essential nutrient and supplement superstar
JP7549933B2 (en) Maintenance Agent
KR102588274B1 (en) Pharmaceutical composition for preventing or treating epilepsy or seizure-related diseases comprising D-limonene as an active ingredient
JP5427713B2 (en) Therapeutics for positive symptoms of schizophrenia
Di Simone et al. Neuroprotective effects induced by citicoline/coenzyme Q10 fixed combination in rat CTX-TNA2 astrocytes exposed to oxidative stress
Hoerr et al. Ginkgo biloba and usage in dementia: from Eastern tradition to Western science
Sirinupong et al. Effect of Edible Bird’s Nest on Protecting against Cognitive Deficit and Ameliorating Beta‐Amyloid in Hippocampal Rats’ Model of Cerebral Ischemia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231002

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231108

R150 Certificate of patent or registration of utility model

Ref document number: 7383412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150