JP7382795B2 - Electrolyte for secondary batteries and rocking chair type secondary batteries - Google Patents

Electrolyte for secondary batteries and rocking chair type secondary batteries Download PDF

Info

Publication number
JP7382795B2
JP7382795B2 JP2019200624A JP2019200624A JP7382795B2 JP 7382795 B2 JP7382795 B2 JP 7382795B2 JP 2019200624 A JP2019200624 A JP 2019200624A JP 2019200624 A JP2019200624 A JP 2019200624A JP 7382795 B2 JP7382795 B2 JP 7382795B2
Authority
JP
Japan
Prior art keywords
group
oxygen
alkali metal
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019200624A
Other languages
Japanese (ja)
Other versions
JP2021077443A (en
Inventor
駿 村山
誉昌 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nyukazai Co Ltd
Original Assignee
Nippon Nyukazai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nyukazai Co Ltd filed Critical Nippon Nyukazai Co Ltd
Priority to JP2019200624A priority Critical patent/JP7382795B2/en
Publication of JP2021077443A publication Critical patent/JP2021077443A/en
Application granted granted Critical
Publication of JP7382795B2 publication Critical patent/JP7382795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、二次電池用電解液及びそれを含むロッキングチェア型二次電池に関する。 The present invention relates to an electrolytic solution for a secondary battery and a rocking chair type secondary battery containing the same.

従来、電極間に配置された電解液中をイオンが往復することで充放電を行う、所謂ロッキングチェア型二次電池の開発が進められている。近年、次世代ロッキングチェア型二次電池向けに、酸化安定性と熱安定性に優れる電解液が求められている。例えば、電解質としてのアルカリ金属塩の濃度を高くして充放電性能を向上させるとともに、当該アルカリ金属塩と溶媒とを溶媒和させることで酸化安定性と熱安定性を向上させることに着目した、高アルカリ金属塩濃度の電解液(すなわち濃厚電解液)が注目を集めている。 BACKGROUND ART Conventionally, so-called rocking chair type secondary batteries have been developed in which charging and discharging are performed by ions moving back and forth in an electrolytic solution disposed between electrodes. In recent years, electrolytes with excellent oxidation stability and thermal stability have been required for next-generation rocking chair type secondary batteries. For example, we focused on increasing the concentration of an alkali metal salt as an electrolyte to improve charge/discharge performance, and solvating the alkali metal salt and a solvent to improve oxidation stability and thermal stability. Electrolytes with high alkali metal salt concentrations (ie, concentrated electrolytes) are attracting attention.

濃厚電解液の溶媒としては、グライム系溶媒(アルキル基を末端とするエーテル系化合物)やカーボネート系溶媒(アルキル基を末端とする炭酸エステル系化合物)が主流であり、広く研究されている。例えば特許文献1に、濃厚電解液の溶媒として1,2-ジメトキシエタン(メチルモノグライム)、エチレンカーボネート、エチルメチルカーボネート、等を用いて作製した充電式リチウム電池が、高いエネルギー密度および向上したサイクル寿命を達成したことが記載されている。 Glyme-based solvents (ether-based compounds with an alkyl group at the end) and carbonate-based solvents (carbonate-based compounds with an alkyl group at the end) are the mainstream solvents for concentrated electrolytes and have been widely studied. For example, in Patent Document 1, a rechargeable lithium battery made using 1,2-dimethoxyethane (methyl monoglyme), ethylene carbonate, ethyl methyl carbonate, etc. as a solvent for a concentrated electrolyte has a high energy density and an improved cycle life. It is stated that the lifespan has been achieved.

特許文献1に記載されたリチウム電池は、高いアルカリ金属塩濃度に起因して充放電性能が向上する反面、その電解液の粘度が高くなり易い。一般に、高粘度の電解液においてはアルカリ金属塩由来のアルカリ金属イオンの移動が制限されるため、塩濃度が同等である場合には、電解液粘度の低い方がイオン伝導度の向上により充放電性能が向上する。 Although the lithium battery described in Patent Document 1 has improved charging and discharging performance due to its high alkali metal salt concentration, the viscosity of its electrolyte tends to increase. In general, in high-viscosity electrolytes, the movement of alkali metal ions derived from alkali metal salts is restricted, so if the salt concentration is the same, electrolytes with lower viscosity improve charge and discharge due to improved ionic conductivity. Improved performance.

特許文献2に、優れたサイクル特性やレート特性等の電池特性が得られるリチウムイオン二次電池用電解質を提供することを目的として、メチルモノグライム(G1)およびメチルジグライム(G2)とリチウム塩とを含む溶媒和イオン液体であって、G1とG2に含まれる総酸素原子モル数の当該リチウムのモル数に対する比率が3.0以上4.0未満であるものが提案されている。特に、上記比率が4.0以上である場合、リチウムイオンが電極反応に関与する際、脱溶媒和によりフリーとなる溶媒分子が電極界面で分解反応を起こす結果、二次電池のサイクル特性が悪化し得ることを教示している。 Patent Document 2 discloses that methyl monoglyme (G1), methyl diglyme (G2) and lithium salts are used for the purpose of providing an electrolyte for lithium ion secondary batteries that provides battery characteristics such as excellent cycle characteristics and rate characteristics. A solvated ionic liquid has been proposed in which the ratio of the total number of moles of oxygen atoms contained in G1 and G2 to the number of moles of lithium is 3.0 or more and less than 4.0. In particular, when the above ratio is 4.0 or more, when lithium ions participate in electrode reactions, the solvent molecules freed by desolvation cause a decomposition reaction at the electrode interface, resulting in deterioration of the cycle characteristics of the secondary battery. It teaches what can be done.

特表2018-505538号公報Special table 2018-505538 publication 特開2017-139068号公報JP 2017-139068 Publication

リチウムイオン二次電池の更なる改良が望まれている。すなわち、イオン伝導度と酸化還元安定性等、一般に相反する性質を高いレベルで両立させる技術が求められている。本発明は、そのような技術を新たに提案することを課題とする。 Further improvements in lithium ion secondary batteries are desired. That is, there is a need for a technology that achieves both generally contradictory properties such as ionic conductivity and redox stability at a high level. The present invention aims to newly propose such technology.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、特定の含酸素溶媒にグライムを組み合わせることで、イオン伝導度、レート特性、酸化安定性、還元安定性、熱安定性等の電池特性を高いレベルで実現する二次電池用電解液が得られることを見出した。すなわち、本発明は、以下の態様を包含する。
[1]アルカリ金属塩と、エステル結合を含む含酸素溶媒と、グライムとを含んでなる二次電池用電解液。
[2]前記エステル結合を含む含酸素溶媒が下記一般式(1)で表される、態様1に記載の二次電池用電解液:
R1-O-(A-O)n-CH2CH(R3)-COO-R2 (1)
式(1)中、R1、R2は各々独立に炭素数1~4の直鎖状または分岐状のアルキル基を表し、R3はメチル基またはH を表し、Aは各々独立に炭素数2~4のアルキレン基を表し、かつ、nはオキシアルキレン基の平均付加モル数であって、0~5の整数を表す。
[3]前記式(1)中、R1とR2が共にメチル基であり、R3がHであり、かつ、nが0である、態様2に記載の二次電池用電解液。
[4]前記グライムが、下記式(2)で表される、態様1~3のいずれか一項に記載の二次電池用電解液:

Figure 0007382795000001
式(2)中、RおよびRは、それぞれ独立して、炭素数1~8の直鎖状または分岐状のアルキル基を表し、Aは、炭素数2~4のアルキレン基を表し、nはオキシアルキレン基の平均付加モル数であって、1~5の整数を表す。
[5]前記アルカリ金属塩のアルカリ金属1モル当たり、前記エステル結合を含む含酸素溶媒と前記グライムとに含まれるエーテル酸素およびカルボニル酸素の合計が3モル以上、かつ、8モル以下である、態様1~4のいずれか一項に記載の二次電池用電解液。
[6]前記アルカリ金属塩と、前記エステル結合を含む含酸素溶媒と、前記グライムとを実質的に1:1:1のモル比で含む、態様1~5のいずれか一項に記載の二次電池用電解液。
[7]前記アルカリ金属塩が、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(フルオロスルホニル)イミド(LiFSI)、テトラフルオロホウ酸リチウム(LiBF4)、ヘキサフルオロリン酸リチウム(LiPF6)、過塩素酸リチウム(LiClO4)及びリチウムビス(ペンタフルオロエタンスルホニル)イミド(LiBETI)からなる群から選択される、態様1~6のいずれか一項に記載の二次電池用電解液。
[8]正極と、負極と、態様1~7のいずれか一項に記載の二次電池用電解液とを含んでなる、ロッキングチェア型二次電池。 As a result of intensive studies to solve the above problems, the present inventors found that by combining glyme with a specific oxygen-containing solvent, the ionic conductivity, rate characteristics, oxidation stability, reduction stability, thermal stability, etc. We have discovered that an electrolyte for secondary batteries can be obtained that achieves a high level of battery characteristics. That is, the present invention includes the following aspects.
[1] An electrolytic solution for a secondary battery comprising an alkali metal salt, an oxygen-containing solvent containing an ester bond, and glyme.
[2] The electrolytic solution for a secondary battery according to aspect 1, wherein the oxygen-containing solvent containing an ester bond is represented by the following general formula (1):
R 1 -O-(A-O) n -CH 2 CH(R 3 )-COO-R 2 (1)
In formula (1), R 1 and R 2 each independently represent a linear or branched alkyl group having 1 to 4 carbon atoms, R 3 represents a methyl group or H , and A each independently represents a carbon number It represents 2 to 4 alkylene groups, and n is the average number of added moles of oxyalkylene groups, and represents an integer of 0 to 5.
[3] The electrolytic solution for a secondary battery according to aspect 2, wherein in formula (1), both R 1 and R 2 are methyl groups, R 3 is H, and n is 0.
[4] The electrolytic solution for a secondary battery according to any one of aspects 1 to 3, wherein the grime is represented by the following formula (2):
Figure 0007382795000001
In formula (2), R 4 and R 5 each independently represent a linear or branched alkyl group having 1 to 8 carbon atoms, and A 4 represents an alkylene group having 2 to 4 carbon atoms. , n is the average number of added moles of oxyalkylene groups, and represents an integer of 1 to 5.
[5] An embodiment in which the total amount of ether oxygen and carbonyl oxygen contained in the oxygen-containing solvent containing an ester bond and the glyme is 3 mol or more and 8 mol or less per 1 mol of the alkali metal of the alkali metal salt. 5. The electrolytic solution for secondary batteries according to any one of 1 to 4.
[6] The compound according to any one of aspects 1 to 5, comprising the alkali metal salt, the oxygen-containing solvent containing an ester bond, and the glyme in a molar ratio of substantially 1:1:1. Electrolyte for secondary batteries.
[7] The alkali metal salt is lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium bis(fluorosulfonyl)imide (LiFSI), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ). ), lithium perchlorate (LiClO 4 ), and lithium bis(pentafluoroethanesulfonyl)imide (LiBETI), the electrolyte for a secondary battery according to any one of aspects 1 to 6.
[8] A rocking chair type secondary battery comprising a positive electrode, a negative electrode, and the electrolytic solution for a secondary battery according to any one of Aspects 1 to 7.

本発明によると、イオン伝導度、レート特性、酸化安定性、還元安定性、熱安定性等の電池特性を高いレベルで実現する二次電池用電解液が提供される。 According to the present invention, an electrolytic solution for a secondary battery is provided that achieves high levels of battery characteristics such as ionic conductivity, rate characteristics, oxidation stability, reduction stability, and thermal stability.

各種電解液の酸化安定性を示すグラフである。It is a graph showing the oxidation stability of various electrolytes. 各種電解液の還元安定性を示すグラフである。It is a graph showing the reduction stability of various electrolytes. 各種電解液のレート特性を示すグラフである。It is a graph showing rate characteristics of various electrolytes. 図3に続く各種電解液のレート特性を示すグラフである。4 is a graph showing the rate characteristics of various electrolytic solutions following FIG. 3. 各種電解液の酸化安定性を示すグラフである。It is a graph showing the oxidation stability of various electrolytes. 各種電解液の還元安定性を示すグラフである。It is a graph showing the reduction stability of various electrolytes. 各種電解液のレート特性を示すグラフである。It is a graph showing rate characteristics of various electrolytes. 図7に続く各種電解液のレート特性を示すグラフである。8 is a graph showing the rate characteristics of various electrolytic solutions following FIG. 7. 各種電解液の酸化安定性を示すグラフである。It is a graph showing the oxidation stability of various electrolytes. 各種電解液の還元安定性を示すグラフである。It is a graph showing the reduction stability of various electrolytes. 各種電解液のレート特性を示すグラフである。It is a graph showing rate characteristics of various electrolytes.

以下、本発明の例示の実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。
本発明は、アルカリ金属塩と、エステル結合を含む含酸素溶媒と、グライムとを含んでなる二次電池用電解液を提供するものである。
Hereinafter, exemplary embodiments of the present invention will be described, but the present invention is not limited to the following embodiments.
The present invention provides an electrolytic solution for a secondary battery comprising an alkali metal salt, an oxygen-containing solvent containing an ester bond, and glyme.

(アルカリ金属塩)
本発明による電解液に用いられるアルカリ金属塩は、ロッキングチェア型二次電池用の電解質として有用であることが当業者に理解されるいずれのアルカリ金属塩であってもよい。アルカリ金属塩を構成するアルカリ金属は、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムから選択されることができるが、入手又は製造の容易性の観点から、好ましくはリチウム、ナトリウム又はカリウムである。さらに、エステル結合を含む含酸素溶媒およびグライムとの錯形成容易性の観点から、より好ましくはリチウムである。すなわち、より好ましい態様における電解液はリチウムイオン二次電池用の電解液である。
(alkali metal salt)
The alkali metal salt used in the electrolyte according to the present invention may be any alkali metal salt understood by those skilled in the art to be useful as an electrolyte for rocking chair secondary batteries. The alkali metal constituting the alkali metal salt can be selected from lithium, sodium, potassium, rubidium, and cesium, but from the viewpoint of ease of acquisition or production, lithium, sodium, or potassium is preferable. Furthermore, from the viewpoint of ease of complex formation with an oxygen-containing solvent containing an ester bond and glyme, lithium is more preferable. That is, the electrolytic solution in a more preferred embodiment is an electrolytic solution for a lithium ion secondary battery.

アルカリ金属塩を構成する対アニオンとしては、Cl、Br、I、BF4、PF6、CF3SO3、SCN、ClO4、CF3CO2、AsF6、SbF6、AlCl4、N(CF3SO22、PF3(C253、N(FSO22、N(FSO2)(CF3SO2)、N(C25SO22、N(C2424)、N(C3624)、N(CN)2、N(CF3SO2)(CF3CO)、C(CF3SO23等を例示できる。 Counter anions constituting the alkali metal salt include Cl, Br, I, BF 4 , PF 6 , CF 3 SO 3 , SCN, ClO 4 , CF 3 CO 2 , AsF 6 , SbF 6 , AlCl 4 , N(CF 3 SO 2 ) 2 , PF 3 (C 2 F 5 ) 3 , N(FSO 2 ) 2 , N(FSO 2 )(CF 3 SO 2 ), N(C 2 F 5 SO 2 ) 2 , N(C 2 Examples include F 4 S 2 O 4 ), N(C 3 F 6 S 2 O 4 ), N(CN) 2 , N(CF 3 SO 2 )(CF 3 CO), C(CF 3 SO 2 ) 3 , etc. can.

アルカリ金属塩の好適例であるリチウム塩としては、ロッキングチェア型二次電池用の電解質として有用であることが当業者に理解されるいずれのリチウム塩であってもよく、例えば、LiTFSI、LiFSI、LiBF、LiPF、LiClO4、LiBETI、LiAsF6、LiCF3SO3、Li(CF3SO23C、LiI、LiSCN、等が挙げられる。中でも好適なリチウム塩は、LiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)、LiFSI(リチウムビス(フルオロスルホニル)イミド)、LiBF4(テトラフルオロホウ酸リチウム)、LiPF6(ヘキサフルオロリン酸リチウム)、過塩素酸リチウム(LiClO4)及びLiBETI(リチウムビス(ペンタフルオロエタンスルホニル)イミド)からなる群から選択される。これらのリチウム塩は市販品として入手可能である。 The lithium salt, which is a suitable example of the alkali metal salt, may be any lithium salt understood by those skilled in the art to be useful as an electrolyte for rocking chair type secondary batteries, such as LiTFSI, LiFSI, Examples include LiBF 4 , LiPF 6 , LiClO 4 , LiBETI, LiAsF 6 , LiCF 3 SO 3 , Li(CF 3 SO 2 ) 3 C, LiI, LiSCN, and the like. Among the preferred lithium salts, LiTFSI (lithium bis(trifluoromethanesulfonyl)imide), LiFSI (lithium bis(fluorosulfonyl)imide), LiBF 4 (lithium tetrafluoroborate), LiPF 6 (lithium hexafluorophosphate), Selected from the group consisting of lithium perchlorate (LiClO 4 ) and LiBETI (lithium bis(pentafluoroethanesulfonyl)imide). These lithium salts are commercially available.

(エステル結合を含む含酸素溶媒)
本発明による電解液に用いられるエステル結合を含む含酸素溶媒は、上記アルカリ金属と錯体を形成し得る化合物である。そのような化合物の一態様として、下記一般式(1)で表されるものが挙げられる。
R1-O-(A-O)n-CH2CH(R3)-COO-R2 (1)
式(1)中、R1、R2は各々独立に炭素数1~4の直鎖状または分岐状のアルキル基を表し、R3はメチル基またはH を表し、Aは各々独立に炭素数2~4のアルキレン基を表し、かつ、nはオキシアルキレン基の平均付加モル数であって、0~5の整数を表す。
(Oxygen-containing solvent containing ester bond)
The oxygen-containing solvent containing an ester bond used in the electrolyte according to the present invention is a compound capable of forming a complex with the alkali metal. One embodiment of such a compound is represented by the following general formula (1).
R 1 -O-(A-O) n -CH 2 CH(R 3 )-COO-R 2 (1)
In formula (1), R 1 and R 2 each independently represent a linear or branched alkyl group having 1 to 4 carbon atoms, R 3 represents a methyl group or H , and A each independently represents a carbon number It represents 2 to 4 alkylene groups, and n is the average number of added moles of oxyalkylene groups, and represents an integer of 0 to 5.

上記一般式(1)におけるR1、R2は、アルカリ金属との錯体形成性をより高める観点から、直鎖状または分岐状の炭素数1~4のアルキル基である。そのようなアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、等が挙げられ、中でもメチル基、エチル基、プロピル基が好ましく、特にメチル基が好ましい。また、R3はH であることが好ましい。 R 1 and R 2 in the above general formula (1) are linear or branched alkyl groups having 1 to 4 carbon atoms, from the viewpoint of further improving the ability to form a complex with an alkali metal. Specific examples of such alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, etc. Among them, methyl group, ethyl group, and propyl group are preferable. , especially methyl group. Further, R 3 is preferably H 2 .

上記一般式(1)におけるR1、R2およびR3の炭素数の合計は、電解液の粘度上昇を抑えながら電解質塩濃度をより高める観点から、好ましくは5以下、より好ましくは3以下である。ここでR1、R2は、置換基を有する構造であってもよいが、その場合のR1、R2の各炭素数は当該置換基を含む数である。R1、R2が有することができる置換基としては、炭素数1~3のアルコキシ基、フルオロ基、クロロ基、ブロモ基、シアノ基、ニトロ基、水酸基、アルデヒド基、カルボキシル基、等が挙げられる。 The total number of carbon atoms in R 1 , R 2 and R 3 in the above general formula (1) is preferably 5 or less, more preferably 3 or less, from the viewpoint of further increasing the electrolyte salt concentration while suppressing an increase in the viscosity of the electrolyte. be. Here, R 1 and R 2 may have a structure having a substituent, but in that case, the number of carbon atoms in each of R 1 and R 2 is the number including the substituent. Examples of substituents that R 1 and R 2 may have include an alkoxy group having 1 to 3 carbon atoms, a fluoro group, a chloro group, a bromo group, a cyano group, a nitro group, a hydroxyl group, an aldehyde group, a carboxyl group, etc. It will be done.

上記一般式(1)におけるAは、アルカリ金属との錯体形成性をより高める観点から、炭素数2のエチレン基又は炭素数3のプロピレン基であることが好ましく、特にエチレン基であることが好ましい。また、上記一般式(1)におけるnは、アルカリ金属との錯体形成性をより高める観点から、好ましくは2以下、より好ましくは1以下、最も好ましくは0である。 A in the above general formula (1) is preferably an ethylene group having 2 carbon atoms or a propylene group having 3 carbon atoms, particularly preferably an ethylene group, from the viewpoint of further improving the ability to form a complex with an alkali metal. . Further, n in the above general formula (1) is preferably 2 or less, more preferably 1 or less, and most preferably 0, from the viewpoint of further improving the ability to form a complex with an alkali metal.

本発明によるエステル結合を含む含酸素溶媒として特に好ましい化合物としては、3-メトキシプロピオン酸メチル(MMP)、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-メトキシ-2-メチルプロピオン酸メチル、等が挙げられる。これらの化合物は、適宜市販品を入手して使用することができる。 Particularly preferred compounds as the oxygen-containing solvent containing an ester bond according to the present invention include methyl 3-methoxypropionate (MMP), ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, and 3-methoxy-2-methylpropionate. Methyl, etc. These compounds can be used as appropriate commercially available products.

本発明による電解液において、アルカリ金属塩由来のアルカリ金属の少なくとも一部、好ましくは実質的に全てが、エステル結合を含む含酸素溶媒と錯体を形成している。このような錯体の形成により、二次電池の電解液の酸化安定性と熱安定性が向上する。錯体の存在は、熱重量測定法で確認することができる。 In the electrolytic solution according to the present invention, at least a portion, preferably substantially all, of the alkali metal derived from the alkali metal salt forms a complex with an oxygen-containing solvent containing an ester bond. Formation of such a complex improves the oxidative stability and thermal stability of the electrolyte of the secondary battery. The presence of the complex can be confirmed by thermogravimetry.

(グライム)
グライムは、上記アルカリ金属と錯体を形成し得る化合物である。
グライムとは、オキシアルキレン構造を有する(ポリ)アルキレングリコールジエーテルの総称を意味する。グライムは、オキシアルキレン構造を有する(ポリ)アルキレングリコールジエーテルであれば、特に制限なく用いることができるが、なかでも、下記式(2)で表される化合物であることが好ましい。
(Grime)
Glyme is a compound that can form a complex with the alkali metals mentioned above.
Glyme is a general term for (poly)alkylene glycol diethers having an oxyalkylene structure. Glyme can be used without particular limitation as long as it is a (poly)alkylene glycol diether having an oxyalkylene structure, but a compound represented by the following formula (2) is particularly preferred.

Figure 0007382795000002
Figure 0007382795000002

式(2)中、RおよびRは、それぞれ独立して、炭素数1~8の直鎖状または分岐状のアルキル基を表す。該アルキル基は、飽和または不飽和を問わず、さらに、直鎖状、分岐状、もしくは環状のいずれであっても構わない。炭素数1~8の直鎖状、分岐状、もしくは環状の飽和アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、n-ヘプチル基、シクロヘプチル基、n-オクチル基、2-エチルヘキシル基、シクロオクチル基等が挙げられる。炭素数1~8の直鎖状、分岐状、もしくは環状の不飽和アルキル基としては、例えば、ビニル基、アリル基、2―メチルアリル基、3,3-ジメチルアリル基、および2,3,3-トリメチルアリル基、3-ブテニル基、1,3-ブタジエニル基、4-ペンテニル基、2,4-ペンタジエニル基、5-ヘキセニル基、1,3,5-ヘキサトリエニル基、2-シクロペンテニル基、2,4-シクロペンタジエニル基、2-シクロヘキセニル基、2,5-シクロヘキサジエニル基等が挙げられる。また、Aは、炭素数2~4のアルキレン基を表わす。炭素数2~6のアルキレン基としては、例えば、エチレン基、プロピレン基、メチルメチレン基、1-メチルエチレン基、ブチレン基、1-メチルプロピレン基、1,1-ジメチルエチレン基、1,2-ジメチルエチレン基、ペンチレン基、プロピルエチレン基、1-エチル-2-メチルエチレン基、ヘキシレン基、およびブチルエチレン基等が挙げられる。なお、複数あるAは、1種類のアルキレン基であってもよく、2種以上のアルキレン基であってもよい。(AO)で表されるポリオキシアルキレンが2種以上のアルキレン基を含む場合、付加状態はランダム状であってもブロック状であってもよい。そして、nはオキシアルキレン基の平均付加モル数であって、2~20の実数を表す。このうち、nは2~10の実数であることが好ましく、2~5の実数であることがより好ましい。 In formula (2), R 4 and R 5 each independently represent a linear or branched alkyl group having 1 to 8 carbon atoms. The alkyl group may be saturated or unsaturated, and may also be linear, branched, or cyclic. Examples of linear, branched, or cyclic saturated alkyl groups having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl group, n-pentyl group, isopentyl group, neopentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, cycloheptyl group, n-octyl group, 2 -Ethylhexyl group, cyclooctyl group, etc. Examples of the linear, branched, or cyclic unsaturated alkyl group having 1 to 8 carbon atoms include vinyl group, allyl group, 2-methylallyl group, 3,3-dimethylallyl group, and 2,3,3 -Trimethylallyl group, 3-butenyl group, 1,3-butadienyl group, 4-pentenyl group, 2,4-pentadienyl group, 5-hexenyl group, 1,3,5-hexatrienyl group, 2-cyclopentenyl group , 2,4-cyclopentadienyl group, 2-cyclohexenyl group, 2,5-cyclohexadienyl group, and the like. Further, A 4 represents an alkylene group having 2 to 4 carbon atoms. Examples of the alkylene group having 2 to 6 carbon atoms include ethylene group, propylene group, methylmethylene group, 1-methylethylene group, butylene group, 1-methylpropylene group, 1,1-dimethylethylene group, 1,2- Examples include dimethylethylene group, pentylene group, propylethylene group, 1-ethyl-2-methylethylene group, hexylene group, and butylethylene group. Note that the plurality of A 4 's may be one type of alkylene group, or two or more types of alkylene groups. When the polyoxyalkylene represented by (A 4 O) n contains two or more types of alkylene groups, the addition state may be random or block-like. Further, n is the average number of added moles of oxyalkylene groups, and represents a real number from 2 to 20. Among these, n is preferably a real number from 2 to 10, more preferably from 2 to 5.

このような構造を有するグライムとしては、具体的には、エチレングリコールジメチルエーテル(G1)、ジエチレングリコールジメチルエーテル(G2)、トリエチレングリコールジメチルエーテル(G3)、テトラエチレングリコールジメチルエーテル(G4)、ペンタエチレングリコールジメチルエーテル(G5)、ヘキサエチレングリコールジメチルエーテル(G6)、ヘプタエチレングリコールジメチルエーテル(G7)、オクタエチレングリコールジメチルエーテル(G8)、ノナエチレングリコールジメチルエーテル(G9)、デカエチレングリコールジメチルエーテル(G10)、テトラエチレングリコールメチルブチルエーテル、ジエチレングリコールメチルベンジルエーテル、ジエチレングリコールメチル2-エチルヘキシルエーテル、ジエチレングリコールメチルヘキシルエーテル、およびトリエチレングリコールブチルオクチルエーテルが挙げられる。このようなグライムは、リチウムイオンの移動に特に適している。これらのグライムは、1種を単独であるいは2種以上を組み合わせて用いることができる。 Examples of grime having such a structure include ethylene glycol dimethyl ether (G1), diethylene glycol dimethyl ether (G2), triethylene glycol dimethyl ether (G3), tetraethylene glycol dimethyl ether (G4), and pentaethylene glycol dimethyl ether (G5). ), hexaethylene glycol dimethyl ether (G6), heptaethylene glycol dimethyl ether (G7), octaethylene glycol dimethyl ether (G8), nonaethylene glycol dimethyl ether (G9), decaethylene glycol dimethyl ether (G10), tetraethylene glycol methyl butyl ether, diethylene glycol methyl Examples include benzyl ether, diethylene glycol methyl 2-ethylhexyl ether, diethylene glycol methylhexyl ether, and triethylene glycol butyl octyl ether. Such grime is particularly suitable for transporting lithium ions. These glymes can be used alone or in combination of two or more types.

本発明による二次電池用電解液は、上記アルカリ金属塩のアルカリ金属1モル当たり、上記エステル結合を含む含酸素溶媒と上記グライムとに含まれるエーテル酸素およびカルボニル酸素の合計が3モル以上(好ましくは4モル以上)、かつ、8モル以下(好ましくは7モル以下)である。ここで、上記エーテル酸素およびカルボニル酸素は、錯体形成に際して上記エステル結合を含む含酸素溶媒と上記グライムとがアルカリ金属イオンに配位するための不対電子対を提供する酸素原子である。例えば、エステル結合を含む含酸素溶媒である3-メトキシプロピオン酸メチル(MMP)の場合、メトキシ基を構成するエーテル酸素1個と、エステル基を構成するカルボニル酸素1個との合計2個の酸素原子がアルカリ金属イオンへの配位に寄与する。また、グライムであるエチレングリコールジメチルエーテル(G1)、ジエチレングリコールジメチルエーテル(G2)、トリエチレングリコールジメチルエーテル(G3)、テトラエチレングリコールジメチルエーテル(G4)は、それぞれ2個、3個、4個、5個のエーテル酸素がアルカリ金属イオンへの配位に寄与する。したがって、アルカリ金属1モル当たり、1モルのMMPと1モルのG1とを組み合わせた電解液の場合、エーテル酸素とカルボニル酸素の合計は4モルとなる。また、アルカリ金属1モル当たり、1モルのMMPと1モルのG2とを組み合わせた電解液の場合、エーテル酸素とカルボニル酸素の合計は5モルとなる。さらに、アルカリ金属1モル当たり、1モルのMMPと1モルのG3とを組み合わせた電解液の場合、エーテル酸素とカルボニル酸素の合計は6モルとなる。このように、アルカリ金属イオンへの配位に寄与する酸素原子の数は、組み合わせる溶媒種を変更することによって調節することができる。同様に、アルカリ金属イオンへの配位に寄与する酸素原子の数は、組み合わせる溶媒種のモル数によって調節することもできる。例えば、アルカリ金属1モル当たりエーテル酸素とカルボニル酸素の合計を4モルに調節する場合、1モルのMMPと0.5モルのG3とを組み合わせてもよい。上記エーテル酸素とカルボニル酸素の合計がアルカリ金属イオン1モル当たり3~8モル(好ましくは4~7モル)の範囲内にあることで、イオン伝導度、レート特性、酸化安定性、還元安定性、熱安定性等の電池特性をバランスよく高いレベルで実現することができる。 In the electrolytic solution for a secondary battery according to the present invention, the total amount of ether oxygen and carbonyl oxygen contained in the oxygen-containing solvent containing an ester bond and the glyme is 3 moles or more (preferably) per 1 mole of the alkali metal of the alkali metal salt. is 4 mol or more) and 8 mol or less (preferably 7 mol or less). Here, the ether oxygen and carbonyl oxygen are oxygen atoms that provide an unpaired electron pair for the oxygen-containing solvent containing the ester bond and the glyme to coordinate to the alkali metal ion during complex formation. For example, in the case of methyl 3-methoxypropionate (MMP), which is an oxygen-containing solvent containing an ester bond, a total of two oxygen atoms are present, one ether oxygen constituting the methoxy group and one carbonyl oxygen constituting the ester group. Atoms contribute to coordination to alkali metal ions. In addition, ethylene glycol dimethyl ether (G1), diethylene glycol dimethyl ether (G2), triethylene glycol dimethyl ether (G3), and tetraethylene glycol dimethyl ether (G4), which are glymes, have 2, 3, 4, and 5 ether oxygen atoms, respectively. contributes to coordination to alkali metal ions. Therefore, in the case of an electrolytic solution combining 1 mole of MMP and 1 mole of G1 per mole of alkali metal, the total of ether oxygen and carbonyl oxygen is 4 moles. Further, in the case of an electrolytic solution in which 1 mol of MMP and 1 mol of G2 are combined per 1 mol of alkali metal, the total amount of ether oxygen and carbonyl oxygen is 5 mol. Furthermore, in the case of an electrolytic solution that combines 1 mol of MMP and 1 mol of G3 per mol of alkali metal, the total amount of ether oxygen and carbonyl oxygen is 6 mol. In this way, the number of oxygen atoms contributing to coordination to the alkali metal ion can be adjusted by changing the type of solvent to be combined. Similarly, the number of oxygen atoms contributing to coordination to the alkali metal ion can also be adjusted by the number of moles of the solvent species to be combined. For example, when adjusting the total of ether oxygen and carbonyl oxygen to 4 moles per mole of alkali metal, 1 mole of MMP and 0.5 mole of G3 may be combined. When the total amount of ether oxygen and carbonyl oxygen is within the range of 3 to 8 mol (preferably 4 to 7 mol) per mol of alkali metal ion, ionic conductivity, rate characteristics, oxidation stability, reduction stability, It is possible to achieve a well-balanced and high level of battery characteristics such as thermal stability.

エステル結合を含む含酸素溶媒とグライムとの混合モル比は、当該アルカリ金属1モル当たりの当該エーテル酸素およびカルボニル酸素の合計が上記所定の範囲内にある限り特に制限はないが、一般には1:4~4:1、好ましくは1:3~3:1、より好ましくは1:2~2:1の範囲とすればよい。 The mixing molar ratio of the oxygen-containing solvent containing an ester bond and glyme is not particularly limited as long as the total of the ether oxygen and carbonyl oxygen per mole of the alkali metal is within the above-mentioned predetermined range, but is generally 1: The ratio may be in the range of 4 to 4:1, preferably 1:3 to 3:1, more preferably 1:2 to 2:1.

(その他の成分)
本発明による電解液は、上記の各成分に加え、粘度調整剤(例えばハイドロフルオロエーテル)、酸化防止剤、皮膜形成剤、防腐剤、界面活性剤、安定化剤、紫外線吸収剤、無機又は有機フィラー、難燃剤等の添加剤を更に含んでもよい。
(Other ingredients)
In addition to the above-mentioned components, the electrolytic solution according to the present invention contains a viscosity modifier (e.g. hydrofluoroether), an antioxidant, a film forming agent, a preservative, a surfactant, a stabilizer, an ultraviolet absorber, an inorganic or organic It may further contain additives such as fillers and flame retardants.

本発明による電解液は、上記のエステル結合を含む含酸素溶媒、グライムおよびアルカリ金属塩を、必要に応じて上記その他の添加剤と共に、通常のドライルーム内等の乾燥雰囲気下で混合することで製造できる。 The electrolytic solution according to the present invention can be produced by mixing the above-mentioned oxygen-containing solvent containing an ester bond, glyme, and alkali metal salt together with the above-mentioned other additives as necessary in a dry atmosphere such as in a normal dry room. Can be manufactured.

ロッキングチェア型二次電池においては、電極電位に対する安定性(すなわち電位窓)が重要である。電位を制御した電極で電解液の酸化、還元分解を試験したときの、分解電流(電位の関数として得られる)が測定される電位(酸化又は還元分解電位)が電位窓として求められ、これが電解液の酸化安定性の指標となる。電解液の電位窓は、好ましくは3V以上、より好ましくは4V以上、更に好ましくは5V以上である。上記電位窓は、リニアスイープボルタンメトリー法で測定される値である。 In a rocking chair type secondary battery, stability with respect to electrode potential (ie, potential window) is important. When the oxidation and reductive decomposition of an electrolyte is tested using a potential-controlled electrode, the potential (oxidation or reductive decomposition potential) at which the decomposition current (obtained as a function of the potential) is measured is determined as the potential window, and this is the potential window for the electrolytic solution. It is an indicator of the oxidative stability of the liquid. The potential window of the electrolytic solution is preferably 3V or more, more preferably 4V or more, still more preferably 5V or more. The above potential window is a value measured by linear sweep voltammetry.

(ロッキングチェア型二次電池)
本発明は、正極、負極、および本発明による電解液を有するロッキングチェア型二次電池をさらに提供する。好ましい態様において、ロッキングチェア型二次電池はリチウムイオン二次電池である。正極と負極に特に制限はなく、正極用活物質としては、コバルト酸リチウム,マンガン酸リチウム、リン酸鉄リチウム、ニッケルマンガンコバルト酸リチウム(NMC)、ニッケルコバルトアルミン酸リチウム(NCA)等の金属酸化物、硫黄単体、リチウム多硫化物(Li(0<x≦8))、硫黄系金属多硫化物(MS(M=Ni,Cu,Fe、0<x≦2))、有機ジスルフィド化合物、カーボンスルフィド化合物等の硫黄系化合物を適宜使用することができる。また負極用活物質としては、黒鉛、ハードカーボン、ソフトカーボン等の炭素系材料、結晶質もしくは非晶質のケイ素単体、酸化ケイ素、シリコーン樹脂、含ケイ素高分子化合物等のケイ素を含む化合物、チタン酸リチウム、リチウム金属単体、LiC、LiSi、LiGr、LiAl、LiIn等を使用することができる。一態様において、ロッキングチェア型二次電池は、正極と負極との間に配置されたセパレータを有する。セパレータとしては、電解液を保持し得る種々のシート状材料、例えばポリオレフィン、ポリイミド、セルロース、ガラス等の材料から形成される多孔膜、不織布等を使用できる。
(Rocking chair type secondary battery)
The present invention further provides a rocking chair type secondary battery having a positive electrode, a negative electrode, and an electrolyte according to the present invention. In a preferred embodiment, the rocking chair type secondary battery is a lithium ion secondary battery. There are no particular restrictions on the positive electrode and negative electrode, and active materials for the positive electrode include metal oxides such as lithium cobalt oxide, lithium manganate, lithium iron phosphate, lithium nickel manganese cobalt oxide (NMC), and lithium nickel cobalt aluminate (NCA). substance, elemental sulfur, lithium polysulfide (Li 2 S x (0<x≦8)), sulfur-based metal polysulfide (MS x (M=Ni, Cu, Fe, 0<x≦2)), organic Sulfur compounds such as disulfide compounds and carbon sulfide compounds can be used as appropriate. In addition, active materials for negative electrodes include carbon-based materials such as graphite, hard carbon, and soft carbon, crystalline or amorphous silicon, silicon-containing compounds such as silicon oxide, silicone resin, and silicon-containing polymer compounds, and titanium. Lithium oxide, elemental lithium metal, LiC, LiSi, LiGr, LiAl, LiIn, etc. can be used. In one embodiment, a rocking chair type secondary battery has a separator placed between a positive electrode and a negative electrode. As the separator, various sheet-like materials capable of holding the electrolytic solution can be used, such as porous membranes, nonwoven fabrics, etc. made of materials such as polyolefin, polyimide, cellulose, and glass.

以下、本発明を実施例により具体的に説明するが、本発明の範囲は下記の実施例に限定されるものではない。
<溶媒の調製>
エステル結合を含む含酸素溶媒およびグライムとして下記の化合物を用意した。
・MMP:3-メトキシプロピオン酸メチル
・G1:エチレングリコールジメチルエーテル
・G2:ジエチレングリコールジメチルエーテル
・G3:トリエチレングリコールジメチルエーテル
・G4:テトラエチレングリコールジメチルエーテル
MMPは日本乳化剤株式会社製M3MPを、G1は日本乳化剤株式会社製DMGを、G2は日本乳化剤株式会社製DMDGを、G3は日本乳化剤株式会社製DMTGを、G4は日本乳化剤株式会社製DMTeGを、それぞれ使用した。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to examples, but the scope of the present invention is not limited to the following examples.
<Preparation of solvent>
The following compounds were prepared as an oxygen-containing solvent containing an ester bond and glyme.
・MMP: Methyl 3-methoxypropionate ・G1: Ethylene glycol dimethyl ether ・G2: Diethylene glycol dimethyl ether ・G3: Triethylene glycol dimethyl ether ・G4: Tetraethylene glycol dimethyl ether MMP is M3MP manufactured by Nippon Nyukazai Co., Ltd., and G1 is manufactured by Nippon Nyukazai Co., Ltd. DMDG manufactured by Nippon Nyukazai Co., Ltd. was used for G2, DMTG manufactured by Nippon Nyukazai Co., Ltd. was used for G3, and DMTeG manufactured by Nippon Nyukazai Co., Ltd. was used for G4.

<電解液の調製>
上記のエステル結合を含む含酸素溶媒および/またはグライムと、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)乾燥脱水品(東京化成工業株式会社製ビス(トリフルオロメタンスルホニル)イミドリチウム)とを、表1に記載の所定のモル比で、スターラーにて室温で一晩混合して、各電解液を調製した。各電解液においてリチウムと溶媒との錯体が形成されていることを熱重量測定法(TG-DTA STA7200RV 日立ハイテクノロジーズ社)で確認した。
<Preparation of electrolyte>
The oxygen-containing solvent and/or glyme containing the above ester bond and the dried and dehydrated product of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) (lithium bis(trifluoromethanesulfonyl)imide manufactured by Tokyo Chemical Industry Co., Ltd.) are listed in Table 1. Each electrolytic solution was prepared by mixing overnight at room temperature with a stirrer at the predetermined molar ratio described in . It was confirmed by thermogravimetry (TG-DTA STA7200RV Hitachi High-Technologies) that a complex of lithium and solvent was formed in each electrolytic solution.

<性能評価>
・剪断粘度
調製した各電解液を、粘弾性測定装置MCR101(Anton paar社製)にセットし、30℃、剪断速度100秒-1にて剪断粘度を測定した。
<Performance evaluation>
- Shear viscosity Each of the prepared electrolytic solutions was set in a viscoelasticity measuring device MCR101 (manufactured by Anton Paar), and the shear viscosity was measured at 30° C. and a shear rate of 100 seconds −1 .

・イオン伝導度
調製した各電解液を、セルロース(厚み25μm)に含浸させ、UFO型二電極式セル(電極:SUS-SUS)に組み込んだ。VSPポテンショガルバノスタット(BioLogic社製)にて30℃にてインピーダンスを測定した。
- Ionic conductivity Cellulose (thickness: 25 μm) was impregnated with each of the prepared electrolyte solutions and incorporated into a UFO type two-electrode cell (electrode: SUS-SUS). Impedance was measured at 30° C. using a VSP potentiogalvanostat (manufactured by BioLogic).

・レート特性
調製した各電解液を、セルロース(厚み25μm)に含浸させ、コイン電池(直径20mm、厚さ3.2mm)に組み込んだ。
充放電試験装置(北斗電工株式会社製HJD1010mSM8)において下記の組合せの電極を用い、30℃において下記の充放電条件下で充放電試験を行った。
電極の組み合わせ:NMC(正極)/LTO(負極)
充放電条件:1.5-3.0V、0.08-5.0C
評価は、3Cで初期放電容量の50%以上を保持した場合を「優良」、0.8Cで初期放電容量の50%以上を保持した場合を「良」、0.32Cで初期放電容量の50%以上を保持した場合を「可」、そして0.32Cで初期放電容量の50%未満を保持した場合を「不可」とした。図3、図4、図7、図8、図11参照。
- Rate characteristics Cellulose (thickness: 25 μm) was impregnated with each of the prepared electrolyte solutions, and the cells were incorporated into a coin battery (diameter: 20 mm, thickness: 3.2 mm).
A charge/discharge test was conducted at 30° C. under the following charge/discharge conditions using a charge/discharge test device (HJD1010mSM8 manufactured by Hokuto Denko Co., Ltd.) using the following combination of electrodes.
Electrode combination: NMC (positive electrode)/LTO (negative electrode)
Charge/discharge conditions: 1.5-3.0V, 0.08-5.0C
The evaluation is "Excellent" when 50% or more of the initial discharge capacity is retained at 3C, "Good" when 50% or more of the initial discharge capacity is retained at 0.8C, and 50% of the initial discharge capacity at 0.32C. % or more was evaluated as "acceptable", and when less than 50% of the initial discharge capacity was maintained at 0.32C, it was evaluated as "impossible". See FIGS. 3, 4, 7, 8, and 11.

・酸化安定性
リニアスイープボルタンメトリー(LSV)法にて、下記条件で、1サイクル目で0.02mA/cmの酸化電流が流れた際の電位を測定した。より高い電位(対Li/Li+)まで酸化電流値が上昇しないことは酸化安定性の指標となる。
測定セル:ポリプロピレン製二電極式セル
試験温度:30℃
電位掃引速度:0.1mV/秒
対極兼参照極:Li
作用極:Pt
評価は、1サイクル目で0.02mA/cmの酸化電流が流れた際の電位(対Li/Li+)が、5.0V超の場合を「優良」、4.8~5.0Vの場合を「良」、4.8V未満の場合を「不可」とした。図1、図5、図9参照。
- Oxidation stability The potential when an oxidation current of 0.02 mA/cm 2 was passed in the first cycle was measured under the following conditions using the linear sweep voltammetry (LSV) method. The fact that the oxidation current value does not increase up to a higher potential (vs. Li/Li + ) is an indicator of oxidation stability.
Measuring cell: Polypropylene two-electrode cell Test temperature: 30°C
Potential sweep speed: 0.1 mV/sec Counter electrode and reference electrode: Li
Working electrode: Pt
The evaluation is "excellent" if the potential (vs. Li/Li + ) when an oxidation current of 0.02 mA/cm 2 flows in the first cycle exceeds 5.0 V, and "excellent" if the potential (vs. Li/Li + ) is higher than 5.0 V. A case where the voltage was less than 4.8V was judged as "good", and a case where the voltage was less than 4.8V was judged as "unsatisfactory". See FIGS. 1, 5, and 9.

・還元安定性
サイクリックボルタンメトリー(CV)法にて、下記条件で、2サイクル目で0.05mA/cmの還元電流が流れた際の電位を測定した。より低い電位(対Li/Li+)まで還元電流が上昇しないことは還元安定性の指標となる。
測定セル:ポリプロピレン製二電極式セル
試験温度:30℃
電位掃引速度:0.1mV/秒
対極兼参照極:Li
作用極:Cu
評価は、2サイクル目に0.05mA/cmの還元電流が流れた際の電位(対Li/Li+)が、0.0V未満の場合を「良」、0.0V以上の場合を「不可」とした。図2、図6、図10参照。
- Reduction stability The potential was measured by cyclic voltammetry (CV) under the following conditions when a reduction current of 0.05 mA/cm 2 was applied in the second cycle. The fact that the reduction current does not increase to lower potentials (vs. Li/Li + ) is an indicator of reduction stability.
Measuring cell: Polypropylene two-electrode cell Test temperature: 30°C
Potential sweep speed: 0.1 mV/sec Counter electrode and reference electrode: Li
Working electrode: Cu
In the evaluation, when the potential (vs. Li/Li + ) when a reduction current of 0.05 mA/cm 2 flows in the second cycle is less than 0.0V, it is evaluated as "good", and when it is 0.0V or more, it is evaluated as "good". Not possible.” See FIGS. 2, 6, and 10.

・熱安定性
熱重量分析により、試料が5%重量減少した際の温度を測定した。
昇温速度:10℃/分
昇温範囲:25-500℃
結果を表1~3ならびに図1~11に示す。
- Thermal stability The temperature at which the weight of the sample decreased by 5% was measured by thermogravimetric analysis.
Heating rate: 10℃/min Temperature increasing range: 25-500℃
The results are shown in Tables 1 to 3 and Figures 1 to 11.

Figure 0007382795000003
Figure 0007382795000003

表1のデータから、組成G1:M3MP:LiTFSI=1:1:1の電解液は、リチウム(Li)1モル当たり、エステル結合を含む含酸素溶媒(M3MP)とグライム(G1)とに含まれるエーテル酸素およびカルボニル酸素の合計(O/Li)が4モルであり、イオン伝導度、レート特性、酸化安定性、還元安定性および熱安定性を高いレベルでバランスよく実現していることが分かる。表1のその他の電解液は、溶媒が、エステル結合を含む含酸素溶媒またはグライムのいずれか一方のみからなり、イオン伝導度、レート特性、酸化安定性、還元安定性および熱安定性のいずれか1項目以上において望ましくないデータが得られた。 From the data in Table 1, the electrolytic solution with the composition G1:M3MP:LiTFSI=1:1:1 contains the oxygen-containing solvent containing ester bonds (M3MP) and glyme (G1) per mole of lithium (Li). It can be seen that the total amount of ether oxygen and carbonyl oxygen (O/Li) is 4 moles, and a high level of well-balanced ionic conductivity, rate characteristics, oxidation stability, reduction stability, and thermal stability are achieved. The other electrolytes in Table 1 consist of either an oxygen-containing solvent containing an ester bond or glyme as a solvent, and have one of the following properties: ionic conductivity, rate characteristics, oxidation stability, reduction stability, and thermal stability. Undesirable data was obtained for one or more items.

Figure 0007382795000004
Figure 0007382795000004

表2のデータから、組成G2:M3MP:LiTFSI=1:1:1の電解液は、リチウム(Li)1モル当たり、エステル結合を含む含酸素溶媒(M3MP)とグライム(G2)とに含まれるエーテル酸素およびカルボニル酸素の合計(O/Li)が5モルであり、イオン伝導度、レート特性、酸化安定性、還元安定性および熱安定性を高いレベルでバランスよく実現していることが分かる。また、組成G3:M3MP:LiTFSI=1:1:1の電解液は、リチウム(Li)1モル当たり、エステル結合を含む含酸素溶媒(M3MP)とグライム(G3)とに含まれるエーテル酸素およびカルボニル酸素の合計(O/Li)が6モルであり、イオン伝導度、酸化安定性、還元安定性および熱安定性を高いレベルでバランスよく実現していることが分かる。一方、組成G1:G2:LiTFSI=1:1:1および組成G4:LiTFSI=1:1の電解液は、溶媒がグライムのみからなり、イオン伝導度、レート特性、酸化安定性、還元安定性および熱安定性のいずれか1項目以上において望ましくないデータが得られた。 From the data in Table 2, the electrolytic solution with the composition G2:M3MP:LiTFSI=1:1:1 contains an oxygen-containing solvent containing an ester bond (M3MP) and glyme (G2) per mole of lithium (Li). It can be seen that the total amount of ether oxygen and carbonyl oxygen (O/Li) is 5 moles, and a high level of well-balanced ionic conductivity, rate characteristics, oxidation stability, reduction stability, and thermal stability are achieved. In addition, the electrolytic solution with the composition G3:M3MP:LiTFSI=1:1:1 contains ether oxygen and carbonyl contained in the oxygen-containing solvent (M3MP) containing an ester bond and glyme (G3) per mole of lithium (Li). It can be seen that the total amount of oxygen (O/Li) is 6 moles, and a high level of ionic conductivity, oxidation stability, reduction stability, and thermal stability are achieved in a well-balanced manner. On the other hand, the electrolytes with composition G1:G2:LiTFSI=1:1:1 and composition G4:LiTFSI=1:1 consist only of glyme as a solvent, and have excellent ionic conductivity, rate characteristics, oxidation stability, reduction stability and Undesirable data was obtained in any one or more of the thermal stability items.

Figure 0007382795000005
Figure 0007382795000005

表3のデータから、エステル結合を含む含酸素溶媒とグライムとを含む電解液は、リチウム(Li)1モル当たり、エステル結合を含む含酸素溶媒(M3MP)とグライム(G1~G4)とに含まれるエーテル酸素およびカルボニル酸素の合計(O/Li)が3~7モルの範囲にわたり、イオン伝導度、レート特性(G3:M3MP:LiTFSI=1:1:1はデータなし)、酸化安定性、還元安定性および熱安定性を高いレベルでバランスよく実現していることが分かる。一方、組成G1:G2:LiTFSI=0.7:0.7:1の電解液は、溶媒がグライムのみからなり、酸化安定性が低下した。 From the data in Table 3, it can be seen that in the electrolytic solution containing an oxygen-containing solvent containing an ester bond and glyme, per 1 mole of lithium (Li), the oxygen-containing solvent containing an ester bond (M3MP) and glyme (G1 to G4) contain The total amount of ether oxygen and carbonyl oxygen (O/Li) is in the range of 3 to 7 moles, ionic conductivity, rate characteristics (no data for G3:M3MP:LiTFSI=1:1:1), oxidative stability, reduction It can be seen that stability and thermal stability are achieved in a well-balanced manner at a high level. On the other hand, the electrolytic solution with the composition G1:G2:LiTFSI=0.7:0.7:1 consisted only of glyme as a solvent, and its oxidation stability decreased.

本発明による電解液は、各種ロッキングチェア型二次電池、特にリチウムイオン二次電池に好適に適用される。 The electrolytic solution according to the present invention is suitably applied to various rocking chair type secondary batteries, especially lithium ion secondary batteries.

Claims (5)

アルカリ金属塩と、エステル結合を含む含酸素溶媒と、グライムとを含んでなる二次電池用電解液であって、
前記エステル結合を含む含酸素溶媒が下記一般式(1)で表され、
R 1 -O-(A-O) n -CH 2 CH(R 3 )-COO-R 2 (1)
式(1)中、R 1 、R 2 は各々独立に炭素数1~4の直鎖状または分岐状のアルキル基を表し、R 3 はメチル基またはH を表し、Aは各々独立に炭素数2~4のアルキレン基を表し、かつ、nはオキシアルキレン基の平均付加モル数であって、0~5の整数を表し、
前記グライムが、下記式(2)で表され、
式(2)中、R およびR は、それぞれ独立して、炭素数1~8の直鎖状または分岐状のアルキル基を表し、A は、炭素数2~4のアルキレン基を表し、nはオキシアルキレン基の平均付加モル数であって、1~5の整数を表し、さらに
前記アルカリ金属塩のアルカリ金属1モル当たり、前記エステル結合を含む含酸素溶媒と前記グライムとに含まれるエーテル酸素およびカルボニル酸素の合計が3モル以上、かつ、8モル以下であることを特徴とする、二次電池用電解液
An electrolytic solution for a secondary battery comprising an alkali metal salt, an oxygen-containing solvent containing an ester bond, and glyme ,
The oxygen-containing solvent containing the ester bond is represented by the following general formula (1),
R 1 -O-(A-O) n -CH 2 CH(R 3 )-COO-R 2 (1)
In formula (1), R 1 and R 2 each independently represent a linear or branched alkyl group having 1 to 4 carbon atoms, R 3 represents a methyl group or H , and A each independently represents a carbon number represents an alkylene group of 2 to 4, and n is the average number of added moles of the oxyalkylene group, and represents an integer of 0 to 5;
The grime is represented by the following formula (2),
In formula (2), R 4 and R 5 each independently represent a linear or branched alkyl group having 1 to 8 carbon atoms, and A 4 represents an alkylene group having 2 to 4 carbon atoms. , n is the average number of added moles of the oxyalkylene group, and represents an integer of 1 to 5, and
The total amount of ether oxygen and carbonyl oxygen contained in the oxygen-containing solvent containing an ester bond and the glyme is 3 moles or more and 8 moles or less per mole of the alkali metal of the alkali metal salt. , electrolyte for secondary batteries .
前記式(1)中、R1とR2が共にメチル基であり、R3がHであり、かつ、nが0である、請求項1に記載の二次電池用電解液。 The electrolytic solution for a secondary battery according to claim 1, wherein in the formula (1), R 1 and R 2 are both methyl groups, R 3 is H, and n is 0. 前記アルカリ金属塩と、前記エステル結合を含む含酸素溶媒と、前記グライムとを実質的に1:1:1のモル比で含む、請求項1または2に記載の二次電池用電解液。 The electrolytic solution for a secondary battery according to claim 1 or 2, comprising the alkali metal salt, the oxygen-containing solvent containing an ester bond, and the glyme in a substantially 1:1:1 molar ratio. 前記アルカリ金属塩が、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(フルオロスルホニル)イミド(LiFSI)、テトラフルオロホウ酸リチウム(LiBF4)、ヘキサフルオロリン酸リチウム(LiPF6)、過塩素酸リチウム(LiClO4)及びリチウムビス(ペンタフルオロエタンスルホニル)イミド(LiBETI)からなる群から選択される、請求項1~3のいずれか一項に記載の二次電池用電解液。 The alkali metal salt may be lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium bis(fluorosulfonyl)imide (LiFSI), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), or The electrolytic solution for a secondary battery according to any one of claims 1 to 3, which is selected from the group consisting of lithium chlorate (LiClO 4 ) and lithium bis(pentafluoroethanesulfonyl)imide (LiBETI). 正極と、負極と、請求項1~4のいずれか一項に記載の二次電池用電解液とを含んでなる、ロッキングチェア型二次電池。 A rocking chair type secondary battery comprising a positive electrode, a negative electrode, and the electrolyte for a secondary battery according to any one of claims 1 to 4.
JP2019200624A 2019-11-05 2019-11-05 Electrolyte for secondary batteries and rocking chair type secondary batteries Active JP7382795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019200624A JP7382795B2 (en) 2019-11-05 2019-11-05 Electrolyte for secondary batteries and rocking chair type secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019200624A JP7382795B2 (en) 2019-11-05 2019-11-05 Electrolyte for secondary batteries and rocking chair type secondary batteries

Publications (2)

Publication Number Publication Date
JP2021077443A JP2021077443A (en) 2021-05-20
JP7382795B2 true JP7382795B2 (en) 2023-11-17

Family

ID=75898158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019200624A Active JP7382795B2 (en) 2019-11-05 2019-11-05 Electrolyte for secondary batteries and rocking chair type secondary batteries

Country Status (1)

Country Link
JP (1) JP7382795B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132976A1 (en) 2011-03-28 2012-10-04 日本電気株式会社 Secondary battery and electrolyte
WO2013008428A1 (en) 2011-07-08 2013-01-17 パナソニック株式会社 Electricity storage device
JP2021520023A (en) 2019-03-18 2021-08-12 寧徳新能源科技有限公司Ningde Amperex Technology Limited Electrochemical equipment and electronic equipment equipped with it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101236864B1 (en) * 2011-03-15 2013-02-26 주식회사 엘지화학 Lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132976A1 (en) 2011-03-28 2012-10-04 日本電気株式会社 Secondary battery and electrolyte
WO2013008428A1 (en) 2011-07-08 2013-01-17 パナソニック株式会社 Electricity storage device
JP2021520023A (en) 2019-03-18 2021-08-12 寧徳新能源科技有限公司Ningde Amperex Technology Limited Electrochemical equipment and electronic equipment equipped with it

Also Published As

Publication number Publication date
JP2021077443A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP5466364B2 (en) Lithium / sulfur battery electrolyte and lithium / sulfur battery using the same
JP5318420B2 (en) Current generator having sulfone electrolyte
US8148017B2 (en) Electrochemical energy storage device
JP5274562B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery
KR101108945B1 (en) Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
US20110143212A1 (en) Non-Aqueous Electrolyte Solution for Rechargeable Lithium Batteries
US20080160419A1 (en) Electrolyte Solutions For Electrochemical Energy Devices
KR20150120393A (en) Electrolyte solution and lithium ion secondary battery provided with same
KR20070121034A (en) Nonaqueous electrolyte solution, electrochemical energy storage device using same, and nonaqueous electrolyte secondary battery
JP2020009578A (en) Fluoride ion battery and nonaqueous electrolyte
JP2005243321A (en) Nonaqueous secondary battery
JP4431941B2 (en) Nonaqueous electrolyte secondary battery
JP7382795B2 (en) Electrolyte for secondary batteries and rocking chair type secondary batteries
JP2009187880A (en) Nonaqueous electrolyte secondary battery
US10998582B2 (en) Improving the ionic conductivity of an electrolyte based on lithium imidazolate salts
JP6957179B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP2018125219A (en) Electrolyte solution for lithium ion secondary battery
CN111354977A (en) Lithium ion battery electrolyte, preparation method thereof and lithium battery comprising lithium ion battery electrolyte
KR101175134B1 (en) Electrolyte with silicon compound and lithium battery using the same
US20240154165A1 (en) Additive For Non-Aqueous Electrolyte Solution And Lithium Secondary Battery Comprising Same
KR102663158B1 (en) Lithium secondary battery with improved safety
CN108232295B (en) Ionic liquid-based electrolyte for lithium-air battery and lithium-air battery system thereof
JP7288776B2 (en) Aqueous electrolyte for power storage device and power storage device containing this water-based electrolyte
WO2014097618A1 (en) Nonaqueous solvent for electricity storage devices, nonaqueous electrolyte solution, electricity storage device using nonaqueous electrolyte solution, and lithium secondary battery
JP4076639B2 (en) Non-aqueous electrolyte and secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231107

R150 Certificate of patent or registration of utility model

Ref document number: 7382795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150