JP7382202B2 - plate heat exchanger - Google Patents

plate heat exchanger Download PDF

Info

Publication number
JP7382202B2
JP7382202B2 JP2019188709A JP2019188709A JP7382202B2 JP 7382202 B2 JP7382202 B2 JP 7382202B2 JP 2019188709 A JP2019188709 A JP 2019188709A JP 2019188709 A JP2019188709 A JP 2019188709A JP 7382202 B2 JP7382202 B2 JP 7382202B2
Authority
JP
Japan
Prior art keywords
heat exchanger
heat exchange
heat
upstream
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019188709A
Other languages
Japanese (ja)
Other versions
JP2021063615A (en
Inventor
貴大 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2019188709A priority Critical patent/JP7382202B2/en
Priority to KR1020200093801A priority patent/KR20210044681A/en
Priority to CN202011003855.1A priority patent/CN112665423A/en
Priority to US17/066,006 priority patent/US20210108859A1/en
Publication of JP2021063615A publication Critical patent/JP2021063615A/en
Application granted granted Critical
Publication of JP7382202B2 publication Critical patent/JP7382202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/0056Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0006Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the plate-like or laminated conduits being enclosed within a pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、内部を流通する第1流体と外部を流通する第2流体との間で熱交換を行う複数の熱交換体を有し、複数の熱交換体が積層されて構成されるプレート式熱交換器に関する。 The present invention has a plurality of heat exchange bodies that perform heat exchange between a first fluid flowing inside and a second fluid flowing outside, and a plate type configured by stacking a plurality of heat exchange bodies. Regarding heat exchangers.

従来、上熱交換プレートと下熱交換プレートとが接合された複数の熱交換体を備えるプレート式熱交換器が提案されている(例えば、特許文献1)。各熱交換体は、上熱交換プレートと下熱交換プレートとの間に第1流体である熱媒が流通する内部空間と、内部空間を非連通状態で貫通し、第2流体である燃焼排気が上下方向に流通する複数の貫通孔とを有する。 Conventionally, a plate heat exchanger including a plurality of heat exchange bodies in which an upper heat exchange plate and a lower heat exchange plate are joined has been proposed (for example, Patent Document 1). Each heat exchange body has an internal space in which a heat medium, which is a first fluid, flows between an upper heat exchange plate and a lower heat exchange plate, and a combustion exhaust gas, which is a second fluid, that passes through the internal space in a non-communicating state. has a plurality of through holes that communicate in the vertical direction.

上記プレート式熱交換器は、少なくとも1つの熱交換体を有する複数のブロックを上下方向に積層することにより構成されている。また、上下方向で隣接するブロックは、熱媒が流通するように互いに連通されている。さらに、隣接するブロックは、一方のブロックを流通する熱媒の流路方向が、他方のブロックを流通する熱媒のそれと異なるように構成されている。これにより、熱交換器内を流通する熱媒の流路がブロックの段数に応じて長くなり、熱効率を高めることができる。 The plate heat exchanger is constructed by vertically stacking a plurality of blocks each having at least one heat exchanger. Further, blocks adjacent in the vertical direction are communicated with each other so that a heat medium can flow therethrough. Furthermore, adjacent blocks are configured such that the flow path direction of the heat medium flowing through one block is different from that of the heat medium flowing through the other block. Thereby, the flow path of the heat medium flowing in the heat exchanger becomes longer in accordance with the number of stages of blocks, and thermal efficiency can be improved.

韓国登録特許第10-1608149号公報Korean Registered Patent No. 10-1608149

ところで、上記のような貫通孔が内部空間を非連通状態で貫通する熱交換体では、燃焼排気が通過する貫通孔の周縁部が最も加熱される。従って、熱効率を高めるためには、貫通孔の周縁部で燃焼排気の熱が効率よく熱媒に熱伝達されるような熱交換体の構造が好ましい。 By the way, in a heat exchanger such as the one described above in which the through hole passes through the internal space in a non-communicating state, the peripheral edge of the through hole through which combustion exhaust gas passes is heated the most. Therefore, in order to increase thermal efficiency, it is preferable that the heat exchanger has a structure in which the heat of the combustion exhaust is efficiently transferred to the heat medium at the peripheral edge of the through hole.

また、複数の熱交換体が積層されるプレート式熱交換器では、燃焼排気のガス流路方向から見て、一方の熱交換体の貫通孔の投影面が他方の熱交換体の貫通孔と重ならないように隣接する熱交換体を形成すれば、熱交換器内の燃焼排気のガス流路が長くなり、熱効率を向上させることができる。 In addition, in a plate heat exchanger in which multiple heat exchangers are stacked, the projected plane of the through holes of one heat exchanger is the same as the throughhole of the other heat exchanger when viewed from the gas flow path direction of the combustion exhaust gas. By forming adjacent heat exchange bodies so that they do not overlap, the gas flow path of combustion exhaust gas within the heat exchanger becomes longer, and thermal efficiency can be improved.

しかしながら、上記のような貫通孔の配置構造を有する熱交換器では、上流側の熱交換体の貫通孔は下流側の熱交換体の貫通孔の形成されていない投影面と対向する。そのため、上流側の熱交換体の貫通孔を流通した燃焼排気は、まず上記の下流側の熱交換体の一面上の投影面に衝突し、その後、下流側の熱交換体の一面上に広がり、さらに下流側の熱交換体の貫通孔から下流側に流通する。従って、高温の燃焼排気が流通する燃焼排気のガス流路の上流域では、下流側の熱交換体における上流側の熱交換体の貫通孔と対向する部分、すなわち下流側の熱交換体の貫通孔の周縁部が集中して加熱され、ローカルヒートが生じるという問題がある。特に、燃焼排気のガス流路の最上流の熱交換体に隣接する下流側の熱交換体には、最上流の熱交換体の内部を流通する熱媒と熱交換することなく、最上流の熱交換体の貫通孔を流通する高温の燃焼排気が衝突するため、ローカルヒートが生じやすい。 However, in a heat exchanger having the through-hole arrangement structure as described above, the through-holes of the upstream heat exchanger face the projected surface of the downstream heat exchanger where no through-holes are formed. Therefore, the combustion exhaust gas that has passed through the through holes of the upstream heat exchanger first collides with the projected surface on one side of the downstream heat exchanger, and then spreads onto the one side of the downstream heat exchanger. , further flows downstream from the through holes of the heat exchanger on the downstream side. Therefore, in the upstream region of the combustion exhaust gas flow path through which high-temperature combustion exhaust flows, the part of the downstream heat exchanger that faces the through hole of the upstream heat exchanger, that is, the part of the downstream heat exchanger that There is a problem in that the periphery of the hole is heated concentratedly, causing local heat. In particular, in the downstream heat exchanger adjacent to the most upstream heat exchanger in the combustion exhaust gas flow path, the most upstream heat exchanger does not exchange heat with the heat medium flowing inside the most upstream heat exchanger. Local heat is likely to occur because the high-temperature combustion exhaust flowing through the through holes of the heat exchanger collides with each other.

本発明は、上記課題を解決するためになされたものであり、本発明の目的は、熱効率を向上させるとともに、第2流体の流路の上流域における熱交換体のローカルヒートを防止することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to improve thermal efficiency and prevent local heating of the heat exchanger in the upstream region of the second fluid flow path. be.

本発明によれば、
内部を流通する第1流体と外部を流通する第2流体との間で熱交換を行う複数の熱交換体を備え、前記複数の熱交換体が積層されて構成されるプレート式熱交換器であって、
前記熱交換体は、前記熱交換体の内部を流通する前記第1流体の流路面と交差する方向に前記第2流体が前記熱交換体の外部を流通するように形成された複数の貫通孔を有し、
隣接する熱交換体は、前記第2流体の流路方向から見て、一方の熱交換体の前記貫通孔の投影面が、他方の熱交換体の前記貫通孔と重ならないように形成され、
前記複数の熱交換体は、前記投影面に前記第1流体の流路の高さが変動する変動部を有する熱交換体(P)と、少なくとも周縁部を除く前記投影面に前記第1流体の前記流路の前記高さが略一定の平面部のみを有する熱交換体(Q)とを備え、
前記第2流体の流路の最上流に位置する最上流熱交換体の下流側に隣接する第2熱交換体は、前記熱交換体(Q)から構成されているプレート式熱交換器が提供される。
According to the invention,
A plate heat exchanger comprising a plurality of heat exchange bodies that perform heat exchange between a first fluid flowing inside and a second fluid flowing outside, and configured by stacking the plurality of heat exchange bodies. There it is,
The heat exchange body includes a plurality of through holes formed so that the second fluid flows outside the heat exchange body in a direction intersecting a flow path surface of the first fluid flowing inside the heat exchange body. has
Adjacent heat exchange bodies are formed such that a projected surface of the through hole of one heat exchange body does not overlap with the through hole of the other heat exchange body when viewed from the flow path direction of the second fluid,
The plurality of heat exchange bodies include a heat exchange body (P) having a variable part in which the height of the flow path of the first fluid varies on the projection plane, and a heat exchange body (P) having a variable part in which the height of the flow path of the first fluid fluctuates on the projection plane, and a heat exchange body (P) having a variable part in which the height of the flow path of the first fluid fluctuates, and a heat exchanger (Q) having only a flat portion in which the height of the flow path is substantially constant;
The second heat exchanger adjacent to the downstream side of the most upstream heat exchanger located at the most upstream side of the flow path of the second fluid is provided by a plate heat exchanger constituted by the heat exchanger (Q). be done.

上記熱交換器によれば、熱交換体(P)は、隣接する熱交換体の貫通孔の投影面に第1流体の流路の高さが変動する変動部を有するから、第1流体の流路抵抗が大きくなり、投影面の内部を流通する第1流体の流量が少なくなる。また、第1流体が投影面の内部を通過するとき、第1流体の乱流が発生するから、第1流体の温度分布を小さくすることができる。また、変動部によって熱交換体(P)の表面積が大きくなるから、熱交換体(P)の受熱面積が大きくなる。これにより、第2流体から受熱される熱を効率的に第1流体に熱伝達させることができる。 According to the heat exchanger, the heat exchanger (P) has a variable portion in which the height of the flow path of the first fluid varies in the projection plane of the through hole of the adjacent heat exchanger, so that the height of the flow path of the first fluid varies. The flow path resistance increases, and the flow rate of the first fluid flowing inside the projection surface decreases. Moreover, since turbulence of the first fluid occurs when the first fluid passes through the inside of the projection surface, the temperature distribution of the first fluid can be made small. Furthermore, since the surface area of the heat exchanger (P) is increased by the variable portion, the heat receiving area of the heat exchanger (P) is increased. Thereby, the heat received from the second fluid can be efficiently transferred to the first fluid.

一方、第2流体の流路の上流域では、最上流熱交換体の貫通孔を通過した高温の第2流体が第2熱交換体の小面積の投影面に集中する。上記のように投影面に変動部が形成されている場合、投影面の内部を流通する第1流体の流量が低下やすい。それゆえ、全ての熱交換体が変動部を有する熱交換体(P)で構成されると、最上流熱交換体の貫通孔を第2熱交換体に投影した投影面で局部過熱が生じやすい。しかしながら、上記熱交換器によれば、第2熱交換体は隣接する熱交換体の貫通孔の投影面に第1流体の流路の高さが略一定の平面部のみを有する熱交換体(Q)から構成されるから、熱交換体(Q)の投影面の内部を流通する第1流体の流路抵抗は、熱交換体(P)の投影面を通過するときのそれに比べて、小さくなり、熱交換体(Q)の投影面の内部を流通する第1流体の流量が多くなる。また、平面部には凹凸が形成されていないため、平面部に衝突した第2流体が均一に四方に広がる。これにより、第2熱交換体の投影面での熱の集中を緩和させることができる。
また、一方の熱交換体の貫通孔の投影面が他方の熱交換体の周縁部に形成されている場合、投影面の少なくとも周縁部側には、貫通孔が形成されていない。これに対して、熱交換器の周縁部以外の投影面では、四方に貫通孔が形成される。それゆえ、四方を貫通孔で囲まれた投影面では第2流体からの受熱量が多くなる。その結果、第2流体の流路の上流域の熱交換体では、周縁部以外の投影面で局部過熱が生じやすい。従って、平面部を少なくとも熱交換体(Q)の周縁部を除く投影面に形成すれば、局部過熱を効果的に防止することができる。
On the other hand, in the upstream region of the second fluid flow path, the high-temperature second fluid that has passed through the through hole of the most upstream heat exchanger concentrates on the small-area projection surface of the second heat exchanger. When the variable portion is formed on the projection surface as described above, the flow rate of the first fluid flowing inside the projection surface is likely to decrease. Therefore, if all the heat exchangers are composed of heat exchangers (P) having variable parts, local overheating is likely to occur in the projection plane of the through holes of the most upstream heat exchanger projected onto the second heat exchanger. . However, according to the above-mentioned heat exchanger, the second heat exchange body is a heat exchange body ( Q), the flow path resistance of the first fluid flowing inside the projection surface of the heat exchanger (Q) is smaller than that when it passes through the projection surface of the heat exchanger (P). Therefore, the flow rate of the first fluid flowing inside the projection surface of the heat exchanger (Q) increases. Moreover, since the flat part has no unevenness, the second fluid colliding with the flat part spreads uniformly in all directions. Thereby, concentration of heat on the projection surface of the second heat exchanger can be alleviated.
Moreover, when the projection plane of the through-hole of one heat exchange body is formed in the peripheral part of the other heat exchange body, the through-hole is not formed at least on the peripheral part side of the projection plane. On the other hand, on the projection plane other than the peripheral edge of the heat exchanger, through holes are formed on all sides. Therefore, the amount of heat received from the second fluid increases on the projection surface surrounded by through holes on all sides. As a result, in the heat exchanger in the upstream region of the second fluid flow path, local overheating tends to occur in the projection plane other than the peripheral edge. Therefore, if the flat portion is formed on the projection plane excluding at least the peripheral portion of the heat exchanger (Q), local overheating can be effectively prevented.

好ましくは、上記熱交換器において、
前記最上流熱交換体は、前記熱交換体(Q)から構成される。
Preferably, in the heat exchanger,
The most upstream heat exchanger is composed of the heat exchanger (Q).

上記熱交換器によれば、高温の第2流体が衝突する最上流熱交換体の局部過熱を防止することができる。 According to the heat exchanger, local overheating of the most upstream heat exchanger with which the high-temperature second fluid collides can be prevented.

好ましくは、上記熱交換器において、
前記第2熱交換体と前記最上流熱交換体とは、前記第1流体が前記第2熱交換体及び前記最上流熱交換体の内部をこの順に流通するように、直列に連結される。
Preferably, in the heat exchanger,
The second heat exchanger and the most upstream heat exchanger are connected in series so that the first fluid flows through the second heat exchanger and the most upstream heat exchanger in this order.

上記熱交換器によれば、第2熱交換体の内部を流通する全ての第1流体が、最上流熱交換体の内部を流通する。これにより、熱交換器に供給される第1流体の流量が少ない場合でも、最上流熱交換体及び第2交換体の局部過熱を効果的に防止することができる。 According to the heat exchanger, all the first fluid flowing through the second heat exchange body flows through the most upstream heat exchange body. Thereby, even when the flow rate of the first fluid supplied to the heat exchanger is small, local overheating of the most upstream heat exchanger and the second exchanger can be effectively prevented.

好ましくは、上記熱交換器において、
前記熱交換体(Q)の前記貫通孔は、略矩形状を有し、
前記矩形状の貫通孔は、少なくとも1つの頂点が前記投影面に突出するように配置される。
Preferably, in the heat exchanger,
The through hole of the heat exchanger (Q) has a substantially rectangular shape,
The rectangular through hole is arranged such that at least one vertex projects onto the projection plane.

上記熱交換器によれば、投影面の内部を流通する第1流体の流速が速くなる。これにより、局部過熱をさらに防止することができる。 According to the heat exchanger, the flow rate of the first fluid flowing inside the projection surface becomes faster. Thereby, local overheating can be further prevented.

以上のように、本発明によれば、熱効率を向上させることができるとともに、第2流体の流路の上流域における熱交換体のローカルヒートを防止することができる。従って、本発明によれば、高熱効率で、優れた耐久性を有するプレート式熱交換器を提供することができる。 As described above, according to the present invention, thermal efficiency can be improved and local heating of the heat exchanger in the upstream region of the second fluid flow path can be prevented. Therefore, according to the present invention, it is possible to provide a plate heat exchanger having high thermal efficiency and excellent durability.

図1は、本発明の実施の形態に係る熱交換器を有する熱源機を示す概略部分切欠斜視図である。FIG. 1 is a schematic partially cutaway perspective view showing a heat source device having a heat exchanger according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る熱交換器を示す概略部分分解斜視図である。FIG. 2 is a schematic partially exploded perspective view showing a heat exchanger according to an embodiment of the present invention. 図3は、本発明の実施の形態に係る熱交換器における第1流体と第2流体の流れを説明する概略模式図である。FIG. 3 is a schematic diagram illustrating the flow of the first fluid and the second fluid in the heat exchanger according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る熱交換器を示す概略部分分解斜視図である。FIG. 4 is a schematic partially exploded perspective view showing a heat exchanger according to an embodiment of the present invention. 図5は、本発明の実施の形態に係る熱交換器における熱交換体(P)を構成する一方の熱交換プレートの上面の一例を示す概略平面図である。FIG. 5 is a schematic plan view showing an example of the upper surface of one heat exchange plate constituting the heat exchange body (P) in the heat exchanger according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る熱交換器における熱交換体(P)を構成する他方の熱交換プレートの上面の一例を示す概略平面図である。FIG. 6 is a schematic plan view showing an example of the upper surface of the other heat exchange plate that constitutes the heat exchange body (P) in the heat exchanger according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る熱交換器における最上流熱交換体及び第2熱交換体を示す概略部分分解斜視図である。FIG. 7 is a schematic partially exploded perspective view showing the most upstream heat exchanger and the second heat exchanger in the heat exchanger according to the embodiment of the present invention. 図8は、本発明の実施の形態に係る熱交換器における熱交換体(Q)を構成する一方の熱交換プレートの上面の一例を示す概略平面図である。FIG. 8 is a schematic plan view showing an example of the upper surface of one heat exchange plate constituting the heat exchange body (Q) in the heat exchanger according to the embodiment of the present invention. 図9は、本発明の実施の形態に係る熱交換器における熱交換体(Q)を構成する他方の熱交換プレートの上面の一例を示す概略平面図である。FIG. 9 is a schematic plan view showing an example of the upper surface of the other heat exchange plate that constitutes the heat exchange body (Q) in the heat exchanger according to the embodiment of the present invention. 図10は、本発明の実施の形態に係る熱交換器における概略部分断面図である。FIG. 10 is a schematic partial sectional view of a heat exchanger according to an embodiment of the present invention.

以下、本実施の形態に係るプレート式熱交換器及びそれを備える熱源機について、添付図面を参照しながら具体的に説明する。 Hereinafter, a plate heat exchanger and a heat source device including the same according to the present embodiment will be specifically described with reference to the accompanying drawings.

図1に示すように、本実施の形態に係る熱源機は、流入管20から熱交換器1内に流入する水(第1流体)を、バーナ31で生成される燃焼排気(第2流体)により加熱し、流出管21を通じてカランやシャワーなどの温水利用先(図示せず)に供給する給湯器である。図示しないが、給湯器は、ケーシング内に組み込まれる。なお、第1流体として、他の熱媒(例えば、不凍液)が用いられてもよい。 As shown in FIG. 1, the heat source device according to the present embodiment converts water (first fluid) flowing into the heat exchanger 1 from the inflow pipe 20 into combustion exhaust (second fluid) generated by the burner 31. This is a water heater that heats the hot water and supplies it to hot water users (not shown) such as showers and showers through an outflow pipe 21. Although not shown, the water heater is incorporated within the casing. Note that another heat medium (for example, antifreeze) may be used as the first fluid.

この給湯器では、上方から順に、バーナ31の外郭を構成するバーナボディ3、燃焼室2、熱交換器1、及びドレン受け40が配設される。また、バーナボディ3の一方側方(図1では、右側)には、バーナボディ3内に燃料ガスと空気との混合ガスを送り込む燃焼ファンを備えるファンケース4が配設される。また、バーナボディ3の他方側方(図1では、左側)には、ドレン受け40と連通する排気ダクト41が配設される。排気ダクト41は、ドレン受け40に排出される燃焼排気を給湯器の外部に排出する。 In this water heater, a burner body 3 forming an outer shell of a burner 31, a combustion chamber 2, a heat exchanger 1, and a drain receiver 40 are arranged in order from the top. Moreover, a fan case 4 including a combustion fan that feeds a mixed gas of fuel gas and air into the burner body 3 is disposed on one side of the burner body 3 (on the right side in FIG. 1). Further, on the other side of the burner body 3 (on the left side in FIG. 1), an exhaust duct 41 communicating with the drain receiver 40 is provided. The exhaust duct 41 discharges combustion exhaust gas discharged into the drain receiver 40 to the outside of the water heater.

なお、本明細書では、ファンケース4及び排気ダクト41がバーナボディ3の側方にそれぞれ配置された状態で給湯器を見たとき、奥行方向が前後方向に対応し、幅方向が左右方向に対応し、高さ方向が上下方向に対応する。 In this specification, when the water heater is viewed with the fan case 4 and the exhaust duct 41 arranged on the sides of the burner body 3, the depth direction corresponds to the front-rear direction, and the width direction corresponds to the left-right direction. The height direction corresponds to the vertical direction.

バーナボディ3は、平面視略小判形状を有し、例えば、ステンレス系金属で形成される。図示しないが、バーナボディ3は、下方に開放している。 The burner body 3 has a generally oval shape in plan view, and is made of, for example, stainless steel metal. Although not shown, the burner body 3 is open downward.

ファンケース4と連通するガス導入部は、バーナボディ3の中央部から上方に突出している。バーナボディ3は、下向きの燃焼面30を有する平面状のバーナ31を備える。燃焼ファンを作動させることにより、混合ガスがバーナボディ3内に供給される。 A gas introduction part communicating with the fan case 4 projects upward from the center of the burner body 3. The burner body 3 includes a planar burner 31 having a downward combustion surface 30. A mixed gas is supplied into the burner body 3 by operating the combustion fan.

バーナ31は、全一次空気燃焼式であり、例えば、下向きに開口する多数の炎孔(図示せず)を有するセラミックス製の燃焼プレート、または金属繊維をネット状に編み込んだ燃焼マットからなる。バーナボディ3内に供給された混合ガスが、燃焼ファンの給気圧によって、下向きの燃焼面30から下方へ向けて噴出される。この混合ガスを着火させることにより、バーナ31の燃焼面30に火炎が形成され、燃焼排気が生成される。従って、バーナ31から噴出される燃焼排気は、燃焼室2を介して熱交換器1に送り込まれる。次いで、熱交換器1を通過した燃焼排気は、ドレン受け40及び排気ダクト41を通って給湯器の外部に排出される。 The burner 31 is an all-primary air combustion type, and is made of, for example, a ceramic combustion plate having a large number of flame holes (not shown) that open downward, or a combustion mat made of metal fibers woven into a net. The mixed gas supplied into the burner body 3 is ejected downward from the downward facing combustion surface 30 by the supply pressure of the combustion fan. By igniting this mixed gas, a flame is formed on the combustion surface 30 of the burner 31, and combustion exhaust gas is generated. Therefore, the combustion exhaust emitted from the burner 31 is sent to the heat exchanger 1 via the combustion chamber 2. Next, the combustion exhaust gas that has passed through the heat exchanger 1 is discharged to the outside of the water heater through the drain receiver 40 and the exhaust duct 41.

すなわち、この熱交換器1では、バーナ31が設けられている上方側が燃焼排気のガス流路の上流側に対応し、バーナ31が設けられている側と反対側の下方側が燃焼排気のガス流路の下流側に対応する。 That is, in this heat exchanger 1, the upper side where the burner 31 is provided corresponds to the upstream side of the gas flow path of the combustion exhaust gas, and the lower side opposite to the side where the burner 31 is provided corresponds to the gas flow path of the combustion exhaust gas. Corresponds to the downstream side of the road.

燃焼室2は、平面視略小判形状を有する。燃焼室2は、例えば、ステンレス系金属で形成される。燃焼室2は、上下に開放するように、一枚の略長方形状の金属板を湾曲させて両端部を接合することにより形成される。 The combustion chamber 2 has a generally oval shape in plan view. The combustion chamber 2 is made of, for example, stainless metal. The combustion chamber 2 is formed by curving a substantially rectangular metal plate and joining both ends so as to be open vertically.

図2に示すように、熱交換器1は、平面視略小判形状を有する。熱交換器1は、複数(ここでは、13層)の薄板状の熱交換体10が積層されたプレート式熱交換器である。なお、熱交換器1は、その周囲を覆う筐体を有してもよい。 As shown in FIG. 2, the heat exchanger 1 has a generally oval shape in plan view. The heat exchanger 1 is a plate heat exchanger in which a plurality (in this case, 13 layers) of thin plate-shaped heat exchange bodies 10 are stacked. Note that the heat exchanger 1 may have a housing that covers the periphery thereof.

図2~図4に示すように、熱交換器1は、1または複数の熱交換体10を有する複数(ここでは、4段)のブロック5を上下方向に積み重ねて構成されている(以下、これらのブロック5を総称する場合、単に「ブロック5」という。また、燃焼排気のガス流路に従って、最上段のブロック5を、「最上流ブロック5a」、中段のブロック5を、上流側から順に「第1下流側ブロック5b」、「第2下流側ブロック5c」、最下段のブロック5を、「最下流ブロック5d」という)。最上流ブロック5a及び第1下流側ブロック5bはそれぞれ、1つの熱交換体10から構成されている。また、第2下流側ブロック5cは、5つの熱交換体10が積層されて構成されており、最下流ブロック5dは、6つの熱交換体10が積層されて構成されている。なお、熱交換器1は、3つ以下または5つ以上のブロック5から構成されてもよい。後述するように、1つのブロック5が複数の熱交換体10から構成される場合、水は、その1つのブロック5を構成する各熱交換体10の内部を同一方向に並列に流れる。また、各ブロック5における隣接する熱交換体10は、水が下方から上方に向かって流れるように相互に連通されている。また、隣接するブロック5は、水が下方から上方に向かって流れるように相互に連通されている。また、隣接するブロック5は、一方のブロック5における各熱交換体10の内部を流れる水の流路方向が、他方のブロック5における各熱交換体10の内部を流れる水の流路方向と逆方向となるように構成されている。従って、この熱交換器1では、熱交換器1内の水の流路がブロック5の段数に応じて4パスとなるように、ブロック5ごとに水の流路方向が折り返されている。これにより、熱交換器1内に長い水の流路が形成され、熱効率を向上させることができる。 As shown in FIGS. 2 to 4, the heat exchanger 1 is configured by vertically stacking a plurality of (four stages in this case) blocks 5 each having one or more heat exchangers 10 (hereinafter referred to as When these blocks 5 are collectively referred to, they are simply referred to as "blocks 5." Also, according to the combustion exhaust gas flow path, the uppermost block 5 is referred to as the "most upstream block 5a," and the middle blocks 5 are referred to in order from the upstream side. "first downstream block 5b", "second downstream block 5c", and the lowest block 5 is referred to as "most downstream block 5d"). The most upstream block 5a and the first downstream block 5b each include one heat exchanger 10. Further, the second downstream block 5c is configured by stacking five heat exchange bodies 10, and the most downstream block 5d is configured by stacking six heat exchange bodies 10. Note that the heat exchanger 1 may be composed of three or less blocks 5 or five or more blocks 5. As will be described later, when one block 5 is composed of a plurality of heat exchangers 10, water flows in parallel in the same direction inside each heat exchanger 10 that constitutes one block 5. Adjacent heat exchangers 10 in each block 5 are interconnected so that water flows from below to above. Further, adjacent blocks 5 are interconnected so that water flows from below to above. Further, in the adjacent blocks 5, the flow path direction of water flowing inside each heat exchanger 10 in one block 5 is opposite to the flow path direction of water flowing inside each heat exchanger 10 in the other block 5. It is configured to be oriented. Therefore, in this heat exchanger 1, the direction of the water flow path is turned back for each block 5 so that the water flow path within the heat exchanger 1 has four passes depending on the number of stages of the blocks 5. Thereby, a long water flow path is formed in the heat exchanger 1, and thermal efficiency can be improved.

次に、熱交換体10の構成について説明する。図2~図9に示すように、各熱交換体10は大きさや形状などの基本構成を共通にするが、第2下流側ブロック5c及び最下流ブロック5dの熱交換体10と、最上流ブロック5a及び第1下流側ブロック5bの熱交換体10とは、後述する貫通孔の形状や変動部の有無などの構成が異なる(以下、熱交換体10を総称する場合、単に「熱交換体10」という。また、第2下流側ブロック5c及び最下流ブロック5dの熱交換体10を総称する場合、「熱交換体(P)」といい、最上流ブロック5a及び第1下流側ブロック5bの熱交換体10を総称する場合、「熱交換体(Q)」という)。このため、以下では、熱交換体(P)の構成を先に説明し、熱交換体(Q)については熱交換体(P)と異なる構成を主に説明する。なお、各図面は、必ずしも実際の寸法を示したものでなく、実施形態を限定するものではない。 Next, the configuration of the heat exchanger 10 will be explained. As shown in FIGS. 2 to 9, each heat exchanger 10 has the same basic configuration such as size and shape, but the heat exchanger 10 of the second downstream block 5c and the most downstream block 5d and the most upstream block 5a and the heat exchanger 10 of the first downstream block 5b are different in configuration, such as the shape of the through hole and the presence or absence of a variable part, which will be described later (hereinafter, when the heat exchanger 10 is referred to generically, it will simply be referred to as "heat exchanger 10"). In addition, when the heat exchanger 10 of the second downstream block 5c and the most downstream block 5d is collectively referred to as a "heat exchanger (P)", the heat exchanger 10 of the most upstream block 5a and the first downstream block 5b is When the exchanger 10 is collectively referred to as a "heat exchanger (Q)"). Therefore, below, the structure of the heat exchanger (P) will be explained first, and the structure of the heat exchanger (Q) that is different from the heat exchanger (P) will be mainly explained. Note that each drawing does not necessarily show actual dimensions and does not limit the embodiments.

第2下流側ブロック5c及び最下流ブロック5dの各熱交換体(P)は、上下貫通孔の位置やコーナ部の通水孔の有無などの一部の構成が相違する以外は、共通の構成を有する一組の上熱交換プレート11と下熱交換プレート12とを上下方向に重ね合わせて、後述する所定箇所をロウ材等の接合手段で接合することにより形成される。図4~図6に示すように、熱交換体(P)の上下熱交換プレート11,12は、平面視略小判形状を有する。上下熱交換プレート11,12は、例えば、所定の厚さを有するステンレス製の金属板から形成される。上下熱交換プレート11,12はそれぞれ、コーナ部を除くプレートの略全面に多数の略円形状の上下貫通孔11a,12aと、上下貫通孔11a,12aの周縁に形成された上下貫通孔フランジ部11c,12cとを有する。なお、上下貫通孔11a,12aは、略楕円形状や略矩形状などの他の形状を有してもよい。 The heat exchangers (P) of the second downstream block 5c and the most downstream block 5d have a common configuration except for some differences such as the positions of the upper and lower through holes and the presence or absence of water holes in the corners. It is formed by vertically overlapping a set of upper heat exchange plates 11 and lower heat exchange plates 12 having the same structure, and joining them at predetermined locations described below using joining means such as brazing material. As shown in FIGS. 4 to 6, the upper and lower heat exchange plates 11 and 12 of the heat exchanger (P) have a substantially oval shape in plan view. The upper and lower heat exchange plates 11 and 12 are formed, for example, from stainless steel metal plates having a predetermined thickness. The upper and lower heat exchange plates 11 and 12 each have a large number of substantially circular upper and lower through holes 11a and 12a on substantially the entire surface of the plate excluding the corner portions, and upper and lower through hole flange portions formed at the peripheries of the upper and lower through holes 11a and 12a. 11c and 12c. Note that the upper and lower through holes 11a and 12a may have other shapes such as a substantially elliptical shape or a substantially rectangular shape.

上下熱交換プレート11,12の周縁にはそれぞれ、上方に向かって突出する上下周縁接合部W1,W2が形成されている。下熱交換プレート12の下周縁接合部W2は、下周縁接合部W2と上熱交換プレート11の下面周縁とを接合させたときに、上下熱交換プレート11,12が所定高さの間隙を存して離間するように設定されている。 Upper and lower peripheral edge joining portions W1 and W2 that protrude upward are formed on the peripheral edges of the upper and lower heat exchange plates 11 and 12, respectively. The lower peripheral edge joint W2 of the lower heat exchange plate 12 is such that when the lower peripheral edge joint W2 and the lower surface peripheral edge of the upper heat exchange plate 11 are joined, the upper and lower heat exchange plates 11 and 12 have a gap of a predetermined height. It is set to be spaced apart.

また、上熱交換プレート11の上周縁接合部W1は、上周縁接合部W1と上方に隣接する熱交換体(P)の下熱交換プレート12の下面周縁とを接合させたときに、下方の熱交換体(P)の上熱交換プレート11と、上方の熱交換体(P)の下熱交換プレート12とが所定高さの間隙を存して離間するように設定されている。 Further, the upper peripheral edge joint W1 of the upper heat exchange plate 11 is formed when the upper peripheral edge joint W1 and the lower surface peripheral edge of the lower heat exchange plate 12 of the upperly adjacent heat exchange body (P) are joined together. The upper heat exchange plate 11 of the heat exchanger (P) and the lower heat exchange plate 12 of the upper heat exchanger (P) are set to be separated by a gap of a predetermined height.

従って、下熱交換プレート12の下周縁接合部W2と上熱交換プレート11の下面周縁とを接合させることにより、所定の高さの内部空間14が形成される(図3参照)。また、複数の熱交換体(P)を接合させることにより、上下に隣接する熱交換体(P)の間には、所定の高さの排気空間15が形成される(図3参照)。 Therefore, by joining the lower peripheral edge joint W2 of the lower heat exchange plate 12 and the lower surface peripheral edge of the upper heat exchange plate 11, an internal space 14 of a predetermined height is formed (see FIG. 3). Moreover, by joining a plurality of heat exchange bodies (P), an exhaust space 15 of a predetermined height is formed between vertically adjacent heat exchange bodies (P) (see FIG. 3).

熱交換体(P)の上下貫通孔11a,12aはそれぞれ、4つのコーナ部を除いた上下熱交換プレート11,12の略全面にわたって前後及び左右方向に所定の間隔で格子状に開設されている。また、上下貫通孔フランジ部11c,12cは、上下貫通孔11a,12aの開口縁から周方向外方に略水平に広がり、平面視略正八角形状の外形を有するように形成されている。なお、本実施の形態では、上下貫通孔11a,12aは、同一の大きさ及び形状を有する。しかしながら、上下貫通孔11a,12aは、上下方向で対向する一対の上下貫通孔11a,12aが同一の大きさ及び形状に形成されていれば、他の一対の上下貫通孔11a,12aのそれらと異なってもよい。 The upper and lower through holes 11a and 12a of the heat exchanger (P) are respectively opened in a grid pattern at predetermined intervals in the front and rear and left and right directions over substantially the entire surface of the upper and lower heat exchange plates 11 and 12, excluding the four corners. . Further, the upper and lower through-hole flange portions 11c and 12c are formed so as to extend substantially horizontally outward in the circumferential direction from the opening edges of the upper and lower through-holes 11a and 12a, and to have a substantially regular octagonal outer shape in plan view. Note that in this embodiment, the upper and lower through holes 11a and 12a have the same size and shape. However, if the pair of upper and lower through-holes 11a and 12a that face each other in the vertical direction are formed to have the same size and shape, the upper and lower through-holes 11a and 12a will be different from those of the other pair of upper and lower through-holes 11a and 12a. May be different.

上下貫通孔11a,12a及び上下貫通孔フランジ部11c,12cはそれぞれ、上下熱交換プレート11,12が重ね合わされたときに相互に対応する位置に形成されている。また、上下貫通孔11a,12a及び上下貫通孔フランジ部11c,12cは、絞り加工により、上下熱交換プレート11,12が重ね合わされたときに対向する上下貫通孔フランジ部11c,12cが面接触するように、内方に突出する段差部の底面に形成されている。 The upper and lower through holes 11a and 12a and the upper and lower through hole flange portions 11c and 12c are respectively formed at positions corresponding to each other when the upper and lower heat exchange plates 11 and 12 are stacked. Further, the upper and lower through-holes 11a and 12a and the upper and lower through-hole flange parts 11c and 12c are drawn so that when the upper and lower heat exchange plates 11 and 12 are overlapped, the opposing upper and lower through-hole flange parts 11c and 12c come into surface contact. It is formed on the bottom surface of the stepped portion that protrudes inward.

従って、上下熱交換プレート11,12が重ね合わされた状態で、上下貫通孔フランジ部11c,12cがロウ材等の接合手段により接合されると、上下貫通孔フランジ部11c,12cによって内部空間14を閉塞するフランジ部16が形成される(図10参照)。また、上下貫通孔11a,12aによって内部空間14を非連通状態で貫通する貫通孔13が形成される。 Therefore, when the upper and lower through-hole flange parts 11c and 12c are joined by a joining means such as brazing material with the upper and lower heat exchange plates 11 and 12 superimposed, the internal space 14 is closed by the upper and lower through-hole flange parts 11c and 12c. A closing flange portion 16 is formed (see FIG. 10). Further, a through hole 13 is formed by the upper and lower through holes 11a and 12a, which penetrates the internal space 14 in a non-communicating state.

前後及び左右方向で隣接する4つの上下貫通孔11a,12aの間にはそれぞれ、略円形状の上下凹部11b,12bが形成されている。また、上下熱交換プレート11,12の周縁において、前後または左右方向で隣接する2つの上下貫通孔11a,12aの間には、平面視略楕円形状の上下凹部11b,12bが形成されている。また、これらの上下凹部11b,12bの中央部には、上下凹部11b,12bよりも小径の上下凸部11d,12dが形成されている。これらの上下凹部11b,12b及び上下凸部11d,12dはそれぞれ、上下熱交換プレート11,12が重ね合わされたときに相互に対応する位置に形成されている。従って、上下凹部11b,12b及び上下凸部11d,12dはそれぞれ、4つのコーナ部を除いた上下熱交換プレート11,12の略全面にわたって前後及び左右方向に所定の間隔で格子状に形成されている。また、隣接する上下凹部11b,12b間の前後及び左右方向の間隔は、隣接する上下貫通孔11a,12a間のそれと略同一に設定されている。このため、上下貫通孔11a,12aと、上下凹部11b,12bとは、前後及び左右方向に交互に略等間隔で形成されている。また、上下凹部11b,12bはそれぞれ、上下熱交換プレート11,12の周縁を除いて、前後及び左右方向で隣接する4つの上下貫通孔11a,12aで囲まれる領域の略中央部に位置するように形成されている。また、上下凹部11b,12bはそれぞれ、前後及び左右方向で隣接する上下貫通孔フランジ部11c,12c間の最短距離よりも小さい直径を有する。 Approximately circular upper and lower recesses 11b and 12b are formed between four upper and lower through holes 11a and 12a that are adjacent to each other in the front and rear and left and right directions, respectively. Further, at the peripheries of the upper and lower heat exchange plates 11 and 12, upper and lower recesses 11b and 12b, which are approximately elliptical in plan view, are formed between two upper and lower through holes 11a and 12a that are adjacent in the front and rear or left and right directions. In addition, upper and lower convex portions 11d and 12d having smaller diameters than the upper and lower concave portions 11b and 12b are formed in the center portions of these upper and lower concave portions 11b and 12b. These upper and lower concave portions 11b and 12b and upper and lower convex portions 11d and 12d are respectively formed at positions corresponding to each other when the upper and lower heat exchange plates 11 and 12 are stacked. Therefore, the upper and lower concave portions 11b and 12b and the upper and lower convex portions 11d and 12d are respectively formed in a lattice shape at predetermined intervals in the front-rear and left-right directions over substantially the entire surface of the upper and lower heat exchange plates 11 and 12 except for the four corners. There is. Further, the distances in the longitudinal and lateral directions between the adjacent upper and lower recesses 11b and 12b are set to be approximately the same as those between the adjacent upper and lower through holes 11a and 12a. For this reason, the upper and lower through holes 11a and 12a and the upper and lower recesses 11b and 12b are formed alternately at approximately equal intervals in the front-rear and left-right directions. Further, the upper and lower recesses 11b and 12b are located approximately at the center of the area surrounded by the four upper and lower through holes 11a and 12a adjacent in the front and rear and left and right directions, excluding the peripheries of the upper and lower heat exchange plates 11 and 12, respectively. is formed. Further, each of the upper and lower recesses 11b and 12b has a diameter smaller than the shortest distance between the upper and lower through-hole flange parts 11c and 12c that are adjacent to each other in the front-back and left-right directions.

上下凹部11b,12bはそれぞれ、絞り加工により、上下熱交換プレート11,12が重ね合わされたときに内部空間14の内方に向かって所定高さ、突出するように形成されている。この上下凹部11b,12bの内方への突出高さは、上下貫通孔フランジ部11c,12cのそれよりも低く設定されている。また、上下凸部11d,12dはそれぞれ、絞り加工により、上下熱交換プレート11,12が重ね合わされたときに内部空間14の外方に向かって所定高さ、突出するように形成されている。従って、上下熱交換プレート11,12が重ね合わされたとき、上下凹部11b,12bによって内部空間14の高さを減少させる変動部17が形成され、上下凹部11b,12b間に所定高さの狭い内部空間14が形成される(図10参照)。また、上下凹部11b,12bの中央部に形成された上下凸部11d,12dによって内部空間14の高さを増加させる変動部18が形成され、上下凸部11d,12d間に所定高さの広い内部空間14が形成される(図10参照)。また、図示しないが、変動部17と隣接するフランジ部16との間には、水の流路が形成される。なお、上下凹部11b,12bや上下凸部11d,12dは、略楕円形状や略矩形状などの他の形状を有してもよい。また、変動部17,18は、いずれか一方のみが形成されてもよい。 The upper and lower recesses 11b and 12b are respectively formed by drawing so that they protrude inwardly into the internal space 14 by a predetermined height when the upper and lower heat exchange plates 11 and 12 are stacked on top of each other. The inward protrusion height of the upper and lower recesses 11b and 12b is set lower than that of the upper and lower through-hole flange parts 11c and 12c. Further, the upper and lower convex portions 11d and 12d are each formed by drawing so as to protrude outward from the internal space 14 by a predetermined height when the upper and lower heat exchange plates 11 and 12 are stacked on top of each other. Therefore, when the upper and lower heat exchange plates 11 and 12 are overlapped, the upper and lower recesses 11b and 12b form a variable portion 17 that reduces the height of the internal space 14, and a narrow internal space with a predetermined height is formed between the upper and lower recesses 11b and 12b. A space 14 is formed (see FIG. 10). Further, a variable portion 18 that increases the height of the internal space 14 is formed by the vertical convex portions 11d and 12d formed at the center of the vertical concave portions 11b and 12b, and a predetermined height is wide between the vertical convex portions 11d and 12d. An internal space 14 is formed (see FIG. 10). Further, although not shown, a water flow path is formed between the variable portion 17 and the adjacent flange portion 16. Note that the upper and lower concave portions 11b and 12b and the upper and lower convex portions 11d and 12d may have other shapes such as a substantially elliptical shape or a substantially rectangular shape. Furthermore, only one of the variable parts 17 and 18 may be formed.

熱交換体(P)の上下熱交換プレート11,12はそれぞれ、少なくとも1つのコーナ部に、通水孔63と、通水孔63の周縁から外方に向かって突出する通水孔フランジ部とを有する。1つの熱交換体(P)を形成する上下熱交換プレート11,12の少なくとも1つのコーナ部に設けられた通水孔63は、上下熱交換プレート11,12が重ね合わされたとき、上下熱交換プレート11,12の間に形成される内部空間14と連通するように開口している。 The upper and lower heat exchange plates 11 and 12 of the heat exchanger (P) each have a water passage hole 63 and a water passage flange portion protruding outward from the periphery of the water passage hole 63 in at least one corner. has. The water passage hole 63 provided in at least one corner of the upper and lower heat exchange plates 11 and 12 forming one heat exchanger (P) allows for upper and lower heat exchange when the upper and lower heat exchange plates 11 and 12 are overlapped. It opens so as to communicate with an internal space 14 formed between plates 11 and 12.

図2~図3及び図7~図9に示すように、熱交換体(Q)は、上下貫通孔11a,12a及び上下貫通孔フランジ部11c,12cの形状が異なること、前後及び左右方向で隣接する4つの上下貫通孔11a,12aで囲まれる領域に上下凹部及び上下凸部が形成されていないこと、上下熱交換プレート11,12の周縁において、前後または左右方向で隣接する2つの上下貫通孔11a,12aの間に上下凹部が形成されていないこと、最上流の熱交換体(Q)を形成する上熱交換プレート11には通水孔が形成されていないこと以外は、熱交換体(P)と同一の構成を有する。また、最上流ブロック5a及び第1下流側ブロック5bの各熱交換体(Q)は、上下貫通孔11a,12aの位置やコーナ部の通水孔63の有無などの一部の構成が相違する以外は、共通の構成を有する一組の上熱交換プレート11と下熱交換プレート12とを上下方向に重ね合わせて、所定箇所をロウ材等の接合手段で接合することにより形成される。従って、熱交換体(Q)を構成する上下熱交換プレート11,12を接合させることにより、所定の高さの内部空間14が形成される(図3参照)。また、複数の熱交換体(Q)を接合させることにより、上下に隣接する熱交換体(Q)の間には、所定の高さの排気空間15が形成される(図3参照)。また、熱交換体(P)と熱交換体(Q)とを接合させることにより、上下に隣接する熱交換体(P)と熱交換体(Q)との間には、所定の高さの排気空間15が形成される(図3参照)。 As shown in FIGS. 2 to 3 and 7 to 9, the heat exchanger (Q) has different shapes in the upper and lower through holes 11a and 12a and the upper and lower through hole flange portions 11c and 12c, and in the front and rear and left and right directions. No vertical concave portions or vertical convex portions are formed in the area surrounded by the four adjacent vertical through holes 11a and 12a, and two vertical through holes adjacent in the front and rear or left and right directions are formed at the periphery of the upper and lower heat exchange plates 11 and 12. The heat exchanger has no upper and lower recesses between the holes 11a and 12a, and no water passage holes are formed in the upper heat exchange plate 11 that forms the most upstream heat exchanger (Q). It has the same configuration as (P). Furthermore, the heat exchangers (Q) of the most upstream block 5a and the first downstream block 5b are different in some configurations, such as the positions of the upper and lower through holes 11a and 12a and the presence or absence of water passage holes 63 in the corner parts. A pair of upper heat exchange plates 11 and lower heat exchange plates 12 having the same configuration except for the above are stacked vertically and are formed by joining them at predetermined locations using joining means such as brazing material. Therefore, by joining the upper and lower heat exchange plates 11 and 12 that constitute the heat exchanger (Q), an internal space 14 of a predetermined height is formed (see FIG. 3). Moreover, by joining a plurality of heat exchange bodies (Q), an exhaust space 15 of a predetermined height is formed between vertically adjacent heat exchange bodies (Q) (see FIG. 3). In addition, by joining the heat exchanger (P) and the heat exchanger (Q), a predetermined height is created between the vertically adjacent heat exchanger (P) and heat exchanger (Q). An exhaust space 15 is formed (see FIG. 3).

熱交換体(Q)の上下熱交換プレート11,12はそれぞれ、コーナ部及び周縁を除くプレートの略全面に多数の略正方形状の上下貫通孔11a,12aを有する。また、略正方形状の上下貫通孔11a,12aの周縁には、略正方形状の上下貫通孔フランジ部11c,12cが形成されている。上下熱交換プレート11,12の周縁には、略五角形状の上下貫通孔11a,12aが形成されている。また、略五角形状の上下貫通孔11a,12aの周縁には、略五角形状の上下貫通孔フランジ部11c,12cが形成されている。なお、これらの上下貫通孔11a,12aは、略円形状や略楕円形状などの他の形状を有してもよい。これらの上下貫通孔11a,12a及び上下貫通孔フランジ部11c,12cは、熱交換体(P)のそれらと略同一のピッチで形成されている。従って、上下熱交換プレート11,12を接合させると、熱交換体(Q)の周縁部を除いて略正方形状の貫通孔13及び内部空間14を閉塞する略正方形状のフランジ部16が形成される。また、熱交換体(Q)の周縁部では、略五角形状の貫通孔13及び内部空間14を閉塞する略五角形状のフランジ部16が形成される。また、熱交換体(P)と異なり、四方を貫通孔13で囲まれた領域には凹凸部が形成されていないため、熱交換体(Q)は、前後及び左右方向で隣接する4つの貫通孔13の間に、内部空間14の高さが略一定の平面部19を有する。 The upper and lower heat exchange plates 11 and 12 of the heat exchanger (Q) each have a large number of substantially square-shaped upper and lower through holes 11a and 12a on substantially the entire surface of the plates except for the corner portions and the periphery. Furthermore, substantially square upper and lower through-hole flange portions 11c and 12c are formed at the peripheries of the substantially square upper and lower through-holes 11a and 12a. Approximately pentagonal upper and lower through holes 11a and 12a are formed at the peripheries of the upper and lower heat exchange plates 11 and 12, respectively. Furthermore, approximately pentagonal upper and lower through-hole flange portions 11c and 12c are formed on the peripheries of the approximately pentagonal upper and lower through-holes 11a and 12a. Note that these upper and lower through holes 11a and 12a may have other shapes such as a substantially circular shape or a substantially elliptical shape. These upper and lower through holes 11a and 12a and upper and lower through hole flange portions 11c and 12c are formed at substantially the same pitch as those of the heat exchanger (P). Therefore, when the upper and lower heat exchange plates 11 and 12 are joined, a substantially square flange portion 16 is formed that closes the substantially square through hole 13 and the internal space 14 except for the peripheral edge of the heat exchanger (Q). Ru. Furthermore, a substantially pentagonal flange portion 16 that closes the substantially pentagonal through hole 13 and the internal space 14 is formed at the peripheral edge of the heat exchanger (Q). In addition, unlike the heat exchanger (P), no uneven parts are formed in the area surrounded by the through holes 13 on all sides, so the heat exchanger (Q) has four through holes adjacent in the front and rear and left and right directions. Between the holes 13, there is a flat portion 19 in which the internal space 14 has a substantially constant height.

熱交換体(Q)の周縁部を除く貫通孔13は、4つの頂点が熱交換体(Q)の前後左右の周縁部に向き、且つ貫通孔13の一辺が隣接する貫通孔13のそれと略平行となるように形成されている。このため、貫通孔13は、燃焼排気のガス流路の方向から見て、貫通孔13によって囲まれた領域に各頂点が突出するように配設されている。また、フランジ部16は、フランジ部16の4つの頂点(例えば、右側の頂点)が、斜め方向に隣接するフランジ部16の反対側の頂点(例えば、左側の頂点)よりも、斜め方向に隣接する貫通孔13の中心寄りに位置するように形成されている。 The through holes 13 excluding the peripheral edge of the heat exchanger (Q) are approximately the same as those of the through hole 13 in which the four vertices face the front, rear, left, and right peripheral edges of the heat exchanger (Q), and one side of the through hole 13 is adjacent to each other. They are formed parallel to each other. For this reason, the through-holes 13 are arranged so that each vertex projects into a region surrounded by the through-holes 13 when viewed from the direction of the combustion exhaust gas flow path. Further, the flange portion 16 has four vertices (for example, the right side apex) that are closer to each other in the diagonal direction than the opposite side vertices (for example, the left side apex) of the flange portion 16 that are adjacent to each other in the diagonal direction. It is formed so as to be located near the center of the through hole 13.

各熱交換体(Q)を形成する上下熱交換プレート11,12の少なくとも1つのコーナ部に設けられた通水孔63は、上下熱交換プレート11,12が重ね合わされたとき、上下熱交換プレート11,12の間に形成される内部空間14と連通するように開口している。 The water passage holes 63 provided in at least one corner of the upper and lower heat exchange plates 11 and 12 forming each heat exchanger (Q) are arranged so that when the upper and lower heat exchange plates 11 and 12 are overlapped, the upper and lower heat exchange plates It opens so as to communicate with an internal space 14 formed between 11 and 12.

図3に示すように、熱交換体(P),(Q)はいずれも、隣接する熱交換体10における一方の熱交換体10の貫通孔13の投影面が他方の熱交換体10の貫通孔13と重ならないように、燃焼排気のガス流路方向に対して垂直に交差する左右方向にずれている。従って、上流側から流れてきた燃焼排気は、1つの熱交換体10の貫通孔13を通過した後、その熱交換体10と下流側に隣接する熱交換体10との間の排気空間15に流れ出る。そして、排気空間15に流れ出た燃焼排気は、下流側に隣接する熱交換体10の上熱交換プレート11に衝突し、下流側に隣接する熱交換体10の貫通孔13からさらに下流側に流れる。すなわち、燃焼排気が熱交換器1内を上流側から下流側に向かって流れるとき、熱交換器1内にはジグザグ状のガス流路が形成される。これにより、熱交換器1内における燃焼排気と上下熱交換プレート11,12との接触時間が増加する。また、既述した熱交換体(P)の変動部17,18及び熱交換体(Q)の平面部19はそれぞれ、隣接する熱交換体10の貫通孔13の投影面55(図10参照)に配置される。なお、熱交換体(P)の貫通孔13と熱交換体(Q)の貫通孔13との関係も上記と同様である(図3及び図10参照)。 As shown in FIG. 3, in both heat exchangers (P) and (Q), the projection plane of the through hole 13 of one heat exchanger 10 in the adjacent heat exchanger 10 is the same as that of the through hole 13 of the other heat exchanger 10. It is shifted in the left-right direction perpendicularly intersecting the direction of the combustion exhaust gas flow path so as not to overlap with the hole 13 . Therefore, the combustion exhaust gas flowing from the upstream side passes through the through hole 13 of one heat exchanger 10 and then enters the exhaust space 15 between that heat exchanger 10 and the adjacent heat exchanger 10 on the downstream side. It flows out. Then, the combustion exhaust gas flowing into the exhaust space 15 collides with the upper heat exchange plate 11 of the heat exchange body 10 adjacent to the downstream side, and flows further downstream from the through hole 13 of the heat exchange body 10 adjacent to the downstream side. . That is, when the combustion exhaust gas flows from the upstream side to the downstream side within the heat exchanger 1, a zigzag gas flow path is formed within the heat exchanger 1. This increases the contact time between the combustion exhaust gas in the heat exchanger 1 and the upper and lower heat exchange plates 11 and 12. Furthermore, the variable parts 17 and 18 of the heat exchanger (P) and the flat part 19 of the heat exchanger (Q) described above are each projected plane 55 of the through hole 13 of the adjacent heat exchanger 10 (see FIG. 10). will be placed in The relationship between the through holes 13 of the heat exchanger (P) and the through holes 13 of the heat exchanger (Q) is also the same as described above (see FIGS. 3 and 10).

次に、図3を参照して、熱交換器1における燃焼排気及び水の流れを説明する。各ブロック5は、水をブロック5内部に導入する導入口71と、水をブロック5外部に導出する導出口72とを有する。これらの導入口71及び導出口72はそれぞれ、各ブロック5の燃焼排気のガス流路の最下流及び最上流に位置する熱交換体10の所定の通水孔63により構成される。なお、煩雑化を避けるため、図3中、貫通孔13の周囲のフランジ部16や凹凸部は省略されている。 Next, with reference to FIG. 3, the flow of combustion exhaust and water in the heat exchanger 1 will be described. Each block 5 has an inlet 71 for introducing water into the block 5 and an outlet 72 for introducing water to the outside of the block 5. These inlet ports 71 and outlet ports 72 are constituted by predetermined water passage holes 63 of the heat exchanger 10 located at the most downstream and most upstream ends of the combustion exhaust gas flow path of each block 5, respectively. Note that, in order to avoid complication, the flange portion 16 and uneven portions around the through hole 13 are omitted in FIG.

燃焼排気のガス流路の最下流に位置する熱交換体(P)(以下、「最下流熱交換体10s」という)を形成する下熱交換プレート12の右側前方のコーナ部の通水孔63には、流入管20が接続されている。また、最下流熱交換体10sを形成する下熱交換プレート12の右側後方のコーナ部の通水孔63には、最下流熱交換体10sから燃焼排気のガス流路の最上流に位置する熱交換体(Q)(以下、「最上流熱交換体10a」という)まで上方に向かって延びる導出管23が挿通されている。導出管23の上端部は、最上流熱交換体10aを形成する下熱交換プレート12の右側後方のコーナ部の通水孔63と接続されている。導出管23の外周面は、最下流熱交換体10sを形成する下熱交換プレート12の右側後方のコーナ部の通水孔63の内周縁とロウ材等の接合手段により接合されている。また、導出管23の上端開口部は、最上流熱交換体10aの内部空間14と連通している。また、導出管23が最下流熱交換体10sから最上流熱交換体10aまで挿通されると、導出管23は最上流熱交換体10a以外の熱交換体10の内部空間14及び全ての排気空間15を非連通状態で貫通する。 A water passage hole 63 in the front right corner of the lower heat exchange plate 12 forming a heat exchanger (P) located at the most downstream position of the combustion exhaust gas flow path (hereinafter referred to as the "most downstream heat exchanger 10s"). An inflow pipe 20 is connected to the inflow pipe 20 . In addition, the water passage hole 63 at the rear right corner of the lower heat exchange plate 12 forming the most downstream heat exchange body 10s is provided with a heat exchanger located at the most upstream side of the combustion exhaust gas flow path from the most downstream heat exchange body 10s. An outlet pipe 23 is inserted that extends upward to the exchanger (Q) (hereinafter referred to as the "most upstream heat exchanger 10a"). The upper end of the outlet pipe 23 is connected to a water passage hole 63 at the rear right corner of the lower heat exchange plate 12 forming the most upstream heat exchange body 10a. The outer peripheral surface of the outlet pipe 23 is joined to the inner peripheral edge of the water passage hole 63 at the rear right corner of the lower heat exchange plate 12 forming the most downstream heat exchange body 10s by joining means such as brazing material. Further, the upper end opening of the outlet pipe 23 communicates with the internal space 14 of the most upstream heat exchanger 10a. Furthermore, when the outlet pipe 23 is inserted from the most downstream heat exchanger 10s to the most upstream heat exchanger 10a, the outlet pipe 23 is inserted into the internal space 14 of the heat exchanger 10 other than the most upstream heat exchanger 10a and all the exhaust spaces. 15 in a non-communicating state.

従って、右側前方のコーナ部の通水孔63から最下流ブロック5dの各熱交換体(P)の内部空間14内に流入する水は、内部空間14内を左右方向の一方向(図3中、右側から左側)に流れる。また、左側前後両方のコーナ部の通水孔63から第2下流側ブロック5cの各熱交換体(P)の内部空間14に流入する水は、内部空間14内を左右方向の一方向(図3中、左側から右側)に流れる。この第2下流側ブロック5cの熱交換体(P)の内部空間14を流通する水の流路方向は、最下流ブロック5dのそれと反対になる。また、右側前方のコーナ部の通水孔63から第1下流側ブロック5bの熱交換体(Q)(以下、「第2熱交換体10b」という)の内部空間14内に流入する水は、内部空間14内を左右方向の一方向(図3中、右側から左側)に流れる。この第2熱交換体10bの内部空間14を流通する水の流路方向は、第2下流側ブロック5cのそれと反対になる。また、左側前後両方のコーナ部の通水孔63から最上流熱交換体10aの内部空間14内に流入する水は、内部空間14内を左右方向の一方向(図3中、左側から右側)に流れる。この最上流熱交換体10aの内部空間14を流通する水の流路方向は、第2熱交換体10bのそれと反対になる。そして、最上流熱交換体10aの内部空間14内を流通する水は、最上流熱交換体10aの右側後方のコーナ部の通水孔63に挿通された導出管23に流出する。導出管23に流出する水は、導出管23を流下し、最下流熱交換体10sに接続された流出管21から熱交換器1の外部に流出する。このように、燃焼排気のガス流路の上流域における最上流熱交換体10a及び第2熱交換体10bは、第2熱交換体10bの内部に流入する全ての水が最上流熱交換体10aに流入するように、直列に接続されている。また、最下流ブロック5dの複数の熱交換体(P)は、複数の平行流路が形成されるように並列に接続されている。第2下流側ブロック5cも最下流ブロック5dと同様である。 Therefore, water flowing into the internal space 14 of each heat exchanger (P) of the most downstream block 5d from the water passage hole 63 in the right front corner part flows in the internal space 14 in one direction in the left and right direction (in FIG. , flows from right to left). In addition, water flowing into the internal space 14 of each heat exchanger (P) of the second downstream block 5c from the water passage holes 63 in both the front and rear corners on the left side flows in the internal space 14 in one direction in the left and right direction (Fig. 3, flowing from left to right). The flow path direction of water flowing through the internal space 14 of the heat exchanger (P) of this second downstream block 5c is opposite to that of the most downstream block 5d. In addition, water flowing into the internal space 14 of the heat exchanger (Q) (hereinafter referred to as "second heat exchanger 10b") of the first downstream block 5b from the water passage hole 63 in the right front corner part is as follows: It flows in the internal space 14 in one direction from left to right (from right to left in FIG. 3). The flow path direction of water flowing through the internal space 14 of the second heat exchanger 10b is opposite to that of the second downstream block 5c. In addition, water flowing into the internal space 14 of the most upstream heat exchanger 10a from the water passage holes 63 in both the front and rear corners on the left side flows in one direction in the left and right direction (from the left to the right in FIG. 3) within the internal space 14. flows to The flow path direction of water flowing through the internal space 14 of this most upstream heat exchanger 10a is opposite to that of the second heat exchanger 10b. The water flowing in the internal space 14 of the most upstream heat exchanger 10a flows out into the outlet pipe 23 inserted into the water passage hole 63 at the right rear corner of the most upstream heat exchanger 10a. The water flowing into the outlet pipe 23 flows down the outlet pipe 23 and flows out of the heat exchanger 1 from the outlet pipe 21 connected to the most downstream heat exchanger 10s. In this way, the most upstream heat exchanger 10a and the second heat exchanger 10b in the upstream region of the combustion exhaust gas flow path are such that all the water flowing into the second heat exchanger 10b is absorbed by the most upstream heat exchanger 10a. are connected in series so that they flow into each other. Moreover, the plurality of heat exchangers (P) of the most downstream block 5d are connected in parallel so that a plurality of parallel flow paths are formed. The second downstream block 5c is also similar to the most downstream block 5d.

次に、図10を参照して、燃焼排気のガス流路の上流域における燃焼排気の流れ及び熱交換体(P),(Q)の内部空間14内の水の流れについて説明する。なお、図10では、熱交換体(P),(Q)の相違が明確になるよう、熱交換体(P),(Q)の前後及び左右方向に対して傾斜する方向の部分断面図が示されている。 Next, with reference to FIG. 10, the flow of the combustion exhaust gas in the upstream region of the combustion exhaust gas flow path and the flow of water in the internal spaces 14 of the heat exchangers (P) and (Q) will be described. In addition, in FIG. 10, a partial cross-sectional view of the heat exchangers (P) and (Q) in a direction inclined with respect to the front and back and left and right directions is shown to make the difference between the heat exchangers (P) and (Q) clear. It is shown.

水は、各熱交換体(P),(Q)の左右方向に離れた通水孔63間を流れる。このとき、熱交換体(P)は、貫通孔13に囲まれた領域に水の流路の高さが増減する変動部17,18を有する。そのため、内部空間14内の上流側から流れてきた水が変動部17,18の内部を通過するとき、水の流路抵抗が大きくなって、水の流量が低下する。また、水が変動部17,18の内部を通過するとき、水の乱流が発生し、水の温度分布が小さくなる。さらに、変動部17,18によって熱交換体(P)の表面積が大きくなるから、熱交換体(P)の受熱面積が大きくなる。これにより、燃焼排気のガス流路の下流側において、燃焼排気から受熱される熱を効率的に水に熱伝達させることができる。そして、熱交換体(Q)の下流側に熱伝達性に優れる熱交換体(P)を積層することにより、高温の燃焼排気の顕熱を上流側の熱交換体(Q)で吸収し、燃焼排気の潜熱を下流側の熱交換体(P)で吸収することができる。これにより、熱効率を向上させることができる。 Water flows between water passage holes 63 separated in the left-right direction of each heat exchanger (P) and (Q). At this time, the heat exchanger (P) has variable parts 17 and 18 in a region surrounded by the through holes 13, in which the height of the water flow path increases or decreases. Therefore, when the water flowing from the upstream side in the internal space 14 passes through the inside of the variable parts 17 and 18, the flow resistance of the water increases and the flow rate of the water decreases. Moreover, when water passes through the insides of the fluctuating parts 17 and 18, turbulent flow of water occurs, and the temperature distribution of the water becomes small. Furthermore, since the surface area of the heat exchanger (P) is increased by the variable parts 17 and 18, the heat receiving area of the heat exchanger (P) is increased. Thereby, the heat received from the combustion exhaust gas can be efficiently transferred to the water on the downstream side of the combustion exhaust gas flow path. By layering a heat exchanger (P) with excellent heat transfer properties on the downstream side of the heat exchanger (Q), the sensible heat of the high temperature combustion exhaust is absorbed by the upstream heat exchanger (Q), The latent heat of the combustion exhaust can be absorbed by the heat exchanger (P) on the downstream side. Thereby, thermal efficiency can be improved.

一方、本実施の形態では、燃焼排気は各熱交換体10を貫通する貫通孔13を上下方向に流通する。従って、各熱交換体10の貫通孔13は、燃焼排気が各熱交換体10の内部を流通する水の流路面に対して略垂直に交差する方向に熱交換体10の外部を流通するように形成されている。また、貫通孔13は、各熱交換体10の略全面に前後及び左右方向に略一定の間隔で形成されている。そのため、ガス流路の上流側から流れてくる燃焼排気は、貫通孔13を除いた最上流熱交換体10aの一面全体に衝突し、最上流熱交換体10aを加熱する。すなわち、最上流熱交換体10aでは、貫通孔13を除いた部分が受熱面となる。一方、隣接する熱交換体10は、一方の熱交換体10の貫通孔13の投影面55が他方の熱交換体10の貫通孔13と重ならないように形成されている。そのため、最上流熱交換体10aの貫通孔13を流通する燃焼排気は、第2熱交換体10b上の小面積の投影面55にまず衝突する。この第2熱交換体10bに衝突する燃焼排気は、最上流熱交換体10aと接触していない高温の燃焼排気(すなわち、最上流熱交換体10aの内部空間14内を流通する水と熱交換が行われていない燃焼排気)も含んでいる。それゆえ、熱交換器1が変動部17,18を有する変動部有り熱交換体(P)のみで構成されている場合、最上流熱交換体10aの下流側に隣接する第2熱交換体10bで局部過熱が生じやすい。 On the other hand, in the present embodiment, combustion exhaust gas flows vertically through the through holes 13 that penetrate each heat exchanger 10 . Therefore, the through holes 13 of each heat exchanger 10 are arranged so that the combustion exhaust gas flows through the outside of the heat exchanger 10 in a direction substantially perpendicular to the flow path surface of the water flowing inside each heat exchanger 10. is formed. Further, the through holes 13 are formed on substantially the entire surface of each heat exchanger 10 at substantially constant intervals in the front-rear and left-right directions. Therefore, the combustion exhaust gas flowing from the upstream side of the gas flow path collides with the entire surface of the most upstream heat exchange body 10a except for the through holes 13, and heats the most upstream heat exchange body 10a. That is, in the most upstream heat exchanger 10a, the portion excluding the through holes 13 becomes a heat receiving surface. On the other hand, adjacent heat exchange bodies 10 are formed such that the projected plane 55 of the through hole 13 of one heat exchange body 10 does not overlap with the through hole 13 of the other heat exchange body 10. Therefore, the combustion exhaust gas flowing through the through holes 13 of the most upstream heat exchanger 10a first collides with the small-area projection surface 55 on the second heat exchanger 10b. The combustion exhaust gas that collides with the second heat exchanger 10b exchanges heat with the high-temperature combustion exhaust gas that is not in contact with the most upstream heat exchanger 10a (that is, the water flowing through the internal space 14 of the most upstream heat exchanger 10a). It also includes combustion exhaust (for which combustion exhaust gas is not used). Therefore, when the heat exchanger 1 is configured only with a heat exchanger with variable parts (P) having variable parts 17 and 18, the second heat exchanger 10b adjacent to the downstream side of the most upstream heat exchanger 10a Local overheating is likely to occur.

しかしながら、本実施の形態によれば、第2熱交換体10bは、水の流路の高さが略一定の平面部19を有する平面部有り熱交換体(Q)から構成されている。この平面部19は、四方を貫通孔13で囲まれた領域、すなわち最上流熱交換体10aの貫通孔13の投影面55に形成されている(図7~図10参照)。このため、熱交換体(Q)の投影面55の内部を流通する水の流路抵抗は、熱交換体(P)の投影面55の内部を流通するそれに比べて小さくなり、熱交換体(Q)の投影面55の内部を流通する第1流体の流量が多くなる。また、平面部19には凹凸が形成されていないため、平面部19に衝突した燃焼排気が均一に四方に広がる。その結果、燃焼排気が集中して衝突する投影面55での熱の集中を緩和させることができる。これにより、第2熱交換体10bの局部過熱を防止することができる。 However, according to the present embodiment, the second heat exchange body 10b is constituted by a heat exchange body (Q) with a flat portion having a flat portion 19 in which the height of the water flow path is substantially constant. This flat portion 19 is formed in a region surrounded by the through holes 13 on all sides, that is, in the projection plane 55 of the through holes 13 of the most upstream heat exchanger 10a (see FIGS. 7 to 10). Therefore, the flow path resistance of water flowing inside the projection surface 55 of the heat exchanger (Q) is smaller than that of water flowing inside the projection surface 55 of the heat exchanger (P). Q) The flow rate of the first fluid flowing inside the projection surface 55 increases. Moreover, since the flat part 19 has no unevenness, the combustion exhaust gas colliding with the flat part 19 spreads uniformly in all directions. As a result, it is possible to alleviate the concentration of heat on the projection surface 55, where the combustion exhaust concentrates and collides. Thereby, local overheating of the second heat exchange body 10b can be prevented.

また、最上流熱交換体10aには、最も高温の燃焼排気が衝突し、燃焼排気が通過する貫通孔13の周縁部が最も加熱される。従って、水の流量が少ないとき、最上流熱交換体10aで局部過熱が生じる虞がある。しかしながら、本実施の形態によれば、最上流熱交換体10aは熱交換体(Q)で構成されており、最上流熱交換体10aにおける四方を貫通孔13で囲まれた領域、すなわち第2熱交換体10bの貫通孔13の投影面55は平面部19を有する。これにより、最上流熱交換体10aの局部過熱を防止することができる。 Further, the highest temperature combustion exhaust collides with the most upstream heat exchanger 10a, and the peripheral edge of the through hole 13 through which the combustion exhaust passes is heated the most. Therefore, when the flow rate of water is low, there is a possibility that local overheating may occur in the most upstream heat exchanger 10a. However, according to the present embodiment, the most upstream heat exchanger 10a is composed of a heat exchanger (Q), and the most upstream heat exchanger 10a has a region surrounded by through holes 13 on all sides, that is, a second The projection surface 55 of the through hole 13 of the heat exchanger 10b has a flat portion 19. Thereby, local overheating of the most upstream heat exchanger 10a can be prevented.

また、本実施の形態によれば、燃焼排気のガス流路の上流域における最上流熱交換体10aと第2熱交換体10bとは、水が第2熱交換体10b及び最上流熱交換体10aをこの順に流通するように直列に連結されている。そのため、第2熱交換体10bを流れる全ての水が最上流熱交換体10aに流入する。従って、熱交換器1内に供給される水が少ない場合でも、第2熱交換体10b及び最上流熱交換体10aにおける局部過熱を防止することができる。 Further, according to the present embodiment, the most upstream heat exchanger 10a and the second heat exchanger 10b in the upstream region of the gas flow path of combustion exhaust gas are 10a are connected in series so that they flow in this order. Therefore, all the water flowing through the second heat exchange body 10b flows into the most upstream heat exchange body 10a. Therefore, even when there is little water supplied into the heat exchanger 1, local overheating in the second heat exchanger 10b and the most upstream heat exchanger 10a can be prevented.

また、本実施の形態によれば、最上流熱交換体10a及び第2熱交換体10bの貫通孔13は略正方形状を有する。また、貫通孔13は、燃焼排気のガス流路の方向から見て、各頂点が貫通孔13で囲まれた領域、すなわち投影面55に突出するように配置される。このため、貫通孔13で囲まれた領域を流通する水の流速が速くなる。これにより、局部過熱をさらに防止することができる。 Further, according to this embodiment, the through holes 13 of the most upstream heat exchanger 10a and the second heat exchanger 10b have a substantially square shape. Further, the through-holes 13 are arranged such that each vertex projects into a region surrounded by the through-holes 13, that is, into the projection plane 55, when viewed from the direction of the combustion exhaust gas flow path. Therefore, the flow rate of water flowing through the area surrounded by the through holes 13 becomes faster. Thereby, local overheating can be further prevented.

また、本実施の形態では、最上流熱交換体10a及び第2熱交換体10bを構成する熱交換器(Q)は、周縁部の隣接する貫通孔13の間に外方に突出する凸部を有する。これらの周縁部でも投影面55が形成されるが、この投影面55の周縁部側には貫通孔13が形成されていない。これに対して、熱交換器(Q)の周縁部以外の投影面55では、四方に貫通孔13が形成される。従って、この投影面55では燃焼排気からの受熱量が多くなり、局部過熱が生じやすい。従って、平面部19を少なくとも熱交換体(Q)の周縁部を除く投影面55に形成すれば、局部過熱を効果的に防止することができる。また、熱交換体(Q)の周縁部の隣接する貫通孔13の間に凸部や凹部などの変動部を形成することにより、効率的に燃焼排気の熱を水に熱伝達させることができる。 In addition, in the present embodiment, the heat exchanger (Q) constituting the most upstream heat exchanger 10a and the second heat exchanger 10b has a convex portion that protrudes outward between adjacent through holes 13 on the periphery. has. A projection surface 55 is also formed at these peripheral edges, but the through hole 13 is not formed on the peripheral edge side of this projection surface 55. On the other hand, on the projection surface 55 other than the peripheral edge of the heat exchanger (Q), through holes 13 are formed on all sides. Therefore, on this projection surface 55, the amount of heat received from the combustion exhaust increases, and local overheating tends to occur. Therefore, if the flat portion 19 is formed on the projection surface 55 excluding at least the peripheral portion of the heat exchanger (Q), local overheating can be effectively prevented. Furthermore, by forming a variable part such as a convex part or a concave part between adjacent through holes 13 on the peripheral edge of the heat exchanger (Q), the heat of the combustion exhaust can be efficiently transferred to the water. .

以上のように、本実施の形態によれば、熱効率を向上させることができるとともに、燃焼排気のガス流路の上流域における熱交換体10のローカルヒートを防止することができる。従って、本実施の形態よれば、高熱効率で、優れた耐久性を有するプレート式熱交換器を提供することができる。 As described above, according to the present embodiment, it is possible to improve thermal efficiency and to prevent local heating of the heat exchanger 10 in the upstream region of the combustion exhaust gas flow path. Therefore, according to the present embodiment, it is possible to provide a plate heat exchanger having high thermal efficiency and excellent durability.

(その他の実施の形態)
(1)上記実施の形態では、第2熱交換体よりも下流側の熱交換体は変動部を有する熱交換体(P)のみから構成されている。しかしながら、第2熱交換体よりも下流側の熱交換体でも局部過熱が生じる場合、一部の熱交換体(P)の代わりに熱交換体(Q)を用いてもよい。
(2)上記実施の形態では、下向きの燃焼面を有するバーナが熱交換器の上方に配設されている。しかしながら、上向きの燃焼面を有するバーナが熱交換器の下方に配設されてもよい。
(3)上記実施の形態では、複数の熱交換体が上下に積層されている。しかしながら、複数の熱交換体は左右に積層されてもよい。
(4)上記実施の形態では、給湯器が用いられているが、ボイラなどの熱源機が用いられてもよい。
(Other embodiments)
(1) In the above embodiment, the heat exchanger downstream of the second heat exchanger is composed only of the heat exchanger (P) having a variable part. However, if local overheating occurs in heat exchangers downstream of the second heat exchanger, heat exchangers (Q) may be used instead of some of the heat exchangers (P).
(2) In the embodiments described above, the burner having a downward combustion surface is disposed above the heat exchanger. However, a burner with an upwardly directed combustion surface may also be arranged below the heat exchanger.
(3) In the above embodiment, a plurality of heat exchangers are stacked one above the other. However, the plurality of heat exchangers may be stacked on the left and right.
(4) In the above embodiment, a water heater is used, but a heat source device such as a boiler may also be used.

1 熱交換器
10 熱交換体
10a 最上流熱交換体
10b 第2熱交換体
13 貫通孔
17,18 変動部
55 投影面
1 Heat exchanger 10 Heat exchange body 10a Most upstream heat exchange body 10b Second heat exchange body 13 Through hole 17, 18 Variable part 55 Projection plane

Claims (4)

内部を流通する第1流体と外部を流通する第2流体との間で熱交換を行う複数の熱交換体を備え、前記複数の熱交換体が積層されて構成されるプレート式熱交換器であって、
前記熱交換体は、前記熱交換体の内部を流通する前記第1流体の流路面と交差する方向に前記第2流体が前記熱交換体の外部を流通するように形成された複数の貫通孔を有し、
隣接する熱交換体は、前記第2流体の流路方向から見て、一方の熱交換体の前記貫通孔の投影面が、他方の熱交換体の前記貫通孔と重ならないように形成され、
前記複数の熱交換体は、前記投影面に前記第1流体の流路の高さが変動する変動部を有する熱交換体(P)と、少なくとも周縁部を除く前記投影面に前記第1流体の前記流路の前記高さが略一定の平面部のみを有する熱交換体(Q)とを備え、
少なくとも前記第2流体の流路の最上流に位置する最上流熱交換体の下流側に隣接する第2熱交換体は、前記熱交換体(Q)から構成されているプレート式熱交換器。
A plate heat exchanger comprising a plurality of heat exchange bodies that perform heat exchange between a first fluid flowing inside and a second fluid flowing outside, and configured by stacking the plurality of heat exchange bodies. There it is,
The heat exchange body includes a plurality of through holes formed so that the second fluid flows outside the heat exchange body in a direction intersecting a flow path surface of the first fluid flowing inside the heat exchange body. has
Adjacent heat exchange bodies are formed such that a projected surface of the through hole of one heat exchange body does not overlap with the through hole of the other heat exchange body when viewed from the flow path direction of the second fluid,
The plurality of heat exchange bodies include a heat exchange body (P) having a variable part in which the height of the flow path of the first fluid varies on the projection plane, and a heat exchange body (P) having a variable part in which the height of the flow path of the first fluid fluctuates on the projection plane, and a heat exchange body (P) having a variable part in which the height of the flow path of the first fluid fluctuates, and a heat exchanger (Q) having only a flat portion in which the height of the flow path is substantially constant;
A plate heat exchanger, in which a second heat exchanger adjacent to the downstream side of at least the most upstream heat exchanger located at the most upstream side of the flow path of the second fluid is constituted by the heat exchanger (Q).
請求項1に記載のプレート式熱交換器において、
前記最上流熱交換体は、前記熱交換体(Q)から構成されているプレート式熱交換器。
The plate heat exchanger according to claim 1,
The most upstream heat exchanger is a plate heat exchanger including the heat exchanger (Q).
請求項1または2に記載のプレート式熱交換器において、
前記第2熱交換体と前記最上流熱交換体とは、前記第1流体が前記第2熱交換体及び前記最上流熱交換体の内部をこの順に流通するように、直列に連結されているプレート式熱交換器。
The plate heat exchanger according to claim 1 or 2 ,
The second heat exchanger and the most upstream heat exchanger are connected in series so that the first fluid flows through the second heat exchanger and the most upstream heat exchanger in this order. Plate heat exchanger.
請求項1~のいずれか1項に記載のプレート式熱交換器において、
前記熱交換体(Q)の前記貫通孔は、略矩形状を有し、
前記矩形状の貫通孔は、少なくとも1つの頂点が前記投影面に突出するように配置されているプレート式熱交換器。
The plate heat exchanger according to any one of claims 1 to 3 ,
The through hole of the heat exchanger (Q) has a substantially rectangular shape,
In the plate heat exchanger, the rectangular through-hole is arranged such that at least one vertex projects onto the projection plane.
JP2019188709A 2019-10-15 2019-10-15 plate heat exchanger Active JP7382202B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019188709A JP7382202B2 (en) 2019-10-15 2019-10-15 plate heat exchanger
KR1020200093801A KR20210044681A (en) 2019-10-15 2020-07-28 Plate type heat exchanger
CN202011003855.1A CN112665423A (en) 2019-10-15 2020-09-22 Plate heat exchanger
US17/066,006 US20210108859A1 (en) 2019-10-15 2020-10-08 Plate-type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019188709A JP7382202B2 (en) 2019-10-15 2019-10-15 plate heat exchanger

Publications (2)

Publication Number Publication Date
JP2021063615A JP2021063615A (en) 2021-04-22
JP7382202B2 true JP7382202B2 (en) 2023-11-16

Family

ID=75382874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019188709A Active JP7382202B2 (en) 2019-10-15 2019-10-15 plate heat exchanger

Country Status (4)

Country Link
US (1) US20210108859A1 (en)
JP (1) JP7382202B2 (en)
KR (1) KR20210044681A (en)
CN (1) CN112665423A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308232A (en) 2004-04-16 2005-11-04 Nissan Motor Co Ltd Heat exchanger
KR101389465B1 (en) 2013-10-10 2014-04-28 (주)동일브레이징 Latent heat exchanger for boiler increasing the heat efficiency
US20170184350A1 (en) 2014-09-24 2017-06-29 Kiturami Boiler Co., Ltd. High-efficiency plate type heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308232A (en) 2004-04-16 2005-11-04 Nissan Motor Co Ltd Heat exchanger
KR101389465B1 (en) 2013-10-10 2014-04-28 (주)동일브레이징 Latent heat exchanger for boiler increasing the heat efficiency
US20170184350A1 (en) 2014-09-24 2017-06-29 Kiturami Boiler Co., Ltd. High-efficiency plate type heat exchanger

Also Published As

Publication number Publication date
CN112665423A (en) 2021-04-16
US20210108859A1 (en) 2021-04-15
JP2021063615A (en) 2021-04-22
KR20210044681A (en) 2021-04-23

Similar Documents

Publication Publication Date Title
JP6291591B2 (en) Condensing gas boiler heat exchanger
JP6848303B2 (en) Heat exchanger and water heater
JP6291589B2 (en) Heat exchanger and method of manufacturing unit plate constituting heat exchanger
JP7182395B2 (en) Heat exchanger
US11835261B2 (en) Heat exchanger unit
JP7018352B2 (en) Heat exchanger
JP7198645B2 (en) Plate heat exchanger and heat source machine
JP7382202B2 (en) plate heat exchanger
JP7373332B2 (en) plate heat exchanger
JP7097222B2 (en) Heat source machine
JP7265962B2 (en) plate heat exchanger
JP7385110B2 (en) hot water equipment
JP7165568B2 (en) Heat exchanger
JP2020094769A (en) Heat source machine
JP2022044083A (en) Plate type heat exchanger
JP2022061054A (en) Plate heat exchanger
JP7356024B2 (en) Heat exchanger and hot water equipment
KR102173011B1 (en) Heat exchanger
JP2020186865A (en) Heat exchanger and water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231106

R150 Certificate of patent or registration of utility model

Ref document number: 7382202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150