JP2022044083A - Plate type heat exchanger - Google Patents

Plate type heat exchanger Download PDF

Info

Publication number
JP2022044083A
JP2022044083A JP2020149526A JP2020149526A JP2022044083A JP 2022044083 A JP2022044083 A JP 2022044083A JP 2020149526 A JP2020149526 A JP 2020149526A JP 2020149526 A JP2020149526 A JP 2020149526A JP 2022044083 A JP2022044083 A JP 2022044083A
Authority
JP
Japan
Prior art keywords
heat exchanger
block
pipe
heat
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020149526A
Other languages
Japanese (ja)
Inventor
貴大 小野
Takahiro Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2020149526A priority Critical patent/JP2022044083A/en
Priority to CN202110814064.5A priority patent/CN114152120A/en
Priority to KR1020210109475A priority patent/KR20220032481A/en
Publication of JP2022044083A publication Critical patent/JP2022044083A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/124Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2230/00Sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/10Fastening; Joining by force joining

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

To provide a plate type heat exchanger with high heat efficiency.SOLUTION: In a plate type heat exchanger 1 in which a plurality of heat exchangers 10 are laminated, adjacent blocks 5 are connected so that a heat medium flows from an outlet 72 of one block 5 to an inlet 71 of the other block 5; a pipe 21 is inserted from one end side to the other end side in a lamination direction of the heat exchangers 10; an end part on the other end side of the pipe 21 is inserted through an opening of either the inlet 71 or the outlet 72 of the other end block 5 located at the other endmost side; and the opening of the other end block 5 through which the end part on the other end side of the pipe 21 is inserted is provided with an upright wall 12g protruding from an opening edge 12h toward the one end side.SELECTED DRAWING: Figure 7

Description

本発明は、熱交換体を有する複数のブロックを積層して構成されるプレート式熱交換器に関する。 The present invention relates to a plate heat exchanger configured by stacking a plurality of blocks having a heat exchanger.

上熱交換プレートと下熱交換プレートとが接合された複数の熱交換体を備えるプレート式熱交換器が提案されている(例えば、特許文献1)。各熱交換体は、上熱交換プレートと下熱交換プレートとの間に熱媒が流通する内部空間と、内部空間を非連通状態で貫通し、燃焼排気が上下方向に流通する複数の貫通孔とを有する。 A plate-type heat exchanger including a plurality of heat exchangers in which an upper heat exchange plate and a lower heat exchange plate are joined has been proposed (for example, Patent Document 1). Each heat exchanger has a plurality of through holes through which the heat medium flows between the upper heat exchange plate and the lower heat exchange plate and the internal space in a non-communication state, and the combustion exhaust flows in the vertical direction. And have.

特許文献1におけるプレート式熱交換器は、少なくとも1つの熱交換体を有する複数のブロックを上下方向に積層することにより構成されている。また、上下方向で隣接するブロックは、熱媒が流通するように互いに連通されている。さらに、隣接するブロックは、一方のブロックを流通する熱媒の流路方向が、他方のブロックを流通する熱媒のそれと異なるように構成されている。これにより、熱交換器内を流通する熱媒の流路がブロックの段数に応じて長くなり、熱効率を高めることができる。 The plate heat exchanger in Patent Document 1 is configured by stacking a plurality of blocks having at least one heat exchanger in the vertical direction. Further, the blocks adjacent to each other in the vertical direction are communicated with each other so that the heat medium can flow. Further, the adjacent blocks are configured so that the flow path direction of the heat medium flowing through one block is different from that of the heat medium flowing through the other block. As a result, the flow path of the heat medium circulating in the heat exchanger becomes longer according to the number of stages of the block, and the thermal efficiency can be improved.

また、上記プレート式熱交換器では、燃焼排気のガス流路の最下流に位置する最下流ブロックの導入口を構成する最下流熱交換体の1つの開口に熱媒を供給する流入管が挿通されている。さらに、最下流熱交換体よりも燃焼排気のガス流路の上流側の熱交換体には、最下流熱交換体の他の1つの開口に対応する位置に開口が設けられている。そして、最下流熱交換体の他の1つの開口から最上流ブロックの導出口を構成する熱交換体の1つの開口まで流出管を挿通させて、導出口を有する熱交換体の内部空間と流出管とを連通させている。従って、このプレート式熱交換器では、流入管から最下流ブロックへ流入する熱媒は、最下流ブロックから最上流ブロックに向かって流れ、最上流ブロックの導出口から流出管に流出する。そして、流出管に流出する熱媒は、流出管を流下し、プレート式熱交換器の外部に流出する。 Further, in the above-mentioned plate heat exchanger, an inflow pipe for supplying a heat medium is inserted into one opening of the most downstream heat exchanger constituting the introduction port of the most downstream block located at the most downstream of the gas flow path of the combustion exhaust. Has been done. Further, the heat exchanger on the upstream side of the gas flow path of the combustion exhaust from the most downstream heat exchanger is provided with an opening at a position corresponding to another opening of the most downstream heat exchanger. Then, the outflow pipe is inserted from the other opening of the most downstream heat exchanger to one opening of the heat exchanger constituting the outlet of the most upstream block, and the internal space and outflow of the heat exchanger having the outlet are inserted. It communicates with the pipe. Therefore, in this plate heat exchanger, the heat medium flowing from the inflow pipe to the most downstream block flows from the most downstream block toward the most upstream block, and flows out to the outflow pipe from the outlet of the most upstream block. Then, the heat medium flowing out to the outflow pipe flows down the outflow pipe and flows out to the outside of the plate heat exchanger.

特開2020-85362号公報Japanese Unexamined Patent Publication No. 2020-85362

ところで、特許文献1のプレート式熱交換器を製造する場合、多数の上下熱交換プレートを積層させて、上下熱交換プレートの所定箇所をロウ材等の接合手段により接合する必要がある。そのため、組付け誤差が生じやすく、製品ごとに流出管が挿通される熱交換器側の長さが変化して、流出管の上端部が最上流ブロックの導出口に挿通されない場合がある。このような流出管の上端部が最上流ブロックの導出口に届いていない状態で熱媒が熱交換器内を流通すると、流出管が最上流ブロックの導出口が設けられた熱交換体よりも燃焼排気のガス流路の下流側の熱交換体の内部空間と連通して、最上流ブロックよりも下流側の熱交換体から流出管に熱媒が短絡して流出する。その結果、最上流ブロックへの熱媒の流入量が低下して、熱効率が低下するという問題がある。 By the way, in the case of manufacturing the plate type heat exchanger of Patent Document 1, it is necessary to stack a large number of upper and lower heat exchange plates and join a predetermined portion of the upper and lower heat exchange plates by a joining means such as a brazing material. Therefore, an assembly error is likely to occur, and the length of the heat exchanger side through which the outflow pipe is inserted may change for each product, and the upper end of the outflow pipe may not be inserted into the outlet of the most upstream block. If the heat medium flows through the heat exchanger with the upper end of the outflow pipe not reaching the outlet of the most upstream block, the outflow pipe will be more than the heat exchanger provided with the outlet of the most upstream block. The heat medium communicates with the internal space of the heat exchanger on the downstream side of the gas flow path of the combustion exhaust, and the heat medium is short-circuited from the heat exchanger on the downstream side of the most upstream block to the outflow pipe and flows out. As a result, there is a problem that the inflow amount of the heat medium to the uppermost stream block is reduced and the thermal efficiency is lowered.

本発明は、上記課題を解決するためになされたものであり、本発明の目的は、高熱効率のプレート式熱交換器を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a plate heat exchanger with high thermal efficiency.

本発明によれば、
少なくとも1つの熱交換体を有する複数のブロックが積層されて構成されるプレート式熱交換器であって、
前記熱交換体は、前記熱交換体の内部空間を流通する熱媒と前記熱交換体の外部を流通する燃焼排気との間で熱交換を行うように構成され、
前記複数のブロックにおける各ブロックには、前記熱媒を前記各ブロックへ導入する導入口と、前記熱媒を前記各ブロックから導出する導出口とが設けられ、
前記複数のブロックにおける隣接するブロックは、前記熱媒が一方のブロックの前記導出口から他方のブロックの前記導入口に流通するように接続され、
前記隣接するブロックは、前記一方のブロックの前記熱交換体の内部空間を流通する前記熱媒の流路方向が、前記他方のブロックの前記熱交換体の内部を流通する前記熱媒のそれと異なるように構成され、
前記プレート式熱交換器の一部を貫通するように、前記熱交換体の積層方向の一端側から他端側に向かって配管が挿通され、
前記配管の他端側端部は、前記配管が最も他端側に位置する他端ブロックを構成する前記熱交換体の前記内部空間と連通するように、前記他端ブロックの前記導入口または前記導出口のいずれか一方の開口に挿通され、
前記配管の前記他端側端部が挿通される前記他端ブロックの前記開口には、その開口縁から前記一端側に向かって突出する立設壁が設けられているプレート式熱交換器が提供される。
According to the present invention
A plate heat exchanger in which a plurality of blocks having at least one heat exchanger are laminated.
The heat exchanger is configured to exchange heat between a heat medium flowing through the internal space of the heat exchanger and combustion exhaust flowing outside the heat exchanger.
Each block in the plurality of blocks is provided with an introduction port for introducing the heat medium into each block and an outlet for deriving the heat medium from each block.
Adjacent blocks in the plurality of blocks are connected so that the heat medium flows from the outlet of one block to the inlet of the other block.
In the adjacent blocks, the flow path direction of the heat medium flowing through the internal space of the heat exchanger of the one block is different from that of the heat medium flowing inside the heat exchanger of the other block. Is configured as
A pipe is inserted from one end side to the other end side in the stacking direction of the heat exchanger so as to penetrate a part of the plate heat exchanger.
The other end of the pipe is the introduction port of the other end block or the introduction port of the other end block so as to communicate with the internal space of the heat exchanger constituting the other end block in which the pipe is located on the other end side. It is inserted through one of the outlets and is inserted into one of the outlets.
Provided is a plate heat exchanger provided with an upright wall projecting from the opening edge toward the one end side at the opening of the other end block through which the other end side end portion of the pipe is inserted. Will be done.

上記プレート式熱交換器によれば、他端ブロックは配管の他端側端部が挿通される開口の開口縁に一端側に向かって突出する立設壁を有するから、組付け誤差により配管の他端側端部が開口の開口縁まで届かない場合でも、他端側端部を立設壁に挿通させることができる。これにより、他端ブロック以外の他のブロックの熱交換体の内部空間と配管との連通を抑制することができる。従って、他端ブロックへの熱媒の流入量の低下を防止して、高い熱効率を得ることができる。 According to the plate heat exchanger, the other end block has an upright wall that protrudes toward one end at the opening edge of the opening through which the other end of the pipe is inserted. Even if the other end does not reach the opening edge of the opening, the other end can be inserted through the erection wall. As a result, it is possible to suppress communication between the internal space of the heat exchanger of the other block other than the other end block and the piping. Therefore, it is possible to prevent a decrease in the amount of heat medium flowing into the other end block and obtain high thermal efficiency.

好ましくは、上記プレート式熱交換器において、
前記配管に設けられた配管側位置決め部と最も一端側に位置する一端ブロックに設けられたブロック側位置決め部とが当接することによって、前記一端ブロックからの前記配管の挿通長が規制され、
前記配管は、前記配管側位置決め部から他端側開口部までの第1長さL1が、前記ブロック側位置決め部から前記立設壁の基端部までの第2長さL2よりも長くなるように設定される。
Preferably, in the plate heat exchanger,
The insertion length of the pipe from the one end block is restricted by the contact between the pipe side positioning portion provided on the pipe and the block side positioning portion provided on the one end block located on the one end side.
In the pipe, the first length L1 from the piping side positioning portion to the other end side opening is longer than the second length L2 from the block side positioning portion to the base end portion of the erection wall. Is set to.

上記プレート式熱交換器によれば、配管側位置決め部から他端側開口部までの第1長さL1がブロック側位置決め部から立設壁の基端部までの第2長さL2よりも長くなるように配管が設定されているから、配管側位置決め部がブロック側位置決め部に当接したとき、立設壁の基端部よりも他端側に配管の他端側開口部を配置させることができる。これにより、確実に他端ブロックの熱交換体以外の他の熱交換体の内部空間と配管との連通を抑制することができる。 According to the plate heat exchanger, the first length L1 from the piping side positioning portion to the other end side opening is longer than the second length L2 from the block side positioning portion to the base end portion of the erecting wall. Therefore, when the piping side positioning part comes into contact with the block side positioning part, the other end side opening of the pipe should be arranged on the other end side of the base end part of the vertical wall. Can be done. As a result, it is possible to reliably suppress the communication between the internal space of the heat exchanger other than the heat exchanger of the other end block and the piping.

好ましくは、上記プレート式熱交換器において、
前記他端ブロックは、前記配管が挿通される前記開口の周縁部に、前記一端側に向かって凹となる凹部を有し、
前記配管は、前記第1長さL1が、前記第2長さL2と前記凹部の深さL3との合計長さ(L2+L3)よりも短くなるように設定される。
Preferably, in the plate heat exchanger,
The other end block has a concave portion that becomes concave toward one end side at the peripheral edge portion of the opening through which the pipe is inserted.
The pipe is set so that the first length L1 is shorter than the total length (L2 + L3) of the second length L2 and the depth L3 of the recess.

上記プレート式熱交換器によれば、第1長さL1が第2長さL2と開口の周縁部の凹部の深さL3との合計長さ(L2+L3)よりも短くなるように配管が設定されているから、配管側位置決め部がブロック側位置決め部に当接したとき、配管の他端側開口部が凹部よりも他端側に突出するのを防止することができる。これにより、開口が設けられている熱交換体の内部空間への配管の突出量が規制されるから、他端ブロックの開口へ配管の他端側端部を確実に挿通させることができるとともに、開口近傍の内部空間を流れる熱媒の流路抵抗の増加を抑えることができる。 According to the plate heat exchanger, the piping is set so that the first length L1 is shorter than the total length (L2 + L3) of the second length L2 and the depth L3 of the recess at the peripheral edge of the opening. Therefore, when the piping side positioning portion comes into contact with the block side positioning portion, it is possible to prevent the other end side opening of the pipe from protruding toward the other end side of the recess. As a result, the amount of protrusion of the pipe into the internal space of the heat exchanger provided with the opening is restricted, so that the other end of the pipe can be reliably inserted into the opening of the other end block. It is possible to suppress an increase in the flow path resistance of the heat medium flowing in the internal space near the opening.

以上のように、本発明によれば、プレート式熱交換器の製造において組付け誤差が生じても、他端ブロックの開口に確実に配管の他端側端部を挿通させることができる。これにより、他端ブロックの熱交換体以外の熱交換体の内部空間と配管との連通を抑制できるから、高熱効率のプレート式熱交換器を提供することができる。 As described above, according to the present invention, even if an assembly error occurs in the manufacture of the plate heat exchanger, the other end of the pipe can be reliably inserted into the opening of the other end block. As a result, communication between the internal space of the heat exchanger other than the heat exchanger of the other end block and the piping can be suppressed, so that a plate-type heat exchanger with high heat efficiency can be provided.

図1は、本発明の実施の形態に係る熱交換器を有する熱源機を示す概略部分切欠斜視図である。FIG. 1 is a schematic partially cutaway perspective view showing a heat source machine having a heat exchanger according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る熱交換器を示す概略部分分解斜視図である。FIG. 2 is a schematic partially disassembled perspective view showing a heat exchanger according to an embodiment of the present invention. 図3は、本発明の実施の形態に係る熱交換器における燃焼排気と熱媒の流れを説明する概略模式図である。FIG. 3 is a schematic schematic diagram illustrating a flow of combustion exhaust and a heat medium in the heat exchanger according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る熱交換器における燃焼排気のガス流路の上流域における2つの熱交換体を示す概略分解斜視図である。FIG. 4 is a schematic exploded perspective view showing two heat exchangers in the upstream region of the gas flow path of the combustion exhaust in the heat exchanger according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る熱交換器における熱交換体を構成する一方の熱交換プレートの上面の一例を示す概略平面図である。FIG. 5 is a schematic plan view showing an example of the upper surface of one of the heat exchange plates constituting the heat exchanger in the heat exchanger according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る熱交換器における熱交換体を構成する他方の熱交換プレートの上面の一例を示す概略平面図である。FIG. 6 is a schematic plan view showing an example of the upper surface of the other heat exchange plate constituting the heat exchanger in the heat exchanger according to the embodiment of the present invention. 図7は、本発明の実施の形態に係る熱交換器の一部を示す流出管側の概略部分断面図である。FIG. 7 is a schematic partial cross-sectional view on the outflow pipe side showing a part of the heat exchanger according to the embodiment of the present invention.

以下、本実施の形態に係るプレート式熱交換器及びそれを備える熱源機について、添付図面を参照しながら具体的に説明する。 Hereinafter, the plate heat exchanger according to the present embodiment and the heat source machine provided with the plate heat exchanger will be specifically described with reference to the attached drawings.

図1に示すように、本実施の形態に係る熱源機は、流入管20から熱交換器1内に流入する水(熱媒)を、バーナ31で生成される燃焼排気により加熱し、流出管21を通じてカランやシャワーなどの温水利用先(図示せず)に供給する給湯器である。図示しないが、給湯器は、ケーシング内に組み込まれる。なお、熱媒として、他の熱媒(例えば、不凍液)が用いられてもよい。 As shown in FIG. 1, in the heat source machine according to the present embodiment, water (heat medium) flowing into the heat exchanger 1 from the inflow pipe 20 is heated by the combustion exhaust generated by the burner 31, and the outflow pipe is used. It is a water heater that supplies hot water to a hot water usage destination (not shown) such as a burner or a shower through 21. Although not shown, the water heater is built into the casing. In addition, another heat medium (for example, antifreeze liquid) may be used as a heat medium.

この給湯器では、上方から順に、バーナ31の外郭を構成するバーナボディ3、燃焼室2、熱交換器1、及びドレン受け40が配設される。また、バーナボディ3の一方側方(図1では、右側)には、バーナボディ3内に燃料ガスと空気との混合ガスを送り込む燃焼ファンを備えるファンケース4が配設される。また、バーナボディ3の他方側方(図1では、左側)には、ドレン受け40と連通する排気ダクト41が配設される。排気ダクト41は、ドレン受け40に排出される燃焼排気を給湯器の外部に排出する。 In this water heater, a burner body 3, a combustion chamber 2, a heat exchanger 1, and a drain receiver 40, which form the outer shell of the burner 31, are arranged in this order from above. Further, on one side of the burner body 3 (on the right side in FIG. 1), a fan case 4 including a combustion fan for sending a mixed gas of fuel gas and air into the burner body 3 is arranged. Further, an exhaust duct 41 communicating with the drain receiver 40 is arranged on the other side of the burner body 3 (on the left side in FIG. 1). The exhaust duct 41 discharges the combustion exhaust discharged to the drain receiver 40 to the outside of the water heater.

なお、本明細書では、ファンケース4及び排気ダクト41がバーナボディ3の側方にそれぞれ配置された状態で給湯器を見たとき、奥行方向が前後方向に対応し、幅方向が左右方向に対応し、高さ方向が上下方向に対応する。 In this specification, when the water heater is viewed with the fan case 4 and the exhaust duct 41 arranged on the sides of the burner body 3, the depth direction corresponds to the front-rear direction and the width direction corresponds to the left-right direction. Corresponding, the height direction corresponds to the vertical direction.

バーナボディ3は、平面視略小判形状を有し、例えば、ステンレス系金属で形成される。図示しないが、バーナボディ3は、下方に開放している。 The burner body 3 has a substantially oval shape in a plan view, and is formed of, for example, a stainless-based metal. Although not shown, the burner body 3 is open downward.

ファンケース4と連通するガス導入部は、バーナボディ3の中央部から上方に突出している。バーナボディ3は、下向きの燃焼面30を有する平面状のバーナ31を備える。燃焼ファンを作動させることにより、混合ガスがバーナボディ3内に供給される。 The gas introduction portion communicating with the fan case 4 projects upward from the central portion of the burner body 3. The burner body 3 includes a planar burner 31 having a downward combustion surface 30. By operating the combustion fan, the mixed gas is supplied into the burner body 3.

バーナ31は、全一次空気燃焼式であり、例えば、下向きに開口する多数の炎孔(図示せず)を有するセラミックス製の燃焼プレート、または金属繊維をネット状に編み込んだ燃焼マットからなる。バーナボディ3内に供給された混合ガスが、燃焼ファンの給気圧によって、下向きの燃焼面30から下方へ向けて噴出される。この混合ガスを着火させることにより、バーナ31の燃焼面30に火炎が形成され、燃焼排気が生成される。従って、バーナ31から噴出される燃焼排気は、燃焼室2を介して熱交換器1に送り込まれる。次いで、熱交換器1を通過した燃焼排気は、ドレン受け40及び排気ダクト41を通って給湯器の外部に排出される。 The burner 31 is an all-primary air-combustion type, and comprises, for example, a ceramic combustion plate having a large number of flame holes (not shown) that open downward, or a combustion mat in which metal fibers are woven into a net. The mixed gas supplied into the burner body 3 is ejected downward from the downward combustion surface 30 by the supply pressure of the combustion fan. By igniting this mixed gas, a flame is formed on the combustion surface 30 of the burner 31, and combustion exhaust is generated. Therefore, the combustion exhaust gas ejected from the burner 31 is sent to the heat exchanger 1 via the combustion chamber 2. Next, the combustion exhaust gas that has passed through the heat exchanger 1 is discharged to the outside of the water heater through the drain receiver 40 and the exhaust duct 41.

すなわち、この熱交換器1では、バーナ31が設けられている上方側が燃焼排気のガス流路の上流側に対応し、バーナ31が設けられている側と反対側の下方側が燃焼排気のガス流路の下流側に対応する。 That is, in this heat exchanger 1, the upper side where the burner 31 is provided corresponds to the upstream side of the gas flow path of the combustion exhaust, and the lower side opposite to the side where the burner 31 is provided corresponds to the gas flow of the combustion exhaust. Corresponds to the downstream side of the road.

燃焼室2は、平面視略小判形状を有する。燃焼室2は、例えば、ステンレス系金属で形成される。燃焼室2は、上下に開放するように、一枚の略長方形状の金属板を湾曲させて両端部を接合することにより形成される。 The combustion chamber 2 has a substantially oval shape in a plan view. The combustion chamber 2 is made of, for example, a stainless steel. The combustion chamber 2 is formed by bending one substantially rectangular metal plate and joining both ends so as to open up and down.

図2に示すように、熱交換器1は、平面視略小判形状を有する。熱交換器1は、複数(ここでは、13層)の薄板状の熱交換体10が積層されたプレート式熱交換器である。なお、熱交換器1は、その周囲を覆う筐体を有してもよい。 As shown in FIG. 2, the heat exchanger 1 has a substantially oval shape in a plan view. The heat exchanger 1 is a plate-type heat exchanger in which a plurality of (here, 13 layers) thin plate-shaped heat exchangers 10 are laminated. The heat exchanger 1 may have a housing that covers the periphery thereof.

図2及び図3に示すように、熱交換器1は、1または複数の熱交換体10を有する複数(ここでは、4段)のブロック5を上下方向に積み重ねて構成されている(以下、これらのブロック5を総称する場合、単に「ブロック5」という。また、燃焼排気のガス流路に従って、最上段のブロック5を、「最上流ブロック5a」、中段のブロック5を、上流側から順に「第1下流側ブロック5b」、「第2下流側ブロック5c」、最下段のブロック5を、「最下流ブロック5d」という)。最上流ブロック5a及び第1下流側ブロック5bはそれぞれ、1つの熱交換体10から構成されている。また、第2下流側ブロック5cは、5つの熱交換体10が積層されて構成されており、最下流ブロック5dは、6つの熱交換体10が積層されて構成されている。なお、熱交換器1は、3つ以下または5つ以上のブロック5から構成されてもよい。後述するように、1つのブロック5が複数の熱交換体10から構成される場合、水は、その1つのブロック5を構成する各熱交換体10の内部を同一方向に並列に流れる。また、各ブロック5における隣接する熱交換体10は、水が下方から上方に向かって流れるように相互に連通されている。また、隣接するブロック5は、水が下方から上方に向かって流れるように相互に連通されている。また、隣接するブロック5は、一方のブロック5における各熱交換体10の内部を流れる水の流路方向が、他方のブロック5における各熱交換体10の内部を流れる水の流路方向と逆方向となるように構成されている。従って、この熱交換器1は、ブロック5の段数に応じて4つの流路(4パス)を有するように、各ブロック5の水の流路は隣接するブロック5間で折り返されている。これにより、熱交換器1内に長い水の流路が形成され、熱効率を向上させることができる。 As shown in FIGS. 2 and 3, the heat exchanger 1 is configured by stacking a plurality of (here, four stages) blocks 5 having one or a plurality of heat exchangers 10 in the vertical direction (hereinafter, 4 stages). When these blocks 5 are collectively referred to, they are simply referred to as "block 5". Further, according to the gas flow path of the combustion exhaust, the uppermost block 5 is referred to as "uppermost flow block 5a", and the middle block 5 is sequentially referred to from the upstream side. "First downstream block 5b", "second downstream block 5c", and the lowest block 5 are referred to as "most downstream block 5d"). The most upstream block 5a and the first downstream block 5b are each composed of one heat exchanger 10. Further, the second downstream block 5c is configured by stacking five heat exchangers 10, and the most downstream block 5d is configured by stacking six heat exchangers 10. The heat exchanger 1 may be composed of three or less or five or more blocks 5. As will be described later, when one block 5 is composed of a plurality of heat exchangers 10, water flows in parallel in the same direction inside each heat exchanger 10 constituting the one block 5. Further, the adjacent heat exchangers 10 in each block 5 communicate with each other so that water flows from the lower side to the upper side. Further, the adjacent blocks 5 communicate with each other so that water flows from the lower side to the upper side. Further, in the adjacent blocks 5, the direction of the flow path of water flowing inside each heat exchanger 10 in one block 5 is opposite to the direction of the flow path of water flowing inside each heat exchanger 10 in the other block 5. It is configured to be in the direction. Therefore, the water flow path of each block 5 is folded back between the adjacent blocks 5 so that the heat exchanger 1 has four flow paths (4 paths) according to the number of stages of the blocks 5. As a result, a long water flow path is formed in the heat exchanger 1, and the thermal efficiency can be improved.

次に、熱交換体10の構成について説明する。各熱交換体10は、上下貫通孔の位置やコーナ部の通水孔の有無などの一部の構成が相違する以外は、共通の構成を有する一組の上熱交換プレート11と下熱交換プレート12とを上下方向に重ね合わせて、後述する所定箇所をロウ材等の接合手段で接合することにより形成される。このため、以下では、1つの熱交換体10の構成を主に説明する。なお、各図面は、必ずしも実際の寸法を示したものでなく、実施形態を限定するものではない。 Next, the configuration of the heat exchanger 10 will be described. Each heat exchanger 10 exchanges lower heat with a set of upper heat exchange plates 11 having a common configuration, except that some configurations such as the positions of upper and lower through holes and the presence or absence of water passage holes in the corners are different. It is formed by superimposing the plate 12 in the vertical direction and joining a predetermined portion described later by a joining means such as a brazing material. Therefore, in the following, the configuration of one heat exchanger 10 will be mainly described. It should be noted that each drawing does not necessarily show the actual dimensions and does not limit the embodiment.

図2及び図4~図6に示すように、上下熱交換プレート11,12は、平面視略小判形状を有する。上下熱交換プレート11,12は、例えば、所定の厚さを有するステンレス製の金属板から形成される。上下熱交換プレート11,12はそれぞれ、コーナ部を除くプレートの略全面に形成された多数の上貫通孔11a,下貫通孔12aと、上下貫通孔11a,12aの周縁部に形成された上貫通孔フランジ部11c,下貫通孔フランジ部12cとを有する。 As shown in FIGS. 2 and 4 to 6, the upper and lower heat exchange plates 11 and 12 have a substantially oval shape in a plan view. The upper and lower heat exchange plates 11 and 12 are formed of, for example, a stainless steel metal plate having a predetermined thickness. The upper and lower heat exchange plates 11 and 12 have a large number of upper through holes 11a and lower through holes 12a formed on substantially the entire surface of the plate excluding the corners, and upper through holes 11a and 12a formed on the peripheral edges of the upper and lower through holes 11a and 12a, respectively. It has a hole flange portion 11c and a lower through hole flange portion 12c.

上下熱交換プレート11,12の周縁にはそれぞれ、上方に向かって突出する上周縁接合部W1,下周縁接合部W2が形成されている。上下周縁接合部W1,W2はそれぞれ、上端部が基端部よりも斜め上外方に位置するように上方に向かって所定角度で広がる傾斜壁で形成されている。このため、上下熱交換プレート11,12を積層させると、1つの熱交換体10において、上熱交換プレート11が下熱交換プレート12に内嵌する。また、上方の熱交換体10の下熱交換プレート12が下方に隣接する熱交換体10の上熱交換プレート11に内嵌する。従って、複数の上下熱交換プレート11,12を積層させると、上下熱交換プレート11,12は、燃焼排気のガス流路方向において、これらの周縁接合部W1,W2が所定の高さ重なり合うように配置される(図7参照)。 Upper peripheral edge joints W1 and lower peripheral edge joints W2 projecting upward are formed on the peripheral edges of the upper and lower heat exchange plates 11 and 12, respectively. The upper and lower peripheral edge joints W1 and W2 are each formed of an inclined wall that spreads upward at a predetermined angle so that the upper end portion is located diagonally upward and outward from the base end portion. Therefore, when the upper and lower heat exchange plates 11 and 12 are laminated, the upper heat exchange plate 11 is internally fitted in the lower heat exchange plate 12 in one heat exchanger 10. Further, the lower heat exchange plate 12 of the upper heat exchanger 10 is fitted inside the upper heat exchange plate 11 of the heat exchanger 10 adjacent to the lower side. Therefore, when a plurality of upper and lower heat exchange plates 11 and 12 are laminated, in the upper and lower heat exchange plates 11 and 12, these peripheral edge joints W1 and W2 overlap each other at a predetermined height in the gas flow path direction of the combustion exhaust. Arranged (see Figure 7).

上下熱交換プレート11,12は、1つの熱交換体10において、下周縁接合部W2と上熱交換プレート11の下面周縁とを接合させたときに、上下熱交換プレート11,12が所定高さの間隙を存して離間するように設定されている。また、上下熱交換プレート11,12は、上周縁接合部W1と上方に隣接する熱交換体10の下熱交換プレート12の下面周縁とを接合させたときに、下方の熱交換体10の上熱交換プレート11と、上方に隣接する熱交換体10の下熱交換プレート12とが所定高さの間隙を存して離間するように設定されている。 When the lower peripheral edge joint portion W2 and the lower peripheral edge of the upper heat exchange plate 11 are joined to each other in one heat exchanger 10, the upper and lower heat exchange plates 11 and 12 have a predetermined height. It is set so that there is a gap between them. Further, the upper and lower heat exchange plates 11 and 12 are above the lower heat exchanger 10 when the upper peripheral edge joint portion W1 and the lower peripheral edge of the lower heat exchange plate 12 of the heat exchanger 10 adjacent above are joined. The heat exchange plate 11 and the lower heat exchange plate 12 of the heat exchanger 10 adjacent to the upper side are set so as to have a gap of a predetermined height.

従って、上下熱交換プレート11,12を接合させることにより、所定の高さの内部空間14が形成される(図3参照)。また、複数の熱交換体10を接合させることにより、上下に隣接する熱交換体10の間には、所定の高さの排気空間15が形成される(図3参照)。 Therefore, by joining the upper and lower heat exchange plates 11 and 12, an internal space 14 having a predetermined height is formed (see FIG. 3). Further, by joining the plurality of heat exchangers 10, an exhaust space 15 having a predetermined height is formed between the heat exchangers 10 adjacent to the top and bottom (see FIG. 3).

上下熱交換プレート11,12の周縁領域を除いた領域には、平面視略正方形状の上下貫通孔11a,12aが前後及び左右方向に所定の間隔で千鳥状に開設されている。平面視略正方形状の上下貫通孔11a,12aの周縁部に形成された上下貫通孔フランジ部11c,12cは、上下貫通孔11a,12aの開口縁から周方向外方に略水平に広がり、平面視略正方形状の外形を有する。また、上下熱交換プレート11,12の周縁領域には、平面視略五角形状の上下貫通孔11a,12aが前後または左右方向に所定の間隔で開設されている。平面視略五角形状の上下貫通孔11a,12aの周縁部に形成された上下貫通孔フランジ部11c,12cは、上下貫通孔11a,12aの開口縁から周方向外方に略水平に広がり、平面視略五角形状の外形を有する。上下貫通孔11a,12aは、略円形状や略楕円形状などの他の形状を有してもよい。なお、全ての上下貫通孔11a,12aは同一の大きさ及び形状を有してもよいし、全ての上下貫通孔フランジ部11c,12cは同一の大きさ及び形状を有してもよい。 In the region excluding the peripheral region of the vertical heat exchange plates 11 and 12, the vertical through holes 11a and 12a having a substantially square shape in a plan view are provided in a staggered manner at predetermined intervals in the front-rear and left-right directions. The upper and lower through hole flange portions 11c and 12c formed on the peripheral portions of the upper and lower through holes 11a and 12a having a substantially square shape in a plan view extend substantially horizontally outward in the circumferential direction from the opening edges of the upper and lower through holes 11a and 12a and are flat. It has a substantially square outer shape. Further, in the peripheral region of the upper and lower heat exchange plates 11 and 12, upper and lower through holes 11a and 12a having a substantially pentagonal shape in a plan view are provided at predetermined intervals in the front-rear direction or the left-right direction. The upper and lower through hole flange portions 11c and 12c formed on the peripheral edges of the upper and lower through holes 11a and 12a having a substantially pentagonal shape in a plan view extend substantially horizontally outward in the circumferential direction from the opening edges of the upper and lower through holes 11a and 12a and are flat. It has a substantially pentagonal outer shape. The upper and lower through holes 11a and 12a may have other shapes such as a substantially circular shape and a substantially elliptical shape. All the upper and lower through holes 11a and 12a may have the same size and shape, and all the upper and lower through hole flange portions 11c and 12c may have the same size and shape.

上下貫通孔11a,12a及び上下貫通孔フランジ部11c,12cはそれぞれ、上下熱交換プレート11,12が重ね合わされたときに相互に対応する位置に形成されている。また、上下貫通孔11a,12a及び上下貫通孔フランジ部11c,12cは、絞り加工により、上下熱交換プレート11,12が重ね合わされたときに対向する上下貫通孔フランジ部11c,12cが面接触するように、内方に突出する段差部の底面に形成されている。 The upper and lower through holes 11a and 12a and the upper and lower through hole flange portions 11c and 12c are formed at positions corresponding to each other when the upper and lower heat exchange plates 11 and 12, respectively. Further, the upper and lower through hole flanges 11a and 12a and the upper and lower through hole flange portions 11c and 12c are in surface contact with the upper and lower through hole flange portions 11c and 12c facing each other when the upper and lower heat exchange plates 11 and 12 are overlapped by drawing. As described above, it is formed on the bottom surface of the stepped portion protruding inward.

従って、上下熱交換プレート11,12が重ね合わされた状態で、上下貫通孔フランジ部11c,12cがロウ材等の接合手段により接合されると、上下貫通孔フランジ部11c,12cによって内部空間14を閉塞するフランジ部16が形成される(図7参照)。また、上下貫通孔11a,12aによって内部空間14を非連通状態で貫通する貫通孔13が形成される。 Therefore, when the upper and lower through-hole flange portions 11c and 12c are joined by a joining means such as a brazing material in a state where the upper and lower heat exchange plates 11 and 12 are overlapped, the upper and lower through-hole flange portions 11c and 12c create the internal space 14. A flange portion 16 to be closed is formed (see FIG. 7). Further, the upper and lower through holes 11a and 12a form a through hole 13 that penetrates the internal space 14 in a non-communication state.

最上層の熱交換体10(以下、「最上流熱交換体10a」という)の上熱交換プレート11を除いて、上下熱交換プレート11,12はそれぞれ、少なくとも1つのコーナ部に、上通水孔11e,下通水孔12eを有する。1つの熱交換体10を形成する上下熱交換プレート11,12の少なくとも1つのコーナ部に設けられた上下通水孔11e,12eは、上下熱交換プレート11,12が重ね合わされたとき、上下熱交換プレート11,12の間に形成される内部空間14と連通するように開口している。 Except for the upper heat exchange plate 11 of the uppermost heat exchanger 10 (hereinafter referred to as "uppermost flow heat exchanger 10a"), the upper and lower heat exchange plates 11 and 12 each have upper water flow through at least one corner portion. It has a hole 11e and a lower water passage hole 12e. The upper and lower water passage holes 11e and 12e provided in at least one corner of the upper and lower heat exchange plates 11 and 12 forming one heat exchanger 10 are used to heat up and down when the upper and lower heat exchange plates 11 and 12 are overlapped. It is open so as to communicate with the internal space 14 formed between the exchange plates 11 and 12.

上下通水孔11e,12eの周縁部にはそれぞれ、上下通水孔11e,12eの開口縁11h,12hから周方向外方に略水平に広がる上通水孔フランジ部11f,下通水孔フランジ部12fが形成されている。上通水孔11e及び上通水孔フランジ部11fはそれぞれ、隣接する熱交換体10が重ね合わされたときに隣接する熱交換体10の下通水孔12e及び下通水孔フランジ部12fと相互に対応する位置に形成されている。また、上通水孔11e及び上通水孔フランジ部11fは、絞り加工により、上熱交換プレート11と上方に隣接する熱交換体10の下熱交換プレート12とが重ね合わされたときに対向する上下通水孔フランジ部11f,12fが面接触するように、外方に向かって突出する段差部の上面に形成されている。同様に、下通水孔12e及び下通水孔フランジ部12fは、絞り加工により、下熱交換プレート12と下方に隣接する熱交換体10の上熱交換プレート11とが重ね合わされたときに対向する上下通水孔フランジ部11f,12fが面接触するように、外方に向かって突出する段差部の底面に形成されている。 On the peripheral edges of the upper and lower water passage holes 11e and 12e, the upper water passage hole flange portion 11f and the lower water passage hole flange that extend substantially horizontally outward from the opening edges 11h and 12h of the upper and lower water passage holes 11e and 12e, respectively. The portion 12f is formed. The upper water passage hole 11e and the upper water passage hole flange portion 11f interact with the lower water passage hole 12e and the lower water hole flange portion 12f of the adjacent heat exchanger 10 when the adjacent heat exchangers 10 are overlapped with each other. It is formed at the position corresponding to. Further, the upper water passage hole 11e and the upper water passage hole flange portion 11f face each other when the upper heat exchange plate 11 and the lower heat exchange plate 12 of the heat exchanger 10 adjacent to the upper side are overlapped by the drawing process. The upper and lower water passage holes flange portions 11f and 12f are formed on the upper surface of the stepped portion protruding outward so as to be in surface contact with each other. Similarly, the lower water passage hole 12e and the lower water passage hole flange portion 12f face each other when the lower heat exchange plate 12 and the upper heat exchange plate 11 of the heat exchanger 10 adjacent to the lower side are overlapped by the drawing process. The upper and lower water passage holes flange portions 11f and 12f are formed on the bottom surface of the stepped portion protruding outward so as to be in surface contact with each other.

従って、隣接する熱交換体10の上下熱交換プレート11,12が重ね合わされた状態で、上下通水孔フランジ部11f,12fがロウ材等の接合手段により接合されると、上下通水孔フランジ部11f,12fによって隣接する熱交換体10の間の排気空間15を閉塞する通水孔フランジ部64が形成される。また、隣接する熱交換体10における上下に対向する上下通水孔11e,12eによって、内部空間14と連通する通水孔63が形成される。また、上下通水孔11e,12eの周縁部における内部空間14は、他の内部空間14よりも上下方向で広くなっている。このため、上通水孔11eの周縁部には、上方に凹の上凹部65が形成され、下通水孔12eの周縁部には、下方に凹の下凹部66が形成される。 Therefore, when the upper and lower water passage flange portions 11f and 12f are joined by a joining means such as a brazing material in a state where the upper and lower heat exchange plates 11 and 12 of the adjacent heat exchanger 10 are overlapped with each other, the upper and lower water passage hole flanges are joined. The portions 11f and 12f form a water passage flange portion 64 that closes the exhaust space 15 between the adjacent heat exchangers 10. Further, the water passage holes 63 communicating with the internal space 14 are formed by the vertically opposed upper and lower water passage holes 11e and 12e in the adjacent heat exchanger 10. Further, the internal space 14 at the peripheral edges of the vertical water passage holes 11e and 12e is wider in the vertical direction than the other internal spaces 14. Therefore, a concave upper recess 65 is formed upward on the peripheral edge of the upper water passage hole 11e, and a concave lower recess 66 is formed downward on the peripheral edge of the lower water passage hole 12e.

図7に示すように、下通水孔12eはバーリング加工によって開設されている。このため、下熱交換プレート12は、下通水孔12eの開口縁12hから下方(燃焼排気のガス流路の下流側)に突出するバーリング部(立設壁)12gを有する。従って、下通水孔12eの開口縁12hが、バーリング部12gの基端部を構成する。また、上下熱交換プレート11,12が重ね合わされたとき、バーリング部12gは下方に隣接する熱交換体10の上熱交換プレート11の上通水孔フランジ部11fよりも下方に突出する。なお、下方に突出するバーリング部は、上熱交換プレート11の上通水孔11eに形成してもよいし、上下通水孔11e,12eの両方に形成してもよい。 As shown in FIG. 7, the underwater hole 12e is opened by burring. Therefore, the lower heat exchange plate 12 has a burring portion (standing wall) 12 g that protrudes downward (downstream side of the gas flow path of the combustion exhaust) from the opening edge 12h of the lower water passage hole 12e. Therefore, the opening edge 12h of the lower water passage hole 12e constitutes the base end portion of the burring portion 12g. Further, when the upper and lower heat exchange plates 11 and 12 are overlapped with each other, the burring portion 12g projects downward from the upper water passage hole flange portion 11f of the upper heat exchange plate 11 of the heat exchanger 10 adjacent to the lower side. The downwardly projecting burring portion may be formed in the upper water passage hole 11e of the upper heat exchange plate 11 or may be formed in both the upper and lower water passage holes 11e and 12e.

図3に示すように、熱交換体10の貫通孔13はいずれも、隣接する熱交換体10における一方の熱交換体10の貫通孔13が他方の熱交換体10の貫通孔13と、燃焼排気のガス流路方向に対して垂直に交差する左右方向にずれるように配置されている。すなわち、上下で隣接する熱交換体10は、一方の熱交換体10の貫通孔13の投影面が他方の熱交換体10の貫通孔13と重ならないように配置されている。従って、上流側から流れてきた燃焼排気は、1つの熱交換体10の貫通孔13を通過した後、その熱交換体10と下流側に隣接する熱交換体10との間の排気空間15に流れ出る。そして、排気空間15に流れ出た燃焼排気は、下流側に隣接する熱交換体10の上熱交換プレート11に衝突し、下流側に隣接する熱交換体10の貫通孔13からさらに下流側に流れる。すなわち、燃焼排気が熱交換器1内を上流側から下流側に向かって流れるとき、熱交換器1内にはジグザグ状のガス流路が形成される。これにより、熱交換器1内における燃焼排気と上下熱交換プレート11,12との接触時間が増加する。 As shown in FIG. 3, in each of the through holes 13 of the heat exchanger 10, the through hole 13 of one heat exchanger 10 in the adjacent heat exchanger 10 burns with the through hole 13 of the other heat exchanger 10. It is arranged so as to be displaced in the left-right direction, which intersects perpendicularly with the gas flow path direction of the exhaust. That is, the heat exchangers 10 adjacent to each other on the upper and lower sides are arranged so that the projection surface of the through hole 13 of one heat exchanger 10 does not overlap with the through hole 13 of the other heat exchanger 10. Therefore, the combustion exhaust flowing from the upstream side passes through the through hole 13 of one heat exchanger 10 and then enters the exhaust space 15 between the heat exchanger 10 and the heat exchanger 10 adjacent to the downstream side. It flows out. Then, the combustion exhaust flowing into the exhaust space 15 collides with the upper heat exchange plate 11 of the heat exchanger 10 adjacent to the downstream side, and flows further downstream from the through hole 13 of the heat exchanger 10 adjacent to the downstream side. .. That is, when the combustion exhaust flows in the heat exchanger 1 from the upstream side to the downstream side, a zigzag gas flow path is formed in the heat exchanger 1. As a result, the contact time between the combustion exhaust in the heat exchanger 1 and the upper and lower heat exchange plates 11 and 12 increases.

次に、図3を参照して、熱交換器1における燃焼排気及び水の流れを説明する。各ブロック5は、水をブロック5内部に導入する導入口71と、水をブロック5外部に導出する導出口72とを有する。導入口71はそれぞれ、各ブロック5の燃焼排気のガス流路の最下流に位置する熱交換体10の所定の下通水孔12eによって構成される。また、導出口72は、最上流ブロック5a以外の各ブロック5b,5c,5dにおける燃焼排気のガス流路の最上流に位置する熱交換体10の所定の上通水孔11e、及び最上流ブロック5aにおける熱交換体10の所定の下通水孔12eによって構成される。なお、煩雑化を避けるため、図3中、フランジ部16やバーリング部12gなどの一部の構成は省略されている。 Next, with reference to FIG. 3, the flow of combustion exhaust gas and water in the heat exchanger 1 will be described. Each block 5 has an introduction port 71 for introducing water into the block 5 and an outlet 72 for leading water to the outside of the block 5. Each of the introduction ports 71 is composed of a predetermined underwater hole 12e of the heat exchanger 10 located at the most downstream of the gas flow path of the combustion exhaust of each block 5. Further, the outlet 72 is a predetermined upper water passage hole 11e of the heat exchanger 10 located at the uppermost stream of the gas flow path of the combustion exhaust in each block 5b, 5c, 5d other than the uppermost stream block 5a, and the uppermost stream block. It is composed of a predetermined underwater hole 12e of the heat exchanger 10 in 5a. In addition, in order to avoid complication, some configurations such as the flange portion 16 and the burring portion 12g are omitted in FIG.

燃焼排気のガス流路の最下流に位置する熱交換体10(以下、「最下流熱交換体10s」という)を形成する下熱交換プレート12の右側前方のコーナ部の下通水孔12eには、流入管20が接続されている。また、最下流熱交換体10sを形成する下熱交換プレート12の右側後方のコーナ部の下通水孔12eには、熱交換器1の一部を貫通するように最下流熱交換体10sから最上流熱交換体10aまで上方に向かって延びる流出管21が挿通されている。流出管21の上端部は、最上流熱交換体10aを形成する下熱交換プレート12の右側後方のコーナ部の下通水孔12eに挿通されている。従って、本実施の形態では、最下流熱交換体10s側が熱交換体10の積層方向の一端側に、最上流熱交換体10a側が熱交換体10の積層方向の他端側に対応し、最上流ブロック5aが最も他端側の他端ブロックに、最下流ブロック5bが最も一端側の一端ブロックに対応する。また、最上流ブロック5aの導出口72が、配管の他端側端部が挿通される開口に対応する。 In the lower water passage hole 12e of the corner portion on the right front side of the lower heat exchange plate 12 forming the heat exchanger 10 (hereinafter referred to as "most downstream heat exchanger 10s") located at the most downstream of the gas flow path of the combustion exhaust. Is connected to the inflow pipe 20. Further, in the lower water passage hole 12e of the corner portion on the right rear side of the lower heat exchange plate 12 forming the most downstream heat exchanger 10s, from the most downstream heat exchanger 10s so as to penetrate a part of the heat exchanger 1. An outflow pipe 21 extending upward to the most upstream heat exchanger 10a is inserted. The upper end of the outflow pipe 21 is inserted into the lower water passage hole 12e of the corner portion on the right rear side of the lower heat exchange plate 12 forming the uppermost flow heat exchanger 10a. Therefore, in the present embodiment, the most downstream heat exchanger 10s side corresponds to one end side of the heat exchanger 10 in the stacking direction, and the most upstream heat exchanger 10a side corresponds to the other end side of the heat exchanger 10 in the stacking direction. The upstream block 5a corresponds to the other end block on the farthest end side, and the most downstream block 5b corresponds to the one end block on the farthest end side. Further, the outlet 72 of the most upstream block 5a corresponds to an opening through which the other end of the pipe is inserted.

流出管21の上端開口部は、最上流熱交換体10aの内部空間14と連通している。また、流出管21が最下流熱交換体10sから最上流熱交換体10aまで挿通されると、流出管21は最上流熱交換体10a以外の熱交換体10の内部空間14及び隣接する熱交換体10間の全ての排気空間15を非連通状態で貫通する。 The upper end opening of the outflow pipe 21 communicates with the internal space 14 of the uppermost flow heat exchanger 10a. Further, when the outflow pipe 21 is inserted from the most downstream heat exchanger 10s to the most upstream heat exchanger 10a, the outflow pipe 21 is connected to the internal space 14 of the heat exchanger 10 other than the most upstream heat exchanger 10a and the adjacent heat exchange. It penetrates all the exhaust spaces 15 between the bodies 10 in a non-communication state.

従って、右側前方のコーナ部の下通水孔12e(導入口71)から最下流ブロック5dの各熱交換体10の内部空間14内に流入する水は、内部空間14内を左右方向の一方向(図3中、右側から左側)に流れる。また、左側前後両方のコーナ部の上下通水孔11e,12e(導出口72及び導入口71)を介して第2下流側ブロック5cの各熱交換体10の内部空間14に流入する水は、内部空間14内を左右方向の一方向(図3中、左側から右側)に流れる。この第2下流側ブロック5cの熱交換体10の内部空間14を流通する水の流路方向は、最下流ブロック5dのそれと反対になる。また、右側前方のコーナ部の上下通水孔11e,12e(導出口72及び導入口71)を介して第1下流側ブロック5bの熱交換体10(以下、「第2熱交換体10b」という)の内部空間14内に流入する水は、内部空間14内を左右方向の一方向(図3中、右側から左側)に流れる。この第2熱交換体10bの内部空間14を流通する水の流路方向は、第2下流側ブロック5cのそれと反対になる。また、左側前後両方のコーナ部の上下通水孔11e,12e(導出口72及び導入口71)を介して最上流熱交換体10aの内部空間14内に流入する水は、内部空間14内を左右方向の一方向(図3中、左側から右側)に流れる。この最上流熱交換体10aの内部空間14を流通する水の流路方向は、第2熱交換体10bのそれと反対になる。そして、最上流熱交換体10aの内部空間14内を流通する水は、最上流熱交換体10aの右側後方のコーナ部の下通水孔12e(導出口72)に挿通された流出管21に流出する。流出管21に流出する水は、流出管21を流下し、熱交換器1の外部に流出する。このように、燃焼排気のガス流路の上流域における最上流熱交換体10a及び第2熱交換体10bは、第2熱交換体10bの内部に流入する全ての水が最上流熱交換体10aに流入するように、直列に接続されている。また、最下流ブロック5dの複数の熱交換体10は、複数の平行流路が形成されるように並列に接続されている。第2下流側ブロック5cも最下流ブロック5dと同様の構成を有する。 Therefore, the water flowing into the internal space 14 of each heat exchanger 10 of the most downstream block 5d from the lower water passage hole 12e (introduction port 71) of the corner portion on the right front side is unidirectional in the internal space 14 in the left-right direction. It flows from the right side to the left side in Fig. 3. Further, the water flowing into the internal space 14 of each heat exchanger 10 of the second downstream block 5c through the upper and lower water passage holes 11e and 12e (outlet port 72 and introduction port 71) of both the front and rear corners on the left side It flows in one direction (from the left side to the right side in FIG. 3) in the left-right direction in the internal space 14. The direction of the flow path of water flowing through the internal space 14 of the heat exchanger 10 of the second downstream block 5c is opposite to that of the most downstream block 5d. Further, the heat exchanger 10 (hereinafter referred to as "second heat exchanger 10b") of the first downstream side block 5b is referred to via the upper and lower water passage holes 11e and 12e (outlet port 72 and introduction port 71) of the corner portion on the right front side. ), The water flowing into the internal space 14 flows in one direction (from the right side to the left side in FIG. 3) in the left-right direction in the internal space 14. The flow path direction of the water flowing through the internal space 14 of the second heat exchanger 10b is opposite to that of the second downstream block 5c. Further, the water flowing into the internal space 14 of the most upstream heat exchanger 10a through the upper and lower water passage holes 11e and 12e (outlet port 72 and introduction port 71) of both the front and rear corners on the left side flows into the internal space 14. It flows in one direction in the left-right direction (from the left side to the right side in FIG. 3). The direction of the flow path of water flowing through the internal space 14 of the most upstream heat exchanger 10a is opposite to that of the second heat exchanger 10b. Then, the water flowing in the internal space 14 of the upstream heat exchanger 10a is passed through the outflow pipe 21 inserted into the lower water passage hole 12e (outlet port 72) of the corner portion on the right rear side of the upstream heat exchanger 10a. leak. The water flowing out to the outflow pipe 21 flows down the outflow pipe 21 and flows out to the outside of the heat exchanger 1. As described above, in the upstream heat exchanger 10a and the second heat exchanger 10b in the upstream region of the gas flow path of the combustion exhaust, all the water flowing into the inside of the second heat exchanger 10b is the upstream heat exchanger 10a. They are connected in series so that they flow into. Further, the plurality of heat exchangers 10 of the most downstream block 5d are connected in parallel so as to form a plurality of parallel flow paths. The second downstream block 5c also has the same configuration as the most downstream block 5d.

次に、本実施の形態の熱交換器1の製造方法について説明する。1枚の下枠プレート101、所定枚数の上下熱交換プレート11,12、及び1枚の上枠プレート102の所定箇所にロウ材等の接合手段を供給しながらこれらのプレートを積層させる。図示しないが、下通水孔12eのバーリング部12gの外径は、対応する下枠プレート101の開口の内径よりも若干小さく設定されている。 Next, a method of manufacturing the heat exchanger 1 of the present embodiment will be described. These plates are laminated while supplying a joining means such as a brazing material to a predetermined position of one lower frame plate 101, a predetermined number of upper and lower heat exchange plates 11 and 12, and one upper frame plate 102. Although not shown, the outer diameter of the burring portion 12g of the lower water passage hole 12e is set to be slightly smaller than the inner diameter of the opening of the corresponding lower frame plate 101.

次いで、下枠プレート101の開口を介して最下流熱交換体10sの右側前方の下通水孔12eに第1配管である流入管20の上端部を挿通させる。また、下枠プレート101の他の開口を介して最下流熱交換体10sの右側後方の下通水孔12eから第2配管である流出管21を上方に向かって挿通させる。そして、最下流熱交換体10sの右側前方の下通水孔12eに挿通されている流入管20の外周面と、最下流熱交換体10sの右側後方の下通水孔12eに挿通されている流出管21の外周面とにロウ材等の接合手段を供給してサブアセンブリを調製する。このサブアセンブリを炉中に投入してロウ付け処理を行うことにより、熱交換器1を製造することができる。 Next, the upper end portion of the inflow pipe 20 which is the first pipe is inserted into the lower water passage hole 12e on the right front side of the most downstream heat exchanger 10s through the opening of the lower frame plate 101. Further, the outflow pipe 21 which is the second pipe is inserted upward from the lower water passage hole 12e on the right rear side of the most downstream heat exchanger 10s through the other opening of the lower frame plate 101. Then, it is inserted into the outer peripheral surface of the inflow pipe 20 inserted into the lower water passage hole 12e on the right front side of the most downstream heat exchanger 10s and the lower water passage hole 12e on the right rear side of the most downstream heat exchanger 10s. A subassembly is prepared by supplying a joining means such as a brazing material to the outer peripheral surface of the outflow pipe 21. The heat exchanger 1 can be manufactured by putting this subassembly into a furnace and performing a brazing process.

図7は、本実施の形態の熱交換器1の一部を示す流出管21側の概略部分断面図である。なお、図7では、燃焼排気のガス流路の上下流域の構成のみが示されているが、中流域の構成も同様である。図7に示すように、流出管21は、上端部から下端部近傍まで一定の外径を有する小径部21aと、下端部近傍に小径部21aの外径よりも大きな外径を有する大径部21bとを有する。流出管21の小径部21aは、上下通水孔11e,12eの内径と略同一の外径を有する。また、流出管21の大径部21bは、バーリング部12gの外径よりも大きな外径を有する。このため、流出管21を下方から上方に向かって挿通させていくと、大径部21bの上端が最下流熱交換体10sの下熱交換プレート12の下通水孔12eに設けられたバーリング部12gの下端に当接する。これにより、流出管21の熱交換器1への挿通長が規制される。従って、流出管21の大径部21bの上端が配管側位置決め部を構成し、上記バーリング部12gの下端がブロック側位置決め部を構成する。 FIG. 7 is a schematic partial cross-sectional view on the outflow pipe 21 side showing a part of the heat exchanger 1 of the present embodiment. Although FIG. 7 shows only the configuration of the upstream and downstream regions of the gas flow path of the combustion exhaust, the configuration of the midstream region is also the same. As shown in FIG. 7, the outflow pipe 21 has a small diameter portion 21a having a constant outer diameter from the upper end portion to the vicinity of the lower end portion and a large diameter portion having an outer diameter larger than the outer diameter of the small diameter portion 21a near the lower end portion. Has 21b and. The small diameter portion 21a of the outflow pipe 21 has an outer diameter substantially the same as the inner diameters of the upper and lower water passage holes 11e and 12e. Further, the large diameter portion 21b of the outflow pipe 21 has an outer diameter larger than the outer diameter of the burring portion 12g. Therefore, when the outflow pipe 21 is inserted from the lower side to the upper side, the upper end of the large diameter portion 21b is a burring portion provided in the lower water passage hole 12e of the lower heat exchange plate 12 of the most downstream heat exchanger 10s. It abuts on the lower end of 12 g. As a result, the insertion length of the outflow pipe 21 to the heat exchanger 1 is restricted. Therefore, the upper end of the large diameter portion 21b of the outflow pipe 21 constitutes the piping side positioning portion, and the lower end of the burring portion 12g constitutes the block side positioning portion.

また、本実施の形態において、大径部21bの上端から流出管21の上端部までの小径部21aの第1長さL1は、最下流熱交換体10sの下熱交換プレート12の下通水孔12eに設けられたバーリング部12gの下端から最上流ブロック5aの導出口72を形成する最上流熱交換体10aの下熱交換プレート12の下通水孔12eの開口縁12hまでの第2長さL2よりも長く、第2長さL2と下通水孔12eの周縁部の下凹部66の深さL3との合計長さ(L2+L3)よりも短くなるように設定されている。 Further, in the present embodiment, the first length L1 of the small diameter portion 21a from the upper end of the large diameter portion 21b to the upper end of the outflow pipe 21 is the lower water passage of the lower heat exchange plate 12 of the most downstream heat exchanger 10s. The second length from the lower end of the burring portion 12g provided in the hole 12e to the opening edge 12h of the lower water passage hole 12e of the lower heat exchange plate 12 of the uppermost flow heat exchanger 10a forming the outlet 72 of the uppermost flow block 5a. It is set to be longer than the L2 and shorter than the total length (L2 + L3) of the second length L2 and the depth L3 of the lower recess 66 at the peripheral edge of the lower water hole 12e.

既述したように、多数の上下熱交換プレート11,12を積層させて構成されるプレート式熱交換器1では、組付け誤差により製品によって最下流熱交換体10sの下熱交換プレート12の下通水孔12eから最上流熱交換体10aの下熱交換プレート12の下通水孔12e(すなわち、最上流ブロック5aの導出口72)までの長さが変化しやすい。このため、単一径の流出管21を用いた場合、流出管21を所定長さ熱交換器1内に挿通させても、製品によっては流出管21の上端部が最上流熱交換体10aの下熱交換プレート12の下通水孔12eに届かない場合がある。そのため、最上流ブロック5aよりも下流側の熱交換体10の内部空間14と流出管21とが連通して、下流側の熱交換体10の内部空間14から水が流出管21に短絡して流出する。その結果、最上流ブロック5aに流入する水の流入量が減少して、熱効率が低下する。 As described above, in the plate heat exchanger 1 configured by laminating a large number of upper and lower heat exchange plates 11 and 12, depending on the product, under the lower heat exchange plate 12 of the most downstream heat exchanger 10s due to an assembly error. The length from the water passage hole 12e to the lower water passage hole 12e of the lower heat exchange plate 12 of the uppermost flow heat exchanger 10a (that is, the outlet 72 of the uppermost flow block 5a) is likely to change. Therefore, when the outflow pipe 21 having a single diameter is used, even if the outflow pipe 21 is inserted into the heat exchanger 1 having a predetermined length, the upper end of the outflow pipe 21 is the most upstream heat exchanger 10a depending on the product. It may not reach the lower water passage hole 12e of the lower heat exchange plate 12. Therefore, the internal space 14 of the heat exchanger 10 on the downstream side of the most upstream block 5a and the outflow pipe 21 communicate with each other, and water is short-circuited from the internal space 14 of the heat exchanger 10 on the downstream side to the outflow pipe 21. leak. As a result, the inflow amount of water flowing into the most upstream block 5a is reduced, and the thermal efficiency is lowered.

しかしながら、本実施の形態によれば、最上流ブロック5aの導出口72を形成する最上流熱交換体10aの下熱交換プレート12は、下通水孔12eの開口縁12hから下流側に向かって突出するバーリング部12gを有するから、組付け誤差により流出管21の上端部が上記下通水孔12eの開口縁12hよりも下方の位置までしか挿通されない場合でも、流出管21の上端部をバーリング部12gに挿通させることができる。これにより、最上流ブロック5aよりも下流側の熱交換体10から流出管21に水が短絡して流出するのを抑制することができる。従って、最上流ブロック5aへの水の流入量の低減が防止され、高い熱効率を得ることができる。 However, according to the present embodiment, the lower heat exchange plate 12 of the uppermost flow heat exchanger 10a forming the outlet 72 of the uppermost flow block 5a is directed downstream from the opening edge 12h of the lower water passage hole 12e. Since it has a protruding burring portion 12g, even if the upper end portion of the outflow pipe 21 is inserted only to a position below the opening edge 12h of the lower water passage hole 12e due to an assembly error, the upper end portion of the outflow pipe 21 is burred. It can be inserted through the portion 12g. As a result, it is possible to prevent water from short-circuiting to the outflow pipe 21 from the heat exchanger 10 on the downstream side of the most upstream block 5a and flowing out. Therefore, it is possible to prevent a decrease in the amount of water flowing into the most upstream block 5a and obtain high thermal efficiency.

また、熱交換器1への流出管21の挿通長を長くすることも考えられるが、組付け誤差により最下流熱交換体10sの下熱交換プレート12の下通水孔12eから最上流熱交換体10aの下熱交換プレート12の下通水孔12eまでの長さが短くなる場合がある。そのため、流出管21の挿通長を長くすると、最上流熱交換体10aの内部空間14内に流出管21が大きく突出して内部空間14を閉塞する。その結果、水の流路抵抗が増加して熱効率が低下する虞がある。 Further, it is conceivable to lengthen the insertion length of the outflow pipe 21 to the heat exchanger 1, but due to an assembly error, the most upstream heat is exchanged from the lower water hole 12e of the lower heat exchange plate 12 of the most downstream heat exchanger 10s. The length to the lower water passage hole 12e of the lower heat exchange plate 12 of the body 10a may be shortened. Therefore, when the insertion length of the outflow pipe 21 is lengthened, the outflow pipe 21 greatly protrudes into the internal space 14 of the most upstream heat exchanger 10a and closes the internal space 14. As a result, the flow path resistance of water may increase and the thermal efficiency may decrease.

しかしながら、本実施の形態によれば、流出管21の下端部近傍に設けられた大径部21bの上端が最下流熱交換体10sの下熱交換プレート12の下通水孔12eに設けられたバーリング部12gの下端と当接することにより、熱交換器1内への流出管21の挿通が規制される。そして、上記流出管21の小径部21aの第1長さL1は、大径部21bの上端が当接する最下流熱交換体10sの下熱交換プレート12の下通水孔12eに設けられたバーリング部12gの下端から最上流熱交換体10aの下熱交換プレート12の下通水孔12eの開口縁12hまでの第2長さL2よりも長い。従って、大径部21bの上端が最下流熱交換体10sの下熱交換プレート12の下通水孔12eに設けられたバーリング部12gの下端に当接するまで流出管21の小径部21aを熱交換器1内に挿通させると、少なくとも上記下通水孔12eの開口縁12hよりも上方に流出管21の上端開口部が配置される。これにより、組付け誤差が生じても、確実に最上流ブロック5aよりも下流側の熱交換体10から流出管21に水が短絡して流出するのを抑制することができる。 However, according to the present embodiment, the upper end of the large diameter portion 21b provided near the lower end portion of the outflow pipe 21 is provided in the lower water passage hole 12e of the lower heat exchange plate 12 of the most downstream heat exchanger 10s. By contacting the lower end of the burring portion 12g, the insertion of the outflow pipe 21 into the heat exchanger 1 is restricted. The first length L1 of the small diameter portion 21a of the outflow pipe 21 is a burring provided in the lower water passage hole 12e of the lower heat exchange plate 12 of the most downstream heat exchanger 10s with which the upper end of the large diameter portion 21b abuts. It is longer than the second length L2 from the lower end of the portion 12g to the opening edge 12h of the lower water passage hole 12e of the lower heat exchange plate 12 of the uppermost flow heat exchanger 10a. Therefore, the small diameter portion 21a of the outflow pipe 21 is heat exchanged until the upper end of the large diameter portion 21b abuts on the lower end of the burring portion 12g provided in the lower water passage hole 12e of the lower heat exchange plate 12 of the most downstream heat exchanger 10s. When inserted into the vessel 1, the upper end opening of the outflow pipe 21 is arranged at least above the opening edge 12h of the lower water passage hole 12e. As a result, even if an assembly error occurs, it is possible to reliably prevent water from short-circuiting to the outflow pipe 21 from the heat exchanger 10 on the downstream side of the most upstream block 5a and flowing out.

また、本実施の形態によれば、流出管21の小径部21aの第1長さL1は、第2長さL2と上記下通水孔12eの周縁部の下凹部66の深さL3との合計長さ(L2+L3)よりも短くなるように設定されている。従って、大径部21bの上端が最下流熱交換体10sの下熱交換プレート12の下通水孔12eに設けられたバーリング部12gの下端に当接すると、流出管21の上端開口部は最上流熱交換体10aの下熱交換プレート12の下通水孔12eの開口縁12hよりも上方で、且つ下凹部66の上端よりも下方に配置される。これにより、流出管21が最上流熱交換体10aの内部空間14内に突出しても、内部空間14を流れる水の流路抵抗の増加を防止して、円滑に最上流ブロック5aの熱交換体10から流出管21に水を流出させることができる。これにより、さらに熱効率を向上させることができる。 Further, according to the present embodiment, the first length L1 of the small diameter portion 21a of the outflow pipe 21 is the second length L2 and the depth L3 of the lower recess 66 of the peripheral edge portion of the lower water passage hole 12e. It is set to be shorter than the total length (L2 + L3). Therefore, when the upper end of the large diameter portion 21b abuts on the lower end of the burring portion 12g provided in the lower water passage hole 12e of the lower heat exchange plate 12 of the most downstream heat exchanger 10s, the upper end opening of the outflow pipe 21 is the maximum. It is arranged above the opening edge 12h of the lower water passage hole 12e of the lower heat exchange plate 12 of the upstream heat exchanger 10a and below the upper end of the lower recess 66. As a result, even if the outflow pipe 21 protrudes into the internal space 14 of the upstream heat exchanger 10a, the heat exchanger of the upstream block 5a is smoothly prevented from increasing the flow path resistance of the water flowing through the internal space 14. Water can be discharged from the 10 to the outflow pipe 21. Thereby, the thermal efficiency can be further improved.

なお、本実施の形態では、最も一端側の一端ブロックである最下流ブロック5dの導入口71に接続された流入管20から最下流ブロック5dに水が流入し、最も他端側の他端ブロックである最上流ブロック5aの導出口72に接続された流出管21から水が流出する。しかしながら、熱媒の流れは逆方向としてもよい。すなわち、最上流ブロック5aに熱媒を流入させ、最下流ブロック5dから熱媒を流出させてもよい。この場合、流入管20が流出管を構成し、流出管21が流入管を構成する。また、最上流熱交換体10aの下熱交換プレート12の下通水孔12eが導入口を構成する。 In the present embodiment, water flows into the most downstream block 5d from the inflow pipe 20 connected to the introduction port 71 of the most downstream block 5d, which is the one end block on the farthest end side, and the other end block on the farthest end side. Water flows out from the outflow pipe 21 connected to the outlet 72 of the most upstream block 5a. However, the flow of the heat medium may be in the opposite direction. That is, the heat medium may flow into the most upstream block 5a and flow out from the most downstream block 5d. In this case, the inflow pipe 20 constitutes the outflow pipe, and the outflow pipe 21 constitutes the inflow pipe. Further, the lower water passage hole 12e of the lower heat exchange plate 12 of the uppermost flow heat exchanger 10a constitutes an introduction port.

(その他の実施の形態)
(1)上記実施の形態では、最上流ブロックは1つの熱交換体から形成される。しかしながら、最上流ブロックは複数の熱交換体から形成されてもよい。この場合、最上流ブロックを構成する複数の熱交換体のうち最下流に位置する熱交換体の所定の下通水孔が導出口を形成する。この熱交換器においても、好ましくは、配管の第1長さL1は、第2長さL2よりも長く、第2長さL2と凹部の深さL3との合計長さ(L2+L3)よりも短く設定される。これにより、熱媒の流路抵抗の増加を防止して、最上流ブロックの最下流に位置する熱交換体の内部空間から熱媒を円滑に配管に流出させることができる。
(Other embodiments)
(1) In the above embodiment, the most upstream block is formed from one heat exchanger. However, the most upstream block may be formed from a plurality of heat exchangers. In this case, a predetermined underwater hole of the heat exchanger located at the most downstream of the plurality of heat exchangers constituting the most upstream block forms an outlet. Also in this heat exchanger, preferably, the first length L1 of the pipe is longer than the second length L2 and shorter than the total length (L2 + L3) of the second length L2 and the depth L3 of the recess. Set. As a result, it is possible to prevent an increase in the flow path resistance of the heat medium and allow the heat medium to smoothly flow out to the pipe from the internal space of the heat exchanger located at the most downstream of the upstream block.

(2)上記実施の形態では、下向きの燃焼面を有するバーナが熱交換器の上方に配設されている。しかしながら、上向きの燃焼面を有するバーナが熱交換器の下方に配設されてもよい。この場合、燃焼排気の流路は上下逆転するため、最上層熱交換体が最下流熱交換体に、最下層熱交換体が最上流熱交換体に対応する。また、燃焼排気はプレート式熱交換器を左右方向に流通してもよい。 (2) In the above embodiment, a burner having a downward combustion surface is arranged above the heat exchanger. However, a burner with an upward combustion surface may be disposed below the heat exchanger. In this case, since the flow path of the combustion exhaust is reversed upside down, the uppermost layer heat exchanger corresponds to the most downstream heat exchanger and the lowermost layer heat exchanger corresponds to the most upstream heat exchanger. Further, the combustion exhaust may flow through the plate heat exchanger in the left-right direction.

(3)上記実施の形態では、複数の熱交換体が上下に積層されている。しかしながら、複数の熱交換体は左右に積層させてもよい。 (3) In the above embodiment, a plurality of heat exchangers are stacked one above the other. However, a plurality of heat exchangers may be stacked on the left and right.

(4)上記実施の形態では、給湯器が用いられているが、ボイラなどの熱源機が用いられてもよい。 (4) In the above embodiment, a water heater is used, but a heat source machine such as a boiler may be used.

1 プレート式熱交換器
5 ブロック
10 熱交換体
12h 開口縁
14 内部空間
21 流出管
71 導入口
72 導出口
1 Plate type heat exchanger 5 blocks 10 heat exchanger 12h Opening edge 14 Internal space 21 Outflow pipe 71 Inlet port 72 Outlet port

Claims (3)

少なくとも1つの熱交換体を有する複数のブロックが積層されて構成されるプレート式熱交換器であって、
前記熱交換体は、前記熱交換体の内部空間を流通する熱媒と前記熱交換体の外部を流通する燃焼排気との間で熱交換を行うように構成され、
前記複数のブロックにおける各ブロックには、前記熱媒を前記各ブロックへ導入する導入口と、前記熱媒を前記各ブロックから導出する導出口とが設けられ、
前記複数のブロックにおける隣接するブロックは、前記熱媒が一方のブロックの前記導出口から他方のブロックの前記導入口に流通するように接続され、
前記隣接するブロックは、前記一方のブロックの前記熱交換体の内部空間を流通する前記熱媒の流路方向が、前記他方のブロックの前記熱交換体の内部を流通する前記熱媒のそれと異なるように構成され、
前記プレート式熱交換器の一部を貫通するように、前記熱交換体の積層方向の一端側から他端側に向かって配管が挿通され、
前記配管の他端側端部は、前記配管が最も他端側に位置する他端ブロックを構成する前記熱交換体の前記内部空間と連通するように、前記他端ブロックの前記導入口または前記導出口のいずれか一方の開口に挿通され、
前記配管の前記他端側端部が挿通される前記他端ブロックの前記開口には、その開口縁から前記一端側に向かって突出する立設壁が設けられているプレート式熱交換器。
A plate heat exchanger in which a plurality of blocks having at least one heat exchanger are laminated.
The heat exchanger is configured to exchange heat between a heat medium flowing through the internal space of the heat exchanger and combustion exhaust flowing outside the heat exchanger.
Each block in the plurality of blocks is provided with an introduction port for introducing the heat medium into each block and an outlet for deriving the heat medium from each block.
Adjacent blocks in the plurality of blocks are connected so that the heat medium flows from the outlet of one block to the inlet of the other block.
In the adjacent blocks, the flow path direction of the heat medium flowing through the internal space of the heat exchanger of the one block is different from that of the heat medium flowing inside the heat exchanger of the other block. Is configured as
A pipe is inserted from one end side to the other end side in the stacking direction of the heat exchanger so as to penetrate a part of the plate heat exchanger.
The other end of the pipe is the introduction port of the other end block or the introduction port of the other end block so as to communicate with the internal space of the heat exchanger constituting the other end block in which the pipe is located on the other end side. It is inserted through one of the outlets and is inserted into one of the outlets.
A plate heat exchanger provided with an upright wall projecting from the opening edge toward the one end side at the opening of the other end block through which the other end side end portion of the pipe is inserted.
請求項1に記載のプレート式熱交換器において、
前記配管に設けられた配管側位置決め部と最も一端側に位置する一端ブロックに設けられたブロック側位置決め部とが当接することによって、前記一端ブロックからの前記配管の挿通長が規制され、
前記配管は、前記配管側位置決め部から他端側開口部までの第1長さL1が、前記ブロック側位置決め部から前記立設壁の基端部までの第2長さL2よりも長くなるように設定されているプレート式熱交換器。
In the plate heat exchanger according to claim 1,
The insertion length of the pipe from the one end block is restricted by the contact between the pipe side positioning portion provided on the pipe and the block side positioning portion provided on the one end block located on the one end side.
In the pipe, the first length L1 from the piping side positioning portion to the other end side opening is longer than the second length L2 from the block side positioning portion to the base end portion of the erection wall. Plate heat exchanger set in.
請求項2に記載のプレート式熱交換器において、
前記他端ブロックは、前記配管が挿通される前記開口の周縁部に、前記一端側に向かって凹となる凹部を有し、
前記配管は、前記第1長さL1が、前記第2長さL2と前記凹部の深さL3との合計長さ(L2+L3)よりも短くなるように設定されているプレート式熱交換器。

In the plate heat exchanger according to claim 2,
The other end block has a concave portion that becomes concave toward one end side at the peripheral edge portion of the opening through which the pipe is inserted.
The pipe is a plate heat exchanger in which the first length L1 is set to be shorter than the total length (L2 + L3) of the second length L2 and the depth L3 of the recess.

JP2020149526A 2020-09-07 2020-09-07 Plate type heat exchanger Pending JP2022044083A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020149526A JP2022044083A (en) 2020-09-07 2020-09-07 Plate type heat exchanger
CN202110814064.5A CN114152120A (en) 2020-09-07 2021-07-19 Plate heat exchanger
KR1020210109475A KR20220032481A (en) 2020-09-07 2021-08-19 Plate type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020149526A JP2022044083A (en) 2020-09-07 2020-09-07 Plate type heat exchanger

Publications (1)

Publication Number Publication Date
JP2022044083A true JP2022044083A (en) 2022-03-17

Family

ID=80462333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020149526A Pending JP2022044083A (en) 2020-09-07 2020-09-07 Plate type heat exchanger

Country Status (3)

Country Link
JP (1) JP2022044083A (en)
KR (1) KR20220032481A (en)
CN (1) CN114152120A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198645B2 (en) 2018-11-27 2023-01-04 リンナイ株式会社 Plate heat exchanger and heat source machine

Also Published As

Publication number Publication date
CN114152120A (en) 2022-03-08
KR20220032481A (en) 2022-03-15

Similar Documents

Publication Publication Date Title
JP6291591B2 (en) Condensing gas boiler heat exchanger
JP2017110887A (en) Plate type heat exchanger, water heating device, and plate type heat exchanger manufacturing method
US11365940B2 (en) Plate-type heat exchanger and heat source apparatus
US11118842B2 (en) Heat exchanger with a plurality of non-communicating gas vents
JP2017508123A (en) Heat exchanger and method of manufacturing unit plate constituting heat exchanger
US10969178B2 (en) Heat exchanger
JP7097222B2 (en) Heat source machine
JP2022044083A (en) Plate type heat exchanger
JP2022061054A (en) Plate heat exchanger
US11118811B2 (en) Heat source device
JP7385110B2 (en) hot water equipment
JP7382202B2 (en) plate heat exchanger
JP7265962B2 (en) plate heat exchanger
JP7373332B2 (en) plate heat exchanger
US11454421B2 (en) Heat exchanger and water heating apparatus
JP2020169758A (en) Water heater
JP2020085350A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240517