JP2022061054A - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
JP2022061054A
JP2022061054A JP2020168811A JP2020168811A JP2022061054A JP 2022061054 A JP2022061054 A JP 2022061054A JP 2020168811 A JP2020168811 A JP 2020168811A JP 2020168811 A JP2020168811 A JP 2020168811A JP 2022061054 A JP2022061054 A JP 2022061054A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
plate
opening
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020168811A
Other languages
Japanese (ja)
Inventor
貴大 小野
Takahiro Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2020168811A priority Critical patent/JP2022061054A/en
Priority to US17/411,744 priority patent/US20220107144A1/en
Priority to KR1020210131879A priority patent/KR20220045914A/en
Publication of JP2022061054A publication Critical patent/JP2022061054A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/083Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning capable of being taken apart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/0005Recuperative heat exchangers the heat being recuperated from exhaust gases for domestic or space-heating systems
    • F28D21/0007Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0024Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for combustion apparatus, e.g. for boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

To provide a plate heat exchanger with less assembly failure and high heat efficiency.SOLUTION: A plate heat exchanger 1 is composed of a plurality of heat exchange bodies 10 laminated together, and adjacent heat exchangers 10 are laminated so that an internal space 14 of one heat exchanger 10 and an internal space 14 of the other heat exchanger 10 communicate with each other via one opening 12e and the other opening 11e provided in each heat exchanger 10. The one heat exchanger 10 has an insertion wall 12j inserted into the opposite opening 11e of the other heat exchanger 10 at the peripheral part of the one opening 12e, and the tip part of the insertion wall 12j has a discontinuous protrusion height in a circumferential direction.SELECTED DRAWING: Figure 8

Description

本発明は、複数の熱交換体を積層して構成されるプレート式熱交換器に関する。 The present invention relates to a plate heat exchanger configured by stacking a plurality of heat exchangers.

上熱交換プレートと下熱交換プレートとが接合された複数の熱交換体を備えるプレート式熱交換器が提案されている(例えば、特許文献1)。各熱交換体は、上熱交換プレートと下熱交換プレートとの間に熱媒が流通する内部空間と、内部空間を非連通状態で貫通し、燃焼排気が上下方向に流通する複数の貫通孔とを有する。 A plate-type heat exchanger including a plurality of heat exchangers in which an upper heat exchange plate and a lower heat exchange plate are joined has been proposed (for example, Patent Document 1). Each heat exchanger has a plurality of through holes through which the heat medium flows between the upper heat exchange plate and the lower heat exchange plate and the internal space in a non-communication state, and the combustion exhaust flows in the vertical direction. And have.

各熱交換体は、内部空間と連通する少なくとも1つの開口を有する。また、各開口は、隣接する熱交換体の開口と対向するように配置されている。このため、上記プレート式熱交換器における隣接する熱交換体は、熱媒が開口を介して下方から上方に向かって流れるように相互に連通されている。また、燃焼排気のガス流路の最下流に位置する最下流熱交換体の1つの開口に熱媒を供給する流入管が挿通されている。さらに、最下流熱交換体の他の1つの開口から最上流熱交換体の1つの開口まで流出管が挿通されている。従って、このプレート式熱交換器では、流入管から最下流熱交換体へ流入する熱媒は、最下流熱交換体から最上流熱交換体に向かって積層された熱交換体内を流れ、最上流熱交換体の開口から流出管に流出する。これにより、熱効率を高めることができる。 Each heat exchanger has at least one opening that communicates with the interior space. Further, each opening is arranged so as to face the opening of the adjacent heat exchanger. Therefore, the adjacent heat exchangers in the plate heat exchanger are communicated with each other so that the heat medium flows from the lower side to the upper side through the opening. Further, an inflow pipe for supplying a heat medium is inserted through one opening of the most downstream heat exchanger located at the most downstream of the gas flow path of the combustion exhaust. Further, an outflow pipe is inserted from the other opening of the most downstream heat exchanger to one opening of the most upstream heat exchanger. Therefore, in this plate heat exchanger, the heat medium flowing from the inflow pipe to the most downstream heat exchanger flows through the heat exchanger laminated from the most downstream heat exchanger toward the most upstream heat exchanger, and flows to the most upstream. It flows out to the outflow tube from the opening of the heat exchanger. This makes it possible to increase the thermal efficiency.

特開2020-85362号公報Japanese Unexamined Patent Publication No. 2020-85362

ところで、特許文献1のプレート式熱交換器を製造する場合、多数の上下熱交換プレートを積層させて、上下熱交換プレートの所定箇所をロウ材等の接合手段により接合する必要がある。そのため、組付け誤差が生じやすく、隣接する熱交換体の開口がずれて配置されやすい。このような開口のずれが生じると、内部空間から熱交換体の外部へ熱媒が漏洩するという問題がある。 By the way, in the case of manufacturing the plate type heat exchanger of Patent Document 1, it is necessary to stack a large number of upper and lower heat exchange plates and join a predetermined portion of the upper and lower heat exchange plates by a joining means such as a brazing material. Therefore, an assembly error is likely to occur, and the openings of adjacent heat exchangers are likely to be displaced and arranged. When such a deviation of the opening occurs, there is a problem that the heat medium leaks from the internal space to the outside of the heat exchanger.

本発明は、上記課題を解決するためになされたものであり、本発明の目的は、組付け不良の少ない、高熱効率のプレート式熱交換器を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a plate heat exchanger having high thermal efficiency with few assembly defects.

本発明によれば、
複数の熱交換体を積層して構成されるプレート式熱交換器であって、
各熱交換体は、前記熱交換体の内部空間を流通する第1流体と、前記熱交換体の外部を流通する第2流体との間で熱交換を行うように構成され、
前記複数の熱交換体における隣接する熱交換体は、一方の熱交換体の前記内部空間と他方の熱交換体の前記内部空間とが前記一方の熱交換体に設けられた一方開口と前記他方の熱交換体に設けられた他方開口を介して連通するように積層されており、
前記一方の熱交換体は、前記一方開口の周縁部に、前記一方の熱交換体と前記他方の熱交換体とが積層されたとき、前記他方開口に挿入される挿入壁を有し、
前記挿入壁は、先端部が周方向で不連続な突出高さを有するように形成されているプレート式熱交換器が提供される。
According to the present invention
A plate-type heat exchanger composed of a stack of multiple heat exchangers.
Each heat exchanger is configured to exchange heat between a first fluid flowing through the internal space of the heat exchanger and a second fluid flowing outside the heat exchanger.
In the adjacent heat exchangers in the plurality of heat exchangers, the internal space of one heat exchanger and the internal space of the other heat exchanger are provided in one of the heat exchangers with one opening and the other. It is laminated so as to communicate with each other through the other opening provided in the heat exchanger of.
The one heat exchanger has an insertion wall inserted into the other opening when the one heat exchanger and the other heat exchanger are laminated on the peripheral edge of the one opening.
The insertion wall is provided with a plate heat exchanger in which the tip portion is formed so as to have a discontinuous protrusion height in the circumferential direction.

上記プレート式熱交換器によれば、一方開口の周縁部には他方開口に挿入される挿入壁が設けられているから、一方の熱交換体と他方の熱交換体とが積層されたとき、組付け誤差により対向する一方開口と他方開口とがずれて配置されると、挿入壁が他方開口の周縁部に乗り上げる。そのため、隣接する熱交換体の間の隙間は適切な積層状態におけるそれよりも大きくなる。これにより、組付け不良を容易に確認することができる。 According to the plate heat exchanger, since the peripheral portion of one opening is provided with an insertion wall to be inserted into the other opening, when one heat exchanger and the other heat exchanger are laminated, when the other heat exchanger is laminated. When the facing one opening and the other opening are misaligned due to an assembly error, the insertion wall rides on the peripheral edge of the other opening. Therefore, the gap between adjacent heat exchangers is larger than that in a proper laminated state. This makes it possible to easily confirm the assembly failure.

一方、一方開口及び他方開口は各熱交換体の内部空間と連通しており、挿入壁は他方開口に挿入されるため、他方の熱交換体の内部空間に挿入壁が突出する。そのため、挿入壁によって他方開口近傍の内部空間を流れる第1流体の流路抵抗が増加して熱効率が低下する虞がある。 On the other hand, the one opening and the other opening communicate with the internal space of each heat exchanger, and the insertion wall is inserted into the other opening, so that the insertion wall protrudes into the internal space of the other heat exchanger. Therefore, the insertion wall may increase the flow resistance of the first fluid flowing through the internal space near the other opening and reduce the thermal efficiency.

しかしながら、上記プレート式熱交換器によれば、挿入壁の先端部は周方向で不連続な突出高さを有するから、挿入壁の先端部には周方向に一定幅の切欠が形成される。このため、挿入壁が他方の熱交換体の内部空間に突出していても、第1流体は切欠を通って流通するから、他方開口近傍の第1流体の流路の減少は小さい。これにより、挿入壁による内部空間を流れる第1流体の流路抵抗の増加を抑制して、熱効率の低下を防止することができる。 However, according to the plate heat exchanger, since the tip of the insertion wall has a discontinuous protruding height in the circumferential direction, a notch having a constant width is formed in the tip of the insertion wall in the circumferential direction. Therefore, even if the insertion wall protrudes into the internal space of the other heat exchanger, the first fluid flows through the notch, so that the decrease in the flow path of the first fluid near the other opening is small. As a result, it is possible to suppress an increase in the flow path resistance of the first fluid flowing through the internal space due to the insertion wall and prevent a decrease in thermal efficiency.

好ましくは、上記プレート式熱交換器において、
前記各熱交換体は、一組の熱交換プレートを接合することによって形成され、
前記一組の熱交換プレートのうち一方の熱交換プレートは、周縁に前記熱交換体の積層方向の一方側に立設する外周フランジ部を有し、
前記一方の熱交換プレートと、前記一方側に隣接する熱交換体における前記一方の熱交換プレートに近い側の近接熱交換プレートとは、前記外周フランジ部と前記近接熱交換プレートの周縁とが前記熱交換体の積層方向において所定の重ね代で重なり合うように積層され、
前記挿入壁は、前記先端部の最大突出高さが前記重ね代よりも大きくなるように設定される。
Preferably, in the plate heat exchanger,
Each of the heat exchangers is formed by joining a set of heat exchange plates.
One of the heat exchange plates in the set of heat exchange plates has an outer peripheral flange portion that stands on one side of the heat exchanger in the stacking direction on the peripheral edge.
The one heat exchange plate and the proximity heat exchange plate on the side close to the one heat exchange plate in the heat exchanger adjacent to the one side have the outer peripheral flange portion and the peripheral edge of the proximity heat exchange plate. The heat exchangers are laminated so as to overlap each other with a predetermined stacking allowance in the stacking direction.
The insertion wall is set so that the maximum protruding height of the tip portion is larger than the stacking allowance.

上記プレート式熱交換器によれば、挿入壁は、先端部の最大突出高さが重ね代よりも大きくなるように設定されるから、組付け誤差により挿入壁の先端部が他方開口の周縁部に乗り上げると、隣接する熱交換体の周縁の間に一定の高さの隙間が生じる。これにより、確実に組付け不良を確認することができる。 According to the plate heat exchanger, the insertion wall is set so that the maximum protrusion height of the tip portion is larger than the stacking allowance. Therefore, due to an assembly error, the tip portion of the insertion wall is the peripheral portion of the other opening. When riding on, a gap of a certain height is created between the peripheral edges of the adjacent heat exchangers. As a result, it is possible to reliably confirm the assembly failure.

好ましくは、上記プレート式熱交換器において、
前記挿入壁は、前記先端部が基端部よりも前記一方開口の内方に位置するように形成される。
Preferably, in the plate heat exchanger,
The insertion wall is formed so that the tip portion is located inward of the one-sided opening with respect to the proximal end portion.

上記プレート式熱交換器によれば、組付け時に挿入壁が他方開口内に導かれやすくなる。これにより、さらに組付け不良を低減することができる。 According to the plate heat exchanger, the insertion wall is easily guided into the other opening during assembly. This makes it possible to further reduce assembly defects.

好ましくは、上記プレート式熱交換器において、
前記他方の熱交換体は、前記他方開口の周縁部に、前記一方開口側に向かって凹となる凹部を有する。
Preferably, in the plate heat exchanger,
The other heat exchanger has a recess on the peripheral edge of the other opening that is concave toward the one opening side.

上記プレート式熱交換器によれば、他方の熱交換体は他方開口の周縁部に一方開口側に向かって凹となる凹部を有するから、挿入壁が他方開口に挿入されたとき、挿入壁の先端部が他方の熱交換体の内部空間に大きく突出するのを防止することができる。これにより、他方開口近傍の内部空間を流れる第1流体の流路抵抗の増加を抑えることができる。 According to the plate heat exchanger, the other heat exchanger has a recess in the peripheral edge of the other opening that is concave toward the one opening side, so that when the insertion wall is inserted into the other opening, the insertion wall It is possible to prevent the tip portion from protruding significantly into the internal space of the other heat exchanger. As a result, it is possible to suppress an increase in the flow path resistance of the first fluid flowing in the internal space near the other opening.

以上のように、本発明によれば、組付け不良の少ない高熱効率のプレート式熱交換器を製造することができる。 As described above, according to the present invention, it is possible to manufacture a plate-type heat exchanger having high heat efficiency with few assembly defects.

図1は、本発明の実施の形態に係る熱交換器を有する熱源機を示す概略部分切欠斜視図である。FIG. 1 is a schematic partially cutaway perspective view showing a heat source machine having a heat exchanger according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る熱交換器を示す概略部分分解斜視図である。FIG. 2 is a schematic partially disassembled perspective view showing a heat exchanger according to an embodiment of the present invention. 図3は、本発明の実施の形態に係る熱交換器における燃焼排気と熱媒の流れを説明する概略模式図である。FIG. 3 is a schematic schematic diagram illustrating a flow of combustion exhaust and a heat medium in the heat exchanger according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る熱交換器における燃焼排気のガス流路の上流域における2つの熱交換体を示す概略分解斜視図である。FIG. 4 is a schematic exploded perspective view showing two heat exchangers in the upstream region of the gas flow path of the combustion exhaust in the heat exchanger according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る熱交換器における熱交換体を構成する一方の熱交換プレートの上面の一例を示す概略平面図である。FIG. 5 is a schematic plan view showing an example of the upper surface of one of the heat exchange plates constituting the heat exchanger in the heat exchanger according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る熱交換器における熱交換体を構成する他方の熱交換プレートの上面の一例を示す概略平面図である。FIG. 6 is a schematic plan view showing an example of the upper surface of the other heat exchange plate constituting the heat exchanger in the heat exchanger according to the embodiment of the present invention. 図7は、図6の他方の熱交換プレートの下面の一例を示す概略部分斜視図である。FIG. 7 is a schematic partial perspective view showing an example of the lower surface of the other heat exchange plate of FIG. 図8は、本発明の実施の形態に係る熱交換器を示す概略部分断面図である。FIG. 8 is a schematic partial cross-sectional view showing the heat exchanger according to the embodiment of the present invention. 図9は、本発明の他の実施の形態に係る熱交換器を示す概略部分断面図である。FIG. 9 is a schematic partial cross-sectional view showing a heat exchanger according to another embodiment of the present invention.

以下、本実施の形態に係るプレート式熱交換器及びそれを備える熱源機について、添付図面を参照しながら具体的に説明する。 Hereinafter, the plate heat exchanger according to the present embodiment and the heat source machine provided with the plate heat exchanger will be specifically described with reference to the attached drawings.

図1に示すように、本実施の形態に係る熱源機は、流入管20から熱交換器1内に流入する第1流体である水(熱媒)を、バーナ31で生成される第2流体である燃焼排気により加熱し、流出管21を通じてカランやシャワーなどの温水利用先(図示せず)に供給する給湯器である。図示しないが、給湯器は、ケーシング内に組み込まれる。なお、熱媒として、他の熱媒(例えば、不凍液)が用いられてもよい。 As shown in FIG. 1, in the heat source machine according to the present embodiment, water (heat medium), which is the first fluid flowing into the heat exchanger 1 from the inflow pipe 20, is generated by the burner 31 as a second fluid. It is a water heater that is heated by the combustion exhaust and supplied to a hot water utilization destination (not shown) such as a curan or a shower through an outflow pipe 21. Although not shown, the water heater is built into the casing. In addition, another heat medium (for example, antifreeze liquid) may be used as a heat medium.

この給湯器では、上方から順に、バーナ31の外郭を構成するバーナボディ3、燃焼室2、熱交換器1、及びドレン受け40が配設される。また、バーナボディ3の一方側方(図1では、右側)には、バーナボディ3内に燃料ガスと空気との混合ガスを送り込む燃焼ファンを備えるファンケース4が配設される。また、バーナボディ3の他方側方(図1では、左側)には、ドレン受け40と連通する排気ダクト41が配設される。排気ダクト41は、ドレン受け40に排出される燃焼排気を給湯器の外部に排出する。 In this water heater, a burner body 3, a combustion chamber 2, a heat exchanger 1, and a drain receiver 40, which form the outer shell of the burner 31, are arranged in this order from above. Further, on one side of the burner body 3 (on the right side in FIG. 1), a fan case 4 including a combustion fan for sending a mixed gas of fuel gas and air into the burner body 3 is arranged. Further, an exhaust duct 41 communicating with the drain receiver 40 is arranged on the other side of the burner body 3 (on the left side in FIG. 1). The exhaust duct 41 discharges the combustion exhaust discharged to the drain receiver 40 to the outside of the water heater.

なお、本明細書では、ファンケース4及び排気ダクト41がバーナボディ3の側方にそれぞれ配置された状態で給湯器を見たとき、奥行方向が前後方向に対応し、幅方向が左右方向に対応し、高さ方向が上下方向に対応する。 In this specification, when the water heater is viewed with the fan case 4 and the exhaust duct 41 arranged on the sides of the burner body 3, the depth direction corresponds to the front-rear direction and the width direction corresponds to the left-right direction. Corresponding, the height direction corresponds to the vertical direction.

バーナボディ3は、平面視略小判形状を有し、例えば、ステンレス系金属で形成される。図示しないが、バーナボディ3は、下方に開放している。 The burner body 3 has a substantially oval shape in a plan view, and is formed of, for example, a stainless-based metal. Although not shown, the burner body 3 is open downward.

ファンケース4と連通するガス導入部は、バーナボディ3の中央部から上方に突出している。バーナボディ3は、下向きの燃焼面30を有する平面状のバーナ31を備える。燃焼ファンを作動させることにより、混合ガスがバーナボディ3内に供給される。 The gas introduction portion communicating with the fan case 4 projects upward from the central portion of the burner body 3. The burner body 3 includes a planar burner 31 having a downward combustion surface 30. By operating the combustion fan, the mixed gas is supplied into the burner body 3.

バーナ31は、全一次空気燃焼式であり、例えば、下向きに開口する多数の炎孔(図示せず)を有するセラミックス製の燃焼プレート、または金属繊維をネット状に編み込んだ燃焼マットからなる。バーナボディ3内に供給された混合ガスが、燃焼ファンの給気圧によって、下向きの燃焼面30から下方へ向けて噴出される。この混合ガスを着火させることにより、バーナ31の燃焼面30に火炎が形成され、燃焼排気が生成される。従って、バーナ31から噴出される燃焼排気は、燃焼室2を介して熱交換器1に送り込まれる。次いで、熱交換器1を通過した燃焼排気は、ドレン受け40及び排気ダクト41を通って給湯器の外部に排出される。 The burner 31 is an all-primary air-combustion type, and comprises, for example, a ceramic combustion plate having a large number of flame holes (not shown) that open downward, or a combustion mat in which metal fibers are woven into a net. The mixed gas supplied into the burner body 3 is ejected downward from the downward combustion surface 30 by the supply pressure of the combustion fan. By igniting this mixed gas, a flame is formed on the combustion surface 30 of the burner 31, and combustion exhaust is generated. Therefore, the combustion exhaust gas ejected from the burner 31 is sent to the heat exchanger 1 via the combustion chamber 2. Next, the combustion exhaust gas that has passed through the heat exchanger 1 is discharged to the outside of the water heater through the drain receiver 40 and the exhaust duct 41.

すなわち、この熱交換器1では、バーナ31が設けられている上方側が燃焼排気のガス流路の上流側に対応し、バーナ31が設けられている側と反対側の下方側が燃焼排気のガス流路の下流側に対応する。 That is, in this heat exchanger 1, the upper side where the burner 31 is provided corresponds to the upstream side of the gas flow path of the combustion exhaust, and the lower side opposite to the side where the burner 31 is provided corresponds to the gas flow of the combustion exhaust. Corresponds to the downstream side of the road.

燃焼室2は、平面視略小判形状を有する。燃焼室2は、例えば、ステンレス系金属で形成される。燃焼室2は、上下に開放するように、一枚の略長方形状の金属板を湾曲させて両端部を接合することにより形成される。 The combustion chamber 2 has a substantially oval shape in a plan view. The combustion chamber 2 is made of, for example, a stainless steel. The combustion chamber 2 is formed by bending one substantially rectangular metal plate and joining both ends so as to open up and down.

図2に示すように、熱交換器1は、平面視略小判形状を有する。熱交換器1は、複数(ここでは、13層)の薄板状の熱交換体10が積層されたプレート式熱交換器である。なお、熱交換器1は、その周囲を覆う筐体を有してもよい。 As shown in FIG. 2, the heat exchanger 1 has a substantially oval shape in a plan view. The heat exchanger 1 is a plate-type heat exchanger in which a plurality of (here, 13 layers) thin plate-shaped heat exchangers 10 are laminated. The heat exchanger 1 may have a housing that covers the periphery thereof.

図2及び図3に示すように、熱交換器1は、1または複数の熱交換体10を有する複数(ここでは、4段)のブロック5を上下方向に積み重ねて構成されている(以下、これらのブロック5を総称する場合、単に「ブロック5」という。また、燃焼排気のガス流路に従って、最上段のブロック5を、「最上流ブロック5a」、中段のブロック5を、上流側から順に「第1下流側ブロック5b」、「第2下流側ブロック5c」、最下段のブロック5を、「最下流ブロック5d」という)。最上流ブロック5a及び第1下流側ブロック5bはそれぞれ、1つの熱交換体10から構成されている。また、第2下流側ブロック5cは、5つの熱交換体10が積層されて構成されており、最下流ブロック5dは、6つの熱交換体10が積層されて構成されている。なお、熱交換器1は、3つ以下または5つ以上のブロック5から構成されてもよい。後述するように、1つのブロック5が複数の熱交換体10から構成される場合、水は、その1つのブロック5を構成する各熱交換体10の内部を同一方向に並列に流れる。また、各ブロック5における隣接する熱交換体10は、水が下方から上方に向かって流れるように相互に連通されている。また、隣接するブロック5は、水が下方から上方に向かって流れるように相互に連通されている。また、隣接するブロック5は、一方のブロック5における各熱交換体10の内部を流れる水の流路方向が、他方のブロック5における各熱交換体10の内部を流れる水の流路方向と逆方向となるように構成されている。従って、この熱交換器1は、ブロック5の段数に応じて4つの流路(4パス)を有するように、各ブロック5の水の流路は隣接するブロック5間で折り返されている。これにより、熱交換器1内に長い水の流路が形成され、熱効率を向上させることができる。 As shown in FIGS. 2 and 3, the heat exchanger 1 is configured by stacking a plurality of (here, four stages) blocks 5 having one or a plurality of heat exchangers 10 in the vertical direction (hereinafter, 4 stages). When these blocks 5 are collectively referred to, they are simply referred to as "block 5". Further, according to the gas flow path of the combustion exhaust, the uppermost block 5 is referred to as "uppermost flow block 5a", and the middle block 5 is sequentially referred to from the upstream side. "First downstream block 5b", "second downstream block 5c", and the lowest block 5 are referred to as "most downstream block 5d"). The most upstream block 5a and the first downstream block 5b are each composed of one heat exchanger 10. Further, the second downstream block 5c is configured by stacking five heat exchangers 10, and the most downstream block 5d is configured by stacking six heat exchangers 10. The heat exchanger 1 may be composed of three or less or five or more blocks 5. As will be described later, when one block 5 is composed of a plurality of heat exchangers 10, water flows in parallel in the same direction inside each heat exchanger 10 constituting the one block 5. Further, the adjacent heat exchangers 10 in each block 5 communicate with each other so that water flows from the lower side to the upper side. Further, the adjacent blocks 5 communicate with each other so that water flows from the lower side to the upper side. Further, in the adjacent blocks 5, the direction of the flow path of water flowing inside each heat exchanger 10 in one block 5 is opposite to the direction of the flow path of water flowing inside each heat exchanger 10 in the other block 5. It is configured to be in the direction. Therefore, the water flow path of each block 5 is folded back between the adjacent blocks 5 so that the heat exchanger 1 has four flow paths (4 paths) according to the number of stages of the blocks 5. As a result, a long water flow path is formed in the heat exchanger 1, and the thermal efficiency can be improved.

次に、熱交換体10の構成について説明する。各熱交換体10は、上下貫通孔の位置やコーナ部の通水孔の有無などの一部の構成が相違する以外は、共通の構成を有する一組の上熱交換プレート11と下熱交換プレート12とを上下方向に重ね合わせて、後述する所定箇所をロウ材等の接合手段で接合することにより形成される。このため、以下では、1つの熱交換体10の構成を主に説明する。なお、各図面は、必ずしも実際の寸法を示したものでなく、実施形態を限定するものではない。 Next, the configuration of the heat exchanger 10 will be described. Each heat exchanger 10 exchanges lower heat with a set of upper heat exchange plates 11 having a common configuration, except that some configurations such as the positions of upper and lower through holes and the presence or absence of water passage holes in the corners are different. It is formed by superimposing the plate 12 in the vertical direction and joining a predetermined portion described later by a joining means such as a brazing material. Therefore, in the following, the configuration of one heat exchanger 10 will be mainly described. It should be noted that each drawing does not necessarily show the actual dimensions and does not limit the embodiment.

図2及び図4~図6に示すように、上下熱交換プレート11,12は、平面視略小判形状を有する。上下熱交換プレート11,12は、例えば、所定の厚さを有するステンレス製の金属板から形成される。上下熱交換プレート11,12はそれぞれ、コーナ部を除くプレートの略全面に形成された多数の上貫通孔11a,下貫通孔12aと、上下貫通孔11a,12aの周縁部に形成された上貫通孔フランジ部11c,下貫通孔フランジ部12cとを有する。 As shown in FIGS. 2 and 4 to 6, the upper and lower heat exchange plates 11 and 12 have a substantially oval shape in a plan view. The upper and lower heat exchange plates 11 and 12 are formed of, for example, a stainless steel metal plate having a predetermined thickness. The upper and lower heat exchange plates 11 and 12 have a large number of upper through holes 11a and lower through holes 12a formed on substantially the entire surface of the plate excluding the corners, and upper through holes 11a and 12a formed on the peripheral edges of the upper and lower through holes 11a and 12a, respectively. It has a hole flange portion 11c and a lower through hole flange portion 12c.

上下熱交換プレート11,12の周縁にはそれぞれ、外周フランジ部として上方に向かって突出する上周縁接合部W1,下周縁接合部W2が形成されている。上下周縁接合部W1,W2はそれぞれ、上端部が基端部よりも斜め上外方に位置するように上方に向かって所定角度で広がる傾斜壁で形成されている。このため、上下熱交換プレート11,12を積層させると、1つの熱交換体10において、上熱交換プレート11が下熱交換プレート12に内嵌する。また、上方の熱交換体10の下熱交換プレート12が下方に隣接する熱交換体10の上熱交換プレート11に内嵌する。従って、複数の上下熱交換プレート11,12を積層させると、上下熱交換プレート11,12は、熱交換体10の積層方向において、これらの周縁接合部W1,W2が所定の重ね代Hpで重なり合うように配置される(図8参照)。 Upper peripheral edge joints W1 and lower peripheral edge joints W2 projecting upward as outer peripheral flanges are formed on the peripheral edges of the upper and lower heat exchange plates 11 and 12, respectively. The upper and lower peripheral edge joints W1 and W2 are each formed of an inclined wall that spreads upward at a predetermined angle so that the upper end portion is located diagonally upward and outward from the base end portion. Therefore, when the upper and lower heat exchange plates 11 and 12 are laminated, the upper heat exchange plate 11 is internally fitted in the lower heat exchange plate 12 in one heat exchanger 10. Further, the lower heat exchange plate 12 of the upper heat exchanger 10 is fitted inside the upper heat exchange plate 11 of the heat exchanger 10 adjacent to the lower side. Therefore, when a plurality of upper and lower heat exchange plates 11 and 12 are laminated, the peripheral joint portions W1 and W2 of the upper and lower heat exchange plates 11 and 12 overlap each other at a predetermined stacking allowance Hp in the stacking direction of the heat exchanger 10. (See FIG. 8).

上下熱交換プレート11,12は、1つの熱交換体10において、下周縁接合部W2と上熱交換プレート11の下面周縁とを接合させたときに、上下熱交換プレート11,12が所定高さの間隙を存して離間するように設定されている。また、上下熱交換プレート11,12は、上周縁接合部W1と上方に隣接する熱交換体10の下熱交換プレート12の下面周縁とを接合させたときに、下方の熱交換体10の上熱交換プレート11と、上方に隣接する熱交換体10の下熱交換プレート12とが所定高さの間隙を存して離間するように設定されている。 When the lower peripheral edge joint portion W2 and the lower peripheral edge of the upper heat exchange plate 11 are joined to each other in one heat exchanger 10, the upper and lower heat exchange plates 11 and 12 have a predetermined height. It is set so that there is a gap between them. Further, the upper and lower heat exchange plates 11 and 12 are above the lower heat exchanger 10 when the upper peripheral edge joint portion W1 and the lower peripheral edge of the lower heat exchange plate 12 of the heat exchanger 10 adjacent above are joined. The heat exchange plate 11 and the lower heat exchange plate 12 of the heat exchanger 10 adjacent to the upper side are set so as to have a gap of a predetermined height.

従って、上下熱交換プレート11,12を接合させることにより、所定の高さの内部空間14が形成される(図3参照)。また、複数の熱交換体10を接合させることにより、上下に隣接する熱交換体10の間には、所定の高さの排気空間15が形成される(図3参照)。 Therefore, by joining the upper and lower heat exchange plates 11 and 12, an internal space 14 having a predetermined height is formed (see FIG. 3). Further, by joining the plurality of heat exchangers 10, an exhaust space 15 having a predetermined height is formed between the heat exchangers 10 adjacent to the top and bottom (see FIG. 3).

上下熱交換プレート11,12の周縁領域を除いた領域には、平面視略正方形状の上下貫通孔11a,12aが前後及び左右方向に所定の間隔で千鳥状に開設されている。平面視略正方形状の上下貫通孔11a,12aの周縁部に形成された上下貫通孔フランジ部11c,12cは、上下貫通孔11a,12aの開口縁から周方向外方に略水平に広がり、平面視略正方形状の外形を有する。また、上下熱交換プレート11,12の周縁領域には、平面視略五角形状の上下貫通孔11a,12aが前後または左右方向に所定の間隔で開設されている。平面視略五角形状の上下貫通孔11a,12aの周縁部に形成された上下貫通孔フランジ部11c,12cは、上下貫通孔11a,12aの開口縁から周方向外方に略水平に広がり、平面視略五角形状の外形を有する。上下貫通孔11a,12aは、略円形状や略楕円形状などの他の形状を有してもよい。なお、全ての上下貫通孔11a,12aは同一の大きさ及び形状を有してもよいし、全ての上下貫通孔フランジ部11c,12cは同一の大きさ及び形状を有してもよい。 In the region excluding the peripheral region of the vertical heat exchange plates 11 and 12, the vertical through holes 11a and 12a having a substantially square shape in a plan view are provided in a staggered manner at predetermined intervals in the front-rear and left-right directions. The upper and lower through hole flange portions 11c and 12c formed on the peripheral portions of the upper and lower through holes 11a and 12a having a substantially square shape in a plan view extend substantially horizontally outward in the circumferential direction from the opening edges of the upper and lower through holes 11a and 12a and are flat. It has a substantially square outer shape. Further, in the peripheral region of the upper and lower heat exchange plates 11 and 12, upper and lower through holes 11a and 12a having a substantially pentagonal shape in a plan view are provided at predetermined intervals in the front-rear direction or the left-right direction. The upper and lower through hole flange portions 11c and 12c formed on the peripheral edges of the upper and lower through holes 11a and 12a having a substantially pentagonal shape in a plan view extend substantially horizontally outward in the circumferential direction from the opening edges of the upper and lower through holes 11a and 12a and are flat. It has a substantially pentagonal outer shape. The upper and lower through holes 11a and 12a may have other shapes such as a substantially circular shape and a substantially elliptical shape. All the upper and lower through holes 11a and 12a may have the same size and shape, and all the upper and lower through hole flange portions 11c and 12c may have the same size and shape.

上下貫通孔11a,12a及び上下貫通孔フランジ部11c,12cはそれぞれ、上下熱交換プレート11,12が重ね合わされたときに相互に対応する位置に形成されている。また、上下貫通孔11a,12a及び上下貫通孔フランジ部11c,12cは、絞り加工により、上下熱交換プレート11,12が重ね合わされたときに対向する上下貫通孔フランジ部11c,12cが面接触するように、内方に突出する段差部の底面に形成されている。 The upper and lower through holes 11a and 12a and the upper and lower through hole flange portions 11c and 12c are formed at positions corresponding to each other when the upper and lower heat exchange plates 11 and 12, respectively. Further, the upper and lower through holes 11a and 12a and the upper and lower through hole flange portions 11c and 12c are in surface contact with the upper and lower through hole flange portions 11c and 12c facing each other when the upper and lower heat exchange plates 11 and 12 are overlapped by drawing. As described above, it is formed on the bottom surface of the stepped portion protruding inward.

従って、上下熱交換プレート11,12が重ね合わされた状態で、上下貫通孔フランジ部11c,12cがロウ材等の接合手段により接合されると、上下貫通孔フランジ部11c,12cによって内部空間14を閉塞するフランジ部16が形成される(図8参照)。また、上下貫通孔11a,12aによって内部空間14を非連通状態で貫通する貫通孔13が形成される。 Therefore, when the upper and lower through-hole flange portions 11c and 12c are joined by a joining means such as a brazing material in a state where the upper and lower heat exchange plates 11 and 12 are overlapped, the upper and lower through-hole flange portions 11c and 12c create the internal space 14. A flange portion 16 to be closed is formed (see FIG. 8). Further, the upper and lower through holes 11a and 12a form a through hole 13 that penetrates the internal space 14 in a non-communication state.

最上層の熱交換体10(以下、「最上流熱交換体10a」という)の上熱交換プレート11を除いて、上下熱交換プレート11,12はそれぞれ、少なくとも1つのコーナ部に、上通水孔11e,下通水孔12eを有する。1つの熱交換体10を形成する上下熱交換プレート11,12の少なくとも1つのコーナ部に設けられた上下通水孔11e,12eは、上下熱交換プレート11,12が重ね合わされたとき、上下熱交換プレート11,12の間に形成される内部空間14と連通するように開口している。 Except for the upper heat exchange plate 11 of the uppermost heat exchanger 10 (hereinafter referred to as "uppermost flow heat exchanger 10a"), the upper and lower heat exchange plates 11 and 12 each have upper water flow through at least one corner portion. It has a hole 11e and a lower water passage hole 12e. The upper and lower water passage holes 11e and 12e provided in at least one corner of the upper and lower heat exchange plates 11 and 12 forming one heat exchanger 10 are used to heat up and down when the upper and lower heat exchange plates 11 and 12 are overlapped. It is open so as to communicate with the internal space 14 formed between the exchange plates 11 and 12.

上下通水孔11e,12eの周縁部にはそれぞれ、上下通水孔11e,12eの開口縁11h,12hから周方向外方に略水平に広がる上通水孔フランジ部11f,下通水孔フランジ部12fが形成されている。上通水孔11e及び上通水孔フランジ部11fはそれぞれ、隣接する熱交換体10が重ね合わされたときに隣接する熱交換体10の下通水孔12e及び下通水孔フランジ部12fと相互に対応する位置に形成されている。また、上通水孔11e及び上通水孔フランジ部11fは、絞り加工により、上熱交換プレート11と上方に隣接する熱交換体10の下熱交換プレート12とが重ね合わされたときに対向する上下通水孔フランジ部11f,12fが面接触するように、外方に向かって突出する段差部の上面に形成されている。同様に、下通水孔12e及び下通水孔フランジ部12fは、絞り加工により、下熱交換プレート12と下方に隣接する熱交換体10の上熱交換プレート11とが重ね合わされたときに対向する上下通水孔フランジ部11f,12fが面接触するように、外方に向かって突出する段差部の底面に形成されている。 On the peripheral edges of the upper and lower water passage holes 11e and 12e, the upper water passage hole flange portion 11f and the lower water passage hole flange that extend substantially horizontally outward from the opening edges 11h and 12h of the upper and lower water passage holes 11e and 12e, respectively. The portion 12f is formed. The upper water passage hole 11e and the upper water passage hole flange portion 11f interact with the lower water passage hole 12e and the lower water hole flange portion 12f of the adjacent heat exchanger 10 when the adjacent heat exchangers 10 are overlapped with each other. It is formed at the position corresponding to. Further, the upper water passage hole 11e and the upper water passage hole flange portion 11f face each other when the upper heat exchange plate 11 and the lower heat exchange plate 12 of the heat exchanger 10 adjacent to the upper side are overlapped by the drawing process. The upper and lower water passage holes flange portions 11f and 12f are formed on the upper surface of the stepped portion protruding outward so as to be in surface contact with each other. Similarly, the lower water passage hole 12e and the lower water passage hole flange portion 12f face each other when the lower heat exchange plate 12 and the upper heat exchange plate 11 of the heat exchanger 10 adjacent to the lower side are overlapped by the drawing process. The upper and lower water passage holes flange portions 11f and 12f are formed on the bottom surface of the stepped portion protruding outward so as to be in surface contact with each other.

従って、隣接する熱交換体10の上下熱交換プレート11,12が重ね合わされた状態で、上下通水孔フランジ部11f,12fがロウ材等の接合手段により接合されると、上下通水孔フランジ部11f,12fによって隣接する熱交換体10の間の排気空間15を閉塞する通水孔フランジ部64が形成される(図8参照)。また、隣接する熱交換体10における上下に対向する上下通水孔11e,12eによって、内部空間14と連通する通水孔63が形成される。また、上下通水孔11e,12eの周縁部における内部空間14は、他の内部空間14よりも上下方向で広くなっている。このため、上通水孔11eの周縁部には、上方に凹の上凹部65が形成され、下通水孔12eの周縁部には、下方に凹の下凹部66が形成される。 Therefore, when the upper and lower water passage flange portions 11f and 12f are joined by a joining means such as a brazing material in a state where the upper and lower heat exchange plates 11 and 12 of the adjacent heat exchanger 10 are overlapped with each other, the upper and lower water passage hole flanges are joined. The portions 11f and 12f form a water passage flange portion 64 that closes the exhaust space 15 between the adjacent heat exchangers 10 (see FIG. 8). Further, the water passage holes 63 communicating with the internal space 14 are formed by the vertically opposed upper and lower water passage holes 11e and 12e in the adjacent heat exchanger 10. Further, the internal space 14 at the peripheral edges of the vertical water passage holes 11e and 12e is wider in the vertical direction than the other internal spaces 14. Therefore, a concave upper recess 65 is formed upward on the peripheral edge of the upper water passage hole 11e, and a concave lower recess 66 is formed downward on the peripheral edge of the lower water passage hole 12e.

下通水孔12eはバーリング加工によって開設されている。このため、図7及び図8に示すように、下通水孔12eは、開口縁12hから下方(燃焼排気のガス流路の下流側)に突出する挿入壁12jを有する。また、燃焼排気のガス流路の最下流に位置する熱交換体10(以下、「最下流熱交換体10s」という)の下熱交換プレート12の下通水孔12e及び他の熱交換体10の下熱交換プレート12の右側後方の下通水孔12eを除く下通水孔12eの挿入壁12jは、下通水孔12eの開口縁12hから下方に延びる筒状部12mと、筒状部12mの下端から周方向に所定の角度(例えば、120度)離間して下方に突出する複数の爪部12nとを有する。このため、挿入壁12jの先端部は、周方向で不連続な突出高さを有し、爪部12n間に一定幅の切欠12pを有する。 The underwater hole 12e is opened by burring. Therefore, as shown in FIGS. 7 and 8, the lower water passage hole 12e has an insertion wall 12j protruding downward (downstream side of the gas flow path of the combustion exhaust) from the opening edge 12h. Further, the lower water passage hole 12e and the other heat exchanger 10 of the lower heat exchange plate 12 of the heat exchanger 10 (hereinafter referred to as “the most downstream heat exchanger 10s”) located at the most downstream of the gas flow path of the combustion exhaust. The insertion wall 12j of the lower water passage hole 12e excluding the lower water passage hole 12e on the right rear side of the lower heat exchange plate 12 has a tubular portion 12 m extending downward from the opening edge 12h of the lower water passage hole 12e and a tubular portion. It has a plurality of claw portions 12n protruding downward at a predetermined angle (for example, 120 degrees) in the circumferential direction from the lower end of 12 m. Therefore, the tip portion of the insertion wall 12j has a discontinuous protruding height in the circumferential direction, and has a notch 12p having a constant width between the claw portions 12n.

また、挿入壁12jは、上下熱交換プレート11,12が重ね合わされたときに上通水孔11eから下方に突出する先端部の最大突出高さ(すなわち、爪部12nの下端の突出高さ)Hsが、挿入壁12jが設けられている下熱交換プレート12の下周縁接合部W2と、挿入壁12jが挿入される上通水孔11eを有する下方に隣接する熱交換体10の上熱交換プレート11の上周縁接合部W1との間の重ね代Hpよりも大きくなるように設定されている。なお、挿入壁12jは、2以下または4以上の爪部12nを有してもよい。また、複数の爪部12nが設けられる場合、爪部12nの高さは異なってもよい。さらに、挿入壁12jは、筒状部12mのない爪部12nのみから構成されてもよい。 Further, the insertion wall 12j has the maximum protruding height of the tip portion protruding downward from the upper water passage hole 11e when the upper and lower heat exchange plates 11 and 12 are overlapped (that is, the protruding height of the lower end portion of the claw portion 12n). Hs exchanges heat between the lower peripheral edge joint W2 of the lower heat exchange plate 12 provided with the insertion wall 12j and the lower adjacent heat exchanger 10 having the upper water passage hole 11e into which the insertion wall 12j is inserted. It is set to be larger than the overlap margin Hp between the upper peripheral edge joint portion W1 of the plate 11. The insertion wall 12j may have 2 or less or 4 or more claw portions 12n. Further, when a plurality of claw portions 12n are provided, the heights of the claw portions 12n may be different. Further, the insertion wall 12j may be composed of only the claw portion 12n without the tubular portion 12m.

挿入壁12jの筒状部12mは、対向する上通水孔11eの内径よりも若干小さい外径を有し、爪部12nの先端部は筒状部12mよりも若干小さな外径を有する。このため、挿入壁12jは、先端部が基端部よりも内方に位置するように形成されている。 The tubular portion 12m of the insertion wall 12j has an outer diameter slightly smaller than the inner diameter of the facing upper water passage hole 11e, and the tip portion of the claw portion 12n has an outer diameter slightly smaller than the tubular portion 12m. Therefore, the insertion wall 12j is formed so that the tip end portion is located inward from the base end portion.

従って、上下熱交換プレート11.12が適切に積層されている状態では、下熱交換プレート12の下通水孔12eに形成された挿入壁12jは下方に隣接する熱交換体10の上熱交換プレート11の上通水孔11eに挿入し、挿入壁12jの先端部は上通水孔フランジ部11fよりも下方に突出する。すなわち、本実施の形態では、下通水孔12eが一方開口に対応し、上通水孔11eが他方開口に対応する。なお、上熱交換プレート11の上通水孔11eもバーリング加工により形成してもよい。 Therefore, in a state where the upper and lower heat exchange plates 11.12 are properly laminated, the insertion wall 12j formed in the lower water passage hole 12e of the lower heat exchange plate 12 is the upper heat exchange of the heat exchanger 10 adjacent to the lower side. It is inserted into the upper water passage hole 11e of the plate 11, and the tip end portion of the insertion wall 12j protrudes below the upper water passage hole flange portion 11f. That is, in the present embodiment, the lower water passage hole 12e corresponds to one opening, and the upper water passage hole 11e corresponds to the other opening. The upper water passage hole 11e of the upper heat exchange plate 11 may also be formed by burring.

図3に示すように、熱交換体10の貫通孔13はいずれも、隣接する熱交換体10における一方の熱交換体10の貫通孔13が他方の熱交換体10の貫通孔13と、燃焼排気のガス流路方向に対して垂直に交差する左右方向にずれるように配置されている。すなわち、上下で隣接する熱交換体10は、一方の熱交換体10の貫通孔13の投影面が他方の熱交換体10の貫通孔13と重ならないように配置されている。従って、上流側から流れてきた燃焼排気は、1つの熱交換体10の貫通孔13を通過した後、その熱交換体10と下流側に隣接する熱交換体10との間の排気空間15に流れ出る。そして、排気空間15に流れ出た燃焼排気は、下流側に隣接する熱交換体10の上熱交換プレート11に衝突し、下流側に隣接する熱交換体10の貫通孔13からさらに下流側に流れる。すなわち、燃焼排気が熱交換器1内を上流側から下流側に向かって流れるとき、熱交換器1内にはジグザグ状のガス流路が形成される。これにより、熱交換器1内における燃焼排気と上下熱交換プレート11,12との接触時間が増加する。 As shown in FIG. 3, in each of the through holes 13 of the heat exchanger 10, the through hole 13 of one heat exchanger 10 in the adjacent heat exchanger 10 burns with the through hole 13 of the other heat exchanger 10. It is arranged so as to be displaced in the left-right direction, which intersects perpendicularly with the gas flow path direction of the exhaust. That is, the heat exchangers 10 adjacent to each other on the upper and lower sides are arranged so that the projection surface of the through hole 13 of one heat exchanger 10 does not overlap with the through hole 13 of the other heat exchanger 10. Therefore, the combustion exhaust flowing from the upstream side passes through the through hole 13 of one heat exchanger 10 and then enters the exhaust space 15 between the heat exchanger 10 and the heat exchanger 10 adjacent to the downstream side. It flows out. Then, the combustion exhaust flowing into the exhaust space 15 collides with the upper heat exchange plate 11 of the heat exchanger 10 adjacent to the downstream side, and flows further downstream from the through hole 13 of the heat exchanger 10 adjacent to the downstream side. .. That is, when the combustion exhaust flows in the heat exchanger 1 from the upstream side to the downstream side, a zigzag gas flow path is formed in the heat exchanger 1. As a result, the contact time between the combustion exhaust in the heat exchanger 1 and the upper and lower heat exchange plates 11 and 12 increases.

次に、図3を参照して、熱交換器1における燃焼排気及び水の流れを説明する。各ブロック5は、水をブロック5内部に導入する導入口71と、水をブロック5外部に導出する導出口72とを有する。導入口71はそれぞれ、各ブロック5の燃焼排気のガス流路の最下流に位置する熱交換体10の所定の下通水孔12eによって構成される。また、導出口72は、最上流ブロック5a以外の各ブロック5b,5c,5dにおける燃焼排気のガス流路の最上流に位置する熱交換体10の所定の上通水孔11e、及び最上流ブロック5aにおける熱交換体10の所定の下通水孔12eによって構成される。なお、煩雑化を避けるため、図3中、フランジ部16や挿入壁12jなどの一部の構成は省略されている。 Next, with reference to FIG. 3, the flow of combustion exhaust gas and water in the heat exchanger 1 will be described. Each block 5 has an introduction port 71 for introducing water into the block 5 and an outlet 72 for leading water to the outside of the block 5. Each of the introduction ports 71 is composed of a predetermined underwater hole 12e of the heat exchanger 10 located at the most downstream of the gas flow path of the combustion exhaust of each block 5. Further, the outlet 72 is a predetermined upper water passage hole 11e of the heat exchanger 10 located at the uppermost stream of the gas flow path of the combustion exhaust in each block 5b, 5c, 5d other than the uppermost stream block 5a, and the uppermost stream block. It is composed of a predetermined underwater hole 12e of the heat exchanger 10 in 5a. In addition, in order to avoid complication, some configurations such as the flange portion 16 and the insertion wall 12j are omitted in FIG.

最下流熱交換体10sを形成する下熱交換プレート12の右側前方のコーナ部の下通水孔12eには、流入管20が接続されている。また、最下流熱交換体10sを形成する下熱交換プレート12の右側後方のコーナ部の下通水孔12eには、熱交換器1の一部を貫通するように最下流熱交換体10sから最上流熱交換体10aまで上方に向かって延びる流出管21が挿通されている。流出管21の上端部は、最上流熱交換体10aを形成する下熱交換プレート12の右側後方のコーナ部の下通水孔12eに挿通されている。 The inflow pipe 20 is connected to the lower water passage hole 12e at the corner portion on the right front side of the lower heat exchange plate 12 forming the most downstream heat exchanger 10s. Further, in the lower water passage hole 12e of the corner portion on the right rear side of the lower heat exchange plate 12 forming the most downstream heat exchanger 10s, from the most downstream heat exchanger 10s so as to penetrate a part of the heat exchanger 1. An outflow pipe 21 extending upward to the most upstream heat exchanger 10a is inserted. The upper end of the outflow pipe 21 is inserted into the lower water passage hole 12e of the corner portion on the right rear side of the lower heat exchange plate 12 forming the uppermost flow heat exchanger 10a.

流出管21の上端開口部は、最上流熱交換体10aの内部空間14と連通している。また、流出管21が最下流熱交換体10sから最上流熱交換体10aまで挿通されると、流出管21は最上流熱交換体10a以外の熱交換体10の内部空間14及び隣接する熱交換体10間の全ての排気空間15を非連通状態で貫通する。 The upper end opening of the outflow pipe 21 communicates with the internal space 14 of the uppermost flow heat exchanger 10a. Further, when the outflow pipe 21 is inserted from the most downstream heat exchanger 10s to the most upstream heat exchanger 10a, the outflow pipe 21 is connected to the internal space 14 of the heat exchanger 10 other than the most upstream heat exchanger 10a and the adjacent heat exchange. It penetrates all the exhaust spaces 15 between the bodies 10 in a non-communication state.

従って、右側前方のコーナ部の下通水孔12e(導入口71)から最下流ブロック5dの各熱交換体10の内部空間14内に流入する水は、内部空間14内を左右方向の一方向(図3中、右側から左側)に流れる。また、左側前後両方のコーナ部の上下通水孔11e,12e(導出口72及び導入口71)を介して第2下流側ブロック5cの各熱交換体10の内部空間14に流入する水は、内部空間14内を左右方向の一方向(図3中、左側から右側)に流れる。この第2下流側ブロック5cの熱交換体10の内部空間14を流通する水の流路方向は、最下流ブロック5dのそれと反対になる。また、右側前方のコーナ部の上下通水孔11e,12e(導出口72及び導入口71)を介して第1下流側ブロック5bの熱交換体10(以下、「第2熱交換体10b」という)の内部空間14内に流入する水は、内部空間14内を左右方向の一方向(図3中、右側から左側)に流れる。この第2熱交換体10bの内部空間14を流通する水の流路方向は、第2下流側ブロック5cのそれと反対になる。また、左側前後両方のコーナ部の上下通水孔11e,12e(導出口72及び導入口71)を介して最上流熱交換体10aの内部空間14内に流入する水は、内部空間14内を左右方向の一方向(図3中、左側から右側)に流れる。この最上流熱交換体10aの内部空間14を流通する水の流路方向は、第2熱交換体10bのそれと反対になる。そして、最上流熱交換体10aの内部空間14内を流通する水は、最上流熱交換体10aの右側後方のコーナ部の下通水孔12e(導出口72)に挿通された流出管21に流出する。流出管21に流出する水は、流出管21を流下し、熱交換器1の外部に流出する。このように、燃焼排気のガス流路の上流域における最上流熱交換体10a及び第2熱交換体10bは、第2熱交換体10bの内部に流入する全ての水が最上流熱交換体10aに流入するように、直列に接続されている。また、最下流ブロック5dの複数の熱交換体10は、複数の平行流路が形成されるように並列に接続されている。第2下流側ブロック5cも最下流ブロック5dと同様の構成を有する。 Therefore, the water flowing into the internal space 14 of each heat exchanger 10 of the most downstream block 5d from the lower water passage hole 12e (introduction port 71) of the corner portion on the right front side is unidirectional in the internal space 14 in the left-right direction. It flows from the right side to the left side in Fig. 3. Further, the water flowing into the internal space 14 of each heat exchanger 10 of the second downstream block 5c through the upper and lower water passage holes 11e and 12e (outlet port 72 and introduction port 71) of both the front and rear corners on the left side It flows in one direction (from the left side to the right side in FIG. 3) in the left-right direction in the internal space 14. The direction of the flow path of water flowing through the internal space 14 of the heat exchanger 10 of the second downstream block 5c is opposite to that of the most downstream block 5d. Further, it is referred to as a heat exchanger 10 (hereinafter referred to as "second heat exchanger 10b") of the first downstream block 5b via the upper and lower water passage holes 11e and 12e (outlet port 72 and introduction port 71) of the corner portion on the right front side. ), The water flowing into the internal space 14 flows in one direction (from the right side to the left side in FIG. 3) in the left-right direction in the internal space 14. The flow path direction of the water flowing through the internal space 14 of the second heat exchanger 10b is opposite to that of the second downstream block 5c. Further, the water flowing into the internal space 14 of the most upstream heat exchanger 10a through the upper and lower water passage holes 11e and 12e (outlet port 72 and introduction port 71) of both the front and rear corners on the left side flows into the internal space 14. It flows in one direction in the left-right direction (from the left side to the right side in FIG. 3). The direction of the flow path of water flowing through the internal space 14 of the most upstream heat exchanger 10a is opposite to that of the second heat exchanger 10b. Then, the water flowing in the internal space 14 of the upstream heat exchanger 10a is passed through the outflow pipe 21 inserted into the lower water passage hole 12e (outlet port 72) of the corner portion on the right rear side of the upstream heat exchanger 10a. leak. The water flowing out to the outflow pipe 21 flows down the outflow pipe 21 and flows out to the outside of the heat exchanger 1. As described above, in the upstream heat exchanger 10a and the second heat exchanger 10b in the upstream region of the gas flow path of the combustion exhaust, all the water flowing into the inside of the second heat exchanger 10b is the upstream heat exchanger 10a. They are connected in series so that they flow into. Further, the plurality of heat exchangers 10 of the most downstream block 5d are connected in parallel so as to form a plurality of parallel flow paths. The second downstream block 5c also has the same configuration as the most downstream block 5d.

次に、本実施の形態の熱交換器1の製造方法について説明する。1枚の下枠プレート101、所定枚数の上下熱交換プレート11,12、及び1枚の上枠プレート102の所定箇所にロウ材等の接合手段を供給しながらこれらのプレートを積層させる。図示しないが、最下流熱交換体10sの下熱交換プレート12の下通水孔12eの筒状部12mの外径は、対応する下枠プレート101の開口の内径よりも若干小さく設定されている。 Next, a method of manufacturing the heat exchanger 1 of the present embodiment will be described. These plates are laminated while supplying a joining means such as a brazing material to a predetermined position of one lower frame plate 101, a predetermined number of upper and lower heat exchange plates 11 and 12, and one upper frame plate 102. Although not shown, the outer diameter of the tubular portion 12m of the lower water passage hole 12e of the lower heat exchange plate 12 of the most downstream heat exchanger 10s is set to be slightly smaller than the inner diameter of the opening of the corresponding lower frame plate 101. ..

次いで、下枠プレート101の開口を介して最下流熱交換体10sの右側前方の下通水孔12eに流入管20の上端部を挿通させる。また、下枠プレート101の他の開口を介して最下流熱交換体10sの右側後方の下通水孔12eから流出管21を上方に向かって挿通させる。そして、最下流熱交換体10sの右側前方の下通水孔12eに挿通されている流入管20の外周面と、最下流熱交換体10sの右側後方の下通水孔12eに挿通されている流出管21の外周面とにロウ材等の接合手段を供給してサブアセンブリを調製する。このサブアセンブリを炉中に投入してロウ付け処理を行うことにより、熱交換器1を製造することができる。 Next, the upper end portion of the inflow pipe 20 is inserted into the lower water passage hole 12e on the right front side of the most downstream heat exchanger 10s through the opening of the lower frame plate 101. Further, the outflow pipe 21 is inserted upward from the lower water passage hole 12e on the right rear side of the most downstream heat exchanger 10s through another opening of the lower frame plate 101. Then, it is inserted into the outer peripheral surface of the inflow pipe 20 inserted into the lower water passage hole 12e on the right front side of the most downstream heat exchanger 10s and the lower water passage hole 12e on the right rear side of the most downstream heat exchanger 10s. A subassembly is prepared by supplying a joining means such as a brazing material to the outer peripheral surface of the outflow pipe 21. The heat exchanger 1 can be manufactured by putting this subassembly into a furnace and performing a brazing process.

上記したように、隣接する熱交換体10における上下に対向する上下通水孔11e,12eによって、隣接する熱交換体10の内部空間14を連通させる連通路となる通水孔63が形成される。一方、多数の上下熱交換プレート11,12を積層させて構成されるプレート式熱交換器1では、組付け誤差により対向する上下通水孔11e,12eがずれて配置されやすい。そのため、通水孔63の周縁部の通水孔フランジ部64で上下熱交換プレート11,12が適切に接合されない組付け不良が生じる虞がある。このような組付け不良が生じると、内部空間14と排気空間15とが連通して、通水孔63の周縁部から排気空間15に水が漏洩する。 As described above, the vertically opposed upper and lower water passage holes 11e and 12e in the adjacent heat exchanger 10 form a water passage hole 63 which is a communication passage for communicating the internal space 14 of the adjacent heat exchanger 10. .. On the other hand, in the plate type heat exchanger 1 in which a large number of upper and lower heat exchange plates 11 and 12 are laminated, the upper and lower water passage holes 11e and 12e facing each other are likely to be displaced and arranged due to an assembly error. Therefore, there is a possibility that the upper and lower heat exchange plates 11 and 12 may not be properly joined at the water passage hole flange portion 64 at the peripheral portion of the water passage hole 63, resulting in an assembly failure. When such an assembly failure occurs, the internal space 14 and the exhaust space 15 communicate with each other, and water leaks from the peripheral portion of the water passage hole 63 to the exhaust space 15.

しかしながら、本実施の形態によれば、通水孔63を形成する下通水孔12eの周縁部に下方に向かって延びる挿入壁12jが設けられているから、適切に熱交換体10が積層されていない場合、下通水孔12eの周縁部から下方に突出する挿入壁12jが、上通水孔11eの周縁部の上熱交換プレート11の上面に乗り上げ、上方に隣接する下熱交換プレート12に傾きが生じる。これにより、組付け不良を容易に確認することができる。 However, according to the present embodiment, since the insertion wall 12j extending downward is provided on the peripheral edge of the lower water passage hole 12e forming the water passage hole 63, the heat exchanger 10 is appropriately laminated. If not, the insertion wall 12j projecting downward from the peripheral edge of the lower water passage hole 12e rides on the upper surface of the upper heat exchange plate 11 at the peripheral edge of the upper water passage hole 11e, and the lower heat exchange plate 12 adjacent above the upper surface. Is tilted. This makes it possible to easily confirm the assembly failure.

また、本実施の形態では、挿入壁12jの先端部には、周方向で突出高さが不連続となるように爪部12nが形成されているから、1つの爪部12nが下方の上通水孔11e内に配置されても、組付け誤差により他の爪部12nが上通水孔11eの周縁部に乗り上げると、同様に上方に隣接する下熱交換プレート12に傾きが生じる。これにより、確実に組付け不良を確認することができる。 Further, in the present embodiment, since the claw portion 12n is formed at the tip end portion of the insertion wall 12j so that the protruding height is discontinuous in the circumferential direction, one claw portion 12n passes downward. Even if it is arranged in the water hole 11e, if another claw portion 12n rides on the peripheral portion of the upper water passage hole 11e due to an assembly error, the lower heat exchange plate 12 adjacent to the upper side is similarly tilted. As a result, it is possible to reliably confirm the assembly failure.

また、本実施の形態によれば、挿入壁12jが上通水孔11eを介して隣接する熱交換体10の内部空間14内に突出するから、水が上通水孔11e近傍を流通するとき、挿入壁12jによって水の流路抵抗が増加しやすい。しかしながら、本実施の形態によれば、挿入壁12jの先端部は不連続な突出高さを有するから、挿入壁12jの先端部には切欠12pが形成される。このため、挿入壁12jが隣接する熱交換体10の内部空間14内に突出していても、水は切欠12pを通って流通するから、上通水孔11e近傍の水の流路の減少は小さい。従って、挿入壁12jによる内部空間14内を流通する水の流路抵抗の増加を抑えることができる。特に、本実施の形態では、挿入壁12jが挿入される上通水孔11eの周縁部に上方に凹の上凹部65が形成されているから、挿入壁12jが他方の熱交換体10の内部空間14に大きく突出するのを防止することができ、さらに水の流路抵抗の増加を抑えることができる。従って、円滑に水を一方の熱交換体10の内部空間14から他方の熱交換体10の内部空間14に流通させることができる。これにより、熱効率の低下を抑制することができる。 Further, according to the present embodiment, since the insertion wall 12j projects into the internal space 14 of the adjacent heat exchanger 10 via the upper water passage hole 11e, when water flows in the vicinity of the upper water passage hole 11e. , The water flow path resistance tends to increase due to the insertion wall 12j. However, according to the present embodiment, since the tip portion of the insertion wall 12j has a discontinuous protruding height, a notch 12p is formed at the tip portion of the insertion wall 12j. Therefore, even if the insertion wall 12j protrudes into the internal space 14 of the adjacent heat exchanger 10, the water flows through the notch 12p, so that the decrease in the water flow path in the vicinity of the upper water passage hole 11e is small. .. Therefore, it is possible to suppress an increase in the flow path resistance of the water flowing through the internal space 14 due to the insertion wall 12j. In particular, in the present embodiment, since the concave upper recess 65 is formed upward on the peripheral edge of the upper water passage hole 11e into which the insertion wall 12j is inserted, the insertion wall 12j is inside the other heat exchanger 10. It is possible to prevent a large protrusion into the space 14, and further suppress an increase in water flow path resistance. Therefore, water can be smoothly circulated from the internal space 14 of one heat exchanger 10 to the internal space 14 of the other heat exchanger 10. This makes it possible to suppress a decrease in thermal efficiency.

また、本実施の形態によれば、複数の熱交換体10は、上熱交換プレート11の周縁に設けられた外周フランジ部である上周縁接合部W1に、下熱交換プレート12の底面周縁が内嵌し、下熱交換プレート12の周縁に設けられた外周フランジ部である下周縁接合部W2に、上熱交換プレート11の底面周縁が内嵌する。そして、挿入壁12jが上通水孔11e内に適切に挿入されていれば、上下熱交換プレート11,12は所定の重ね代Hpで重なり合うように積層される。一方、挿入壁12jの先端部の最大突出高さHsは、上記重ね代Hpよりも大きい。このため、組付け誤差により挿入壁12jが上通水孔11eの周縁部に乗り上げると、隣接する熱交換体10の周縁の間に隙間が生じる。すなわち、本実施の形態では、1つの熱交換体10の上熱交換プレート11が一方の熱交換プレートに対応し、上方に隣接する熱交換体10における上記上熱交換プレート11に近い側の下熱交換プレート12が近接熱交換プレートに対応する。特に、本実施の形態では、通水孔63は熱交換体10の周縁のコーナ部に設けられるため、上記隙間は外観上、容易に確認される。これにより、確実に組付け不良を確認することができる。 Further, according to the present embodiment, in the plurality of heat exchangers 10, the bottom peripheral edge of the lower heat exchange plate 12 is attached to the upper peripheral edge joint portion W1 which is the outer peripheral flange portion provided on the peripheral edge of the upper heat exchange plate 11. The bottom peripheral edge of the upper heat exchange plate 11 is internally fitted into the lower peripheral edge joint W2 which is the outer peripheral flange portion provided on the peripheral edge of the lower heat exchange plate 12. Then, if the insertion wall 12j is properly inserted into the upper water passage hole 11e, the upper and lower heat exchange plates 11 and 12 are laminated so as to overlap each other with a predetermined stacking allowance Hp. On the other hand, the maximum protruding height Hs at the tip of the insertion wall 12j is larger than the stacking allowance Hp. Therefore, when the insertion wall 12j rides on the peripheral edge of the upper water passage hole 11e due to an assembly error, a gap is generated between the peripheral edges of the adjacent heat exchangers 10. That is, in the present embodiment, the upper heat exchange plate 11 of one heat exchanger 10 corresponds to one heat exchange plate, and the lower side of the heat exchanger 10 adjacent to the upper side close to the upper heat exchange plate 11. The heat exchange plate 12 corresponds to the proximity heat exchange plate. In particular, in the present embodiment, since the water passage hole 63 is provided in the corner portion on the peripheral edge of the heat exchanger 10, the gap is easily confirmed in appearance. As a result, it is possible to reliably confirm the assembly failure.

さらに、本実施の形態によれば、挿入壁12jは先端部が基端部よりも上通水孔11eの内方に位置するように形成されているから、複数の熱交換プレート11,12を積層させるとき、挿入壁12jが上通水孔11e内にガイドされやすくなる。これにより、さらに組付け不良を低減することができる。 Further, according to the present embodiment, since the insertion wall 12j is formed so that the tip end portion is located inside the upper water passage hole 11e with respect to the base end portion, a plurality of heat exchange plates 11 and 12 are provided. When laminating, the insertion wall 12j is easily guided into the upper water passage hole 11e. This makes it possible to further reduce assembly defects.

なお、本実施の形態では、下通水孔の周縁部に設けられた挿入壁が対向する上通水孔に挿入される。しかしながら、上通水孔の周縁部に設けられた挿入壁を対向する下通水孔に挿入させてもよい。この場合、上通水孔が一方開口に対応し、下通水孔が他方開口に対応する。 In this embodiment, the insertion wall provided at the peripheral edge of the lower water passage hole is inserted into the facing upper water passage hole. However, the insertion wall provided at the peripheral edge of the upper water passage hole may be inserted into the opposite lower water passage hole. In this case, the upper water passage hole corresponds to one opening, and the lower water passage hole corresponds to the other opening.

(その他の実施の形態)
(1)上記実施の形態では、上下熱交換プレートはそれぞれ、外周フランジ部である上下周縁接合部を有する。しかしながら、図9に示すように、上下熱交換プレート11,12のいずれか一方のプレートのみが熱交換体10の積層方向の一方側に立設する外周フランジ部を有してもよい。この場合、上記実施の形態と同様に、挿入壁12jは、先端部の最大突出高さHsが、一方の上熱交換プレート11の外周フランジ部W1と、一方側に隣接する熱交換体10における下熱交換プレート12(すなわち、一方側に隣接する熱交換体10において、下方の熱交換体10の上熱交換プレート11に近い側の下熱交換プレート12)の周縁との間の重ね代Hpよりも大きくなるように設定される。
(Other embodiments)
(1) In the above embodiment, each of the upper and lower heat exchange plates has an upper and lower peripheral edge joint portion which is an outer peripheral flange portion. However, as shown in FIG. 9, only one of the upper and lower heat exchange plates 11 and 12 may have an outer peripheral flange portion that stands on one side of the heat exchanger 10 in the stacking direction. In this case, as in the above embodiment, the insertion wall 12j has a maximum protrusion height Hs of the tip portion in the outer peripheral flange portion W1 of the upper heat exchange plate 11 on one side and the heat exchanger 10 adjacent to one side. Overlapping allowance Hp between the lower heat exchange plate 12 (that is, in the heat exchanger 10 adjacent to one side, the lower heat exchange plate 12 on the side closer to the upper heat exchange plate 11 of the lower heat exchanger 10). Is set to be larger than.

(2)上記実施の形態では、熱交換器は第1流体の流路方向が異なる複数のブロックを有する。しかしながら、熱交換器は1つのブロックから構成されてもよい。この場合、第1流体は全ての熱交換体内を同一の方向に流通する。 (2) In the above embodiment, the heat exchanger has a plurality of blocks in which the flow path directions of the first fluid are different. However, the heat exchanger may consist of one block. In this case, the first fluid circulates in all heat exchangers in the same direction.

(3)上記実施の形態では、下向きの燃焼面を有するバーナが熱交換器の上方に配設されている。しかしながら、上向きの燃焼面を有するバーナが熱交換器の下方に配設されてもよい。この場合、燃焼排気の流路は上下逆転するため、最上層熱交換体が最下流熱交換体に、最下層熱交換体が最上流熱交換体に対応する。また、燃焼排気はプレート式熱交換器を左右方向に流通してもよい。 (3) In the above embodiment, a burner having a downward combustion surface is arranged above the heat exchanger. However, a burner with an upward combustion surface may be disposed below the heat exchanger. In this case, since the flow path of the combustion exhaust is reversed upside down, the uppermost layer heat exchanger corresponds to the most downstream heat exchanger and the lowermost layer heat exchanger corresponds to the most upstream heat exchanger. Further, the combustion exhaust may flow through the plate heat exchanger in the left-right direction.

(4)上記実施の形態では、挿入壁は一方開口の開口縁から他方開口に向かって延びている。しかしながら、挿入壁を他方開口に挿入させることができれば、挿入壁は一方開口の開口縁よりも周方向外方の所定位置から他方開口に向かって延びてもよい。 (4) In the above embodiment, the insertion wall extends from the opening edge of one opening toward the other opening. However, if the insertion wall can be inserted into the other opening, the insertion wall may extend from a predetermined position outward of the opening edge of one opening toward the other opening.

(5)上記実施の形態では、熱交換体の内部空間を流通する第1流体として熱媒が、熱交換体の外部を流通する第2流体として燃焼排気が使用される。しかしながら、第1流体として燃焼排気が、第2流体として熱媒が用いられてもよい。 (5) In the above embodiment, the heat medium is used as the first fluid flowing through the internal space of the heat exchanger, and the combustion exhaust is used as the second fluid flowing outside the heat exchanger. However, a combustion exhaust may be used as the first fluid, and a heat medium may be used as the second fluid.

(6)上記実施の形態では、複数の熱交換体が上下に積層されている。しかしながら、複数の熱交換体は左右に積層させてもよい。 (6) In the above embodiment, a plurality of heat exchangers are stacked one above the other. However, a plurality of heat exchangers may be stacked on the left and right.

(7)上記実施の形態では、給湯器が用いられているが、ボイラなどの熱源機が用いられてもよい。 (7) In the above embodiment, a water heater is used, but a heat source machine such as a boiler may be used.

1 プレート式熱交換器
10 熱交換体
11e 上通水孔
12e 下通水孔
12j 挿入壁
14 内部空間
65 上凹部
1 Plate heat exchanger 10 Heat exchanger 11e Upper water passage hole 12e Lower water passage hole 12j Insertion wall 14 Internal space 65 Upper recess

Claims (4)

複数の熱交換体を積層して構成されるプレート式熱交換器であって、
各熱交換体は、前記熱交換体の内部空間を流通する第1流体と、前記熱交換体の外部を流通する第2流体との間で熱交換を行うように構成され、
前記複数の熱交換体における隣接する熱交換体は、一方の熱交換体の前記内部空間と他方の熱交換体の前記内部空間とが前記一方の熱交換体に設けられた一方開口と前記他方の熱交換体に設けられた他方開口を介して連通するように積層されており、
前記一方の熱交換体は、前記一方開口の周縁部に、前記一方の熱交換体と前記他方の熱交換体とが積層されたとき、前記他方開口に挿入される挿入壁を有し、
前記挿入壁は、先端部が周方向で不連続な突出高さを有するように形成されているプレート式熱交換器。
A plate-type heat exchanger composed of a stack of multiple heat exchangers.
Each heat exchanger is configured to exchange heat between a first fluid flowing through the internal space of the heat exchanger and a second fluid flowing outside the heat exchanger.
In the adjacent heat exchangers in the plurality of heat exchangers, the internal space of one heat exchanger and the internal space of the other heat exchanger are provided in one of the heat exchangers with one opening and the other. It is laminated so as to communicate with each other through the other opening provided in the heat exchanger of.
The one heat exchanger has an insertion wall inserted into the other opening when the one heat exchanger and the other heat exchanger are laminated on the peripheral edge of the one opening.
The insertion wall is a plate heat exchanger in which the tip portion is formed so as to have a discontinuous protrusion height in the circumferential direction.
請求項1に記載のプレート式熱交換器において、
前記各熱交換体は、一組の熱交換プレートを接合することによって形成され、
前記一組の熱交換プレートのうち一方の熱交換プレートは、周縁に前記熱交換体の積層方向の一方側に立設する外周フランジ部を有し、
前記一方の熱交換プレートと、前記一方側に隣接する熱交換体における前記一方の熱交換プレートに近い側の近接熱交換プレートとは、前記外周フランジ部と前記近接熱交換プレートの周縁とが前記熱交換体の積層方向において所定の重ね代で重なり合うように積層され、
前記挿入壁は、前記先端部の最大突出高さが前記重ね代よりも大きくなるように設定されているプレート式熱交換器。
In the plate heat exchanger according to claim 1,
Each of the heat exchangers is formed by joining a set of heat exchange plates.
One of the heat exchange plates in the set of heat exchange plates has an outer peripheral flange portion that stands on one side of the heat exchanger in the stacking direction on the peripheral edge.
The one heat exchange plate and the proximity heat exchange plate on the side close to the one heat exchange plate in the heat exchanger adjacent to the one side have the outer peripheral flange portion and the peripheral edge of the proximity heat exchange plate. The heat exchangers are laminated so as to overlap each other with a predetermined stacking allowance in the stacking direction.
The insertion wall is a plate-type heat exchanger in which the maximum protruding height of the tip portion is set to be larger than the stacking allowance.
請求項1または2に記載のプレート式熱交換器において、
前記挿入壁は、前記先端部が基端部よりも前記一方開口の内方に位置するように形成されているプレート式熱交換器。
In the plate heat exchanger according to claim 1 or 2.
The insertion wall is a plate heat exchanger in which the tip portion is formed so as to be located inside the one opening with respect to the base end portion.
請求項1~3のいずれか1項に記載のプレート式熱交換器において、
前記他方の熱交換体は、前記他方開口の周縁部に、前記一方開口側に向かって凹となる凹部を有するプレート式熱交換器。
In the plate heat exchanger according to any one of claims 1 to 3.
The other heat exchanger is a plate-type heat exchanger having a recess on the peripheral edge of the other opening, which is concave toward the one opening side.
JP2020168811A 2020-10-06 2020-10-06 Plate heat exchanger Pending JP2022061054A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020168811A JP2022061054A (en) 2020-10-06 2020-10-06 Plate heat exchanger
US17/411,744 US20220107144A1 (en) 2020-10-06 2021-08-25 Plate-type heat exchanger
KR1020210131879A KR20220045914A (en) 2020-10-06 2021-10-05 Plate type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020168811A JP2022061054A (en) 2020-10-06 2020-10-06 Plate heat exchanger

Publications (1)

Publication Number Publication Date
JP2022061054A true JP2022061054A (en) 2022-04-18

Family

ID=80931251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020168811A Pending JP2022061054A (en) 2020-10-06 2020-10-06 Plate heat exchanger

Country Status (3)

Country Link
US (1) US20220107144A1 (en)
JP (1) JP2022061054A (en)
KR (1) KR20220045914A (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1159723B (en) * 1978-06-14 1987-03-04 Ipra Spa Ora Ind Piemontese Ra PLATE HEAT EXCHANGER
US5538077A (en) * 1989-02-24 1996-07-23 Long Manufacturing Ltd. In tank oil cooler
CA2056678C (en) * 1991-11-29 1995-10-31 John G. Burgers Full fin evaporator core
CA2153528C (en) * 1995-07-10 2006-12-05 Bruce Laurance Evans Plate heat exchanger with reinforced input/output manifolds
DE19722074A1 (en) * 1997-05-27 1998-12-03 Knecht Filterwerke Gmbh Plate heat exchangers, in particular oil / coolant coolers for motor vehicles
DE19939264B4 (en) * 1999-08-19 2005-08-18 Behr Gmbh & Co. Kg Plate heat exchangers
US7568520B2 (en) * 2005-06-21 2009-08-04 Calsonic Kansei Corporation Oil cooler
SE534775C2 (en) * 2010-04-08 2011-12-13 Titanx Engine Cooling Holding Ab Heat exchanger with leakage flow barrier, oil cooling system and method for cooling oil
JP7198645B2 (en) 2018-11-27 2023-01-04 リンナイ株式会社 Plate heat exchanger and heat source machine

Also Published As

Publication number Publication date
US20220107144A1 (en) 2022-04-07
KR20220045914A (en) 2022-04-13

Similar Documents

Publication Publication Date Title
JP6291591B2 (en) Condensing gas boiler heat exchanger
JP2017110887A (en) Plate type heat exchanger, water heating device, and plate type heat exchanger manufacturing method
JP6848303B2 (en) Heat exchanger and water heater
CN110822954B (en) Heat exchanger
US11365940B2 (en) Plate-type heat exchanger and heat source apparatus
JP2006078162A (en) One-can type complex heat source machine
CN110388750B (en) Heat exchanger
JP7097222B2 (en) Heat source machine
JP2022061054A (en) Plate heat exchanger
JP2022044083A (en) Plate type heat exchanger
WO2018037857A1 (en) Heat exchanger and warm water device
US11118811B2 (en) Heat source device
JP7385110B2 (en) hot water equipment
JP7119016B2 (en) plate heat exchanger
JP7265962B2 (en) plate heat exchanger
JP7382202B2 (en) plate heat exchanger
JP7373332B2 (en) plate heat exchanger
JP2012122662A (en) Heat exchanger, and water heater using the same
JP2014238226A (en) Panel radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230825