JP7379251B2 - semiconductor equipment - Google Patents

semiconductor equipment Download PDF

Info

Publication number
JP7379251B2
JP7379251B2 JP2020059094A JP2020059094A JP7379251B2 JP 7379251 B2 JP7379251 B2 JP 7379251B2 JP 2020059094 A JP2020059094 A JP 2020059094A JP 2020059094 A JP2020059094 A JP 2020059094A JP 7379251 B2 JP7379251 B2 JP 7379251B2
Authority
JP
Japan
Prior art keywords
film
thickness
semiconductor device
trench
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020059094A
Other languages
Japanese (ja)
Other versions
JP2021158284A (en
Inventor
真人 東平
巧 井上
智子 米倉
敏文 神戸
清文 近藤
一隆 児玉
佳伸 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2020059094A priority Critical patent/JP7379251B2/en
Publication of JP2021158284A publication Critical patent/JP2021158284A/en
Application granted granted Critical
Publication of JP7379251B2 publication Critical patent/JP7379251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体装置に関する。 The present invention relates to a semiconductor device.

半導体装置の一分野として、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)等の半導体基板に対して縦方向に電流を流す縦型構造の半導体装置の分野がある。絶縁ゲートはトレンチゲートともよばれ、半導体基板の回路面側にトレンチ(溝)を形成し、該トレンチの内部に金属等の導電体を充填して形成する。そのため、トレンチの内部全体に確実に導電体を埋め込むことが重要である。また、縦型構造の半導体装置では、半導体基板のトレンチゲートを形成した面と反対側の面、つまり裏面に電極を形成する。さらに、縦型構造の半導体装置では、一般にオン抵抗を低減するために半導体基板の厚さを薄くする(薄化する)。 2. Description of the Related Art As one field of semiconductor devices, there is a field of vertically structured semiconductor devices such as IGBTs (Insulated Gate Bipolar Transistors) in which a current flows vertically to a semiconductor substrate. An insulated gate is also called a trench gate, and is formed by forming a trench on the circuit surface side of a semiconductor substrate and filling the inside of the trench with a conductor such as metal. Therefore, it is important to reliably fill the entire inside of the trench with the conductor. Further, in a semiconductor device having a vertical structure, an electrode is formed on the surface of the semiconductor substrate opposite to the surface on which the trench gate is formed, that is, the back surface. Furthermore, in a semiconductor device having a vertical structure, the thickness of the semiconductor substrate is generally reduced (thinned) in order to reduce on-resistance.

トレンチの内部への導電体、例えば金属の埋め込みにおいては、埋め込む金属とトレンチ内部の濡れ性が問題となる。従来この濡れ性の問題のひとつの解決方法を提示した文献として、例えば特許文献1が知られている。この特許文献1には、下地材料上にAl系材料を形成するAl系材料形成方法において、酸素含有バリアメタル構造を形成し、該バリアメタル構造上に酸化防止材料およびAl系材料と濡れ性の良い金属系材料を形成し、もしくは酸化防止を兼ねるAl系材料と濡れ性の良い金属材料を形成し、その上にAl系材料を形成することを特徴とするAl系材料形成方法が開示されている。すなわち、特許文献1に係るAl系材料形成方法では、トレンチ構造を有する半導体装置において、トレンチ内にバリアメタル、酸化防止膜、Ti(チタン)膜を形成した後、Al(アルミニウム)系材料で埋めこむ構造を開示している。 When embedding a conductor, such as a metal, inside a trench, wettability between the embedding metal and the inside of the trench becomes a problem. For example, Patent Document 1 is known as a document that presents one solution to this wettability problem. Patent Document 1 describes an Al-based material forming method in which an Al-based material is formed on a base material, in which an oxygen-containing barrier metal structure is formed, and an antioxidant material and an Al-based material with wettability are formed on the barrier metal structure. A method for forming an Al-based material is disclosed, which is characterized by forming a good metallic material or an Al-based material that also serves as oxidation prevention and a metal material with good wettability, and forming an Al-based material thereon. There is. That is, in the Al-based material forming method according to Patent Document 1, in a semiconductor device having a trench structure, a barrier metal, an oxidation prevention film, and a Ti (titanium) film are formed in the trench, and then the trench is filled with an Al (aluminum)-based material. The structure is disclosed.

特開平06-013380号公報Japanese Patent Application Publication No. 06-013380

ここで、IGBT等の縦型構造の半導体装置においては、トレンチへの導電体の埋め込み性もさることながら、半導体装置の製造段階における半導体ウェハの反りについても検討する必要がある。すなわち、上記のように、縦型構造の半導体装置では一般に半導体基板を薄くするので、そもそも半導体ウェハに反りが発生しやすい。縦型構造の半導体装置の半導体ウェハでは、さらに回路面側にトレンチを形成するとともに裏面に電極(裏面電極)を形成する。そのため、半導体ウェハの反りについては、半導体ウェハの厚さのみならず、トレンチおよび裏面電極の構成も考慮して検討する必要がある。 Here, in a vertically structured semiconductor device such as an IGBT, it is necessary to consider not only the embedding of a conductor into a trench but also the warping of a semiconductor wafer during the manufacturing stage of the semiconductor device. That is, as described above, in a semiconductor device having a vertical structure, the semiconductor substrate is generally made thin, so that warpage is likely to occur in the semiconductor wafer in the first place. In a semiconductor wafer for a semiconductor device having a vertical structure, a trench is further formed on the circuit surface side, and an electrode (back electrode) is formed on the back surface. Therefore, with regard to warpage of the semiconductor wafer, it is necessary to consider not only the thickness of the semiconductor wafer but also the configuration of the trench and back electrode.

図3を参照して、上記検討点についてより詳細に説明する。図3は回路面40側にトレンチ(図示省略)が形成され、裏面41に裏面電極(図示省略)が形成された、例えば、100μm程度まで薄化された半導体ウェハWAFを示している。このような半導体ウェハWAFにおいては、裏面電極の引っ張り応力が強く、図3に示すように回路面側に凸形状の反りが発生する場合が多い。従って、縦型構造の半導体装置においては、このような反りをいかに緩和するかがひとつの問題となる。 With reference to FIG. 3, the above considerations will be explained in more detail. FIG. 3 shows a semiconductor wafer WAF thinned to, for example, about 100 μm, in which a trench (not shown) is formed on the circuit surface 40 side and a back electrode (not shown) is formed on the back surface 41. In such a semiconductor wafer WAF, the tensile stress of the back electrode is strong, and as shown in FIG. 3, convex warpage often occurs on the circuit surface side. Therefore, in a semiconductor device having a vertical structure, one problem is how to alleviate such warpage.

この点、特許文献1では金属材料の埋め込み性について最適化を行っており、半導体ウェハの反りについては言及していない。また、特許文献1に開示された技術において、仮に反りの発生を緩和するために回路面側のバリアメタルであるTi膜やTiN(窒化チタン)膜の膜厚を厚くするとアスペクト比が変わり、金属材料の埋め込み性に影響を及ぼし、ボイドやスパイクの発生原因となる。 In this regard, Patent Document 1 optimizes the embeddability of the metal material and does not mention warping of the semiconductor wafer. Furthermore, in the technology disclosed in Patent Document 1, if the thickness of the Ti film or TiN (titanium nitride) film, which is the barrier metal on the circuit surface side, is increased in thickness in order to alleviate the occurrence of warpage, the aspect ratio changes and the metal This affects the embeddability of the material and causes voids and spikes.

本発明は、上記の事情を踏まえ、トレンチへの導電体の埋め込み性を確保しつつ基板の反りが抑制された半導体装置を提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide a semiconductor device in which warping of the substrate is suppressed while ensuring embedding of a conductor into a trench.

上記課題を解決するため、本発明に係る半導体装置は、半導体基板と、前記半導体基板の第1の面に形成されたトレンチの内部に形成された絶縁膜、前記絶縁膜上に形成された複数の金属膜を有する下地金属膜、および前記下地金属膜上に形成されたゲート電極を備えたトレンチゲートと、前記半導体基板の第2の面に形成された裏面電極と、を含み、前記下地金属膜の前記ゲート電極と接する金属膜がチタン膜となっており、前記チタン膜の膜厚が100nmから200nmの範囲の膜厚であるものである。 In order to solve the above problems, a semiconductor device according to the present invention includes a semiconductor substrate, an insulating film formed inside a trench formed on a first surface of the semiconductor substrate, and a plurality of insulating films formed on the insulating film. a trench gate having a gate electrode formed on the base metal film, and a back electrode formed on the second surface of the semiconductor substrate, the base metal film having a metal film of The metal film in contact with the gate electrode of the film is a titanium film, and the thickness of the titanium film is in the range of 100 nm to 200 nm.

本発明によれば、トレンチへの導電体の埋め込み性を確保しつつ基板の反りが抑制された半導体装置を提供することが可能となる、という効果を奏する。 According to the present invention, it is possible to provide a semiconductor device in which warpage of the substrate is suppressed while ensuring embedding of the conductor into the trench.

実施の形態に係る半導体装置の構成の一例を示す断面図である。1 is a cross-sectional view showing an example of the configuration of a semiconductor device according to an embodiment. 実施の形態に係る半導体装置の、(a)はゲート電極および裏面電極の構成の一例を示す断面図、(b)は効果を説明するための図である。1A is a cross-sectional view showing an example of the structure of a gate electrode and a back electrode of a semiconductor device according to an embodiment, and FIG. 1B is a diagram for explaining an effect. 従来技術に係る半導体装置で使用される半導体ウェハの反りについて説明するための断面図である。FIG. 2 is a cross-sectional view for explaining warpage of a semiconductor wafer used in a semiconductor device according to the prior art.

以下、図1および図2を参照し、本発明の実施の形態について詳細に説明する。以下の実施の形態では本発明に係る半導体装置をIGBTに適用した形態を例示して説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 and 2. In the following embodiments, an example in which a semiconductor device according to the present invention is applied to an IGBT will be described.

図1は、本実施の形態に係る半導体装置10の構成の一例を示している。半導体装置10は、半導体装置の一例としてのトレンチゲート構造のIGBTであり、トレンチゲート24、ゲート酸化膜22、N型エミッタ層18、P型チャネル層20、中間膜16、表面金属電極12、および保護膜13を含む基板の厚さ方向に流れる電流を制御する能動領域(絶縁ゲート構造)を備えている。また、該能動領域の下部には、N型基板26、バッファ層(フィールド・ストップ層:FS層)28、P型コレクタ層30、および裏面金属電極32を備えている。N型基板26は、一例として、シリコン基板を用いている。本実施の形態に係る半導体基板は約100μm~300μm程度まで薄化されるが、半導体装置10のN型基板26の厚さは、一例として約100μmとされている。 FIG. 1 shows an example of the configuration of a semiconductor device 10 according to this embodiment. The semiconductor device 10 is an IGBT with a trench gate structure as an example of a semiconductor device, and includes a trench gate 24, a gate oxide film 22, an N-type emitter layer 18, a P-type channel layer 20, an intermediate film 16, a surface metal electrode 12, and It has an active region (insulated gate structure) that controls the current flowing in the thickness direction of the substrate including the protective film 13. Further, under the active region, an N-type substrate 26, a buffer layer (field stop layer: FS layer) 28, a P-type collector layer 30, and a back metal electrode 32 are provided. As the N-type substrate 26, a silicon substrate is used, for example. The semiconductor substrate according to this embodiment is thinned to about 100 μm to 300 μm, and the thickness of the N-type substrate 26 of the semiconductor device 10 is, for example, about 100 μm.

半導体装置10では、トレンチゲート24に電圧を印加することでP型チャネル層20を経由してN型エミッタ層18からN型基板26(ドリフト層として機能する)に電子が注入され、P型コレクタ層30から正孔がN型基板26に注入される。これにより、N型基板26において伝導度変調効果が起こり、抵抗が大幅に減少して大電流を流すことが可能となる。この際バッファ層28はN型基板26中に広がった空乏層を止める機能を有している。 In the semiconductor device 10, by applying a voltage to the trench gate 24, electrons are injected from the N-type emitter layer 18 to the N-type substrate 26 (functioning as a drift layer) via the P-type channel layer 20, and the P-type collector Holes are injected from layer 30 into N-type substrate 26 . As a result, a conductivity modulation effect occurs in the N-type substrate 26, and the resistance is significantly reduced, allowing a large current to flow. At this time, the buffer layer 28 has a function of stopping the depletion layer that has spread into the N-type substrate 26.

図2(a)は、トレンチゲート24、および裏面金属電極32の構成の詳細を示している。図2(a)に示すように、本実施の形態に係る半導体装置10のトレンチゲート24は、ゲート酸化膜22の上部に下層側からこの順で形成された、Ti膜50、TiN膜51、Ti膜52、およびAlSiCu膜53を含んで構成されている。一方裏面金属電極32は、下層側からこの順で形成されたAu膜54、Ni膜55、Ti膜56、およびAlSi膜57を含んで構成されている。なお、半導体装置10の半導体ウェハによる製造においては、裏面金属電極32を形成した後、トレンチゲート24を形成する。 FIG. 2(a) shows the details of the structure of the trench gate 24 and the back metal electrode 32. As shown in FIG. 2A, the trench gate 24 of the semiconductor device 10 according to the present embodiment includes a Ti film 50, a TiN film 51, a Ti film 50, a TiN film 51, and a It is configured to include a Ti film 52 and an AlSiCu film 53. On the other hand, the back metal electrode 32 includes an Au film 54, a Ni film 55, a Ti film 56, and an AlSi film 57 formed in this order from the bottom layer side. Note that in manufacturing the semiconductor device 10 using a semiconductor wafer, the trench gate 24 is formed after the back metal electrode 32 is formed.

ここで、上述したように、100μm程度まで薄化した半導体基板においては、半導体基板の反りに対する対策が不可欠である。そのため、本実施の形態に係る半導体装置10では、図2(a)に示すトレンチゲート24、および裏面金属電極32の構成の条件下において、下地金属(バリアメタル)であるTi膜52の膜厚を調整することによってN型基板26の反りの調整(矯正)を行っている。また、Ti膜52は反りの調整とともにAlSiCu膜53に対する濡れ性を発現し、埋め込み性を保持する機能も有している。 Here, as described above, in a semiconductor substrate that is thinned to about 100 μm, it is essential to take measures against warpage of the semiconductor substrate. Therefore, in the semiconductor device 10 according to the present embodiment, under the conditions of the structure of the trench gate 24 and the back surface metal electrode 32 shown in FIG. The warpage of the N-type substrate 26 is adjusted (corrected) by adjusting. Further, the Ti film 52 has the function of adjusting warpage, exhibiting wettability to the AlSiCu film 53, and maintaining embeddability.

図2(b)を参照して、本実施の形態に係るトレンチゲート24、および裏面金属電極32の一実施例について説明する。本実施例では、トレンチゲート24を構成するTi膜50/TiN膜51/Ti膜52/AlSiCu膜53の膜厚を、一例として各々、50nm/100nm/Xnm/4400nmとしている。すなわち、本実施の形態に係る半導体装置10では、TiN膜52の膜厚Xを変えることにより、N型基板26の反り量を調整する。なお、半導体ウェハWAFの反り量dは、図3に示すように、半導体ウェハWAFを平面に載置した場合の該平面から最も離間した部分までの長さで測定する。一方、裏面金属電極32を構成するAu膜54/Ni膜55/Ti膜56/AlSi膜57の膜厚を、一例として各々、50nm/400nm/125nm/200nm(合計膜厚775nm)としている。 An example of the trench gate 24 and back metal electrode 32 according to this embodiment will be described with reference to FIG. 2(b). In this embodiment, the film thicknesses of the Ti film 50/TiN film 51/Ti film 52/AlSiCu film 53 constituting the trench gate 24 are, for example, 50 nm/100 nm/X nm/4400 nm, respectively. That is, in the semiconductor device 10 according to the present embodiment, the amount of warpage of the N-type substrate 26 is adjusted by changing the film thickness X of the TiN film 52. Note that, as shown in FIG. 3, the amount of warpage d of the semiconductor wafer WAF is measured by the length of the semiconductor wafer WAF from the plane that is the most distant from the plane when the semiconductor wafer WAF is placed on the plane. On the other hand, the thicknesses of the Au film 54/Ni film 55/Ti film 56/AlSi film 57 constituting the back metal electrode 32 are, for example, 50 nm/400 nm/125 nm/200 nm (total film thickness 775 nm), respectively.

図2(b)は、Ti膜52の膜厚(nm)をパラメータとした反り量(μm)dの変化の一例を示している。図2(b)に示すように、Ti膜52を形成しない場合(Ti膜52の膜厚が0nm)は6000μm以上あった反り量dが、100nm~200nmのTi膜52を形成することによって1500μm程度まで改善することがわかる。この程度の反り量であれば、実用上の問題はない。このことから、TiN膜52の膜厚は、トレンチゲート24、および裏面金属電極32の構成、N型基板26の厚さ等に応じて設定する必要があるが、一例として100nm~200nmに設定することにより、半導体ウェハで測定した場合の反り量を大幅に改善することができることがわかる。 FIG. 2B shows an example of a change in the amount of warpage (μm) d using the thickness (nm) of the Ti film 52 as a parameter. As shown in FIG. 2(b), when the Ti film 52 is not formed (the thickness of the Ti film 52 is 0 nm), the amount of warpage d, which was 6000 μm or more, is reduced to 1500 μm by forming the Ti film 52 with a thickness of 100 nm to 200 nm. It can be seen that it improves to a certain degree. If the amount of warpage is at this level, there will be no practical problem. For this reason, the thickness of the TiN film 52 needs to be set depending on the configuration of the trench gate 24 and the back metal electrode 32, the thickness of the N-type substrate 26, etc., and is set to 100 nm to 200 nm as an example. It can be seen that by this, the amount of warpage when measured on a semiconductor wafer can be significantly improved.

ここで、裏面金属電極32の膜厚との関係でTi膜52の膜厚を考えると、裏面金属電極32の合計膜厚は775nmであったから、裏面金属電極32の膜厚に対するTi膜52の膜厚の割合を13%~26%に設定することにより半導体ウェハで測定した場合の反り量を大幅に改善することができる。また、本実施例ではN型基板26の厚さを約100μmとしていたので、基板の厚さに対するTi膜52の膜厚の割合を、0.1%~0.2%とすることにより半導体ウェハで測定した場合の反り量を大幅に改善することができる。 Here, considering the thickness of the Ti film 52 in relation to the thickness of the back metal electrode 32, the total thickness of the back metal electrode 32 was 775 nm. By setting the film thickness ratio to 13% to 26%, the amount of warpage when measured on a semiconductor wafer can be significantly improved. Further, in this embodiment, since the thickness of the N-type substrate 26 was approximately 100 μm, by setting the ratio of the thickness of the Ti film 52 to the thickness of the substrate to be 0.1% to 0.2%, the semiconductor wafer It is possible to significantly improve the amount of warpage when measured by .

なお、Ti膜52は高温でスパッタするアルミニウムと共晶層を形成するため、アルミ合金の埋め込み性に影響を与えることがなく、その結果トレンチゲートにボイドやスパイクが発生することが抑制される。ここで、Ti膜52の膜厚が200nmを越えると、トレンチのアスペクト比が大きくなる等の理由で埋め込み性の劣化を招く場合がある。 Note that since the Ti film 52 forms a eutectic layer with aluminum sputtered at high temperatures, it does not affect the embeddability of the aluminum alloy, and as a result, the generation of voids and spikes in the trench gate is suppressed. Here, if the thickness of the Ti film 52 exceeds 200 nm, the aspect ratio of the trench becomes large, which may lead to deterioration in embedding performance.

以上詳述したように、本実施の形態に係る半導体装置によれば、トレンチへの導電体の埋め込み性を確保しつつ基板の反りが抑制された半導体装置を提供することが可能となる。 As described in detail above, according to the semiconductor device according to the present embodiment, it is possible to provide a semiconductor device in which warping of the substrate is suppressed while ensuring the embedding of the conductor into the trench.

10 半導体装置
12 表面金属電極
13 保護膜
16 中間膜
18 N型エミッタ層
20 P型チャネル層
22 ゲート酸化膜
24 トレンチゲート
26 N型基板
28 バッファ層
30 P型コレクタ層
32 裏面金属電極
40 回路面
41 裏面
50 Ti膜
51 TiN膜
52 Ti膜
53 AlSiCu膜
54 Au膜
55 Ni膜
56 Ti膜
57 AlSi膜
WAF 半導体ウェハ
10 Semiconductor device 12 Surface metal electrode 13 Protective film 16 Intermediate film 18 N-type emitter layer 20 P-type channel layer 22 Gate oxide film 24 Trench gate 26 N-type substrate 28 Buffer layer 30 P-type collector layer 32 Back metal electrode 40 Circuit surface 41 Back surface 50 Ti film 51 TiN film 52 Ti film 53 AlSiCu film 54 Au film 55 Ni film 56 Ti film 57 AlSi film WAF Semiconductor wafer

Claims (5)

半導体基板と、
前記半導体基板の第1の面に形成されたトレンチの内部に形成された絶縁膜、前記絶縁膜上に形成された複数の金属膜を有する下地金属膜、および前記下地金属膜上に形成されたゲート電極を備えたトレンチゲートと、
前記半導体基板の第2の面に形成された裏面電極と、を含み、
前記下地金属膜の前記ゲート電極と接する金属膜がチタン膜となっており、
前記チタン膜の膜厚が100nmから200nmの範囲の膜厚である
半導体装置。
a semiconductor substrate;
an insulating film formed inside a trench formed on the first surface of the semiconductor substrate, a base metal film having a plurality of metal films formed on the insulating film, and a base metal film formed on the base metal film. a trench gate with a gate electrode;
a back electrode formed on the second surface of the semiconductor substrate,
The metal film in contact with the gate electrode of the base metal film is a titanium film,
A semiconductor device, wherein the titanium film has a thickness in a range of 100 nm to 200 nm.
前記トレンチゲートの両側に形成された第1の導電型の第1の不純物層と、
前記半導体基板の第2の面に形成された第2の導電型の第2の不純物層と、をさらに含み、
前記裏面電極が前記第2の不純物層上に形成されている
請求項1に記載の半導体装置。
a first impurity layer of a first conductivity type formed on both sides of the trench gate;
further comprising a second impurity layer of a second conductivity type formed on the second surface of the semiconductor substrate,
The semiconductor device according to claim 1, wherein the back electrode is formed on the second impurity layer.
前記チタン膜の膜厚の前記裏面電極の膜厚に対する比が、13%から26%の範囲である
請求項1または請求項2に記載の半導体装置。
3. The semiconductor device according to claim 1, wherein a ratio of the thickness of the titanium film to the thickness of the back electrode is in a range of 13% to 26%.
前記チタン膜の膜厚の前記半導体基板の厚さに対する比が、0.1%から0.2%の範囲である
請求項1から請求項3のいずれか1項に記載の半導体装置。
The semiconductor device according to any one of claims 1 to 3, wherein a ratio of the thickness of the titanium film to the thickness of the semiconductor substrate is in a range of 0.1% to 0.2%.
前記半導体基板の厚さが100μmから300μmの範囲の厚さであり、
前記下地金属膜が、下層から順にTi膜、TiN膜、およびTi膜を含んで形成され、 前記ゲート電極がAlSiCu膜で形成され、
前記裏面電極が下層から順にAu膜、Ni膜、Ti膜、およびAlSi膜で形成されている
請求項1から請求項4のいずれか1項に記載の半導体装置。
The thickness of the semiconductor substrate is in the range of 100 μm to 300 μm,
The base metal film is formed including a Ti film, a TiN film, and a Ti film in order from the bottom layer, and the gate electrode is formed of an AlSiCu film,
The semiconductor device according to any one of claims 1 to 4, wherein the back electrode is formed of an Au film, a Ni film, a Ti film, and an AlSi film in order from the bottom layer.
JP2020059094A 2020-03-27 2020-03-27 semiconductor equipment Active JP7379251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020059094A JP7379251B2 (en) 2020-03-27 2020-03-27 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020059094A JP7379251B2 (en) 2020-03-27 2020-03-27 semiconductor equipment

Publications (2)

Publication Number Publication Date
JP2021158284A JP2021158284A (en) 2021-10-07
JP7379251B2 true JP7379251B2 (en) 2023-11-14

Family

ID=77918363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020059094A Active JP7379251B2 (en) 2020-03-27 2020-03-27 semiconductor equipment

Country Status (1)

Country Link
JP (1) JP7379251B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088738A (en) 2013-09-27 2015-05-07 豊田合成株式会社 Semiconductor device and method of manufacturing the same
JP2015233133A (en) 2014-05-12 2015-12-24 ローム株式会社 Semiconductor device
JP2018014368A (en) 2016-07-19 2018-01-25 豊田合成株式会社 Semiconductor device and method of manufacturing the same
WO2019189242A1 (en) 2018-03-30 2019-10-03 ローム株式会社 Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088738A (en) 2013-09-27 2015-05-07 豊田合成株式会社 Semiconductor device and method of manufacturing the same
JP2015233133A (en) 2014-05-12 2015-12-24 ローム株式会社 Semiconductor device
JP2018014368A (en) 2016-07-19 2018-01-25 豊田合成株式会社 Semiconductor device and method of manufacturing the same
WO2019189242A1 (en) 2018-03-30 2019-10-03 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2021158284A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US11869961B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP6239214B1 (en) Power semiconductor device and manufacturing method thereof
JP6897141B2 (en) Semiconductor devices and their manufacturing methods
US11842938B2 (en) Semiconductor device and method for forming a semiconductor device
JP5736683B2 (en) Power semiconductor device
JP6545394B2 (en) Semiconductor device
JP7379251B2 (en) semiconductor equipment
US9735109B2 (en) Semiconductor device and semiconductor device manufacturing method
US9997459B2 (en) Semiconductor device having a barrier layer made of amorphous molybdenum nitride and method for producing such a semiconductor device
JP2016162975A (en) Semiconductor device
US10559514B2 (en) Semiconductor device
JP2019145667A (en) Semiconductor device and method for manufacturing semiconductor device
JP6455109B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP7170894B2 (en) semiconductor equipment
US11342357B2 (en) Semiconductor device
JP2011023527A (en) Semiconductor device
JP7415413B2 (en) semiconductor equipment
JP2019125758A (en) Method of manufacturing semiconductor device
US20230387064A1 (en) Semiconductor device and method of manufacturing the same
JP2017162932A (en) Semiconductor device
JP2022154154A (en) Semiconductor device
JP5721339B2 (en) Semiconductor device
JP2020047672A (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
JP2023058346A (en) Semiconductor device and method for manufacturing semiconductor device
JP2023044581A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221129

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231101

R150 Certificate of patent or registration of utility model

Ref document number: 7379251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150