JP7377940B2 - Control device and vehicle - Google Patents

Control device and vehicle Download PDF

Info

Publication number
JP7377940B2
JP7377940B2 JP2022177067A JP2022177067A JP7377940B2 JP 7377940 B2 JP7377940 B2 JP 7377940B2 JP 2022177067 A JP2022177067 A JP 2022177067A JP 2022177067 A JP2022177067 A JP 2022177067A JP 7377940 B2 JP7377940 B2 JP 7377940B2
Authority
JP
Japan
Prior art keywords
vehicle
control device
following
following vehicle
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022177067A
Other languages
Japanese (ja)
Other versions
JP2023017912A (en
Inventor
智之 田口
直敏 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2022177067A priority Critical patent/JP7377940B2/en
Publication of JP2023017912A publication Critical patent/JP2023017912A/en
Application granted granted Critical
Publication of JP7377940B2 publication Critical patent/JP7377940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本開示は、先導車に後続車を追従走行させるための追従走行システムに関する。 The present disclosure relates to a following driving system for causing a leading vehicle to follow a following vehicle.

自車両を先導車に追従走行させる車両制御装置が公知である(例えば、特許文献1)。特許文献1の車両制御装置は、先導車の加減速の目標値等の加減速情報に基づいて目標制動力を算出する。次に、車両制御装置は目標制動力が得られるように各輪のホイールシリンダ圧を制御する。 2. Description of the Related Art A vehicle control device that causes a host vehicle to follow a leading vehicle is known (for example, Patent Document 1). The vehicle control device disclosed in Patent Document 1 calculates a target braking force based on acceleration/deceleration information such as a target acceleration/deceleration value of a leading vehicle. Next, the vehicle control device controls the wheel cylinder pressure of each wheel so that the target braking force is obtained.

特開2017-1671号公報Unexamined Japanese Patent Publication No. 2017-1671

特許文献1の車両においては、各輪のホイールシリンダ圧は電気モータによって制御される。電気モータの駆動によって目標制動力が得られるまでには所定の遅れが生じるため、後続車の応答性が低下するという問題がある。 In the vehicle of Patent Document 1, the wheel cylinder pressure of each wheel is controlled by an electric motor. Since a predetermined delay occurs until the target braking force is obtained by driving the electric motor, there is a problem in that the responsiveness of the following vehicle decreases.

本発明は、以上の背景を鑑み、追従走行システムにおいて、後続車の追従性能を高めることを課題とする。 In view of the above background, an object of the present invention is to improve the following performance of a following vehicle in a following driving system.

上記課題を解決するために本発明のある態様は、後続車(2F)を先導車(2L)に追従走行させる追従走行システム(1)であって、前記先導車に設けられ、アクセル開度を含む前記先導車の走行状態を取得する先導車センサ(9L)と、前記後続車に設けられ、前記後続車にブレーキ液圧に応じた制動トルクを付与する油圧ブレーキ装置(6)と、前記後続車に設けられ、前記油圧ブレーキ装置を制御可能な後続車制御装置(12F)と、前記先導車センサによって取得された前記アクセル開度を含む前記先導車の走行状態を前記後続車制御装置に伝達する車々間通信装置(11)とを有し、前記後続車制御装置は、前記先導車の前記アクセル開度が所定以上の速度で戻されたときに、前記油圧ブレーキ装置の前記ブレーキ液圧を瞬間的に高める予圧処理を実行することを特徴とする。 In order to solve the above problems, an aspect of the present invention is a following driving system (1) that causes a following vehicle (2F) to follow a leading vehicle (2L), and is provided in the leading vehicle and controls the accelerator opening. a leading vehicle sensor (9L) that acquires the running state of the leading vehicle, a hydraulic brake device (6) that is provided on the trailing vehicle and applies braking torque to the trailing vehicle according to brake fluid pressure; A following vehicle control device (12F) installed in the vehicle and capable of controlling the hydraulic brake device; and transmitting the driving state of the leading vehicle including the accelerator opening obtained by the leading vehicle sensor to the following vehicle controlling device. and an inter-vehicle communication device (11), wherein the following vehicle control device instantaneously changes the brake fluid pressure of the hydraulic brake device when the accelerator opening degree of the leading vehicle is returned at a speed higher than a predetermined speed. The feature is that a preload process is performed to increase the pressure.

この態様によれば、先導車のアクセル開度が所定以上の速度で戻されたときに、油圧ブレーキが瞬間的に高められる。これにより、先導車に制動力が加わったときに後続車に制動力が加えられるまでの時間を短縮することができる。よって、後続車の追従性能を高めることができる。 According to this aspect, when the accelerator opening degree of the lead vehicle is returned to a predetermined speed or higher, the hydraulic brake is momentarily increased. This makes it possible to shorten the time from when braking force is applied to the leading vehicle until braking force is applied to the following vehicle. Therefore, the following performance of the following vehicle can be improved.

上記の態様において、前記後続車制御装置は、前記先導車の前記アクセル開度が所定の高開度以上の位置から所定の低開度以下の位置に、所定時間内に変化したときに、前記先導車の前記アクセル開度が所定以上の速度で戻されたと判定し、前記予圧処理を実行するとよい。 In the above aspect, the following vehicle control device controls the following vehicle control device when the accelerator opening degree of the leading vehicle changes from a predetermined high opening degree or more to a predetermined low opening degree or less within a predetermined time. It is preferable to determine that the accelerator opening degree of the lead vehicle has been returned to a predetermined speed or higher, and then execute the preload process.

この態様によれば、先導車の運転者によってアクセル開度が所定以上の速度で戻されたことを容易に判定することができる。 According to this aspect, it can be easily determined that the driver of the lead vehicle has returned the accelerator opening at a speed higher than a predetermined speed.

上記の態様において、前記後続車には、減速度を含む前記後続車の走行状態を取得する後続車センサ(9F)と、走行駆動用電気モータ(4)とが設けられ、前記後続車制御装置は、前記先導車の走行状態、及び前記後続車の走行状態に基づいて、前記後続車の目標減速度を算出し、前記目標減速度が所定の閾値より大きいときには、前記後続車の減速度を前記目標減速度と一致させるべく、前記走行駆動用電気モータの回生トルク及び前記油圧ブレーキ装置の前記制動トルクを制御する協調制御処理を実行し、前記目標減速度が前記閾値未満のときには、前記後続車の減速度を前記目標減速度と一致させるべく、前記走行駆動用電気モータの前記回生トルクを制御する単独制御処理を実行するとよい。 In the above aspect, the following vehicle is provided with a following vehicle sensor (9F) that acquires the running state of the following vehicle including deceleration, and a traveling drive electric motor (4), and the following vehicle control device calculates the target deceleration of the following vehicle based on the driving condition of the leading vehicle and the driving condition of the following vehicle, and when the target deceleration is larger than a predetermined threshold value, calculates the deceleration of the following vehicle. A cooperative control process is executed to control the regenerative torque of the travel drive electric motor and the braking torque of the hydraulic brake device in order to match the target deceleration, and when the target deceleration is less than the threshold value, the following In order to make the deceleration of the vehicle coincide with the target deceleration, it is preferable to execute an independent control process for controlling the regenerative torque of the travel drive electric motor.

この態様によれば、目標減速度が閾値以上である場合には回生トルクに加えて、油圧ブレーキによる制動トルクが加えられる。これにより、閾値以上の減速度が必要となるときに、後続車により確実に制動力を加えることができる。 According to this aspect, when the target deceleration is equal to or greater than the threshold value, braking torque by the hydraulic brake is applied in addition to the regenerative torque. This allows more reliable braking force to be applied to the following vehicle when deceleration equal to or greater than the threshold value is required.

上記の態様において、前記後続車制御装置は前記協調制御処理又は前記単独制御処理を実行する前に、前記予圧処理を実行するとよい。 In the above aspect, the following vehicle control device preferably executes the preload process before executing the cooperative control process or the independent control process.

この態様によれば、予圧処理を協調制御処理又は単独制御処理の前に行うことによって、後続車により迅速に制動力を加えることができる。これにより、後続車の追従性能を高めることができる。 According to this aspect, by performing the preload process before the cooperative control process or the independent control process, braking force can be applied more quickly to the following vehicle. Thereby, it is possible to improve the following performance of the following vehicle.

上記の態様において、前記後続車制御装置は、前記先導車と前記後続車との間の車間距離が所定の目標車間距離よりも小さくなるにつれて前記目標減速度が増加するように、前記目標減速度を算出するとよい。 In the above aspect, the following vehicle control device controls the target deceleration so that the target deceleration increases as the inter-vehicle distance between the leading vehicle and the following vehicle becomes smaller than a predetermined target inter-vehicle distance. It is recommended to calculate.

この態様によれば、車間距離が目標車間距離よりも小さくなると後続車がより減速され、目標車間距離よりも大きくなると後続車が減速され難くなる。これにより、車間距離が目標車間距離になるように後続車を制御することができる。 According to this aspect, when the inter-vehicle distance becomes smaller than the target inter-vehicle distance, the following vehicle is further decelerated, and when it becomes larger than the target inter-vehicle distance, the following vehicle is less likely to be decelerated. Thereby, the following vehicle can be controlled so that the following vehicle distance becomes the target vehicle distance.

上記の態様において、前記後続車制御装置は、前記先導車の速度に対する前記後続車の所定の車間時間前の速度の差が小さくなるにつれて前記目標減速度が増加するように、前記目標減速度を算出するとよい。 In the above aspect, the following vehicle control device sets the target deceleration so that the target deceleration increases as the difference between the speed of the leading vehicle and the speed of the following vehicle before a predetermined inter-vehicle time becomes smaller. It is best to calculate it.

この態様によれば、先導車の車間時間前の速度で走行するように後続車が制御される。これにより、後続車を先導車に適切に追従させることができる。 According to this aspect, the following vehicle is controlled so as to travel at a speed that is earlier than the inter-vehicle time of the leading vehicle. This allows the following vehicle to appropriately follow the leading vehicle.

上記の態様において、前記後続車制御装置は、前記先導車センサからの信号に基づいて、前記先導車の車輪に発生する発生トルクを取得し、前記先導車を減速させるべく前記発生トルクが発生しているときには前記目標減速度が増加するように、前記目標減速度を算出するとよい。 In the above aspect, the following vehicle control device acquires the generated torque generated in the wheels of the leading vehicle based on the signal from the leading vehicle sensor, and determines whether the generated torque is generated in order to decelerate the leading vehicle. It is preferable to calculate the target deceleration so that the target deceleration increases when the vehicle is running.

この態様によれば、先導車の発生トルクに基づいて後続車が制御されるため、後続車が減速するまでの時間的な遅れを補償することができ、後続車の追従性能を向上させることができる。 According to this aspect, since the following vehicle is controlled based on the torque generated by the leading vehicle, it is possible to compensate for the time delay until the following vehicle decelerates, and it is possible to improve the following performance of the following vehicle. can.

上記の態様において、前記先導車には、前記アクセル開度に基づいて車両を制御する先導車制御装置が設けられ、前記先導車制御装置は、前記アクセル開度が所定の基準値以上であるときに前記先導車を加速させ、前記アクセル開度が前記基準値未満であるときに前記先導車を減速させるとよい。 In the above aspect, the lead vehicle is provided with a lead vehicle control device that controls the vehicle based on the accelerator opening, and the lead vehicle control device controls when the accelerator opening is equal to or greater than a predetermined reference value. It is preferable that the leading vehicle is accelerated when the accelerator opening is less than the reference value, and the leading vehicle is decelerated when the accelerator opening is less than the reference value.

この態様によれば、先導車の加減速が一つのペダルによって操作することができるため、加減速の操作が簡素になる。 According to this aspect, the acceleration and deceleration of the lead vehicle can be operated by one pedal, so that the acceleration and deceleration operations are simplified.

上記の態様において、前記先導車制御装置が、前記先導車のアクセル操作による前記先導車の車輪への出力可能なトルクの範囲は、前記後続車制御装置が前記後続車の車輪に出力可能なトルクの範囲内であるとよい。 In the above aspect, the range of torque that the leading vehicle control device can output to the wheels of the leading vehicle due to accelerator operation of the leading vehicle is the range of torque that the trailing vehicle control device can output to the wheels of the trailing vehicle. It is good if it is within the range of .

この態様によれば、後続車の車輪に出力すべきトルクを先導車のトルク変動に合わせてより確実に変動させることができるため、後続車をより確実に先導車に追従させることができる。 According to this aspect, the torque to be output to the wheels of the following vehicle can be more reliably varied in accordance with the torque fluctuation of the leading vehicle, so that the following vehicle can be made to follow the leading vehicle more reliably.

以上の構成によれば、追従走行システムにおいて、後続車の追従性能を高めることができる。 According to the above configuration, the tracking performance of the following vehicle can be improved in the tracking system.

本実施形態に係る追従走行システムを備えた車両の構成図Configuration diagram of a vehicle equipped with a tracking system according to this embodiment 減速処理のフローチャートFlowchart of deceleration processing 目標減速度が減速度閾値以上であるときの先導車及び後続車の加速度の時間変化と、先導車及び後続車のブレーキ液圧との時間変化を示すグラフA graph showing temporal changes in the acceleration of the leading vehicle and the following vehicle and temporal changes in the brake fluid pressure of the leading vehicle and the following vehicle when the target deceleration is equal to or higher than the deceleration threshold 目標減速度が減速度閾値未満であるときの先導車及び後続車の加速度の時間変化と、先導車及び後続車のブレーキ液圧との時間変化を示すグラフA graph showing temporal changes in the acceleration of the leading vehicle and following vehicles and temporal changes in the brake fluid pressure of the leading vehicle and following vehicles when the target deceleration is less than the deceleration threshold.

以下、図面を参照して、本発明に係る追従走行システムの実施形態について説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a tracking system according to the present invention will be described with reference to the drawings.

追従走行システム1は一台の車両2(以下、先導車2L)に他の車両2(以下、後続車2F)を追従走行させるためのシステムである。以下では、追従走行システム1を先導車2Lに一台の後続車2Fを追従させる場合に適用した場合について説明を行う。 The following driving system 1 is a system for causing one vehicle 2 (hereinafter referred to as a leading vehicle 2L) to follow another vehicle 2 (hereinafter referred to as a following vehicle 2F). In the following, a case will be described in which the following driving system 1 is applied to the case where the leading vehicle 2L is caused to follow one following vehicle 2F.

先導車2L及び後続車2Fはそれぞれ電力によって走行する4輪の電気自動車であって、モータ4(電動機)、バッテリ5、油圧ブレーキ装置6、ステアリング装置7、アクセルペダル8、車両センサ9、外界認識装置10、車々間通信装置11、及び制御装置12を備える。 The leading vehicle 2L and the following vehicle 2F are four-wheeled electric vehicles that run on electric power, and include a motor 4 (electric motor), a battery 5, a hydraulic brake device 6, a steering device 7, an accelerator pedal 8, a vehicle sensor 9, and external world recognition. The vehicle includes a device 10, an inter-vehicle communication device 11, and a control device 12.

モータ4はそれぞれバッテリ5に蓄えられた電力をエネルギー源とし、対応する車両2の駆動輪に駆動トルクを加える走行駆動用電気モータである。モータ4によって加えられた駆動トルクによって車輪が回転し、車両2が走行する。本実施形態では、先導車2L及び後続車2Fの後輪がそれぞれ、先導車2L及び後続車2Fの駆動輪となっている。 Each of the motors 4 is an electric motor for running drive that uses electric power stored in a battery 5 as an energy source and applies a driving torque to the driving wheels of the corresponding vehicle 2. The wheels are rotated by the drive torque applied by the motor 4, and the vehicle 2 runs. In this embodiment, the rear wheels of the leading vehicle 2L and the following vehicle 2F serve as driving wheels of the leading vehicle 2L and the following vehicle 2F, respectively.

また、モータ4はそれぞれ回生ブレーキとしても機能する。すなわち、制動時においてモータ4は車輪の回転力を電力に変換し、その電力をバッテリ5に返還することによって、車輪に制動力となる回生トルクを加えることができる。 Further, each motor 4 also functions as a regenerative brake. That is, during braking, the motor 4 converts the rotational force of the wheels into electric power and returns the electric power to the battery 5, thereby applying regenerative torque to the wheels as a braking force.

本実施形態では、モータ4はモータドライバ14に接続されている。このモータドライバ14は、バッテリ5に接続され、モータ4の駆動を制御する。より詳細には、車両2が駆動しているときには、バッテリ5からの電力をモータ4に供給することによって、モータ4が発生する駆動トルクを制御する。車両2が制動しているときには、モータ4において発生する電力をバッテリ5に返還してバッテリ5を充電するとともに、モータ4が発生する回生トルクを制御する。以下、駆動トルクと回生トルクの差をモータ4が発生する発生トルクと記載する。 In this embodiment, the motor 4 is connected to a motor driver 14. This motor driver 14 is connected to the battery 5 and controls the driving of the motor 4. More specifically, when the vehicle 2 is driving, electric power from the battery 5 is supplied to the motor 4 to control the driving torque generated by the motor 4. When the vehicle 2 is braking, the electric power generated by the motor 4 is returned to the battery 5 to charge the battery 5, and the regenerative torque generated by the motor 4 is controlled. Hereinafter, the difference between the drive torque and the regenerative torque will be referred to as the generated torque generated by the motor 4.

油圧ブレーキ装置6は車輪それぞれに設けられたブレーキキャリパ15を備えている。ブレーキキャリパ15はそれぞれホイールシリンダ(図示せず)と、ホイールシリンダ内に油圧を発生させる電動アクチュエータ16と、ホイールシリンダ内に設けられたピストン(図示せず)と、ピストンの位置に応じて変位するブレーキパッド17とを備えている。油圧ブレーキ装置6は、電動アクチュエータ16を制御するブレーキECU18を含む。本実施形態では、電動アクチュエータ16はホイールシリンダ内に油圧を発生させる油圧ポンプによって構成され、ホイールシリンダ内の油圧が加圧開始から所定の圧力となるまでには所定の作動時間を要する。ブレーキECU18は制御装置12に接続され、制御装置12からの信号に基づいて電動アクチュエータ16の駆動を制御し、ホイールシリンダ内に油圧を発生させる。ホイールシリンダ内に発生した油圧によって、ブレーキパッド17が車輪と一体に回転するディスクロータ19に押し付けられて、各車輪に摩擦制動トルクが付与される。制御装置12は電動アクチュエータ16の駆動を制御することによって、ホイールシリンダ内の油圧値(以下、ブレーキ液圧)を制御し、各車輪に加える摩擦制動トルクの大きさを制御する。本実施形態では、制御装置12は各車輪に概ね同一の摩擦制動トルクを加える。 The hydraulic brake device 6 includes brake calipers 15 provided on each wheel. The brake calipers 15 each include a wheel cylinder (not shown), an electric actuator 16 that generates hydraulic pressure in the wheel cylinder, a piston (not shown) provided in the wheel cylinder, and are displaced according to the position of the piston. A brake pad 17 is provided. Hydraulic brake device 6 includes a brake ECU 18 that controls electric actuator 16 . In this embodiment, the electric actuator 16 is constituted by a hydraulic pump that generates oil pressure in the wheel cylinder, and it takes a predetermined operating time from the start of pressurization until the oil pressure in the wheel cylinder reaches a predetermined pressure. The brake ECU 18 is connected to the control device 12, controls the drive of the electric actuator 16 based on a signal from the control device 12, and generates oil pressure in the wheel cylinder. The hydraulic pressure generated in the wheel cylinder presses the brake pad 17 against the disc rotor 19, which rotates together with the wheel, and applies frictional braking torque to each wheel. The control device 12 controls the hydraulic pressure in the wheel cylinders (hereinafter referred to as brake fluid pressure) by controlling the drive of the electric actuator 16, thereby controlling the magnitude of the frictional braking torque applied to each wheel. In this embodiment, the controller 12 applies approximately the same friction braking torque to each wheel.

アクセルペダル8は運転席の前方であって、運転者の足元に対応する位置に設けられている。運転者はアクセルペダル8を踏み込むことによって運転操作を行うことができる。 The accelerator pedal 8 is provided in front of the driver's seat at a position corresponding to the driver's feet. The driver can perform driving operations by depressing the accelerator pedal 8.

ステアリング装置7は車両2の操舵を行うための装置であり、ステアリングECU21と、ステアリング駆動装置22とを備える。ステアリング駆動装置22はステアリングECU21からの信号に基づいて、例えば、ラックアンドピニオン機構に力を作用させて転舵輪(前輪)の舵角を変更する電気モータであってよい。 The steering device 7 is a device for steering the vehicle 2, and includes a steering ECU 21 and a steering drive device 22. The steering drive device 22 may be, for example, an electric motor that applies force to a rack and pinion mechanism to change the steering angle of the steered wheels (front wheels) based on a signal from the steering ECU 21 .

車両センサ9は自らが搭載された車両2(以下、自車両2)の走行状態を検出するセンサであり、アクセルセンサ25と、液圧センサ26と、慣性計測装置27(IMU)と、舵角センサ28とを含む。アクセルセンサ25はアクセルペダル8に設けられ、運転者のアクセルペダル8の操作量(アクセル開度)を検出するセンサである。液圧センサ26は、ホイールシリンダに設けられたブレーキ液圧値を検出するセンサである。慣性計測装置27は加速度センサ及び角速度センサを含み、自車両2の加速度、及び角速度を検出する。本実施形態では、慣性計測装置27は速度センサを含み、自車両2の速度を検出することができる。舵角センサ28はステアリングシャフトに設けられ、転舵輪の舵角を検出する公知のセンサであってよい。 The vehicle sensor 9 is a sensor that detects the running state of the vehicle 2 in which it is mounted (hereinafter referred to as the own vehicle 2), and includes an accelerator sensor 25, a hydraulic pressure sensor 26, an inertial measurement unit 27 (IMU), and a steering angle sensor 25, a hydraulic pressure sensor 26, an inertial measurement unit 27 (IMU), and a steering angle sensor 28. The accelerator sensor 25 is provided on the accelerator pedal 8 and is a sensor that detects the amount of operation (accelerator opening degree) of the accelerator pedal 8 by the driver. The hydraulic pressure sensor 26 is a sensor provided in a wheel cylinder that detects a brake hydraulic pressure value. The inertial measurement device 27 includes an acceleration sensor and an angular velocity sensor, and detects the acceleration and angular velocity of the own vehicle 2. In this embodiment, the inertial measurement device 27 includes a speed sensor and can detect the speed of the own vehicle 2. The steering angle sensor 28 may be a known sensor that is provided on the steering shaft and detects the steering angle of the steered wheels.

外界認識装置10は自車両2に対する周辺車両の位置(すなわち、相対位置)を取得するためのセンサである。外界認識装置10は、例えば、車両2の前方を撮像するステレオカメラや、車両2の前方に位置する物体を検知するミリ波レーダ、ライダ、及びソナーの少なくとも1つを含んでいるとよい。 The external world recognition device 10 is a sensor for acquiring the positions (i.e., relative positions) of surrounding vehicles with respect to the own vehicle 2. The external world recognition device 10 may include, for example, a stereo camera that images the front of the vehicle 2, and at least one of a millimeter wave radar, a lidar, and a sonar that detect an object located in front of the vehicle 2.

車々間通信装置11は自車両2の制御装置12及び自車両2以外の他の車両2の制御装置12の通信を媒介する装置である。車々間通信装置11の間の通信は光を含む電磁波によって行われてもよく、超音波を含む音波によって行われてもよい。 The inter-vehicle communication device 11 is a device that mediates communication between the control device 12 of the own vehicle 2 and the control device 12 of another vehicle 2 other than the own vehicle 2. Communication between the vehicle-to-vehicle communication devices 11 may be performed using electromagnetic waves including light, or may be performed using sound waves including ultrasonic waves.

制御装置12は、CPU、ROM、及びRAM等を含むコンピュータによって構成された電子制御装置(ECU)である。制御装置12はCAN30(Controller Area Network)等の通信手段によって、車両センサ9、外界認識装置10、車々間通信装置11、ステアリングECU21、ブレーキECU18、及びモータドライバ14に信号伝達可能に接続されている。制御装置12は1つのハードウェアとして構成されていてもよく、複数のハードウェアからなるユニット、又はソフトウェア及びハードウェアの組み合わせによって実現されてもよい。 The control device 12 is an electronic control unit (ECU) configured by a computer including a CPU, ROM, RAM, and the like. The control device 12 is connected to the vehicle sensor 9, the external world recognition device 10, the inter-vehicle communication device 11, the steering ECU 21, the brake ECU 18, and the motor driver 14 so as to be able to transmit signals through communication means such as a CAN 30 (Controller Area Network). The control device 12 may be configured as one piece of hardware, or may be realized by a unit consisting of a plurality of hardware, or a combination of software and hardware.

先導車2Lの制御装置12(先導車制御装置12L)は先導車2Lに搭載された車両センサ9(先導車センサ9L)から自車両2の走行状態を取得し、車々間通信装置11を介して後続車2Fの制御装置12に送信する。走行状態には、速度、加速度、アクセル開度、及びブレーキ液圧値が含まれる。また、先導車2Lの制御装置12は、アクセルセンサ25からアクセル開度を取得し、自車両2の駆動を制御する。より詳細には、先導車2Lの制御装置12は、アクセル開度が所定の基準値以上であるときに先導車2Lを加速させるべく車輪にトルクを加える。先導車2Lの制御装置12は、アクセル開度が基準値未満であるときに先導車2Lを減速させるべく車輪にトルクを加える。先導車2Lを減速させるべく先導車2Lの車輪に加えられるトルクは回生トルクによるものであっても、摩擦制動トルクによるものであっても、また、両者を含むものであってもよい。このように、運転者はアクセルペダル8の操作によって車両2の加減速を行うことができるため、運転操作を容易に行うことができる。 The control device 12 (leading vehicle control device 12L) of the leading vehicle 2L acquires the running state of the own vehicle 2 from the vehicle sensor 9 (leading vehicle sensor 9L) mounted on the leading vehicle 2L, and communicates the driving state of the own vehicle 2 via the inter-vehicle communication device 11. It is transmitted to the control device 12 of the car 2F. The running state includes speed, acceleration, accelerator opening, and brake fluid pressure value. Further, the control device 12 of the lead vehicle 2L acquires the accelerator opening degree from the accelerator sensor 25, and controls the drive of the host vehicle 2. More specifically, the control device 12 of the lead vehicle 2L applies torque to the wheels to accelerate the lead vehicle 2L when the accelerator opening is equal to or greater than a predetermined reference value. The control device 12 of the leading vehicle 2L applies torque to the wheels to decelerate the leading vehicle 2L when the accelerator opening is less than a reference value. The torque applied to the wheels of the leading vehicle 2L to decelerate the leading vehicle 2L may be based on regenerative torque, may be based on frictional braking torque, or may include both. In this way, the driver can accelerate or decelerate the vehicle 2 by operating the accelerator pedal 8, and therefore can easily perform driving operations.

但し、先導車2Lに後続車2Fが追従走行している場合には、運転者のアクセル操作によって先導車2Lの制御装置12が車輪への出力することのできるトルクの範囲は、後続車2Fの制御装置12が後続車2Fの車輪に出力することのできるトルクの範囲内に限られる。これにより、先導車2Lのトルク変動に合わせて後続車2Fの車輪に出力すべきトルクをより確実に変動させることができる。よって、先導車2Lの加減速に応じて後続車2Fの車輪に十分なトルクを加えることが可能となり、後続車2Fをより確実に先導車2Lに追従させることができる。 However, when the following vehicle 2F is following the leading vehicle 2L, the range of torque that the control device 12 of the leading vehicle 2L can output to the wheels by the driver's accelerator operation is limited to that of the following vehicle 2F. The torque is limited within the range of torque that the control device 12 can output to the wheels of the following vehicle 2F. Thereby, the torque to be output to the wheels of the following vehicle 2F can be more reliably varied in accordance with the torque fluctuation of the leading vehicle 2L. Therefore, it becomes possible to apply sufficient torque to the wheels of the following vehicle 2F in accordance with the acceleration/deceleration of the leading vehicle 2L, and it is possible to make the following vehicle 2F follow the leading vehicle 2L more reliably.

後続車2Fの制御装置12(後続車制御装置12F)は、車々間通信装置11を介して先導車2Lの走行状態、及び、自車両2に対する先導車2Lの位置を取得する。その後、後続車2Fの制御装置12は、取得した先導車2Lの走行状態、先導車2Lの相対位置、及び、後続車2Fに搭載された車両センサ9(後続車センサ9F)によって取得した自車両2(後続車2F)の走行状態に基づいて、目標操舵角を算出する。後続車2Fの制御装置12は、操舵角が目標操舵角となるようにステアリングECU21を制御することによって、後続車2Fを先導車2Lの走行軌跡を通過するように制御する。 The control device 12 (following vehicle control device 12F) of the following vehicle 2F acquires the driving state of the leading vehicle 2L and the position of the leading vehicle 2L with respect to the own vehicle 2 via the inter-vehicle communication device 11. Thereafter, the control device 12 of the following vehicle 2F controls the acquired driving state of the leading vehicle 2L, the relative position of the leading vehicle 2L, and the own vehicle acquired by the vehicle sensor 9 (following vehicle sensor 9F) mounted on the following vehicle 2F. 2 (following vehicle 2F), the target steering angle is calculated. The control device 12 of the following vehicle 2F controls the following vehicle 2F to pass through the traveling trajectory of the leading vehicle 2L by controlling the steering ECU 21 so that the steering angle becomes the target steering angle.

また、後続車2Fの制御装置12は、外界認識装置10によって取得された先導車2Lの相対位置に基づいて、先導車2Lと後続車2Fとの間の車間距離を算出する。すなわち、外界認識装置10は先導車2Lと後続車2Fとの間の車間距離を取得するための外界情報を取得する外界情報取得装置として機能する。 Further, the control device 12 of the following vehicle 2F calculates the inter-vehicle distance between the leading vehicle 2L and the following vehicle 2F based on the relative position of the leading vehicle 2L acquired by the external world recognition device 10. That is, the external world recognition device 10 functions as an external world information acquisition device that acquires external world information for acquiring the inter-vehicle distance between the leading vehicle 2L and the following vehicle 2F.

後続車2Fの制御装置12は、後続車2Fが先導車2Lに追従走行している間、先導車2Lと後続車2Fとの車間距離が一定となり、且つ、後続車2Fの制御装置12は先導車2Lの速度と、所定の時間である車間時間前の自車両2の速度との差(以下、車速偏差)を零とするように、自車両2を制御する。より具体的には、後続車2Fの制御装置12は車間距離が一定であり、且つ車速偏差が零となるように目標加速度を算出する。次に、後続車2Fの制御装置12は自車両2の加速度が目標加速度と等しくなるように、自車両2のモータ4による発生トルクとブレーキ液圧を制御する。後続車2Fの制御装置12によって算出される目標加速度は以下の式によって示される。 The control device 12 of the following vehicle 2F ensures that while the following vehicle 2F is following the leading vehicle 2L, the inter-vehicle distance between the leading vehicle 2L and the following vehicle 2F is constant, and the control device 12 of the following vehicle 2F is configured to The host vehicle 2 is controlled so that the difference between the speed of the vehicle 2L and the speed of the host vehicle 2 before a predetermined inter-vehicle time (hereinafter referred to as vehicle speed deviation) is zero. More specifically, the control device 12 of the following vehicle 2F calculates the target acceleration so that the inter-vehicle distance is constant and the vehicle speed deviation is zero. Next, the control device 12 of the following vehicle 2F controls the torque generated by the motor 4 of the own vehicle 2 and the brake fluid pressure so that the acceleration of the own vehicle 2 becomes equal to the target acceleration. The target acceleration calculated by the control device 12 of the following vehicle 2F is expressed by the following formula.

Figure 0007377940000001
Figure 0007377940000001

後続車2Fの制御装置12は式(1)における目標車間距離Dtg(t)[m]、及び車間時間Tgap[s]を以下の式(2)、式(3)を用いて算出している。 The control device 12 of the following vehicle 2F calculates the target inter-vehicle distance D tg (t) [m] and inter-vehicle time T gap [s] in Equation (1) using the following Equation (2) and Equation (3). ing.

Figure 0007377940000002
Figure 0007377940000002

Figure 0007377940000003
Figure 0007377940000003

式(1)において、ACCTAR(t)[G]は目標加速度であり、TQlC(t)[Nm]は時刻t[s]において先導車2Lのモータ4が発生する発生トルクであり、PQlC(t)[MPa]は先導車2Lのブレーキ液圧である。Dtg(t)[m]は時刻t[s]における目標車間距離であり、D(t)[m]は時刻t[s]における車間距離である。Vfc(t)[m/s]は時刻t[s]における後続車2Fの速度であり、Vlc(t)[m/s]は時刻t[s]における先導車2Lの速度である。Tgap[s]は車間時間である。 In equation (1), ACC TAR (t) [G] is the target acceleration, TQ lC (t) [Nm] is the generated torque generated by the motor 4 of the leading vehicle 2L at time t [s], and PQ lC (t) [MPa] is the brake fluid pressure of the leading vehicle 2L. D tg (t)[m] is the target inter-vehicle distance at time t[s], and D(t)[m] is the inter-vehicle distance at time t[s]. Vfc (t) [m/s] is the speed of the following vehicle 2F at time t [s], and V lc (t) [m/s] is the speed of the leading vehicle 2L at time t [s]. T gap [s] is the inter-vehicle time.

式(2)において、Dmin[m]は目標最低車間距離である。式(3)において、V[m/s]は追従走行に適した所定の車速であり、T0[s]は所定の追加時間である。本実施形態では、Dmin[m]は1.0mに設定され、T0は0.2秒に設定されている。追加時間は人間が応答するまでに要する時間(以下、応答時間)に基づいて定められているとよい。 In equation (2), D min [m] is the target minimum inter-vehicle distance. In equation (3), V [m/s] is a predetermined vehicle speed suitable for follow-up travel, and T 0 [s] is a predetermined additional time. In this embodiment, D min [m] is set to 1.0 m and T 0 is set to 0.2 seconds. The additional time may be determined based on the time required for a human to respond (hereinafter referred to as response time).

また、CT2Aは発生トルクを後続車2Fの加速度への寄与に変換するための正の係数を示している。式(1)に示すように、後続車2Fの制御装置12は先導車2Lを減速させるべく発生トルクが発生しているとき、すなわち発生トルクが負であるときには、目標加速度が減少する。よって、発生トルクが負であるときには、目標減速度が増加する。これにより、先導車2Lが減速しているときに後続車2Fが減速される。 Further, CT2A indicates a positive coefficient for converting the generated torque into a contribution to the acceleration of the following vehicle 2F. As shown in equation (1), when the control device 12 of the following vehicle 2F is generating torque to decelerate the leading vehicle 2L, that is, when the generated torque is negative, the target acceleration is decreased. Therefore, when the generated torque is negative, the target deceleration increases. Thereby, while the leading vehicle 2L is decelerating, the following vehicle 2F is decelerated.

P2Aはブレーキ液圧を後続車2Fの加速度への寄与に変換するための正の係数を示している。後続車2Fの制御装置12は先導車2Lを減速させるべくブレーキ液圧が発生し、先導車2Lの車輪に摩擦制動トルクが加わっているときは、目標加速度が減少する。これにより、先導車2Lが減速しているときに後続車2Fが減速される。 CP2A indicates a positive coefficient for converting the brake fluid pressure into a contribution to the acceleration of the following vehicle 2F. The control device 12 of the following vehicle 2F generates brake fluid pressure to decelerate the leading vehicle 2L, and when frictional braking torque is applied to the wheels of the leading vehicle 2L, the target acceleration decreases. Thereby, while the leading vehicle 2L is decelerating, the following vehicle 2F is decelerated.

すなわち、式(1)の等号以降の第1項と第2項との和は発生トルク及びブレーキによる制動力によって先導車2Lに生じる加速度の予測値を示し、車間距離及び車速偏差に対するフィードフォワード項に対応している。これにより、後続車2Fに制動力が加わり減速するまでの時間的な遅れを補償することができる。よって、後続車2Fの追従性能を向上させることができる。 That is, the sum of the first and second terms after the equal sign in equation (1) indicates the predicted value of the acceleration generated in the leading vehicle 2L due to the generated torque and the braking force by the brake, and is a feedforward value for the inter-vehicle distance and vehicle speed deviation. corresponds to the section. Thereby, it is possible to compensate for the time delay until the following vehicle 2F is decelerated by applying braking force. Therefore, the following performance of the following vehicle 2F can be improved.

式(1)において、CD2Aは目標車間距離に対する車間距離の差(Dtg(t)-D(t)。以下、車間偏差)を後続車2Fの加速度のへ寄与に変換するための正の係数である。式(1)の等号以降の第3項(-(CD2A(Dtg(t)-D(t)))。以下、車間偏差項)は、車間偏差が正、すなわち後続車2Fが先導車2Lに目標車間距離よりも近い位置にあるときに負となる。すなわち、車間距離が目標車間距離よりも大きく、車間偏差が正であるときに、目標加速度が減少し、後続車2Fが先導車2Lから離れて、車間偏差が小さくなる。同様に、車間距離が目標車間距離よりも小さく、車間偏差が負であるときに、目標加速度が増加し、後続車2Fが先導車2Lに近づいて、車間偏差が小さくなる。すなわち、車間偏差項は、車間偏差を零に近づけるフィードバック項に対応し、車間距離が目標車間距離になるように制御される。 In equation (1), C D2A is a positive coefficient for converting the difference in inter-vehicle distance from the target inter-vehicle distance (D tg (t) - D(t), hereinafter referred to as inter-vehicle deviation) into a contribution to the acceleration of the following vehicle 2F. It is a coefficient. The third term after the equal sign in equation (1) (-(C D2A (D tg (t) - D(t))) (hereinafter referred to as the distance deviation term) indicates that the distance deviation is positive, that is, the following vehicle 2F is leading. It becomes negative when the distance is closer to the vehicle 2L than the target inter-vehicle distance. That is, when the inter-vehicle distance is larger than the target inter-vehicle distance and the inter-vehicle deviation is positive, the target acceleration decreases, the following vehicle 2F moves away from the leading vehicle 2L, and the inter-vehicle deviation becomes smaller. Similarly, when the inter-vehicle distance is smaller than the target inter-vehicle distance and the inter-vehicle deviation is negative, the target acceleration increases, the following vehicle 2F approaches the leading vehicle 2L, and the inter-vehicle deviation becomes smaller. That is, the inter-vehicle deviation term corresponds to a feedback term that brings the inter-vehicle deviation closer to zero, and is controlled so that the inter-vehicle distance becomes the target inter-vehicle distance.

また、CV2Aは時刻tの後続車2Fの速度に対する時刻tよりも車間時間Tgap前ときの先導車2Lの速度の差(Vfc(t)-Vlc(t-Tgap)。以下、車速偏差)を後続車2Fの加速度への寄与に変換するための正の係数である。式(1)の等号以降の第4項(-CV2A(Vfc(t)-Vlc(t-Tgap)))は、車速偏差が正、すなわち後続車2Fの速度が先導車2Lの車間時間前の速度よりも大きいときには負となる。すなわち、車速偏差が正であるときに、目標加速度が減少し、後続車2Fの速度が先導車2Lの車間時間前の速度に近づき、車速偏差が小さくなる。同様に、車速偏差が負であるときに、目標加速度が増加し、後続車2Fの速度が増加して、車速偏差が小さくなる。すなわち、車速偏差項は、車速偏差を零に近づけるフィードバック項に対応し、先導車2Lの車間時間前の速度で走行するように後続車2Fがフィードバック制御される。これにより、後続車2Fを先導車2Lに適切に追従させることができる。 Furthermore, C V2A is the difference in speed of the leading vehicle 2L at the time T gap before time t with respect to the speed of the following vehicle 2F at time t (V fc (t) - V lc (t - T gap ). Hereinafter, This is a positive coefficient for converting the vehicle speed deviation) into a contribution to the acceleration of the following vehicle 2F. The fourth term after the equal sign in equation (1) (-C V2A (V fc (t) - V lc (t - T gap ))) indicates that the vehicle speed deviation is positive, that is, the speed of the following vehicle 2F is equal to that of the leading vehicle 2L. It becomes negative when the speed is greater than the speed before the inter-vehicle time. That is, when the vehicle speed deviation is positive, the target acceleration decreases, the speed of the following vehicle 2F approaches the speed of the leading vehicle 2L before the inter-vehicle time, and the vehicle speed deviation becomes small. Similarly, when the vehicle speed deviation is negative, the target acceleration increases, the speed of the following vehicle 2F increases, and the vehicle speed deviation becomes smaller. That is, the vehicle speed deviation term corresponds to a feedback term that brings the vehicle speed deviation closer to zero, and the following vehicle 2F is feedback-controlled so as to travel at a speed before the inter-vehicle time of the leading vehicle 2L. This allows the following vehicle 2F to appropriately follow the leading vehicle 2L.

後続車2Fの制御装置12は目標加速度が負、すなわち目標減速度が正であるときには、図2に示す減速処理を行う。以下では、図2を参照して、減速処理の詳細を説明する。 The control device 12 of the following vehicle 2F performs the deceleration process shown in FIG. 2 when the target acceleration is negative, that is, when the target deceleration is positive. The details of the deceleration process will be described below with reference to FIG. 2.

図2に示すように、減速処理の最初のステップST1において、アクセル開度に基づいて、先導車2Lの運転者がアクセルペダル8の踏み戻しを行ったか否かを判定する。より詳細には、後続車2Fの制御装置12は、車々間通信装置11を介して、先導車2Lセンサ(アクセル開度センサ)によって取得されたアクセル開度を含む先導車2Lの走行状態を取得する。その後、後続車2Fの制御装置12は先導車2Lのアクセル開度が所定以上の速度で戻されたか否かを判定することで、先導車2Lの運転者がアクセルペダル8の踏み戻しが行ったか否かを判定する。本実施形態は、後続車2Fの制御装置12は先導車2Lのアクセル開度が所定の閾値である高開度閾値以上の位置から、所定の閾値である低開度閾値以下の位置に、所定時間(以下、判定時間)内に変化したときに、先導車2Lのアクセル開度が所定以上の速度で戻されたと判定する。高開度閾値は30%程度に設定されることが好ましく、低開度閾値は0%に設定されるとよい。判定時間は応答時間(0.2秒)に等しくなるように設定されているとよい。先導車2Lのアクセル開度が所定以上の速度で戻された場合には、後続車2Fの制御装置12はステップST2を実行し、それ以外の場合には後続車2Fの制御装置12はステップST3の処理を実行する。 As shown in FIG. 2, in the first step ST1 of the deceleration process, it is determined based on the accelerator opening degree whether the driver of the lead vehicle 2L has depressed the accelerator pedal 8 back. More specifically, the control device 12 of the following vehicle 2F acquires the driving state of the leading vehicle 2L including the accelerator opening obtained by the leading vehicle 2L sensor (accelerator opening sensor) via the inter-vehicle communication device 11. . Thereafter, the control device 12 of the following vehicle 2F determines whether or not the accelerator opening degree of the leading vehicle 2L has been returned at a speed higher than a predetermined speed, thereby determining whether the driver of the leading vehicle 2L has pressed the accelerator pedal 8 back. Determine whether or not. In this embodiment, the control device 12 of the following vehicle 2F moves the accelerator opening of the leading vehicle 2L from a position above a high opening threshold, which is a predetermined threshold, to a position below a low opening threshold, which is a predetermined threshold. When the accelerator opening degree of the lead vehicle 2L changes within the time (hereinafter referred to as determination time), it is determined that the accelerator opening degree of the lead vehicle 2L has been returned at a speed equal to or higher than a predetermined speed. The high opening threshold is preferably set to about 30%, and the low opening threshold is preferably set to 0%. The determination time is preferably set to be equal to the response time (0.2 seconds). If the accelerator opening degree of the leading vehicle 2L is returned to a predetermined speed or higher, the control device 12 of the following vehicle 2F executes step ST2; otherwise, the control device 12 of the following vehicle 2F executes step ST3. Execute the process.

ステップST2において、後続車2Fの制御装置12はブレーキECU18を制御して、油圧ブレーキ装置6のブレーキ液圧を瞬間的に高める予圧処理を行う。より具体的には、後続車2Fの制御装置12はブレーキECU18を制御して、所定の予圧時間τの経過時に後続車2Fのブレーキ液圧が所定値であるブレーキ予圧値Pτとなるようにブレーキ液圧を上昇させる。本実施形態では、予圧時間τは応答時間(0.2秒)と等しく設定されている。ブレーキ予圧値Pτは後続車2Fに概ね0.05Gの減速度が加わるブレーキ液圧に設定されている。予圧時間τが経過し、後続車2Fのブレーキ液圧がブレーキ予圧値Pτになると、後続車2Fの制御装置12はステップST3の処理を実行する。 In step ST2, the control device 12 of the following vehicle 2F controls the brake ECU 18 to perform a preload process to instantaneously increase the brake fluid pressure of the hydraulic brake device 6. More specifically, the control device 12 of the following vehicle 2F controls the brake ECU 18 so that the brake fluid pressure of the following vehicle 2F reaches a predetermined brake prepressure value P τ when a predetermined prepressure time τ has elapsed. Increase brake fluid pressure. In this embodiment, the preload time τ is set equal to the response time (0.2 seconds). The brake prepressure value P τ is set to a brake fluid pressure that applies a deceleration of approximately 0.05 G to the following vehicle 2F. When the preload time τ has elapsed and the brake fluid pressure of the following vehicle 2F reaches the brake preload value , the control device 12 of the following vehicle 2F executes the process of step ST3.

ステップST3において、後続車2Fの制御装置12は式(1)を用いて算出した目標加速度の符号を反転する(すなわち、(-1)倍する)ことによって、目標減速度を算出する。次に、後続車2Fの制御装置12は目標減速度が所定の閾値である減速度閾値よりも大きいか否かを判定する。減速度閾値DEClimはモータ4が出力可能な最大の回生トルクを出力したときに、後続車2Fに加わる減速度(以下、最大回生減速度)と等しくなるように定められている。後続車2Fの制御装置12は目標減速度が減速度閾値よりも大きいときにはステップST4を、減速度閾値以下であるときにはステップST5をそれぞれ実行する。 In step ST3, the control device 12 of the following vehicle 2F calculates the target deceleration by inverting the sign of the target acceleration calculated using equation (1) (that is, multiplying by (-1)). Next, the control device 12 of the following vehicle 2F determines whether the target deceleration is larger than a predetermined deceleration threshold. The deceleration threshold DEC lim is set to be equal to the deceleration applied to the following vehicle 2F (hereinafter referred to as maximum regenerative deceleration) when the motor 4 outputs the maximum regenerative torque that it can output. The control device 12 of the following vehicle 2F executes step ST4 when the target deceleration is greater than the deceleration threshold, and executes step ST5 when the target deceleration is less than or equal to the deceleration threshold.

ステップST4において、後続車2Fの制御装置12は後続車2Fの減速度を目標減速度と一致させるべく、モータ4が発生する回生トルク及び油圧ブレーキが発生する摩擦制動トルクを制御する協調制御処理を実行する。このとき、後続車2Fの制御装置12は、回生トルク及び摩擦制動トルクそれぞれが変化可能な範囲内で、摩擦制動トルクを高め、回生トルク寄与を小さくするように制御するとよい。これにより、摩擦制動トルクの寄与が大きくなるため、バッテリ5の充電量が過剰になる等の理由に回生トルクの出力範囲が減少する場合であっても、後続車2Fにより確実に制動力を加えることができ、後続車2Fの加速度をより確実に目標加速度に近づけることができる。後続車2Fの制御装置12は、目標加速度を所定時刻ごとに更新し、目標加速度が負である限り、協調制御処理を実行し、目標加速度が正となったときに、ステップST4を完了し、減速処理を終える。 In step ST4, the control device 12 of the following vehicle 2F performs a cooperative control process to control the regenerative torque generated by the motor 4 and the friction braking torque generated by the hydraulic brake in order to make the deceleration of the following vehicle 2F match the target deceleration. Execute. At this time, the control device 12 of the following vehicle 2F is preferably controlled to increase the frictional braking torque and reduce the contribution of the regenerative torque within the range in which the regenerative torque and the frictional braking torque can each be changed. As a result, the contribution of frictional braking torque increases, so even if the output range of regenerative torque decreases due to reasons such as an excessive charge amount of the battery 5, braking force is applied more reliably to the following vehicle 2F. This allows the acceleration of the following vehicle 2F to approach the target acceleration more reliably. The control device 12 of the following vehicle 2F updates the target acceleration at predetermined time intervals, executes the cooperative control process as long as the target acceleration is negative, and completes step ST4 when the target acceleration becomes positive. Finish the deceleration process.

ステップST5において、後続車2Fの制御装置12は後続車2Fの減速度を目標減速度と一致させるべく、摩擦制動トルクを零とするとともに、モータ4が発生する回生トルクを制御する単独制御処理を実行する。後続車2Fの制御装置12は目標加速度を所定時刻ごとに更新し、目標加速度が負である限り、単独制御処理を実行する。後続車2Fの制御装置12は、目標加速度が正となると、ステップST5を完了し、減速処理を終える。 In step ST5, the control device 12 of the following vehicle 2F sets the friction braking torque to zero and performs an independent control process to control the regenerative torque generated by the motor 4 in order to make the deceleration of the following vehicle 2F match the target deceleration. Execute. The control device 12 of the following vehicle 2F updates the target acceleration at predetermined time intervals, and executes the independent control process as long as the target acceleration is negative. When the target acceleration becomes positive, the control device 12 of the following vehicle 2F completes step ST5 and ends the deceleration process.

次に、本発明に係る追従走行システム1の動作及び効果について、図3及び図4を参照して説明する。図3及び図4には、先導車2Lの運転者がアクセル開度を所定以上の速度で低下させたときの、先導車2Lの加速度a[G]の時間変化、及び先導車2Lのブレーキ液圧P[MPa]の時間変化がそれぞれ実線で、後続車2Fの加速度afw[G]の時間変化、及び後続車2Fのブレーキ液圧Pfw[MPa]の時間変化が破線で示されている。図3及び図4では、先導車2Lの運転者がアクセル開度を所定以上の速度で低下させた時刻tを0としている。図3は、ステップST3において算出された目標減速度が減速度閾値よりも大きい場合に対応し、図4は、ステップST3において算出された目標減速度が減速度閾値以下である場合に対応している。図4には、先導車2Lが回生トルクのみによって減速する例が記載されている。図3にはステップST4の予圧処理が行われなかった場合の後続車2Fのブレーキ液圧Pfo[MPa]の時間変化と、後続車2Fの加速度afo[G]の時間変化とがそれぞれ二点鎖線によって参考として示されている。 Next, the operation and effects of the tracking system 1 according to the present invention will be explained with reference to FIGS. 3 and 4. FIGS. 3 and 4 show the temporal change in the acceleration a l [G] of the leading vehicle 2L and the brake of the leading vehicle 2L when the driver of the leading vehicle 2L reduces the accelerator opening at a speed higher than a predetermined speed. The time changes in the hydraulic pressure P l [MPa] are shown by solid lines, and the time changes in the acceleration a fw [G] of the following vehicle 2F and the time changes in the brake fluid pressure P fw [MPa] of the following vehicle 2F are shown by broken lines. ing. In FIGS. 3 and 4, the time t at which the driver of the lead vehicle 2L reduces the accelerator opening at a speed greater than a predetermined speed is set to 0. 3 corresponds to the case where the target deceleration calculated in step ST3 is larger than the deceleration threshold, and FIG. 4 corresponds to the case where the target deceleration calculated in step ST3 is less than or equal to the deceleration threshold. There is. FIG. 4 shows an example in which the leading vehicle 2L decelerates only by regenerative torque. FIG. 3 shows the time change of the brake fluid pressure P fo [MPa] of the following vehicle 2F and the time change of the acceleration a fo [G] of the following vehicle 2F when the preload process in step ST4 is not performed. It is shown for reference by the dash-dotted line.

時刻t=0においてアクセル開度が所定以上の速度で低下すると、後続車2Fの制御装置12はステップST3において、先導車2Lの運転者がアクセルペダル8の踏み戻しを行ったと判定し、ステップST4の予圧処理を実行する。このとき、図3に示すように、先導車2Lの運転者のアクセルペダル8の踏み戻し(t=0)から、予圧処理が実行されて電動アクチュエータ16が駆動し、後続車2Fのブレーキ液圧の上昇が始まるまでに所定の遅延時間Δtがある。 When the accelerator opening degree decreases at a speed equal to or higher than a predetermined value at time t=0, the control device 12 of the following vehicle 2F determines in step ST3 that the driver of the leading vehicle 2L has depressed the accelerator pedal 8, and in step ST4. Execute the preload process. At this time, as shown in FIG. 3, when the driver of the leading vehicle 2L depresses the accelerator pedal 8 back (t=0), a preload process is executed and the electric actuator 16 is driven, and the brake fluid pressure of the following vehicle 2F is There is a predetermined delay time Δt before the start of the rise.

予圧処理によって、後続車2Fのブレーキ液圧が上昇し、予圧時間τ後に、ブレーキ液圧はブレーキ予圧値Pτとなる。これにより、後続車2Fの車輪にはブレーキ液圧に応じた摩擦制動トルクが加えられ、後続車2Fの加速度はブレーキ液圧の上昇に合わせて減少する。 The prepressure process increases the brake fluid pressure of the following vehicle 2F, and after the prepressure time τ, the brake fluid pressure reaches the brake prepressure value P τ . As a result, frictional braking torque corresponding to the brake fluid pressure is applied to the wheels of the following vehicle 2F, and the acceleration of the following vehicle 2F decreases as the brake fluid pressure increases.

遅延時間Δtと予圧時間τの和は車間時間Tgap以上に設定されていることが好ましい。これにより、先導車2Lの減速が開始されて後続車2Fの予圧処理が完了するまでの間に、目標加速度が負となるため、予圧処理後に後続車2Fの減速が停止せず、スムーズに減速が継続される。 It is preferable that the sum of the delay time Δt and the preload time τ is set to be greater than or equal to the inter-vehicle time T gap . As a result, the target acceleration becomes negative between the start of deceleration of the leading vehicle 2L and the completion of the preload processing of the following vehicle 2F, so the deceleration of the following vehicle 2F does not stop after the preload processing, and the deceleration of the following vehicle 2F is smoothly achieved. will continue.

目標減速度が減速度閾値以上の場合には、後続車2Fの制御装置12は予圧処理が完了後、協調制御処理(ST4)を実行する。これにより、後続車2Fの減速度が目標減速度と一致するように、回生トルク及び摩擦制動トルクが制御される。このとき、後続車2Fのブレーキ液圧は予圧処理のときよりも時間に対して緩やかに増加する。図3においては、後続車2Fの減速度が目標減速度と一致した後、後続車2Fの減速度は車間時間Tgap前の先導車2Lの減速度と概ね同じように変化する。このように、協調制御処理では、回生トルクと、油圧ブレーキによる摩擦制動トルクとが後続車2Fの車輪に加えられるため、油圧ブレーキによる摩擦制動トルクのみでは不十分である場合であっても、後続車2Fにより確実に制動力を加えることができる。 If the target deceleration is equal to or greater than the deceleration threshold, the control device 12 of the following vehicle 2F executes the cooperative control process (ST4) after the preload process is completed. Thereby, the regenerative torque and the friction braking torque are controlled so that the deceleration of the following vehicle 2F matches the target deceleration. At this time, the brake fluid pressure of the following vehicle 2F increases more slowly over time than during the preload process. In FIG. 3, after the deceleration of the following vehicle 2F matches the target deceleration, the deceleration of the following vehicle 2F changes approximately in the same way as the deceleration of the leading vehicle 2L before the inter-vehicle time T gap . In this way, in the cooperative control process, regenerative torque and frictional braking torque from the hydraulic brake are applied to the wheels of the following vehicle 2F, so even if the frictional braking torque from the hydraulic brake alone is insufficient, the following Braking force can be applied more reliably to the vehicle 2F.

図3の二点鎖線に示されるように、後続車2Fの制御装置12が予圧処理を行うことなく協調制御処理を実行した場合には、ブレーキ液圧は予圧処理を行う場合に比べて緩やかに増加する。すなわち、予圧処理を行うことによって、後続車2Fに減速度が車間時間Tgap前の先導車2Lの減速度と等しくなるまでの時間を短縮することができる。これにより、先導車2Lの減速によって車間距離が短くなり難くなる。よって、後続車2Fの追従性能を高めることができる。 As shown by the two-dot chain line in FIG. 3, when the control device 12 of the following vehicle 2F executes the cooperative control process without preloading, the brake fluid pressure becomes more gradual than when preloading is performed. To increase. That is, by performing the preload process, it is possible to shorten the time until the deceleration of the following vehicle 2F becomes equal to the deceleration of the leading vehicle 2L before the inter-vehicle time T gap . This makes it difficult for the inter-vehicle distance to shorten due to deceleration of the leading vehicle 2L. Therefore, the following performance of the following vehicle 2F can be improved.

予圧処理を設けることで車間距離が短くなり難くなるため、予圧処理を設けない場合に比べて先導車2Lと後続車2Fとの車間距離をより小さく設定できる。これにより、車間距離を可能な限り詰めて走行することが望ましい環境下(例えば、市街地など)においても、複数の車両2を適切に追従走行させることができる。 Since the preload process makes it difficult for the inter-vehicle distance to become short, the inter-vehicle distance between the leading vehicle 2L and the following vehicle 2F can be set smaller than when the preload process is not provided. This allows the plurality of vehicles 2 to appropriately follow each other even in environments where it is desirable to travel with as close an inter-vehicle distance as possible (for example, in a city area).

図4に示すように、目標減速度が減速度閾値未満である場合には、後続車2Fの制御装置12は予圧処理が完了後、単独制御処理(ST5)を実行する。これにより、後続車2Fの減速度が目標減速度と一致するように回生トルクが制御され、摩擦トルクは零となる。よって、回生エネルギーを効率良く回収することができる。 As shown in FIG. 4, when the target deceleration is less than the deceleration threshold, the control device 12 of the following vehicle 2F executes the independent control process (ST5) after the preload process is completed. As a result, the regenerative torque is controlled so that the deceleration of the following vehicle 2F matches the target deceleration, and the friction torque becomes zero. Therefore, regenerative energy can be efficiently recovered.

図4に示すように、予圧処理によって後続車2Fが先導車2Lよりも大きく減速されて、車間距離が増加する場合がある。この場合は、予圧処理の後に、後続車2Fの減速度が車間時間Tgap前の先導車2Lの減速度よりも小さくなるように、回生トルクが制御されるとよい。これにより、予圧処理によって車間距離が増加した場合であっても、予圧処理の後に、車間距離が減少するように回生トルクが制御されるため、車間距離をより適正に保つことができる。 As shown in FIG. 4, the preload process may cause the following vehicle 2F to be decelerated more than the leading vehicle 2L, resulting in an increase in the inter-vehicle distance. In this case, after the preload process, the regenerative torque may be controlled so that the deceleration of the following vehicle 2F is smaller than the deceleration of the leading vehicle 2L before the inter-vehicle time T gap . Thereby, even if the inter-vehicle distance increases due to the preload process, the regenerative torque is controlled so that the inter-vehicle distance decreases after the preload process, so the inter-vehicle distance can be maintained more appropriately.

以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。上記実施形態では先導車2Lと後続車2Fとは車々間通信装置11を介して互いに通信していたが、この態様には限定されない。例えば、先導車2L及び後続車2Fの制御装置12はそれぞれ基地局に無線によって通信可能に構成され、制御装置12は基地局を介して互いに通信するように構成されていてもよい。 Although the description of the specific embodiments has been completed above, the present invention is not limited to the above-mentioned embodiments and can be widely modified and implemented. In the embodiment described above, the leading vehicle 2L and the following vehicle 2F communicate with each other via the inter-vehicle communication device 11, but the present invention is not limited to this mode. For example, the control devices 12 of the leading vehicle 2L and the following vehicle 2F may each be configured to be able to communicate with a base station wirelessly, and the control devices 12 may be configured to communicate with each other via the base station.

上記実施形態では、慣性計測装置27は加速度センサ、及び角速度センサに加えて、速度センサを含んでいたがこの態様には限定されない。慣性計測装置27は速度センサを含んでいなくてもよく、車両センサ9は慣性計測装置27と、速度センサとを含むように構成されていてもよい。また、制御装置12と慣性計測装置27とが協働して、加速度センサ、及び角速度センサによって取得した加速度、及び角速度を積分することによって速度、位置、姿勢角を取得するいわゆる慣性航法装置として機能するように構成されていてもよい。 In the embodiment described above, the inertial measurement device 27 includes a speed sensor in addition to an acceleration sensor and an angular velocity sensor, but is not limited to this aspect. The inertial measurement device 27 may not include a speed sensor, and the vehicle sensor 9 may be configured to include the inertial measurement device 27 and a speed sensor. In addition, the control device 12 and the inertial measurement device 27 cooperate to function as a so-called inertial navigation device that obtains velocity, position, and attitude angle by integrating the acceleration and angular velocity obtained by the acceleration sensor and the angular velocity sensor. It may be configured to do so.

1 :追従走行システム
2 :車両
2F :後続車
2L :先導車
4 :モータ
6 :油圧ブレーキ装置
9 :車両センサ
9F :後続車センサ
9L :先導車センサ
11 :車々間通信装置
12 :制御装置
12F :後続車制御装置
12L :先導車制御装置
1: Following driving system 2: Vehicle 2F: Following vehicle 2L: Leading vehicle 4: Motor 6: Hydraulic brake device 9: Vehicle sensor 9F: Following vehicle sensor 9L: Leading vehicle sensor 11: Inter-vehicle communication device 12: Control device 12F: Following Vehicle control device 12L: Leading vehicle control device

Claims (8)

先導車からアクセル開度を含む前記先導車の走行状態を取得し、前記先導車に追従走行させるべく後続車を制御する制御装置であって、
ブレーキ液圧に応じた制動トルクを付与する油圧ブレーキ装置を制御可能に構成され、前記先導車の前記アクセル開度が所定以上の速度で戻されたときに、前記油圧ブレーキ装置の前記ブレーキ液圧を瞬間的に高める予圧処理を実行することを特徴とする制御装置
A control device that acquires the driving state of the leading vehicle including the accelerator opening from the leading vehicle and controls a following vehicle to follow the leading vehicle,
The brake fluid pressure of the hydraulic brake device is configured to be able to control a hydraulic brake device that applies braking torque according to brake fluid pressure, and when the accelerator opening of the lead vehicle is returned at a speed higher than a predetermined speed, the brake fluid pressure of the hydraulic brake device is controlled. A control device characterized by executing preload processing to instantaneously increase the pressure.
前記先導車の前記アクセル開度が所定の高開度以上の位置から所定の低開度以下の位置に、所定時間内に変化したときに、前記先導車の前記アクセル開度が所定以上の速度で戻されたと判定し、前記予圧処理を実行することを特徴とする請求項1に記載の制御装置。 When the accelerator opening degree of the leading vehicle changes from a position above a predetermined high opening degree to a position below a predetermined low opening degree within a predetermined time, the accelerator opening degree of the leading vehicle reaches a speed above a predetermined opening degree. 2. The control device according to claim 1, wherein the control device determines that the pressure has been returned and executes the preload process. 減速度を含む前記後続車の走行状態を取得する後続車センサと、走行駆動用電気モータとに接続され、 connected to a following vehicle sensor that acquires the running state of the following vehicle including deceleration, and an electric motor for driving drive;
前記先導車の走行状態、及び前記後続車の走行状態に基づいて、前記後続車の目標減速度を算出し、 Calculating a target deceleration of the following vehicle based on the driving condition of the leading vehicle and the driving condition of the following vehicle;
前記目標減速度が所定の閾値より大きいときには、前記後続車の減速度を前記目標減速度と一致させるべく、前記走行駆動用電気モータの回生トルク及び前記油圧ブレーキ装置の前記制動トルクを制御する協調制御処理を実行し、 When the target deceleration is larger than a predetermined threshold, coordination controls the regenerative torque of the travel drive electric motor and the braking torque of the hydraulic brake device so that the deceleration of the following vehicle matches the target deceleration. Execute control processing,
前記目標減速度が前記閾値未満のときには、前記後続車の減速度を前記目標減速度と一致させるべく、前記走行駆動用電気モータの前記回生トルクを制御する単独制御処理を実行することを特徴とする請求項1又は請求項2に記載の制御装置。 When the target deceleration is less than the threshold, an independent control process is executed to control the regenerative torque of the travel drive electric motor so that the deceleration of the following vehicle matches the target deceleration. The control device according to claim 1 or claim 2.
前記協調制御処理又は前記単独制御処理を実行する前に、前記予圧処理を実行することを特徴とする請求項3に記載の制御装置。 4. The control device according to claim 3, wherein the preload process is executed before executing the cooperative control process or the independent control process. 前記先導車と前記後続車との間の車間距離が所定の目標車間距離よりも小さいときに、前記目標減速度が増加するように、前記目標減速度を算出することを特徴とする請求項3又は請求項4に記載の制御装置。 3. The target deceleration is calculated such that the target deceleration increases when the inter-vehicle distance between the leading vehicle and the following vehicle is smaller than a predetermined target inter-vehicle distance. Or the control device according to claim 4. 前記先導車の所定の車間時間前の速度と前記後続車の速度との差を小さくするように、前記目標減速度を算出することを特徴とする請求項3~請求項5のいずれか1つの項に記載の制御装置 According to any one of claims 3 to 5, the target deceleration is calculated so as to reduce a difference between the speed of the leading vehicle before a predetermined inter-vehicle time and the speed of the following vehicle. Control device as described in Section . 前記先導車から前記先導車の車輪に発生する発生トルクを含む前記先導車の走行状態を取得し、前記先導車を減速させるべく前記発生トルクが発生しているときには前記目標減速度が増加するように、前記目標減速度を算出することを特徴とする請求項3~請求項6のいずれか1つの項に記載の制御装置。 The driving state of the leading vehicle including the generated torque generated from the leading vehicle to the wheels of the leading vehicle is acquired, and when the generated torque is being generated to decelerate the leading vehicle, the target deceleration is increased. The control device according to any one of claims 3 to 6, characterized in that the target deceleration is calculated in a step of calculating the target deceleration. 請求項1~請求項7のいずれか1つの項に記載の制御装置を搭載していることを特徴とする車両。 A vehicle equipped with a control device according to any one of claims 1 to 7.
JP2022177067A 2019-08-02 2022-11-04 Control device and vehicle Active JP7377940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022177067A JP7377940B2 (en) 2019-08-02 2022-11-04 Control device and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019142897A JP7173936B2 (en) 2019-08-02 2019-08-02 Tracking system
JP2022177067A JP7377940B2 (en) 2019-08-02 2022-11-04 Control device and vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019142897A Division JP7173936B2 (en) 2019-08-02 2019-08-02 Tracking system

Publications (2)

Publication Number Publication Date
JP2023017912A JP2023017912A (en) 2023-02-07
JP7377940B2 true JP7377940B2 (en) 2023-11-10

Family

ID=74664039

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019142897A Active JP7173936B2 (en) 2019-08-02 2019-08-02 Tracking system
JP2022177067A Active JP7377940B2 (en) 2019-08-02 2022-11-04 Control device and vehicle

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019142897A Active JP7173936B2 (en) 2019-08-02 2019-08-02 Tracking system

Country Status (1)

Country Link
JP (2) JP7173936B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113804469B (en) * 2021-09-30 2024-01-12 中车青岛四方机车车辆股份有限公司 Rail vehicle braking state judging system, method, storage medium and equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189116A (en) 2002-12-12 2004-07-08 Daihatsu Motor Co Ltd Vehicular brake control device and method
US20090212935A1 (en) 2008-02-24 2009-08-27 Qi Luo Anti-collision Emergency Braking System
JP2014213803A (en) 2013-04-26 2014-11-17 トヨタ自動車株式会社 Brake control device, brake control method, program and medium
JP2015051716A (en) 2013-09-06 2015-03-19 トヨタ自動車株式会社 Vehicle travel control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4020232B2 (en) * 1999-02-24 2007-12-12 日産自動車株式会社 Pre-brake control device
JP5593946B2 (en) * 2010-08-11 2014-09-24 トヨタ自動車株式会社 Vehicle control device
GB2508668A (en) * 2012-12-10 2014-06-11 Jaguar Land Rover Ltd Adaptive cruise control (ACC) means for a host vehicle having regenerative and non-regenerative braking means

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189116A (en) 2002-12-12 2004-07-08 Daihatsu Motor Co Ltd Vehicular brake control device and method
US20090212935A1 (en) 2008-02-24 2009-08-27 Qi Luo Anti-collision Emergency Braking System
JP2014213803A (en) 2013-04-26 2014-11-17 トヨタ自動車株式会社 Brake control device, brake control method, program and medium
JP2015051716A (en) 2013-09-06 2015-03-19 トヨタ自動車株式会社 Vehicle travel control device

Also Published As

Publication number Publication date
JP2021024392A (en) 2021-02-22
JP7173936B2 (en) 2022-11-16
JP2023017912A (en) 2023-02-07

Similar Documents

Publication Publication Date Title
CN109591813B (en) Collision avoidance assistance device
JP5381923B2 (en) Brake support apparatus for vehicle and brake support method for vehicle
JP3982503B2 (en) Vehicle travel control device
JP4740684B2 (en) VEHICLE DRIVE OPERATION ASSISTANCE DEVICE AND VEHICLE WITH VEHICLE DRIVE OPERATION ASSISTANCE DEVICE
JP6350465B2 (en) Vehicle control device
US11518397B2 (en) Driving assistance apparatus
JP5764111B2 (en) Brake pressure control device for vehicle
CN108146433B (en) Emergency automatic braking system and method for vehicle
WO2017217256A1 (en) Vehicle control device
CN109435948B (en) Vehicle control device and control method
JP2022024323A (en) Collision avoidance support device
WO2007111267A1 (en) Vehicle travel control device and vehicle travel control method
JP2022024322A (en) Collision avoidance support device
WO2021172549A1 (en) Driving assistance device and driving assistance method
JP7377940B2 (en) Control device and vehicle
CN113212428A (en) Collision avoidance support device
JPWO2019031106A1 (en) Braking control device
JP6342450B2 (en) Monitoring device and automobile
JP6361886B2 (en) Vehicle travel control device
JP2019051808A (en) Drive assist apparatus
JP2022159668A (en) Vehicle collision avoidance support device
JP6380308B2 (en) Vehicle travel control device
JP7484854B2 (en) Vehicle driving assistance device, vehicle driving assistance method, and vehicle driving assistance program
JP6135662B2 (en) Brake support apparatus for vehicle and brake support method for vehicle
JP2023082817A (en) Driving support apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R150 Certificate of patent or registration of utility model

Ref document number: 7377940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150