JP7372940B2 - 角膜の生体力学的反応の生体内測定のための装置及び方法 - Google Patents

角膜の生体力学的反応の生体内測定のための装置及び方法 Download PDF

Info

Publication number
JP7372940B2
JP7372940B2 JP2020566677A JP2020566677A JP7372940B2 JP 7372940 B2 JP7372940 B2 JP 7372940B2 JP 2020566677 A JP2020566677 A JP 2020566677A JP 2020566677 A JP2020566677 A JP 2020566677A JP 7372940 B2 JP7372940 B2 JP 7372940B2
Authority
JP
Japan
Prior art keywords
cornea
tear film
interface
relative phase
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020566677A
Other languages
English (en)
Other versions
JP2021525578A (ja
Inventor
スティーヴン ジェイムズ フリスケン
グラント アンドリュー フリスケン
トレヴァー ブルース アンダーソン
Original Assignee
シライト プロプライエタリー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2018902018A external-priority patent/AU2018902018A0/en
Application filed by シライト プロプライエタリー リミテッド filed Critical シライト プロプライエタリー リミテッド
Publication of JP2021525578A publication Critical patent/JP2021525578A/ja
Application granted granted Critical
Publication of JP7372940B2 publication Critical patent/JP7372940B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/16Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/107Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1005Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring distances inside the eye, e.g. thickness of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/101Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the tear film
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/16Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers
    • A61B3/165Non-contacting tonometers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Eye Examination Apparatus (AREA)

Description

本発明は、光計測学のための特にヒト角膜の生体力学的反応の生体内測定のための装置及び方法に関する。しかし、本発明がこの特定の使用分野に限定されないことは認められるであろう。
関連出願
本出願は、2018年6月5日出願のオーストラリア仮特許出願第2018902018号からの優先権を主張するものであり、その内容は引用によって本明細書に組み込まれている。
本明細書を通した従来技術のいずれの議論も、そのような従来技術が広く公知である又はその分野で共通の一般知識の一部を形成することを認めたものとして決して見なすべきではない。
円錐角膜は、局在化した薄化及び低下した剛性が角膜の歪みをもたらし、視覚の品質を直接的に損ねる変性病態である。かなり進行した円錐角膜の角膜歪み特徴は、角膜トポグラフィ又は角膜厚測定によって容易に検出可能であるが、この病態をより早期のステージで検出することができることが好ましい。これは、例えば、永久損傷が発生する前に病態を管理するための戦略を策定することができるように円錐角膜を発症するリスクのある人々の選別を可能にし、並びに屈折矯正手術の前の患者選別を可能にすると考えられる。角膜疾患の中でも取りわけ円錐角膜の早期検出は、眼球の生体力学的特性を測定して角膜の局在化した脆弱化を見つけることによって実質的に達成することができると考えられている。特に、円錐角膜錐体の焦点領域は、脆弱化し、かつ角膜の他の領域とは異なる生体力学的特性を有する。この手法は、診断を複雑にする可能性があると考えられる角膜の他の摂動からの区別を単純に角膜高度及び厚みマップのような幾何学的特徴に基づいて提供することができる。
角膜のようなヒト組織の力学的反応を測定するための1つの技術は、例えば、「生体力学特性を評価して眼及び他の組織の変性疾患の進行を検出するための光コヒーレンスエラストグラフィ(Optical coherence elastography to assess biomechanics and detect progression of ocular and other tissues degenerative diseases)」という名称の公開米国特許出願第2017/0290503 A1号明細書に説明されている光コヒーレンスエラストグラフィ(OCE)である。組織内の振動は、例えば、エアパフ、超音波、又は力学的接触によって励起され、力学的反応は、光コヒーレンス断層撮影(OCT)によって測定される。角膜測定に関してOCEを使用することに伴う問題は、眼内圧効果(IOP)変動を角膜内の異常から分離する必要性である。
角膜にわたる力学的強度を少なくとも生体外でマップするための技術としてブリルアン顕微鏡法が提案されている。例えば、Scarcelli他著「ブリルアン顕微鏡法を用いた生体外の円錐角膜の生体力学的特徴付け(Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy)」、Investigative Ophthalmology & Visual Science第55巻(第7号)、4490ページ(2014年)に説明されているように、ブリルアンシフト測定は、角膜の縦弾性率に関する情報を提供することができる。しかし、この装置は、高分解能分光計を必要とするという理由から比較的高価である。更に、この技術は、走査要件の理由で時間を消費し、高い眼球上光強度を必要とし、生体内使用に対して課題を呈している。
例えば、角膜波形のような超音波技術又はOCT、スリット走査、及びScheimpflug撮像のような光学技術に基づく角膜厚を測定するためのいくつかのタイプのパキメータが公知である。しかし、これらの技術は、角膜の生体力学的反応に関連付けられた厚みの小さい空間的又は時間的変動を測定するための十分な精度を持たない場合があり、市販の多くの計器に関して±5μm付近の繰り返し性が報告されており、例えば、McAlinden他著「Oculus Pentacam HRの精度(繰り返し性及び再現性)の全体評価(A comprehensive evaluation of the precision (repeatability and reproducibility) of the Oculus Pentacam HR)」、Investigative Ophthalmology & Visual Science第52巻(第10号)、7731ページ(2011年)、及びCorrea-Perez他著「中心角膜厚を測定するための高精細スペクトル領域光コヒーレンス断層撮影の精度(Precision of high definition spectral-domain optical coherence tomography for measuring central corneal thickness)」、Investigative Ophthalmology & Visual Science第53巻(第4号)、1752ページ(2012年)を参照されたい。涙液膜厚みを測定するための光反射率測定技術は、数nm程度のかなり高い精度を有するが、特に、大きい角膜面積にわたって測定する時には、涙液膜厚みよりも2桁程度大きい角膜厚を測定するには十分に適していない。
角膜の圧力誘起変形の研究は、心拍数、姿勢変化、水分摂取量、日内周期、及びある一定の薬物を含むいくつかのファクタに関連付けられた約±3から6mmHgのIOPの変動に起因して眼球及び角膜が形状のクリープを受けることを示している。これらの形状変化は、Placidoディスクトポグラフィのような従来のトポグラフィ技術を用いて何秒又はそれよりも長い期間にわたって測定可能である。模擬パルスを用いて生体外で適用される接触超音波技術を使用して「眼科エラストグラフィ(Ophthalmic elastography)」という名称の公開米国特許出願第2015/0313573 A1号明細書に報告されているように、IOPが眼球脈波と共に変動することも公知である。しかし、これらのパルス関連形状変化は、上記で言及したより緩やかなIOP変動によって引き起こされるものよりも一般的に約1桁小さいものであり、角膜の内在する生体力学を評価するのに必要とされる感度レベルで非侵襲的かつ生体内で角膜厚を測定するのは困難である。
角膜涙液膜は、それが、眼球に入射する光線が遭遇する最初の屈折面であるので、眼球の健康、並びに視力において重要な役割を演じ、異常涙液膜破壊は、ドライアイ疾患及び視覚収差に関わっている。King-Smith他著「涙液膜破壊の機構、撮像、及び構造(Mechanisms、imaging and structure of tear film breakup)」、The Ocular Surface第16巻、4ページ(2018年)に最近精査されているように、涙液膜破壊の動力学及び原因は、長年にわたって研究されてきた。涙液膜厚み及び面形状は、両方共に涙液膜動力学を決定するのに重要であるが、現在の撮像技術は、厚み又は面形状のいずれかを測定することに限定されている。例えば、dos Santos他著「スペクトル領域光コヒーレンス断層撮影を用いた生体内涙液膜厚み測定及び涙液膜動力学可視化(In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography)」、Optics Express第23巻(第16号)、21043ページ(2015年)を参照すると、スペクトル領域OCTは、涙液膜厚みを測定するのに使用されてきたが、面形状に関する情報を提供していない。こうして、涙液膜厚み及び動力学を広い領域にわたって測定することができて眼球の形状及び位置を考慮することができる装置に対する必要性が存在する。
状況が明確に他を必要としない限り、本明細書及び特許請求の範囲を通して言葉「含んでいる」及び「含む」などは、限定的又は網羅的な意味とは反対に包含的な意味で解釈されるものとする。すなわち、それらは、「含むがそれに限定されない」の意味で解釈されるものとする。
米国特許出願第2017/0290503 A1号明細書 米国特許出願第2015/0313573 A1号明細書 米国特許出願第2016/0345820 A1号明細書 PCT特許出願第WO 2018/136993 A1号明細書
Scarcelli他著「ブリルアン顕微鏡法を用いた円錐角膜の生体外生体力学的特徴付け(Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy)」、Investigative Ophthalmology & Visual Science第55巻(第7号)、4490ページ(2014年) McAlinden他著「Oculus Pentacam HRの精度(繰り返し性及び再現性)の全体評価(A comprehensive evaluation of the precision (repeatability and reproducibility) of the Oculus Pentacam HR)」、Investigative Ophthalmology & Visual Science第52巻(第10号)、7731ページ(2011年) Correa-Perez他著「中心角膜厚を測定するための高精細スペクトル領域光コヒーレンス断層撮影の精度(Precision of high definition spectral-domain optical coherence tomography for measuring central corneal thickness)」、Investigative Ophthalmology & Visual Science第53巻(第4号)、1752ページ(2012年) King-Smith他著「涙液膜破壊の機構、撮像、及び構造(Mechanisms、imaging and structure of tear film breakup)」、The Ocular Surface第16巻、4ページ(2018年) dos Santos他著「スペクトル領域の光コヒーレンス断層撮影を用いた生体内涙液膜厚みの測定及び涙液膜動力学の可視化(In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography)」、Optics Express第23巻(第16号)、21043ページ(2015年) King-Smith他著「涙液膜干渉測定及び角膜面粗度(Tear film interferometry and corneal surface roughness)」、Investigative Ophthalmology & Visual Science第55巻(第4号)、2614ページ(2014年)
従来技術の限界の少なくとも1つを克服又は改善すること又は有用な代替物を提供することが本発明の目的である。角膜にわたる複数の点での1又は2以上の角膜特性のスナップショット生体内測定のための装置を提供することが好ましい形態での本発明の目的である。角膜厚み又は歪みの時間変動の生体内測定のための装置を提供することが好ましい形態での本発明の別の目的である。角膜の広い領域にわたって涙液膜動力学を測定する方法を提供することが好ましい形態での本発明の別の目的である。
本発明の第1の態様により、角膜の1又は2以上の特性を測定するための装置を提供し、装置は、光源と角膜の前側面の少なくとも一部分上に同時に入射するように構成されたビームレットの収束アレイを発生させるための空間的サンプリング要素とを含む第1の光学系と、角膜の前側面から反射又は散乱された光及び第2の面又は界面から反射又は散乱された光を捕捉し、ビームレットによって照明された角膜の部分にわたって前側面から反射又は散乱された光と第2の面又は界面から反射又は散乱された光の間の相対位相を測定し、かつ相対位相を経時的にモニタして照明部分にわたる角膜の1又は2以上の特性に関する情報を取得するための第2の光学系と、を含む。
装置は、好ましくは、使用時に前側面上へのビームレットの入射角が法線入射の3度以内であるように構成される。
好ましくは、空間的サンプリング要素は、レンズレットアレイを含む。ある一定の実施形態では、前側面から及び第2の面又は界面から反射又は散乱された光は、空間的サンプリング要素を用いて捕捉される。他の実施形態では、前側面から及び第2の面又は界面から反射又は散乱された光は、第2の空間的サンプリング要素を用いて捕捉される。
好ましくは、装置は、相対位相測定値から角膜の照明部分にわたる相対位相のマップを生成し、かつ相対位相を経時的にモニタしてマップの時間変動を決定するためのプロセッサを含む。
装置は、好ましくは、前側面から及び第2の面又は界面から反射又は散乱された光を基準ビームと干渉させて1又は2以上のインターフェログラムを発生させるための干渉計を含む。好ましくは、プロセッサは、異なる時間で得られた相対位相の2又は3以上のマップを位置合わせするために1又は2以上のインターフェログラムを利用して前側面上のビームレットの場所を追跡するように構成される。
好ましい実施形態では、光源は、多波長光源を含み、プロセッサは、好ましくは、相対位相のマップから角膜の断層プロファイルを計算するように構成される。断層プロファイルは、振幅、位相、又は前側面と第2の面又は界面との間の光路長のうちの1又は2以上を含むことができる。好ましくは、第2の面又は界面は、光路長が角膜厚の尺度を含むように角膜の後面を含む。
好ましい実施形態では、プロセッサは、光路長の時間変動から眼内圧と角膜上の外圧の間の相対差に対する角膜の生体力学的反応を決定するように構成される。ある一定の実施形態では、プロセッサは、眼球脈波に関連付けられた周期的眼内圧変動に対する角膜の生体力学的反応を決定するように構成される。他の実施形態では、装置は、角膜上の外圧を変化させるように構成される。ある一定の実施形態では、装置は、分散音波源を適用することによって又は角膜での周囲圧を変化させることによって外圧を変化させるように構成される。
ある一定の実施形態では、プロセッサは、エアパフ源、超音波源、又は音響放射圧源のうちの1又は2以上によって課される摂動に対する角膜の生体力学的反応を光路長の時間変動から決定するように構成される。
ある一定の実施形態では、装置は、角膜上の涙液膜の厚みの時間変動を測定するように構成される。好ましくは、プロセッサは、角膜上の涙液膜の厚みの時間変動を測定し、かつ涙液膜厚みの測定された時間変動を光路長から差し引いて角膜光路長の正規化測定値を与えるように構成される。
本発明の第2の態様により、角膜の1又は2以上の特性を測定する方法を提供し、本方法は、角膜の前側面の少なくとも一部分上に同時に入射するように構成されたビームレットの収束アレイを発生させる段階と、角膜の前側面から反射又は散乱された光と第2の面又は界面から反射又は散乱された光を捕捉する段階と、ビームレットによって照明された角膜の部分にわたって前側面から反射又は散乱された光と第2の面又は界面から反射又は散乱された光の間の相対位相を測定する段階と、相対位相を経時的にモニタして照明部分にわたる角膜の1又は2以上の特性に関する情報を取得する段階と、を含む。
好ましくは、本方法は、相対位相測定値から角膜の照明部分にわたる相対位相のマップを生成する段階と、相対位相を経時的にモニタしてマップの時間変動を決定する段階とを更に含む。
好ましくは、本方法は、前側面から及び第2の面又は界面から反射又は散乱された光を基準ビームと干渉させて1又は2以上のインターフェログラムを発生させる段階と、異なる時間で得られた相対位相の2又は3以上のマップを位置合わせするために1又は2以上のインターフェログラムを利用して前側面上のビームレットの場所を追跡する段階とを更に含む。
好ましい実施形態では、ビームレットは、多波長光源から発生され、相対位相のマップは、好ましくは、角膜の断層プロファイルを提供する。断層プロファイルは、振幅、位相、又は前側面と第2の面又は界面との間の光路長のうちの1又は2以上を含むことができる。好ましくは、本方法は、光路長の時間変動から眼内圧と角膜上の外圧の間の相対差に対する角膜の生体力学的反応を決定する段階を更に含む。ある一定の実施形態では、眼球脈波に関連付けられた周期的眼内圧変動に対する角膜の生体力学的反応が決定される。
ある一定の実施形態では、本方法は、エアパフ、超音波、又は音響放射圧のうちの1又は2以上を含む摂動を角膜上に課す段階と、光路長の時間変動から摂動に対する角膜の生体力学的反応を決定する段階とを更に含む。
ある一定の実施形態では、本方法は、角膜上の涙液膜の厚みの時間変動を測定する段階を更に含む。好ましくは、涙液膜厚みの測定された時間変動は、光路長から差し引かれて角膜光路長の正規化測定値を与える。
本発明の第3の態様により、角膜の1又は2以上の特性を測定するための装置を提供し、装置は、角膜の第1の面又は界面の少なくとも一部分上に同時に入射するように構成されたビームレットの収束アレイを発生させ、角膜の第1の面又は界面から反射又は散乱された光と第2の面又は界面から反射又は散乱された光を捕捉し、ビームレットによって照明された角膜の部分にわたって第1及び第2の面又は界面の間の相対位相を測定し、かつ相対位相を経時的にモニタして照明部分にわたる角膜の1又は2以上の特性に関する情報を取得するための光学系を含む。
ある一定の実施形態では、光学系は、基準ビームに対する第1及び第2の面又は界面の位相を測定するように構成される。他の実施形態では、光学系は、角膜上の涙液膜からの反射に対する第1及び第2の面又は界面の位相を測定するように構成される。第1の面又は界面は、空気/涙液膜界面を含むことができる。
好ましくは、装置は、相対位相測定値から角膜の照明部分にわたる相対位相のマップを生成し、かつ相対位相を経時的にモニタしてマップの時間変動を決定するためのプロセッサを含む。光学系は、好ましくは、ビームレットを発生させるための多波長光源を含み、プロセッサは、好ましくは、相対位相のマップから角膜の断層プロファイルを計算するように構成される。
本発明の第4の態様により、角膜の1又は2以上の特性を測定する方法を提供し、本方法は、角膜の第1の面又は界面の少なくとも一部分上に同時に入射するように構成されたビームレットの収束アレイを発生させる段階と、角膜の第1の面又は界面から反射又は散乱された光と第2の面又は界面から反射又は散乱された光を捕捉する段階と、ビームレットによって照明された角膜の部分にわたって第1及び第2の面又は界面の間の相対位相を測定する段階と、相対位相を経時的にモニタして照明部分にわたる角膜の1又は2以上の特性に関する情報を取得する段階と、を含む。
ある一定の実施形態では、第1及び第2の面又は界面の位相は、基準ビームに対して測定される。他の実施形態では、第1及び第2の面又は界面の位相は、角膜上の涙液膜からの反射に対して測定される。第1の面又は界面は、空気/涙液膜界面を含むことができる。
好ましくは、本方法は、相対位相測定値から角膜の照明部分にわたる相対位相のマップを生成する段階と、相対位相を経時的にモニタしてマップの時間変動を決定する段階とを更に含む。好ましくは、ビームレットは、多波長光源から発生され、相対位相のマップは、好ましくは、角膜の断層プロファイルを提供する。
本発明の第5の態様により、角膜上の涙液膜を調査するための装置を提供し、装置は、角膜の涙液膜又は前方の面を複数の点で照明するための照明系と、複数の点での涙液膜からの超高反射信号又は前面から散乱された光を含む戻り信号を捕捉するための捕捉光学系であって、捕捉角を有する上記捕捉光学系とを含み、照明系は、使用時に、超高反射信号が捕捉角内であり、より高い強度の戻り信号のセットをもたらすように、法線入射に十分に近い入射角で涙液膜又は前面上に入射する光を用いて複数の点の第1のセットを照明し、かつ超高反射信号が捕捉角内ではなく、より低い強度の戻り信号のセットをもたらすように、法線入射から十分に離れた入射角で涙液膜又は前面上に入射する光を用いて複数の点の第2のセットを照明するように構成され、装置は、更に、より高い強度及びより低い強度の戻り信号のセットを処理して光コヒーレンス断層撮影測定値を取得し、かつより高い強度及びより低い強度の戻り信号のセットの選択された光コヒーレンス断層撮影測定値から涙液膜の厚みに関連する尺度を計算するためのプロセッサを含む。
ある一定の実施形態では、プロセッサは、より低い強度の戻り信号のセットの光コヒーレンス断層撮影測定値に対して面をフィッティングし、かつ面とより高い強度の戻り信号の選択された光コヒーレンス断層撮影測定値との間の差を計算することによって涙液膜の厚みに関連する尺度を計算するように構成される。他の実施形態では、プロセッサは、より高い強度の戻り信号の光コヒーレンス断層撮影測定値に対して第1の面をフィッティングし、より低い強度の戻り信号の光コヒーレンス断層撮影測定値に対して第2の面をフィッティングし、かつ第1及び第2の面の間のオフセットを計算することにより、涙液膜の厚みに関連する尺度を計算するように構成される。プロセッサは、好ましくは、涙液膜の厚みに関連する尺度の時間変動をモニタするように構成される。
ある一定の実施形態では、プロセッサは、より高い強度の戻り信号のセットとより低い強度の戻り信号のセットの間の境界を決定するように構成される。プロセッサは、境界のサイズ又は形状から又はその時間変動から涙液膜の脂質層の厚み、品質、又は分布に関する情報を取得するように構成することができる。
好ましくは、照明系は、角膜の涙液膜又は前面を複数の点で同時に照明するように構成される。より好ましくは、照明系は、角膜の涙液膜又は前面を実質的に平行なビームレットのアレイで照明するように構成される。
好ましい実施形態では、照明系は、涙液膜又は前面の上に15度よりも小さい、より好ましくは8度よりも小さい、最も好ましくは4度よりも小さい入射角で入射する光を用いて第1の点セットを照明するように構成される。
好ましい実施形態では、照明系は、涙液膜又は前面の上に4度よりも大きい、より好ましくは8度よりも大きい、最も好ましくは15度よりも大きい入射角で入射する光を用いて第2の点セットを照明するように構成される。
本発明の第6の態様により、角膜上の涙液膜を調査する方法を提供し、本方法は、涙液膜又は角膜の前面を複数の点で照明する段階と、捕捉角を有する捕捉光学系によって複数の点での涙液膜からの超高反射信号又は前面から散乱された光を捕捉する段階であって、超高反射信号が捕捉角内であってより高い強度の戻り信号のセットをもたらすように法線入射に十分に近い入射角で涙液膜又は前面の上に入射する光を用いて複数の点の第1のセットが照明され、超高反射信号が捕捉角内ではなくてより低い強度の戻り信号のセットをもたらすように法線入射から十分に離れた入射角で涙液膜又は前面の上に入射する光を用いて複数の点の第2のセットが照明される上記捕捉する段階と、光コヒーレンス断層撮影測定値を取得するようにより高い強度及びより低い強度の戻り信号のセットを処理する段階と、より高い強度及びより低い強度の戻り信号のセットの選択された光コヒーレンス断層撮影測定値から涙液膜の厚みに関連する尺度を計算する段階とを含む。
ある一定の実施形態では、計算段階は、より低い強度の戻り信号の光コヒーレンス断層撮影測定値に対して面をフィッティングする段階と、面とより高い強度の戻り信号の選択された光コヒーレンス断層撮影測定値との間の差を計算する段階とを含む。他の実施形態では、計算段階は、より高い強度の戻り信号の光コヒーレンス断層撮影測定値に対して第1の面をフィッティングする段階と、より低い強度の戻り信号の光コヒーレンス断層撮影測定値に対して第2の面をフィッティングする段階と、第1及び第2の面の間のオフセットを計算する段階とを含む。好ましくは、本方法は、涙液膜の厚みに関連する尺度の時間変動をモニタする段階を更に含む。
ある一定の実施形態では、本方法は、より高い強度の戻り信号のセットとより低い強度の戻り信号のセットの間の境界を決定する段階を更に含む。本方法は、境界のサイズ又は形状から又はその時間変動から涙液膜の脂質層の厚み、品質、又は分布に関する情報を取得する段階を更に含むことができる。
好ましくは、角膜の涙液膜又は前面は、複数の点で同時に照明される。より好ましくは、角膜の涙液膜又は前面は、実質的に平行なビームレットのアレイで照明される。
好ましい実施形態では、第1の点セットは、涙液膜又は前面の上に15度よりも小さい、より好ましくは8度よりも小さい、最も好ましくは4度よりも小さい入射角で入射する光を用いて照明される。
好ましい実施形態では、第2の点セットは、涙液膜又は前面の上に4度よりも大きい、より好ましくは8度よりも大きい、最も好ましくは15度よりも大きい入射角で入射する光を用いて照明される。
本発明の第7の態様により、第1、第3、又は第5の態様による装置を作動させるように又は第2、第4、又は第6の態様による方法を実施するように構成されたコンピュータ可読プログラムコードを有する非一時的コンピュータ使用可能媒体を含む製造物品を提供する。
次いで、本発明の好ましい実施形態を単なる例として添付図面を参照して以下に説明する。
本発明の実施形態による複数の点での角膜の1又は2以上の特性の位相精度、すなわち、nmレベル精度の生体内測定のためのスペクトル領域のOCT装置を概略的なタイプで例示する図である。 図1AのOCT装置のためのサンプルアーム光学系の代替的構成を概略的なタイプで例示する図である。 図1AのOCT装置のためのサンプルアーム光学系の別の構成を概略的なタイプで例示する図である。 ビームレットアレイを発生させて戻り信号を回収するための変形構成を概略的なタイプで例示する図である。 涙液膜及びヒト角膜の構造を概略的なタイプで例示する図である。 見かけ角膜厚に対する眼球対装置軸線方向位置の変化の効果を示す図である。 6μmから1μmまでの6つの異なる開始涙液膜厚みのうちの3つに関して予想反射ビームレット電力の時間変動をいくつかの個別波長ビンに示す図である。 6μmから1μmまでの6つの異なる開始涙液膜厚みのうちの3つに関して予想反射ビームレット電力の時間変動をいくつかの個別波長ビンに示す図である。 角膜頂点からの7つの半径方向位置のうちの4つに関して涙液膜から反射されたビームレット内の6秒にわたる予想電力変化をいくつかの個別波長ビンに示す図である。 角膜頂点からの7つの半径方向位置のうちの3つに関して涙液膜から反射されたビームレット内の6秒にわたる予想電力変化をいくつかの個別波長ビンに示す図である。 瞬きの後のゼロ秒から6秒までのいくつかの異なる時点での角膜頂点からの半径方向位置に対する涙液膜厚みのプロットを描例示する図である。 ビームレットアレイで照明された角膜の一部分の生体内反射率画像である。 図7の反射率画像にわたって計算されたOCTデータを用いて涙液膜厚みに関連する尺度を取得する方法を概略的に例示する図である。 図7に見られる実質的に二値の強度分布と整合する鏡面反射及び散乱のモデルを概略的に例示する図である。 涙液膜又は角膜の上の複数の点の照明を概略的に例示する図である。
図1Aは、本発明の実施形態による複数の点でのヒト角膜102の1又は2以上の特性の位相精度、すなわち、nmレベル精度を有する生体内測定に適するスペクトル領域の光コヒーレンス断層撮影(OCT)装置100を概略的なタイプに示している。中心波長840nmと帯域幅40nmとを有する超高輝度発光ダイオードのような広帯域光源106からの光104が、レンズ又は放物面ミラーのような平行化要素108によって平行化され、偏光子110によって直線偏光され、次いで、偏光ビーム分割キューブ(PBS)112によって基準ビーム114とサンプルビーム116とに分割される。基準アーム117が、ミラー118と、装置を基準ビームなしで作動される場合に基準ビーム114を遮蔽するための可動シャッター120と、ミラー118から反射された光がPBS112を通して検出アーム121の中に入るような偏光変換のための4分の1波長板122とを含む。基準アーム117は、リレー要素と、サンプルアーム123内の光学系の分散を補償するための分散整合構成要素とを更に含むことができる。ミラー118は、例えば、様々な眼球の位置に整合させるために又は眼球内の様々な深さにある構造から情報を取得するためにサンプルアームに対して基準アームの光路長を調節するように軸線方向に移動することができる。これに代えて又はこれに加えて、装置100全体を角膜102に対して軸線方向に移動して眼球から装置までの距離、従って、サンプルアーム123の光路長を調節することができる。
サンプルアームは、4分の1波長板138と、レンズ系128を通して角膜102に伝達されるサンプルビームレット126の2Dアレイをサンプルビーム116から発生させるための2次元(2D)レンズレットアレイ124の形態にある空間的サンプリング要素とを含む。図示の実施形態では、レンズ系は、伝達ビームレット130の中心光線が角膜の前面132上、又はより厳密には下記で説明する空気/涙液膜界面上に法線入射又はほぼ法線入射で入射するように設計された非テレセントリック系である。伝達ビームレット130の収束アレイの中心光線は、例えば、焦点面135、すなわち、ビームレットウエストが位置する面を約8mm超えた点134に収束することができる。好ましい実施形態では、レンズ系128は、図示のように焦点面135が実質的に球面であり、ビームレット130の収束点134がほぼこの面の曲率中心にくるように設計される。図1Bに示す代替実施形態では、サンプルアームは、角膜102に実質的に平行に伝播する伝達ビームレット172のアレイを発生させるように設計されたテレセントリック又は4Fのレンズ系170を含み、この場合に、ビームレットの焦点面は実質的に平面になる。例示の簡略化の目的で、リレーレンズ系128及び170内のレンズを単純な単一要素のレンズとして示すが、好ましい実施形態では、これらのレンズ系は、信号帯域幅にわたる伝達ビームレットの歪みを低減するために複数の要素を有する。図1Cに示す更に別の実施形態では、サンプルアームは、従来のレンズ176と複合レンズ178とを含むレンズ系174を含む。複合レンズは、ビームレットの内側部分集合130を角膜102上に法線入射又はほぼ法線入射で誘導するより短い焦点距離のセクションと、ビームレットの外側部分集合180を前部強膜182又は角膜縁184の上に誘導するより長い焦点距離のセクションとを含む。
角膜前面132又は角膜後面136から、角膜102内の他の界面から、又は深めの場所にある眼球構造から散乱又は反射された光は、リレーレンズ系128、170、又は174を通って逆進し、次いで、レンズレットアレイ124によって捕捉され、4分の1波長板138での偏光変換に続いてPBS112によって検出アーム121の中に反射される。一般的に、角膜102上に伝達することができるビームレット126の本数は、2Dレンズレットアレイ124の設計に依存し、ある一定の実施形態では、例えば、公称焦点面135では、すなわち、ビームレット130又は172のウエストでは、正方形又は矩形のパターン内に例えば1平方ミリメートル当たり4本から100本までのビームレット密度で100桁台又は1000桁台の本数のビームレットが存在することができる。使用時に、装置は、好ましくは、公称焦点面135が図1Aに示すように角膜102の内部又はその非常に近くにあるように配置されることになる。角膜後面136からの比較的弱い反射を助けるために、公称焦点面135が角膜後面136の近くにあることを更に好ましいこととすることができる。
基準ビーム114が存在する場合に、それがPBS112において反射サンプルビームレット140と結合され、結果的な結合ビームが、サンプル光路からの光と基準光路からの光とを干渉させる偏光子142によって解析される。基準ビーム114がシャッター120によって遮蔽される場合に、空気/涙液膜界面及び角膜後面136のような眼球内の2又は3以上の面又は界面から反射又は散乱された光の間で干渉信号がもたらされる場合がある。干渉信号のソース又は源がいずれのものであっても、眼球内の2又は3以上の面又は界面から反射又は散乱された光の間の相対位相に関する情報を含む結果的な干渉パターンは、2Dレンズレットアレイ150及び対応する2D開口アレイ152の形態にある空間的サンプリング要素によって決定される空間位置の格子の場所にある分光計148でのスペクトル解析に向けてレンズ系144と迷光を除去するための任意的な開口部146とによって伝達される。
分光計148は、スナップショットの取得に向けて複数の格子点、ビーム、又はビームレットを同時に又は2Dセンサアレイ154の少なくとも単一フレーム内で解析することができる。分光計148に入射した後に、干渉ビームレットはPBS158によってレンズ160に光路変更され、レンズ160は、これらのビームレットを回折格子156による分散に向けて平行化し、この分散にミラー164からの反射を通して4分の1波長板162を通る2回通過が続き、それによって偏光状態が90度だけ回転される。眼球内の2又は3以上の面又は界面から、特に角膜内の2又は3以上の面又は界面又は涙液膜から反射又は散乱された光の間の相対位相の抽出又は測定に向けて、分散スペクトル成分は、レンズ160により、PBS158を通した後のCMOSカメラのような2Dセンサアレイ154上に結像される。好ましい実施形態では、内容が引用によって本明細書に組み込まれている「高分解能3Dスペクトル領域光学撮像の装置及び方法(High resolution 3-D spectral domain optical imaging apparatus and method)」という名称の公開米国特許出願第2016/0345820 A1号明細書に説明されているように、回折格子156は、2Dレンズレットアレイ150及び対応する2D開口アレイ152によって決定される空間位置の格子に対して、分光計148に入射する結合ビームレットの各々が2Dセンサアレイ154の別個のピクセルセット上にと分散されるように向けられる。下記でより詳細に説明するように、角膜102の1又は2以上の特性に関する情報を取得するために、角膜又は涙液膜内の2又は3以上の面又は界面から反射又は散乱された光の間の相対位相、又はより簡潔には、角膜又は涙液膜内の2又は3以上の面又は界面の間の相対位相を2Dセンサアレイ154での一連のスナップショット測定において経時的にモニタすることができる。
ある一定の実施形態では、例えば、ビームレットアレイのビームレットの間隙を「充填する」ことによって角膜のかなりの部分にわたる緻密マップを生成するために、サンプルアームリレー系128、170、又は174は、伝達ビームレット130又は172のアレイを角膜102にわたって1次元又は2次元で平行移動するためのMEMSミラーのような走査要素168を更に含む。好ましくは、涙液膜動力学及び心拍関連のIOP変動等から測定厚への時間依存寄与を互いに相殺して平均化するために多くのスナップショットにわたって時間平均されるこの緻密マップは、下記で説明するように眼球運動アーチファクトを補正するための基準又はテンプレートとして使用することができる。例示の簡略化の目的で、MEMSミラー168を反射性のものではなく透過性のものであるように示している。
図1Aに示す装置100に対するいくつかの変形が可能である。例えば、サンプルビーム116と基準ビーム114との分割及び再結合を光ファイバ結合器又は非偏光ビームスプリッタを用いて行うことができ、又はレンズレットアレイ124ではなく、開口マスク、MEMSミラーアレイ、又は回折光学要素の形態にある空間的サンプリング要素によってサンプルビームレット126の2Dアレイを発生させることができる。更に別の変形では、1Dレンズレットアレイなどの形態にある空間的サンプリング要素を用いてサンプルビームレットの1Dアレイを発生させることができるが、単一フレーム内で角膜102のより大きい面積にわたってデータを取得するのには、一般的に、2Dアレイが好ましい。図1Dに示すように、これに代えて、ビームスプリッタ112の前に配置された第1のレンズレットアレイ124又は他の空間的サンプリング要素を用いてサンプルビームレット126のアレイを形成することができ、ビームスプリッタ112の後の検出アーム121内に場所決定された第2のレンズレットアレイ124-A又は他の空間的サンプリング要素を用いて反射信号を捕捉することができることは理解されるであろう。更に別の変形では、角膜102が非構造化波面によって照明されるようにレンズレットアレイ124が除外されるが、一般的には、集光効率の改善及び複数の散乱からのクロストークの低減の理由から、角膜を複数の個別ビームレットで照明することが好ましい。
眼球を生体内で測定する時は、角膜102は涙液膜によって例外なく覆われ、この場合に、最初の反射は、空気/涙液膜界面からのものになる。図2に示すように、涙液膜200は、薄い外側脂質層202と、角膜102の前面132に粘液層(図示せず)を通して接触する水層204とを含む複数の層を有する。涙液膜の厚み206を角膜厚み208と比較して誇張していることに注意しなければならない。角膜構造の主反射面を表1に要約しており、法線入射での公称フレネル反射を対応する屈折率から計算した。実際には、脂質層が非常に薄く、法線入射では、一般的に、2%を僅かに超える程度であるので、空気/涙液膜反射率は水層に依存し、脂質層202の構造及び厚みによって強度が変調される。明らかにこの反射が最も強い反射であることに変わりはないが、角膜後面136を含む他の面又は界面から、更に時にボーマン膜214のような角膜内構造からの反射を検出することができる。本明細書及び特許請求の範囲の目的では、「角膜の前側面」という用語は、涙液膜200が存在するか否かに依存して空気/涙液膜界面212又は角膜102の実際の前面132のいずれかを指す。「角膜の前面」という用語は、明確に限定して角膜の物理的前側面132、すなわち、涙液膜/上皮界面を指す。
(表1)
Figure 0007372940000001
角膜102からの干渉信号が、角膜102内の2又は3以上の面又は界面又は涙液膜200から反射又は散乱された光の間の相対位相に関する情報を含むことを思い起こすと、上述のように、相対位相を一連の測定において経時的にモニタして角膜102の1又は2以上の特性に関する情報を取得することができる。好ましい実施形態では、ビームレット130によって照明された部分にわたって角膜102の空間分解測定値、すなわち、マップを取得するのに適するコンピュータ可読プログラムコードが装備されたプロセッサ166によるその後の解析に向けて、単一フレーム内で2Dセンサアレイ154によって検出されたインターフェログラムが読み出される。経時的な一連のフレーム又はスナップショットにおいてセンサアレイ154を読み取ることにより、プロセッサ166は、厚み又は生体力学的反応、例えば、変形(張り?)のような角膜の1又は2以上の特性に関する情報を取得するために相対位相を経時的にモニタして相対位相のマップの時間変動を決定することができる。ある一定の実施形態では、プロセッサ166は、フーリエ変換に基づく公知のOCT技術を適用してトモグラム又は断層プロファイルとしても公知の深さ分解画像の形態で角膜102のマップを取得する。断層写真は、例えば、角膜102上の伝達ビームレット130の位置によって決定される点格子での振幅、位相、又は角膜又は涙液膜の2又は3以上の面又は界面の間の光路長のうちの1又は2以上を含むことができる。角膜又は涙液膜の2つの面又は界面の間の光路長は、反射に関する位相変化に起因する小さいオフセットを一般的に伴いながらこれらの面又は界面の間の物理的距離と有効屈折率との積にほぼ等しいことは理解されるであろう。
ある一定の実施形態では、図1Aに示すスペクトル領域のOCT装置100は、角膜102にわたる複数の点での角膜厚のnmスケールの非常に小さい時間的変化の生体内決定のための更に角膜上の測位値を位置合わせするためのスナップショット多プローブ干渉測定技術に使用される。この場合に、ヤング率に関する尺度(Measure)のような角膜の生体力学的反応に関する空間分解情報を測定厚変化から、例えば、有限要素解析によって取得することができる。例えば、dos Santos他著論文、Optics Express第23巻(第16号)、21043ページ(2015年)を参照して、十分に広いスペクトルの光源106を用いたOCTによって厚み範囲にわたって涙液膜200を分解することができることが示されているが、涙液膜厚み206は、このOCTの~1μmの軸線方向分解能限界の近くにあり、これは、空間的又は時間的な厚み変化の測定に対しては理想的ではない。従って、好ましい実施形態では、角膜/房水界面136を空気/涙液膜界面212に対して測定し、すなわち、涙液膜+角膜の組合せ厚み210を測定し、この組合せ厚みの変化を一連のフレームにおいて経時的に追跡する。外圧の変化又は摂動が不在の場合に、一般的に、組合せ厚み210の対時間のプロット図は、眼球脈波に対する角膜変形反応に起因する~1秒の時間スケールの周期的変動が重ね合わされた状態で、瞬きと瞬きの間の数秒間に涙液膜の流れ又は蒸発に起因する緩やかな減少を示すことになる。時間的変化のこれらのソースは相関性を持たず、例えば、標準の曲線当て嵌め又は曲線フィッティング及び減算の技術を用いて分離することができる。
好ましい実施形態では、いくつかの角膜厚測定マップ、すなわち、角膜にわたる複数の点での涙液膜+角膜厚み210の測定値が、数秒間に適切なフレームレートで得られる。下記で説明するデータ解析において角膜厚測定マップの眼球上位置を考慮した後に、涙液膜変化が周期的な心拍関連の変動から分離され、心拍と相関させることができる角膜変形対時間のマップが生成される。5秒間に約1μmという涙液膜厚みの典型的な変化率が、100Hzのフレームレートでフレーム毎に約1.7度の干渉縞の位相変化に対応することになる。従って、一般的に、位相ラッピング問題に関する懸念はなく、位相を経時的に追跡することによって測定精度を維持することができる。従って、心拍と同期する血流によってトリガされるIOP変動に対する周期的な角膜の生体力学的反応の超高感度生体内測定によって角膜弾性の空間的変化を検出することができる。
他の実施形態では、これらの装置及び方法を用いて、超音波、エアパフ、又は音響放射圧のような外部刺激に対する角膜の生体力学的反応に関する空間分解情報を提供することができる。そのような外部刺激は、一般的に局所的である。これに代えて、これらの装置及び方法を用いて、周囲空気圧又は分散音波源の変化のような分散刺激に対する角膜の生体力学的反応に関する空間分解情報を提供することができる。角膜に対する周囲圧は、例えば、測定される眼球の上に配置されたゴーグルなどによって変化させることができる。更に、例えば、長期角膜劣化を検出するために又は角膜硬度をより高めるように設計された臨床的横断連携治療の有効性を評価するために、これらの装置及び方法を適用してより長い時間フレームにわたる生体力学的反応の変化をモニタすることができる。
ある一定の実施形態では、空気/涙液膜界面212及び角膜後面136のような様々な界面からの反射が基準ビーム114に対して参照される標準のマイケルソン干渉計として作動される装置100によって角膜厚測定マップが生成される。しかし、好ましい実施形態では、装置100は、基準ビーム114を遮蔽し、代わりに角膜の前側面、一般的には空気/涙液膜界面212からの反射を好ましくは角膜後面136を含む他の界面又は面からの反射又は散乱に対する基準として使用する共通光路干渉計として作動される。反射「基準」光の位相及び強度が脂質層の厚み及びその変化による影響を受ける可能性があるという必要に応じてモデル化することができる効果に注意されたい。薄い脂質層202は使用波長帯域での平均涙液膜反射の強度に影響を及ぼす傾向を有することになるので、既知の反射に関する入射ビームに対する角膜の傾きに対する反射強度の正確な較正は、脂質層厚に関する情報を提供することができる。共通光路干渉測定は標準の干渉測定よりも若干劣るSN比を有するが、位相測定中に優れた位相安定性、並びに低ノイズを有し、高い測定精度をもたらす。更に、共通光路干渉測定値は、測定される界面の全てが一緒に移動することに起因して軸線方向眼球運動による影響を殆ど受けない。
好ましい実施形態では、角膜厚測定マップは、図1Aに示す収束ビームレット130のアレイを用いて、すなわち、角膜102の前側面上に実質的な法線入射で入射するビームレットによって生成される。すなわち、角膜102の前側面上へのビームレット130の中心光線の入射角は、好ましくは法線入射の3度以内、より好ましくは2度以内、最も好ましくは1度以内である。共通光路干渉測定の構成は、角膜の大部分にわたって一貫した鏡面反射を発生させ、これに対して他の界面又は面からの反射が参照され得るので、この構成では上述の実質的な法線入射が特に重要である。他の角度で角膜上に入射するビームレットからの鏡面反射を捕捉することは可能であるが、反射ビームレットを捕捉するための追加の光学系が必要になる。共通光路干渉測定と実質的な法線入射にある収束ビームレットアレイとの好ましい組合せは、非常に小さい角膜厚変化、従って、小さい角膜弾性変化を検出するほど十分な感度で位相分解角膜厚の空間分解測定を可能にする。
代替実施形態では、角膜厚測定マップは、図1Bに示す実質的に平行なビームレット172のアレイを用いて生成されるが、角膜の頂点を越えると強い鏡面反射が捕捉されないので、当該の界面からの信号強度が一般的に有意に減衰し、位相測定の精度が損なわれる。従来のOCTを使用する時に更に別の欠点は、角膜頂点での涙液膜反射の強度が、多くの場合に基準ビーム114の強度と同程度であり、散乱プロファイルの正確な再現を複雑化し得る複数の仮想反射が場合によってもたらされるという点である。この点は、信号強度が検出器の飽和をもたらす場合に特に当て嵌まる。従来のOCTでは、一般的にサンプルからの弱い反射信号を強めの基準信号と干渉させてA走査において散乱点の各々からの位相と深さの両方の情報を提供することが好ましい。しかし、下記で説明するように、眼球を実質的に平行なビームレット172のアレイで精査することにより、脂質層の厚み及び質を含む涙液膜に関する付加的な情報を提供することができる。
共通光路干渉測定に向けて構成された装置100によって角膜の角膜厚測定マップを測定する時は、眼球運動は位相安定性に対して僅かな効果のみを有するが、依然として測定精度に影響を及ぼす場合がある。例えば、装置に対する眼球の軸線方向位置の変化は、角膜面の見かけ曲率に影響を及ぼすことになる。更に、健康な角膜厚みは頂点から辺縁に徐々に増加し、一般的に、4mmの半径にわたって~100μmだけ変化するので、例えば、平行移動又は回転からの約40μmのビームレット位置の横変化は、~1μmの角膜厚変化をもたらすことになる。結果的な干渉計角膜厚測定値のサブミクロン精度を確実にするためには、これら両方の効果を補償しなければならない。好ましい実施形態では、一連の角膜厚測定マップ内の涙液膜面の場所が、1又は2以上の従来の干渉測定に対して弱い基準ビーム114を導入することによって追跡される。これは、角膜厚測定マップの位置合わせが可能になり、更にそれによって眼球運動に関する位相変化の補正が可能になる。これらの従来の干渉測定値が得られる頻度は、共通光路干渉測定の頻度と比較して、眼球移動の程度又は所要測定精度のような状況に従って選択することができる。殆どの場合に、共通光路角膜厚測定マップの十分な位置合わせに対して、時折(例えば、5回、10回、又は20回の角膜厚測定毎に1回)、任意的に連続位置合わせ測定の間の個々の角膜厚測定値にわたる補正内挿で、従来の干渉測定値を取得するだけで十分になる。センサアレイ154を飽和させることを回避するために、位置合わせ測定での基準ビーム114の強度は、好ましくは、各ビームレットに関して捕捉される反射の強度よりも弱く、例えば、涙液膜からの~2%の鏡面反射と比較して~1%である。
位置合わせ過程を例えば眼球運動によって引き起こされる眼球対装置軸線方向位置の変化が様々な角膜界面の見かけ曲率にどのように影響を及ぼす可能性があるかを示す図3にプロットした干渉測定データ模擬を参照して説明する。図3では、x軸は、角膜頂点からの半径方向位置をmm単位で表し、それに対してy軸は、一般的には空気/涙液膜界面212である前側面の場所300からの光路長をμm単位で表している。共通光路干渉測定に向けて構成された装置100を用いて、前側面に対する角膜後面136の場所が、2つの異なる眼球対装置軸線方向位置に対する半径方向位置の関数として測定され、線302-A及び302-Bがもたらされる。前側面の場所300はx軸と一致するので、線302-A及び302-Bは、上述のようにビームレットアレイが好ましくは2次元であるものの1次元ビームレットアレイを用いて測定することができる角膜の光路長厚304の尺度(Measure)を半径方向位置の関数として表している。線306は、図1Aに示す装置100を用いて測定することができる別の界面であるボーマン膜を示している。
原理的には、302-A又は302-Bのような線の曲率は、頂点から遠ざかる角膜厚の緩やかな増大を示すが、これら2つの線302-Aと302-Bの間の僅かな曲率の差から、眼球対装置軸線方向位置の変化が角膜厚測定値に影響を及ぼすことになることは理解されるであろう。装置100が基準ビーム114を用いて従来の干渉測定に向けて再構成される時には、2つの眼球対装置軸線方向位置の各々に関して角膜の前側面の場所が測定され、線308-A及び308-Bがもたらされる。重要な点として、平面基準ミラー118に対する角膜の前側面の見かけ曲率を表すこれらの線308-A及び308-Bの曲率は、基準光路とサンプル光路の間の光路長差に依存し、従って、眼球対装置軸線方向位置に敏感である。従って、これらの線308-Aと308-Bの間の曲率の差は、補正を計算して線302-Aと302-Bの間の見かけ曲率差に適用することを可能にする。図3では、表示の便宜上、線308-A及び308-Bが他の線に対してy軸に変位しているが、実際には、補正を計算するのに様々な線の間の実際の相対位置が使用される。
簡略化の目的で、図3は、角膜厚測定値に対する眼球対装置軸線方向位置の変化の効果しか例示していないが、同じ原理が、装置に対する眼球の平行移動又は回転によって引き起こされる干渉測定線の曲率、形状、又は傾きの変化の補正に適用される。従来の干渉測定を用いて得られた位置合わせフレームを用いて眼球の位置が装置に対して位置合わせされると、眼球運動からもたらされる見かけ角膜厚の僅かな変化を補正することができる。必要に応じて、角膜の前面上へのビームレットの入射角の変化に起因する歪みのより小さい項を幾何学及びスネルの法則を用いて考慮することができる。「位置合わせが改善された光コヒーレンス測定及び光コヒーレンス断層撮影(Optical coherence metrology and tomography with improved registration)」という名称の公開PCT特許出願第WO 2018/136993 A1号明細書に説明されているように、変位と回転の両方を考慮することを支援するために、少なくとも、例えば、図1Cに示すレンズ系174を用いて位置合わせフレームに前部強膜182又は角膜縁184からのデータを含めることを有利とすることができる。
基準ビーム114を用いた補助的な測定に基づく上述した位置合わせ手順は、角膜測定値が共通光路干渉測定ではなく従来の干渉測定を用いて得られる場合を必要としないが、眼球上のビームレットの位置の情報は依然として処理しなければならない。更に、例えば、上述のMEMSミラー168を用いて得られた既存正確な角膜厚測定マップを用いて角膜をそれ自体に位置合わせすることができる場合に、又はカメラと個々の測定を安定化するためにビームレット130の位置を眼球上にロックするように調節されたMEMSミラー168とを用いて眼球移動を追跡することができる場合に、上述した位置合わせ手順を省くことができる。
装置100を用いた厚み又は生体力学的反応のような角膜特性の生体内測定に対して好ましい手順は、以下のように要約することができる:
a)基準ビーム114が遮蔽された状態で、図1Bに示す実質的に平行なビームレット172のアレイを使用することができるが、好ましくは、図1A又は図1Cに示す収束ビームレット130のアレイを用いて、干渉測定線302-Aによって表される涙液膜+角膜の組合せ厚み210のマップ、すなわち、角膜厚測定マップを生成する。
b)基準ビーム114を遮蔽しない状態で、干渉測定線308-Aによって表される装置100に対する涙液膜の場所のマップを生成する。
c)各その後の角膜厚測定マップ測定値又は測定値群302-Bに対して、新しい涙液膜の場所308-Bを確立する。
d)涙液膜の場所の見かけ変化、すなわち、涙液膜線308-Aと308-Bとの比較に基づいて、眼球運動に対する補正を計算して以降の角膜厚測定マップ(又はマップ群)302-Bに適用することができる。角膜厚測定マップ302-Bと302-Aの間の任意の残差を角膜102又は涙液膜200の実際の変化に割り当てることができる。
e)追加の角膜厚測定マップを取得し、それらを眼球運動に関して補正することにより、角膜102にわたる複数の点での涙液膜+角膜の組合せ厚み210の変化を経時追跡することができる。測定値の間の位相変化がπよりも有意に小さくなるように角膜厚測定マップが十分に高い周波数、例えば、100Hz又はそれよりも高いもので得られる場合に、位相ラッピングの懸念なく空気/涙液膜界面212から反射された光と角膜後面136から反射された光の間の相対位相を追跡することができる。
f)時変角膜厚測定データへの(i)涙液膜の流れ又は蒸発の寄与と、(ii)心拍関連のIOP変動又は外部刺激に対する変形反応の寄与とを別個に解析して涙液膜動力学と角膜の生体力学的反応の両方に関する空間分解情報を提供する。例えば、涙液膜厚み206の緩やかな変化を角膜厚測定データから差し引いて角膜光路長、すなわち、厚み208の正規化測定値を与えることができ、変形反応を解析して角膜102にわたる複数の点でのヤング率又はいずれかの他の硬度又は弾性関連のパラメータに関する尺度(Measure)を発生させることができる。
角膜の曲率半径は頂点から辺縁に向けて変化するので、角膜の完全マップに対応するスペクトル反射をレンズレットアレイ124の開口数内で捕捉することができない場合がある。リレーレンズ、例えば、図1Aのレンズ系128内で焦点面135に対する占有率に基づく補正を設計することができる。これに代えて、様々な曲率半径の領域から反射又は散乱された光の捕捉を最適化するように装置を眼球に対して軸線方向に移動することができる。
上述の実施形態を装置100は、連続波長帯域にわたって光を放出する広帯域光源106のような多波長光源を含む場合に関して説明してものである。この場合に、好ましくは、角膜厚の尺度(Measure)を含む角膜102の断層プロファイルの取得が可能になる。しかし、角膜にわたる1又は2以上の特性に関する情報は、単色光源から生成されたビームレットアレイで角膜を精査することによって取得することができる。単色光は、角膜102又は涙液膜200の経時的又はビームレット間のいずれかの相対光路長変化に関する情報しか与えないことになり、位相ラッピングアーチファクトを回避するために戻り光を定期的にモニタすることを必要とする場合がある。しかし、こうして得られた相対光路長変化に関する情報は、いくつかの低コスト実施形態では角膜にわたる複数の点での涙液膜厚み206の相対的な変形又は変化のような特性を推測するために依然として使用することもできる。
本発明の他の実施形態では、角膜102の大きい区域にわたって鏡面反射を発生させる高分解能レンズリレー128を有する図1Aの装置100は、涙液膜厚み動力学を決定するのに使用され、従来のOCTを用いて達成可能なものよりも有意に優れたサブミクロン精度及びnmレベルの相対精度での涙液膜厚み206の絶対測定を可能にする。ある一定の実施形態では、好ましくは、基準ビーム114がシャッター120によって遮蔽された状態で、2Dセンサアレイ154から適切にプログラムされたプロセッサ166によって読み出された角膜102上の照明スポットから反射又は散乱された各ビームレット140からの波長分解信号が各々いくつかの連続フレームにわたって例えば6つ又は7つの5nm幅波長ビンに分割される。好ましくは、データは、λ/(2*ntear)よりも大きい涙液膜厚み変化に対応する少なくとも1つの干渉測定サイクルを可能にする期間にわたって得られる。中心波長λ=840nmの広帯域光源106では、涙液膜屈折率ntear=1.337と仮定して、この涙液膜厚み変化は、少なくとも0.31μmの厚み変化に等しいと考えられる。対応する最小データ収集期間を瞬きと瞬きの間の角膜前涙液膜200の典型的な厚み損失速度から推定することができ、一般的に、この期間は、数秒よりも長くなることはない。
次いで、プロセッサ166は、各波長ビンに関する積分電力の時間的変化を計算する。戻りビームレット140が角膜102から鏡面反射されたものであることに起因して各ビンの範囲の信号電力は比較的高くなるので、高いSN比と涙液膜200の構造の知識とを利用してより正確な位相測定をもたらすことができる。様々な涙液膜層からの組合せ反射信号は、波長ビンの波長分散にわたって互いに相殺されて平均化されることにはならない主信号であり、従って、以下に示すように涙液膜厚み206に依存する変化を有することになる。数値解析を行わなくても、波長ビンに関する時間依存強度プロットの分散に基づいてこの変化をミクロンスケールで明確に識別することができる。しかし、角膜102にわたる涙液膜200のプロファイルを測定するのに、空間的サンプリング点の間の位相変化を追跡することによる位相情報を使用することができる。1つの特定の例では、2Dレンズレットアレイ124及びリレー光学系128は、公称焦点面135では、すなわち、ビームレット130のウエストにおいて250μm離間した正方形又は矩形の格子上にサンプリング点を設ける。
図4A及び図4Bは、6μmから1μmまでの6つの開始涙液膜厚みに関して、涙液膜厚み206の定変化率を仮定して、0.82μm、0.825μm、0.83μm、0.835μm、0.84μm、及び0.845μmをそれぞれが中心とする6つの5nm幅波長ビンの各々での反射ビームレット中の電力の予想時間変動のプロット402、404、406、408、410、及び412を示している。各プロットは、10Hzのフレームレートで測定された35枚のフレームにわたって、すなわち、3.5秒にわたって計算したものであり、6つの波長ビンの各々に関する電力変化は、測定期間中に1つのサイクルにわたって若干移動している。
図5A及び図5Bは、角膜頂点から測定されたゼロから3.0mmまでの7つの半径方向位置rに関して、0.82μm、0.825μm、0.83μm、0.835μm、0.84μm、0.845μm、及び0.85μmをそれぞれが中心とする7つの5nm幅波長ビンの各々での6秒にわたる反射ビームレット中の電力の予想変化のプロット502、504、506、508、510、512、及び514を示している。これらのプロットは、頂点で最初に5μm厚である涙液膜200に関して、角膜にわたる涙液膜厚み206の弱い放物線形状と、頂点からの距離(r)と共に増大する損失速度とを仮定するモデルを用いて生成したものである。選択したこれらの仮定は必ずしも現実的であるとは限らないが、涙液膜動力学の蛍光色素撮像から、一般的に、涙液膜破壊が頂点から離れた場所で発生し、より小さい初期厚み又はより高い厚み損失速度のいずれかを示唆するいずれかの証拠が存在する。これらの仮定の主な目的は、厚み損失速度のようなパラメータの変化をこの波長ビニング解析においてどのように指定することができるかを示すことである。例えば、r=3.0mmプロットに関する各波長ビン内の時間的電力変化が頂点でのプロットのものよりも高速に循環することを確認することができる。
有利なことに、この手法を使用することで、鏡面戻り反射が得られると、角膜102上の特定の位置又は領域での涙液膜動力学をロバストに経時解析することができる。位相安定性が改善されると、涙液膜厚み206が眼球運動からもたらされる僅かな位置変化に対して過度な感度を有する可能性は低いので、基準ビーム114が遮蔽された状態で、すなわち、共通光路干渉法を用いて測定を行うことができる。これに代えて、測定は、弱い基準ビーム114が存在する状態で行うことができる。受信信号は、ビームレットウエストの電力、相対位置、及び涙液膜200上への入射角を考慮した結合効率に関して、更に光104のスペクトルプロファイルに関して正規化することができる。脂質層202の反射率プロファイルの帯域幅が一般的に光源106のものよりもかなり広くなることに起因して大部分が減衰項として出現することになる脂質層202の影響を考慮することができる。
図5A及び図5Bに提示する一連の7つのプロットは、角膜にわたって1つの軸にのみ0.5mm離間した半径方向位置で計算したものであるが、レンズレットアレイ124及びレンズリレー128の設計に基づいて、250μm又はそれ未満の2次元間隔での一連の実験測定を装置100によって達成することができる。時間の関数として涙液膜厚み206の連続性及び半径方向位置の複数の間隔にわたる涙液膜厚みの小さい変化という仮定を用いて、いずれかの位相曖昧性を除去するためにサンプル点の間でπ/2よりも小さい位相シフトを有する下降輪郭の経路を選択することができ、SN比だけによる制限しか受けない分解能で明確な涙液膜の経時的プロファイルを取得することが可能になる。各スペクトル帯域又は波長ビンでの鏡面反射からの強い信号を前提として、涙液膜厚み206の時間推移を数nmの精度で生体内測定することができると予想される。上述のモデル又はいずれかの他のモデルをデータに適用して異なる時間での涙液膜200の半径方向プロファイルを決定することができる。このプロファイルを瞬きの後のt=0秒、1秒、2秒、3秒、4秒、5秒、及び6秒に関して角膜頂点からの半径方向位置に対する単位μmの涙液膜厚みのプロットを示し、602及び604とラベル付けしたプロットがそれぞれ0秒及び6秒での涙液膜プロファイルを描例示する図6に示している。
選択モデルのパラメータは、非定常涙液膜動力学を生成し、涙液膜破壊を識別するように適応することができる。更に、選択モデルは、上述のように一般的にスペクトル成分の全てのものの強度を経時的に変化させるように機能することになる脂質層厚の変化を考慮するためのファクタを含むことができる。
角膜前涙液膜200の動力学及びプロファイルは、眼球の屈折特性に対する涙液膜の質及び粘性の影響に関する情報を提供するのに興味深いものである。涙液膜のプロファイル、すなわち、形状は、一般的に、非鏡面反射トポグラフィOCT画像内には捕捉されないが、眼球での屈折を決定するのに重要である。従って、本出願人の解析によって生成される涙液膜プロファイルに関する補助的な情報は、単に角膜トポグラフィから得られるものと比較して改善された屈折推定をもたらすことができる。
検出された戻りビームレット140は、従来のOCT技術を用いて、すなわち、上述した波長ビニング解析を用いずにプロセッサ166内で解析することができることは着目に値する。例えば、装置100は、空気/涙液膜界面212が共通光路基準ビームをもたらし、前面又は後面132、136のような角膜102の様々な層が干渉縞によって検出することができる弱めの反射をもたらす共通光路干渉測定に向けて構成することができる。しかし、涙液膜200は、一般的に、僅か数ミクロンの厚み206のみを有し、破壊中にはサブミクロンレベルまで薄い涙液膜厚みを測定することが重要である可能性があるので、空気/涙液膜界面212からの反射ピークと涙液膜/角膜界面132からの反射ピークとを分離するために非常に広いスペクトルを必要とすることになる。所要のスペクトル幅は、装置100内に示す840nm光源106の40nmの帯域幅を有意に超える。それとは対照的に、予想涙液膜構造と、涙液膜/角膜界面132から反射された光の位相の時間的変化とに関する推測的情報を用いたモデルしか必要としない波長ビニング解析は、かなり狭いスペクトル、例えば、40nm帯域幅のみを有する計器を用いてサブミクロン精度で涙液膜厚み206を発生させることができる。同じ情報は、戻りビームレット140のフーリエ成分、特に最も低いいくつかのスペクトルのフーリエ成分の位相及び強度の時間的変化の解析によって発生させることができる。簡略化の目的で、サブ波長シフトに対する感度を容易に可視化及びプロットすることができる波長依存の干渉縞のモデルに関する解析を説明したが、この説明は方法の制限ではない。
涙液膜変化の動力学は数秒程度のものであり、分光計148のフレームレートは最大で300Hzであるので、ビームレットアレイ130の場所を例えば5Hzで繰り返すパターンでディザ処理することによって角膜上のサンプリング密度をより高めることができる。角膜102上での250μmの2D格子間隔の場合に、MEMSミラー168を用いて格子点間を繋ぐ軸上で例えば300μmの角膜上ピーク間同等変位でビームレットアレイをディザ処理し、一部のオーバーサンプリングによる一連の「B走査」を発生させることができる。これは、涙液膜動力学を5Hzで捕捉することを引き続き可能にしながら空間点の間の位相の完全な連続性を達成することが可能になる。この手法の潜在的に有利な利点として、いずれかの破壊が発生する前には涙液膜厚み206が位置の滑らかな関数であり、従って、一連のB走査において観察されるいずれの微細構造も涙液膜/上皮界面132の根本的な粗さからもたらされるという適切性のある仮定の下に、上皮の粗さの尺度(Measure)を導出すること又は上皮プロファイルを提供することができる場合がある。nm分解の粗さを与えるこの情報は、上皮の再成長と、それが涙液膜と眼球の屈折とにどのように影響を及ぼす可能性があるかということとを理解することが重要な光屈折矯正角膜切除術(PRK)のような屈折手術において診断的価値がある場合がある。
角膜前面132のトポグラフィを回復するために、数μmの涙液膜厚みでは波長ビンプロットの少なくとも一部が取得フレームの殆どにおいて一般的に感度領域内、すなわち、変向点から離れた場所に成分を有することになるということに注意しながら、涙液膜厚みの時間平均減衰が、波長ビンの各々に関して導出された位相から差し引かれる。従って、角膜前面132の面粗度の尺度(Measure)を又はこの面粗度のナノトポグラフィプロファイルさえも、一連の密な間隔のB走査として涙液膜プロファイルと共に与えることができる。例えば、King-Smith他著「涙液膜干渉測定及び角膜面粗度(Tear film interferometry and corneal surface roughness)」、Investigative Ophthalmology & Visual Science第55巻(第4号)、2614ページ(2014年)では、角膜面プロファイルの変化又は粗さが、特に可視からNIRまでの干渉計スペクトル測定に対して高いコントラストレベルをもたらす機能を制限することが提言されている。取りわけ、本発明での小さい焦点スポットの使用と、涙液膜200に対する装置100の正確な配置によってスポットサイズが維持されることを基準ビーム114を使用する標準のOCTによって確実にする機能とが、この制限を解消することを支援するはずである。一部の実施では、例えば、1550nm前後のより長い波長の帯域を利用すること、又は受信信号のコントラストをより高めるために補助的なより長い波長の帯域を有することを有利とすることができる。
涙液膜動力学に関する情報を提供するのとは別に、波長ビニング法は、角膜102にわたる複数の点で涙液膜厚み206の寄与を角膜厚測定マップ、すなわち、涙液膜+角膜の組合せ厚み210から減算するために上述の曲線当て嵌め又は曲線フィッティング法に対する変形を与える。これは、涙液膜厚みを考慮するように角膜厚測定マップの位相変化を各時点で正規化し、それによって角膜厚208のnmレベル精度を確実にすることができることを確実にし、これは角膜のエラストグラフィ測定にとって重要である。
上述のように、角膜厚を測定するためには、図1Aに示す収束ビームレット130のアレイを用いて(すなわち、実質的な法線入射で角膜102の前側面上に入射するビームレットを用いて)、眼球を精査し、それによって他の界面又は面からの反射を参照することができる角膜の大部分にわたる一貫した鏡面反射を発生させることが好ましい。思いがけないことに、涙液膜200、特に脂質層202を調査するには、角膜102上に大きい入射角度範囲を与える図1Bに示す実質的に平行なビームレット172のアレイで眼球を精査することが有利であることが見出されている。図7は、複数の点を実質的に平行なビームレットの12×24アレイで照明し、深さ範囲にわたって反射ビームレット電力を積分することによって得られた眼球の角膜の一部分の直径が約2mmの生体内反射率画像700を示している。ビームレットアレイは、(840±15)nmの超高輝度発光ダイオードからの光を用いて生成し、2Dレンズレットアレイによってサンプリングし、約11mm×14mmの面積にわたって拡張したものである。画像700は、高反射性中心領域702とより低い反射率の外側領域704への急激な変位とを有する実質的に二値の強度分布を指定している。より高い強度領域702のすぐ上の小さい濃い正方形は、欠陥を有するカメラピクセルによって引き起こされたアーチファクトである。より高い強度の領域702の形状及びサイズは、個人個人の間で異なり、更に一個人に関して経時的に変化し、この変化は、脂質層202の厚み、品質、又は分布の変化に起因すると考えられる。
ある一定の実施形態では、反射率画像700は、例えば、二モード領域分割アルゴリズムを用いてより高い強度の内側領域702とより低い強度の外側領域704とを選択閾値で線引きし、境界706をもたらすように処理される。図8に示すように、例えば、基準ビーム114に対する位相測定値からより高い強度及びより低い強度の領域702、704の範囲の深さデータ804-H、804-Lが標準の光コヒーレンス断層撮影技術を用いて計算され、境界706の内外での一般的に1μmから6μmへの明瞭な高さ変位806が明らかになる。この変位806の大きさは、図7に示す実質的に二値の強度分布が眼球モデルのような試験物体では見られないことと共に、この効果が涙液膜に関することを強く示唆している。従って、より高い強度の領域702内の代表的な深さデータ804-Hとより低い強度の領域704内の代表的な深さデータ804-Lとの間で異なる測定値は、涙液膜厚みに関連する尺度(Measure)を与えることになる。10μm前後の軸線方向撮像分解能のみを有するのにも関わらず、サブピクセルサンプリング技術を用いてエッジを検出し、十分に多数のデータ点804-H又は804-Lにわたって平均することを可能にする面を当て嵌め又はフィッティングすることによって1μmよりも良好な高さ精度をもたらすことができることに注意しなければならない。
ある一定の実施形態では、より高い強度及びより低い強度の領域702、704内の深さデータ804-H、804-Lにそれぞれ第1及び第2の面800、802が当て嵌められ、第1の面800と第2の面802の間のオフセット808から涙液膜厚みに関連する尺度を取得することが可能になる。他の実施形態では、より低い強度の領域704内の深さデータ804-Lに面802が当て嵌められ、面802とより高い強度の領域702内の代表的な深さデータ804-Hの間の差が、涙液膜厚みに関連する尺度を与える。
2つの面800、802の間又は面802と代表的な深さデータ804-Hの間の高さの差又はオフセットは、例えばより高い反射率の領域702にわたる又は境界706に沿う複数の場所で計算し、この領域又は境界にわたる涙液膜厚みの空間分解測定値を与えることができ、これらの測定値を平均して単一涙液膜厚み測定値を与えることができる。次いで、平均された又は別様の涙液膜厚みを用いて、内側領域702内の測定点804-Hから涙液膜厚みをオフセットし、その後に、外側領域704内の測定点804-Lと組み合わせて組合せ点を通る面を当て嵌め又はフィッティングすることによって補正された角膜トポグラフィを計算することができる。有利なことに、実質的に二値の強度分布を使用する本出願人のエッジ検出手法は、5μmから10μmまでの典型的な軸線方向分解能を前提とする標準のOCT画像領域分割技術が空気/涙液膜界面を涙液膜/角膜界面から分離するのに抱える先に言及した欠点を回避する。
図7に見られる実質的に二値の強度分布は、中心光線路で表す2つの実質的に平行なビームレット172-1、172-2と涙液膜200の脂質層202及び水層204、並びに角膜102の前面132との相互作用を概略的に例示する図9を参照して説明することができる。図9に示すように、脂質層202は、水層204よりもかなり凹凸がある。好ましい実施形態では、ビームレット172-1、172-2は、図1Bに示す2Dレンズレットアレイ124とテレセントリックレンズリレー170との組合せによって生成された多数の実質的に平行なビームレットのうちの2本である。代表的なビームレットの一方172-1は、涙液膜200及び角膜102の上に法線入射に近い入射角900で入射し、それに対して他方の代表的なビームレット172-2は、涙液膜200及び角膜102の上に法線入射から大きく外れた入射角902で入射する。各ビームレットに関して、光の有意な分量が、ほぼ脂質層202の凹凸性によって決定される角度の円錐又は範囲906内で涙液膜200からの主たる鏡面性の反射904を受けることになる。各ビームレット内の光のかなり少ない分量が、角膜前面132で散乱されることになり、散乱908は本質的に等方性のものである。更に、脂質層202からの少量の等方性散乱と、角膜前面132からの弱い鏡面反射とが存在することになる。これらの小さい成分は、図7に見られる実質的に二値の強度分布の説明に影響を及ぼさないので、図9にはこれらの成分を示していない。
図1A及び図1Bを参照して、2Dセンサアレイ154は、戻り信号を捕捉するのに使用される光学系の捕捉角の範囲に収まる角膜102又は涙液膜200からの戻り光のみを検出することになることは理解されるであろう。ビームレット172からの反射904が検出されるか否かは、角膜の曲率、すなわち、眼球サンプルのサイズと、ビームレット172の開口数と、図示の実施形態ではレンズリレー系170とレンズレットアレイ124とを含む捕捉光学系の開口数とによって決定される。涙液膜200上にゼロに十分に近い、すなわち、法線入射に近い入射角900で入射する代表的なビームレット172-1のようなビームレットでは、検出戻り信号は、角度円錐906の範囲の鏡面反射904が大半を占め、図7に見られる明るい中心領域702をもたらす。以後、涙液膜面構造と鏡面反射との組合せからのこのより明るい捕捉光を超高反射信号910と呼ぶ。その一方、涙液膜200上にゼロよりも有意に大きく、すなわち、法線入射から遠い入射角902で入射する代表的なビームレット172-2では、超高反射信号910は捕捉されることにはならず、検出戻り信号への主な寄与は、角膜前面132からの等方性散乱908になり、図7に見られるより低い強度の外側領域704をもたらす。
代替実施形態では、反射率画像700は、2つの閾値を有する領域分割アルゴリズムによって処理される。より高い閾値よりも大きい強度を有するデータ点は、脂質層の影響を受けた超高反射信号910が戻り信号の大半を占める領域702を線引きし、空気/涙液膜界面に対応する面800を当て嵌める又はフィッティングするために使用することができる。より低い閾値よりも小さい強度を有するデータ点は、角膜前面132からの散乱908が戻り信号の大半を占める外側領域704を線引きし、角膜前面132に対応する面802を当て嵌める又はフィッティングするために使用することができる。一般的に、領域702、704の間の狭い帯域内に収まるこれら2つの閾値の間の強度を有するデータ点は、いずれの面800、802を当て嵌める又はフィッティングする時にも使用されない。しかし、涙液膜厚みが決定されると、2つの閾値に対するこれらの中間点の強度に基づいてオフセットを内挿することによってこれらの中間点を高さデータの一部として使用することができる。
個人の間で又は一個人に関して経時的に見られる明るい中心領域702の形状及びサイズの変化は、鏡面反射904の角度円錐906に影響を及ぼし、従って、超高反射信号910に影響を及ぼすことになる脂質層202の厚み、品質、又は分布の変化に起因すると考えられる。従って、明るい中心領域702の形状又はサイズ、及びこれらの形状又はサイズの経時変化は、脂質層202の厚み、品質、又は分布の有利なインジケータとすることができる。涙液膜厚みと共に、このインジケータは、例えば、水分欠乏性ドライアイ及び蒸発性ドライアイのような様々なタイプのドライアイ疾患の間で区別する際に有利であることを明らかにすることができる。
ある一定の実施形態では、超高反射率領域702内の又はその導出された厚み及びトポロジーの動力学により、涙液膜の破壊又は健康が評価される。例えば、畳み込みニューラルネットワークのような機械学習技術を眼球の正常状態と罹患状態の両方の大きいデータセットとの組合せに用いて眼の病態、特にドライアイ疾患の診断及び治療を支援することができる。既存眼の健康の定量指標と相関された十分に大きいデータベースが確立されると、一方を涙液膜からの超高反射信号を含む図7に見られる強度分布とし、他方を涙液膜及び脂質層の健康とする両方の間の関係が、重要な相関関係又は予想値をもたらすと予想される。
図8、図9、及び図10を参照して、ある一定の実施形態では、角膜102上の涙液膜200の厚みに関連する尺度を取得する方法は、
(i)角膜の涙液膜又は前面を複数の点1000において照明し、
(ii)複数の点1000での涙液膜200からの超高反射信号910又は角膜102の前面132からの散乱光908を含む戻り信号を捕捉角を有する捕捉光学系によって捕捉し、超高反射信号910が捕捉角の範囲に収まってより高い強度の戻り信号のセットがもたらされるように角膜の涙液膜又は前面の上に法線入射に十分に近い入射角900で入射する光172-1で複数の点の第1のセット1002が照明され、超高反射信号910が捕捉角内ではなく、より低い強度の戻り信号のセットがもたらされるように角膜の涙液膜又は前面の上に法線入射から十分に離れた入射角902で入射する光172-2で複数の点の第2のセット1004が照明され、
(iii)光コヒーレンス断層撮影測定値804-H、804-Lを取得するようにより高い強度及びより低い強度の戻り信号のセットを処理し、かつ
(iv)より高い強度及びより低い強度の戻り信号のセットの選択された光コヒーレンス断層撮影測定値から涙液膜200の厚みに関連する尺度808を計算する、
ことによって実施される。
第1の点セット1002と第2の点セット1004とを線引きする境界入射角、すなわち、それを超えると超高反射信号910が捕捉されなくなる最大入射角は、いくつかのファクタに依存する。これらのファクタは、照明ビームレット172の開口数と、涙液膜200又は角膜102からの戻り信号を捕捉するのに使用される光学系の開口数又は捕捉角とを含む。いずれの場合にも、より低い開口数は、より小さい境界角又は同等により小さい高強度中心領域702をもたらす。重要な点として、境界角又は中心領域702のサイズは、涙液膜200の性質にも依存し、診断的な価値をもたらす。境界入射角は、一般的に4度と8度の間にあるが、一部の涙液膜に関しては最大で15度とすることができる。従って、ビームレット172のアレイは、ビームレット172-1の少なくとも一部が15度よりも小さい、より好ましくは8度よりも小さい、最も好ましくは4度よりも小さい入射角900を有するように生成されて角膜102上に導かなければならない。更に、ビームレット172-2の少なくとも一部は、4度よりも大きい、より好ましくは8度よりも大きい、最も好ましくは15度よりも大きい入射角902を有するべきである。
上述した実施形態では、図7の反射率画像700は、涙液膜200又は角膜102を同時に複数の点1000でビームレット172のアレイで照明することによって取得したものである。この同時照明は、取得速度と眼球運動アーチファクトの最小化との理由から好ましいが、例えば、走査ビームOCT装置を用いて涙液膜又は角膜を複数の点で順番に照明し、反射率画像700又は戻り信号のその後の解析を同等様式で進めることができる。
本発明を特定の例を参照して説明したが、本発明は多くの他の形態に具現化することができることは当業者によって認められるであろう。
100 光コヒーレンス断層撮影(OCT)装置
102 ヒト角膜
114 基準ビーム
120 可動シャッター
130 伝達ビームレット

Claims (37)

  1. 角膜の1又は2以上の特性を測定するための装置であって、
    光源と角膜の前側面の少なくとも一部分上に同時に入射するように構成されたビームレットの収束アレイを発生させるための空間的サンプリング要素とを含む第1の光学系と、
    第2の光学系であって、
    前記前側面から反射又は散乱された光と前記角膜の第2の面又は界面から反射又は散乱された光とを捕捉し、
    前記ビームレットによる前記角膜の照明部分にわたって前記前側面から反射又は散乱された光と前記第2の面又は界面から反射又は散乱された光との間の相対位相を測定し、
    前記相対位相を経時的にモニタして前記照明部分にわたる前記角膜の1又は2以上の特性に関する情報を取得する、第2の光学系と、
    を含むことを特徴とする装置。
  2. 使用時に前記前側面上への前記ビームレットの入射角が法線入射の3度以内であるように構成されている、請求項1に記載の装置。
  3. 前記空間的サンプリング要素は、レンズレットアレイを含む、請求項1又は2に記載の装置。
  4. 前記前側面から及び前記第2の面又は界面から反射又は散乱された光は、前記空間的サンプリング要素を用いて捕捉される、請求項1~3のいずれか1項に記載の装置。
  5. 前記相対位相の測定値から前記角膜の前記照明部分にわたる相対位相のマップを生成し、前記相対位相を経時的にモニタして前記マップの時間変動を決定するプロセッサを含む、請求項1~のいずれか1項に記載の装置。
  6. 前記前側面から及び前記第2の面又は界面から反射又は散乱された光を基準ビームと干渉させて1又は2以上のインターフェログラムを発生させる干渉計を含む、請求項に記載の装置。
  7. 前記プロセッサは、異なる時間に得られた相対位相の2又は3以上のマップを位置合わせするために前記1又は2以上のインターフェログラムを利用して前記前側面上の前記ビームレットの場所を追跡するように構成される、請求項に記載の装置。
  8. 前記光源は、多波長光源を含み、
    前記プロセッサは、相対位相の前記マップから前記角膜の断層プロファイルを計算するように構成されている、請求項のいずれか1項に記載の装置。
  9. 前記断層プロファイルは、振幅、位相、又は前記前側面と前記第2の面又は界面との間の光路長のうちの1又は2以上を含む、請求項に記載の装置。
  10. 前記第2の面又は界面は、前記光路長が角膜厚の尺度を含むように前記角膜の後面を含む、請求項に記載の装置。
  11. 前記プロセッサは、前記光路長の時間変動から、眼内圧と前記角膜上の外圧との間の相対差に対する該角膜の生体力学的反応を決定するように構成されている、請求項又は10に記載の装置。
  12. 前記プロセッサは、眼球脈波に関連付けられた周期的眼内圧変動に対する前記角膜の生体力学的反応を決定するように構成されている、請求項11に記載の装置。
  13. 前記角膜上の前記外圧を変化させるように構成されている、請求項11又は12に記載の装置。
  14. 分散音波源を適用することによって又は前記角膜での周囲圧を変化させることによって前記外圧を変化させるように構成されている、請求項13に記載の装置。
  15. 前記プロセッサは、前記光路長の時間変動から、エアパフ源、超音波源、又は音響放射圧源のうちの1又は2以上によって課された摂動に対する前記角膜の生体力学的反応を決定するように構成されている、請求項又は10に記載の装置。
  16. 前記角膜上の涙液膜の厚みの時間変動を測定するように構成されている、請求項1に記載の装置。
  17. 前記プロセッサは、
    前記角膜上の涙液膜の厚みの時間変動を測定し、かつ
    測定された涙液膜の厚みの時間変動を前記光路長から差し引いて角膜光路長の正規化測定値を与えるように構成されている、請求項15のいずれか1項に記載の装置。
  18. 角膜の1又は2以上の特性を測定する方法であって、
    角膜の前側面の少なくとも一部分上に同時に入射するように構成されたビームレットの収束アレイを発生させる段階と、
    前記前側面から反射又は散乱された光と前記角膜の第2の面又は界面から反射又は散乱された光を捕捉する段階と、
    前記ビームレットによる前記角膜の照明部分にわたって前記前側面から反射又は散乱された光と前記第2の面又は界面から反射又は散乱された光との間の相対位相を測定する段階と、
    前記相対位相を経時的にモニタして前記照明部分にわたる前記角膜の1又は2以上の特性に関する情報を取得する段階と、を含むことを特徴とする方法。
  19. 前記相対位相の測定値から前記角膜の前記照明部分にわたる相対位相のマップを生成する段階と、
    前記相対位相を経時的にモニタして前記マップの時間変動を決定する段階と、
    を更に含む、請求項18に記載の方法。
  20. 前記ビームレットは、多波長光源から発生され、
    相対位相の前記マップは、前記角膜の断層プロファイルを提供する、請求項19に記載の方法。
  21. 前記断層プロファイルは、振幅、位相、又は前記前側面と前記第2の面又は界面との間の光路長のうちの1又は2以上を含む、請求項20に記載の方法。
  22. 前記光路長の時間変動から眼内圧と前記角膜上の外圧との間の相対差に対する該角膜の生体力学的反応を決定する段階を更に含む、請求項21に記載の方法。
  23. 眼球脈波に関連付けられた周期的眼内圧変動に対する前記角膜の生体力学的反応が決定される、請求項22に記載の方法。
  24. エアパフ、超音波、又は音響放射圧のうちの1又は2以上を含む摂動を前記角膜上に課す段階と、
    前記光路長の時間変動から該摂動に対する該角膜の生体力学的反応を決定する段階と、を更に含む、請求項21に記載の方法。
  25. 前記角膜上の涙液膜の厚みの時間変動を測定する段階を更に含む、請求項18に記載の方法。
  26. 前記角膜上の涙液膜の厚みの時間変動を測定する段階と、
    測定された涙液膜の厚みの時間変動を前記光路長から差し引いて角膜光路長の正規化測定値を与える段階と、を更に含む、請求項2124のいずれか1項に記載の方法。
  27. 角膜の1又は2以上の特性を測定するための装置であって、
    角膜の第1の面又は界面の少なくとも一部分上に同時に入射するように構成されたビームレットの収束アレイを発生させ、
    前記第1の面又は界面から反射又は散乱された光と前記角膜の第2の面又は界面から反射又は散乱された光とを捕捉し、
    前記ビームレットによる前記角膜の照明部分にわたって前記第1及び第2の面又は界面の間の相対位相を測定し、
    前記相対位相を経時的にモニタして前記照明部分にわたる前記角膜の1又は2以上の特性に関する情報を取得する、光学系、を含むことを特徴とする装置。
  28. 前記光学系は、基準ビームに対する前記第1及び第2の面又は界面の前記位相を測定するように構成されている、請求項27に記載の装置。
  29. 前記光学系は、前記角膜上の涙液膜からの反射に対する前記第1及び第2の面又は界面の前記位相を測定するように構成されている、請求項27に記載の装置。
  30. 前記第1の面又は界面は、空気/涙液膜界面を含む、請求項29に記載の装置。
  31. 前記相対位相の測定値から前記角膜の前記照明部分にわたる相対位相のマップを生成し、前記相対位相を経時的にモニタして前記マップの時間変動を決定するプロセッサを含む、請求項2730のいずれか1項に記載の装置。
  32. 前記光学系は、前記ビームレットを発生させるための多波長光源を含み、
    前記プロセッサは、相対位相の前記マップから前記角膜の断層プロファイルを計算するように構成されている、請求項31に記載の装置。
  33. 角膜の1又は2以上の特性を測定する方法であって、
    角膜の第1の面又は界面の少なくとも一部分上に同時に入射するように構成されたビームレットの収束アレイを発生させる段階と、
    前記第1の面又は界面から反射又は散乱された光と前記角膜の第2の面又は界面から反射又は散乱された光とを捕捉する段階と、
    前記ビームレットによる前記角膜の照明部分にわたる前記第1及び第2の面又は界面の間の相対位相を測定する段階と、
    前記相対位相を経時的にモニタして前記照明部分にわたる前記角膜の1又は2以上の特性に関する情報を取得する段階と、を含むことを特徴とする方法。
  34. 前記第1及び第2の面又は界面の前記位相は、基準ビームに対して測定される、請求項33に記載の方法。
  35. 前記第1及び第2の面又は界面の前記位相は、前記角膜上の涙液膜からの反射に対して測定される、請求項33に記載の方法。
  36. 前記第1の面又は界面は、空気/涙液膜界面を含む、請求項35に記載の方法。
  37. 請求項1~17又は2732のいずれか1項に記載の装置を作動させるように又は請求項1826又は3336のいずれか1項に記載の方法を実施するように構成されたコンピュータ可読プログラムコードを有する非一時的コンピュータ使用可能媒体。
JP2020566677A 2018-06-05 2019-06-04 角膜の生体力学的反応の生体内測定のための装置及び方法 Active JP7372940B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2018902018A AU2018902018A0 (en) 2018-06-05 Apparatus and Method for in-vivo Measurement of Corneal Biomechanical Response
AU2018902018 2018-06-05
PCT/AU2019/050571 WO2019232575A1 (en) 2018-06-05 2019-06-04 Apparatus and method for in-vivo measurement of corneal biomechanical response

Publications (2)

Publication Number Publication Date
JP2021525578A JP2021525578A (ja) 2021-09-27
JP7372940B2 true JP7372940B2 (ja) 2023-11-01

Family

ID=68769122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020566677A Active JP7372940B2 (ja) 2018-06-05 2019-06-04 角膜の生体力学的反応の生体内測定のための装置及び方法

Country Status (6)

Country Link
US (1) US20210244278A1 (ja)
EP (1) EP3801195A4 (ja)
JP (1) JP7372940B2 (ja)
CN (1) CN112236072A (ja)
AU (1) AU2019280447A1 (ja)
WO (1) WO2019232575A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11006823B2 (en) * 2019-01-28 2021-05-18 Amo Development, Llc Methods and systems for optical coherence tomography scanning of cornea and retina
EP3839417B1 (en) * 2019-12-18 2023-08-09 Paris Sciences et Lettres A full-field optical coherence tomography imaging method
WO2021151164A1 (en) * 2020-01-31 2021-08-05 Cylite Pty Ltd Apparatus and method for spectral domain optical imaging
EP3858225A1 (en) * 2020-02-02 2021-08-04 Consejo Superior De Investigaciones Científicas System and method for obtaining biomechanical parameters of ocular tissue through deformation of the ocular tissue
IL274295A (en) * 2020-04-27 2021-10-31 Adom Advanced Optical Tech Ltd Method and device for detecting and measuring external objects and sub-layers in biological films using spectral measurements
WO2022043841A1 (en) * 2020-08-27 2022-03-03 Alcon Inc. Methods and apparatus for performing ocular biometry
JP7464518B2 (ja) * 2020-12-26 2024-04-09 エルライズ株式会社 涙液観察装置、情報処理装置、プログラム及び学習モデル生成方法
US20220330813A1 (en) * 2021-04-15 2022-10-20 Amo Development, Llc Methods and systems for thickness measurements using spectrally resolved full gradient topography
CN117462073B (zh) * 2023-12-25 2024-04-19 西北工业大学宁波研究院 一种手持式偏振成像眼压检测装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509103A (ja) 2007-12-26 2011-03-24 カール ツァイス メディテック アクチエンゲゼルシャフト 光コヒーレンストモグラフィーを使用する屈折処方
WO2012110051A1 (en) 2011-02-15 2012-08-23 Wavelight Gmbh System and method for measuring internal dimensions of an object by optical coherence tomography
US20170189233A1 (en) 2008-03-13 2017-07-06 Optimedica Corporation Methods and systems for opthalmic measurements and laser surgery and methods and systems for surgical planning based thereon
WO2017154348A1 (ja) 2016-03-08 2017-09-14 株式会社トプコン 眼科装置
WO2017209024A1 (ja) 2016-05-30 2017-12-07 興和株式会社 涙液状態評価方法およびその装置
US20180146851A1 (en) 2013-06-20 2018-05-31 Cylite Pty Ltd Ocular metrology employing spectral wavefront analysis of reflected light

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747683A (en) 1986-01-17 1988-05-31 Eye Research Institute Of Retina Foundation Method and device for in vivo wetting determinations
US5148807A (en) * 1990-08-28 1992-09-22 Ohio State University Non-contact tonometer
US5861955A (en) * 1994-04-25 1999-01-19 Medjet Inc. Topographical cornea mapping for corneal vision correction
US6454761B1 (en) * 1995-01-30 2002-09-24 Philip D. Freedman Laser surgery device and method
GB0208945D0 (en) * 2002-04-19 2002-05-29 Univ Belfast Vascular impedance measurement apparatus
JP4546209B2 (ja) * 2004-09-30 2010-09-15 株式会社ニデック 眼科装置
US20070121067A1 (en) * 2005-11-26 2007-05-31 Davis Andrew P Intraocular pressure and biomechanical properties measurement device and method
WO2009024981A2 (en) * 2007-08-21 2009-02-26 Visionix Ltd. Multifunctional ophthalmic measurement system
US7800759B2 (en) * 2007-12-11 2010-09-21 Bausch & Lomb Incorporated Eye length measurement apparatus
US9636041B2 (en) * 2011-01-28 2017-05-02 Bar Ilan University Method and system for non-invasively monitoring biological or biochemical parameters of individual
US9339177B2 (en) * 2012-12-21 2016-05-17 Tearscience, Inc. Full-eye illumination ocular surface imaging of an ocular tear film for determining tear film thickness and/or providing ocular topography
US20150313573A1 (en) 2014-05-02 2015-11-05 Ohio State Innovation Foundation Ophthalmic elastography
WO2016077173A1 (en) 2014-11-10 2016-05-19 University Of Houston System Optical coherence elastography to assess biomechanics and detect progression of ocular and other tissues degenerative diseases

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509103A (ja) 2007-12-26 2011-03-24 カール ツァイス メディテック アクチエンゲゼルシャフト 光コヒーレンストモグラフィーを使用する屈折処方
US20170189233A1 (en) 2008-03-13 2017-07-06 Optimedica Corporation Methods and systems for opthalmic measurements and laser surgery and methods and systems for surgical planning based thereon
WO2012110051A1 (en) 2011-02-15 2012-08-23 Wavelight Gmbh System and method for measuring internal dimensions of an object by optical coherence tomography
US20180146851A1 (en) 2013-06-20 2018-05-31 Cylite Pty Ltd Ocular metrology employing spectral wavefront analysis of reflected light
WO2017154348A1 (ja) 2016-03-08 2017-09-14 株式会社トプコン 眼科装置
WO2017209024A1 (ja) 2016-05-30 2017-12-07 興和株式会社 涙液状態評価方法およびその装置

Also Published As

Publication number Publication date
US20210244278A1 (en) 2021-08-12
CN112236072A (zh) 2021-01-15
AU2019280447A1 (en) 2021-01-21
EP3801195A1 (en) 2021-04-14
WO2019232575A1 (en) 2019-12-12
JP2021525578A (ja) 2021-09-27
EP3801195A4 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
JP7372940B2 (ja) 角膜の生体力学的反応の生体内測定のための装置及び方法
US11730362B2 (en) Optical coherence metrology and tomography with improved registration
Jonnal et al. The cellular origins of the outer retinal bands in optical coherence tomography images
Pircher et al. Polarization sensitive optical coherence tomography in the human eye
EP3113668B1 (en) System and method for performing tear film structure measurement and evaporation rate measurements
CN111657847B (zh) 用于分析样本的装置和方法
JP5149535B2 (ja) 偏光感受型光コヒーレンストモグラフィー装置、該装置の信号処理方法、及び該装置における表示方法
JP5399411B2 (ja) 光コヒーレンストモグラフィーを使用する屈折処方
US8403481B2 (en) Methods, systems and computer program products for distributed scanning for motion artifact reduction in optical coherence tomography
JP2018043085A (ja) フルレンジ・フーリエ領域光干渉断層撮影用セグメント化および高性能可視化技術
WO2011040404A9 (ja) 緑内障の診断及び/又は監視をする装置及び方法
CN110325101B (zh) 用于眼角膜的高分辨率地形图的方法和装置
Jalife-Chavira et al. Optical methods for measuring corneal topography: A review
JP7292032B2 (ja) 眼科装置
JP7339011B2 (ja) 眼科装置、眼科情報処理装置、プログラム、及び記録媒体
Lu Reflectometry and Optical Coherence Tomography for Noninvasive High Resolution Tear Film Thickness Evaluation and Ophthalmic Imaging
WO2024064142A1 (en) Brillouin spectroscopy systems and methods for detection of subclinical keratoconus
Kwon The design of high-speed and multi-scale in vivo retinal imaging with wavefront sensorless adaptive optics optical coherence tomography
Zhao Spectral Domain Optical Coherence Tomography System Development for

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231020

R150 Certificate of patent or registration of utility model

Ref document number: 7372940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150