JP7372673B2 - マイクログリッド電力システム、制御装置及びマイクログリッド電力制御方法 - Google Patents

マイクログリッド電力システム、制御装置及びマイクログリッド電力制御方法 Download PDF

Info

Publication number
JP7372673B2
JP7372673B2 JP2020011650A JP2020011650A JP7372673B2 JP 7372673 B2 JP7372673 B2 JP 7372673B2 JP 2020011650 A JP2020011650 A JP 2020011650A JP 2020011650 A JP2020011650 A JP 2020011650A JP 7372673 B2 JP7372673 B2 JP 7372673B2
Authority
JP
Japan
Prior art keywords
power
microgrid
power supply
branch
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020011650A
Other languages
English (en)
Other versions
JP2021118639A (ja
Inventor
陽一 平田
美久 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PUBLIC UNIVERSITY CORPORATION SUWA UNIVERSITY OF SCIENCE FOUNDATION
Original Assignee
PUBLIC UNIVERSITY CORPORATION SUWA UNIVERSITY OF SCIENCE FOUNDATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PUBLIC UNIVERSITY CORPORATION SUWA UNIVERSITY OF SCIENCE FOUNDATION filed Critical PUBLIC UNIVERSITY CORPORATION SUWA UNIVERSITY OF SCIENCE FOUNDATION
Priority to JP2020011650A priority Critical patent/JP7372673B2/ja
Publication of JP2021118639A publication Critical patent/JP2021118639A/ja
Application granted granted Critical
Publication of JP7372673B2 publication Critical patent/JP7372673B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/248UPS systems or standby or emergency generators

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Description

本発明は、マイクログリッド電力システム、制御装置及びマイクログリッド電力制御方法に関する。
現在、大電力会社により大型発電所で発電した大電力を広域に渡る需要側(工場、事務所、家庭等)の受電設備に供給する商用電力系統(発電・変電・送電・配電を統合したシステム)が電力システムの主流である。このような商用電力系統は、集中的に大電力を作り出し、品質(周波数等の安定性)の優れた大電力を広域に供給できる点で優れている。
しかし、近年、大きな地震、大型台風等で送電鉄塔が倒壊等して商用電力系統がダウンし、その影響が広域に及び、復旧までに長期間を要する事態が生じている。
そのような場合に、需要者の近くに小規模な発電施設(分散型電源)を設置し、例えば、通常は商用電力系統による電力供給を受け、商用電力系統がダウンした場合には分散型電源を利用する、特定地域の小規模電力システム(マイクログリッド)があると、商用電力系統がダウンした場合であっても安定的な電力供給が可能となる。
ところで、災害時に自然エネルギー電源と可搬形電源を利用し、安定的に電力を供給する方法として特許文献1に開示される方法がある。この方法では、平常時には、防災拠点に設けた自然エネルギー電源を電力系統と連系して防災拠点に電力を供給するが、災害時には、防災拠点の構内配線を電力系統や一般負荷から切り離し災害時負荷及び可搬形電力調整設備を接続する。そして、負荷(重要負荷、災害時負荷)と出力変動が大きい自然エネルギー電源出力を計測し、その変動に合わせて防災拠点に設けた電力調整設備の蓄電池及び出力制御が可能な性能を有するエンジン発電機を制御することにより、負荷と発電のバランスを取る。
この方法は、防災拠点における自然エネルギー電源を利用した発電と負荷のバランスが取れる点で優れている。
特開2008-245454号公報
しかし、この方法では、出力変動が大きい自然エネルギー電源を利用した発電と負荷のバランスを取るため、電力調整設備が必要で、電力供給中、常に負荷に合わせた出力制御が可能な電力調整設備が不可欠であり、大容量の電力調整設備が必要となる問題があった。
本発明はこのような問題に鑑みてなされたものであり、出力変動が大きい自然エネルギー電源を利用した発電をしても大容量の電力調整設備を必要としないマイクログリッド電力システム、制御装置及びマイクログリッド電力制御方法を提供することを目的とする。
[1]本発明のマイクログリッド電力システムは、マイクログリッド電源を有するマイクログリッド電力系統を備えるマイクログリッド電力システムであって、前記マイクログリッド電力系統の周波数及び電圧を検出する系統検出器と、前記マイクログリッド電源から負荷に供給される電力供給を前記系統検出器の系統電力検出結果に応じて制御する電力供給制御部を有する制御装置と、を更に備えることを特徴とする。
ここで、「負荷」とは、電灯、テレビ、エアコン等、電力を消費するものをいう。「応じて」は、「基づいて」と言い換えることもできる。
このようにすると、系統検出器により、マイクログリッド電力系統の周波数及び電圧が検出されることにより、系統電力検出結果として出された供給電力と負荷消費電力とのバランスに応じて、負荷への電力供給が制御されるため、負荷消費電力にマイクログリッド電源の供給電力が合わせされるのではなく、マイクログリッド電源の供給電力の大きさに合わせて負荷への電力供給が制御される。そのため、例えば、負荷消費電力が供給電力より過大になる、あるいはその逆に負荷消費電力が供給電力より過小になる、ように、供給電力と負荷消費電力のバランスを取ることができ、出力変動が大きい自然エネルギー電源を利用した電源であっても大容量の電力調整設備を必要としないマイクログリッド電力システムを提供することが可能となる。
[2]本発明のマイクログリッド電力システムにおいては、前記マイクログリッド電力系統は、前記マイクログリッド電源が接続される主配電線と、前記主配電線から直接又は間接的に分岐して前記負荷が接続される複数の分岐配電線と、前記分岐配電線を接続遮断する分岐開閉器と、を更に有し、前記電力供給制御部は、前記系統電力検出結果に応じて前記分岐開閉器を選択的に接続遮断することにより前記負荷への電力供給を制御することが好ましい。
ここで、「主配電線から間接的に分岐する分岐配電線」は、主配電線から直接分岐する分岐配電線から分岐する再分岐配電線に限らず、再分岐配電線から分岐する再再分岐配電線、それから更に分岐する再再再分岐配電線等の次々に分岐する分岐配電線も含む。負荷が接続される分岐配電線は、これらのいずれの分岐配電線であってもよい。
また、「接続遮断」とは、接続する又は遮断することをいう。
このようにすると、系統電力検出結果に応じて分岐開閉器が選択的に接続遮断され負荷への電力供給が制御されるため、制御が容易で、自然エネルギー電源を利用した発電をしても大容量の電力調整設備を必要としないマイクログリッド電力システムを提供することがより一層容易になる。
[3]本発明のマイクログリッド電力システムにおいては、前記電力供給制御部は、前記分岐開閉器を段階的に接続遮断することにより前記負荷(分岐配電線)への電力供給を制御することが好ましい。
ここで、「段階的に」とは、分岐開閉器の全てを一度に接続遮断するように急激に接続遮断するのではなく、徐々に接続遮断することをいう。
このようにすると、分岐開閉器が段階的に接続遮断されるため、制御が容易で、自然エネルギー電源を利用した発電をしても大容量の電力調整設備を必要としないマイクログリッド電力システムを提供することがより一層容易になる。
[4]本発明のマイクログリッド電力システムにおいては、前記電力供給制御部は、前記分岐配電線の優先順位に応じて前記分岐開閉器を接続遮断することが好ましい。
ここで、「優先順位」とは接続遮断を順に行う場合の順位をいう。
このようにすると、分岐配電線の優先順位に応じて分岐開閉器が接続遮断されるため、優先順位の高い分岐配電線に、例えば通信機器等の重要な電気機器(負荷)を接続することにより、電力供給量が少なくなった場合でも電力を効果的に使用することが可能となる。
[5]本発明のマイクログリッド電力システムにおいては、前記分岐配電線を介して消費される電力を検出する分岐検出器を更に備え、前記電力供給制御部は、前記系統電力検出結果、及び、前記分岐検出器で検出された分岐消費電力に応じて前記分岐開閉器の接続遮断をすることにより、前記負荷への電力供給を制御することが好ましい。
このようにすると、系統電力検出結果、及び、分岐検出器で検出された分岐消費電力(例えば、過大、過小)に応じて分岐開閉器の接続遮断がされ負荷(電気機器)への電力供給が制御されるため、より一層的確な制御ができ、自然エネルギー電源を利用した発電をしても大容量の電力調整設備を必要としないマイクログリッド電力システムを提供することがより一層容易になる。
[6]本発明のマイクログリッド電力システムにおいては、前記電力供給制御部は、当該分岐開閉器が設けられた前記分岐配電線の前記分岐消費電力が一定の大きさを超えると、当該分岐開閉器を遮断することが好ましい。
ここで、「一定の大きさ」とは、例えば各分岐配電線毎に設定した電力の大きさをいう。
このようにすると、系統電力検出結果に応じて分岐開閉器が接続され負荷への電力供給が適切に制御された後であっても、例えば予定外の新たな負荷が接続される等して当該分岐開閉器が設けられた分岐配電線の分岐消費電力が一定の大きさを超えると当該分岐開閉器が遮断されるため、予定外の負荷に備えた容量が必要なく、大容量の電力調整設備を必要としないマイクログリッド電力システムを提供することがより一層容易になる。
[7]本発明のマイクログリッド電力システムにおいては、前記電力供給制御部は、前記マイクログリッド電源から前記負荷への電力供給を開始する際(開始時)又は終了する際(終了時)に、前記供給電力の大きさを漸次変化させることにより前記系統電力検出結果に応じて前記負荷(配電線)への電力供給を制御することが好ましい。
このようにすると、マイクログリッド電源の電力供給を開始する際(開始時)又は終了する際(終了時)に、供給電力の大きさが漸次変化され、系統電力検出結果に応じて負荷(配電線)への電力供給が漸次制御されるため、電力供給を開始する際(開始時)又は終了する際(終了時)に供給電力の大きさが急激に変化することに備えた容量が必要なく、大容量の電力調整設備を必要としないマイクログリッド電力システムを提供することがより一層容易になる。
[8]本発明のマイクログリッド電力システムにおいては、前記マイクログリッド電源は、自然環境の影響を受けやすい再生エネルギーを利用した第1電源と、自然環境の影響を受けにくい第2電源と、を有することが好ましい。
ここで、「自然環境の影響を受けやすい再生エネルギーを利用した第1電源」は、例えば、天候等、自然環境の変化を受けやすい太陽光発電、風力発電等の電源をいう。「自然環境の影響を受けにくい第2電源」とは、例えば、蓄電池(EV自動車に搭載される電池を含む)、小型の水力発電、地熱発電、ガソリン等を燃料とするエンジン発電機発電等の電源をいう。
このようにすると、マイクログリッド電源が自然環境の影響を受けやすい再生エネルギーを利用した第1電源と、自然環境の影響を受けにくい第2電源と、で構成され、自然環境の影響を受けやすい再生エネルギーを利用した第1電源により、特に、供給電力に変動が生じ易い場合であっても、マイクログリッド電力系統の周波数及び電圧が検出され、その系統電力検出結果に応じて負荷(配電線)への電力供給が制御されることにより、大容量の電力調整設備を必要としないマイクログリッド電力システムを提供することがより一層容易になる。
[9]本発明のマイクログリッド電力システムにおいては、前記電力供給制御部は、前記第1電源及び前記第2電源のうち、前記第2電源を優先して(優先させて)電力供給を開始することが好ましい。
このようにすると、第1電源及び第2電源のうち、自然環境の影響を受けにくい第2電源を優先させて(優先して)電力供給が開始されるため、マイクログリッド電源として自然環境の影響を受けやすい再生エネルギーを利用した第1電源を利用する場合であっても、電力供給開始時(電力供給を開始する際)の供給電力の大きさが大きく変動する可能性がある不安定な時期も安定的に制御でき、不安定な大容量の電力調整設備を必要としないマイクログリッド電力システムを提供することがより一層容易になる。
[10]本発明のマイクログリッド電力システムにおいては、前記電力供給制御部は、前記第1電源からの供給電力が一定以上の大きさになると前記第2電源からの電力供給を停止することが好ましい。
ここで、「第1電源からの供給電力が一定以上の大きさになる」とは、例えば、第2電源からの供給電力の大きさ以上、あるいはそれを超える大きさになることをいう。
このようにすると、自然環境の影響を受けやすい再生エネルギーを利用した第1電源からの供給電力が一定以上の大きさになると自然環境の影響を受けにくい第2電源からの電力供給が停止されるため、第1電源が一定以上の電力を供給できるようになると第1電源(再生エネルギー)を有効的に利用することが可能となる。その一方、自然環境の影響を受けにくい第2電源は温存したり充電したりすることが可能となる。
[11]本発明の制御装置は、[1]~[10]のいずれかに記載のマイクログリッド電力システムに用いる制御装置であって、前記マイクログリッド電源から前記負荷に供給される電力供給を前記系統検出器の前記系統電力検出結果に応じて制御する前記電力供給制御部を有することを特徴とする。
このようにすると、上記した[1]~[10]のいずれかに記載された効果を有するマイクログリッド電力システムを提供することが可能となる。
[12]本発明のマイクログリッド電力制御方法は、商用電力系統と独立したマイクログリッド電力系統を介して、マイクログリッド電源から負荷に電力を供給するマイクログリッド電力制御方法であって、前記マイクログリッド電力系統の周波数及び電圧を検出する工程、及び、前記系統検出器の系統電力検出結果に応じて前記負荷への電力供給を制御する工程、を含むことを特徴とする。
このようにすると、マイクログリッド電力系統の周波数及び電圧を検出する工程により、マイクログリッド電力系統の周波数及び電圧が検出され、前記系統検出器の系統電力検出結果に応じて前記負荷への電力供給を制御する工程により、負荷消費電力にマイクログリッド電源の供給電力が合わせされるのではなく、マイクログリッド電源の供給電力の大きさに合わせて負荷への電力供給が制御される。そのため、例えば、負荷消費電力が供給電力より過大になる、あるいはその逆に負荷消費電力が供給電力より過小になるように、自然エネルギー電源を利用することにより、供給電力と負荷消費電力のバランスが大きく崩れることのないように両者のバランスを取ることができ、自然エネルギー電源を利用した発電をしても大容量の電力調整設備を必要としないマイクログリッド電力制御方法を提供することが可能となる。
実施形態1に係るマイクログリッド電力システム100を説明するための図である。 実施形態1に係るマイクログリッド電力システム100の制御装置5を説明するための図である。 実施形態1に係るマイクログリッド電力システム100の災害発生時における電力供給を説明するためのフローチャートである。 実施形態1に係るマイクログリッド電力システム100の周波数・電圧に応じた電力供給制御を説明するためのフローチャートである。 実施形態1に係るマイクログリッド電力システム100における時間-供給電力、負荷消費電力の関係を説明するためのグラフである。 実施形態1に係るマイクログリッド電力システム100における周波数/電圧・負荷・制御の関係を説明するための表である。 実施形態1に係るマイクログリッド電力システム100における系統電力検出結果(周波数・電圧)に応じた電力供給制御フローチャートである。 実施形態1に係るマイクログリッド電力システム100における系統電力検出結果(周波数・電圧)及び分岐消費電力に応じた電力供給制御フローチャートである。 実施形態1に係るマイクログリッド電力システム100における優先順位に応じた電力供給制御を説明するための表である。 実施形態2に係るマイクログリッド電力システム200における優先順位応じた電力供給制御を説明するための表である。 実施形態3に係るマイクログリッド電力システム300における優先順位に応じた電力供給制御を説明するための表である。 実施形態4に係るマイクログリッド電力システム400における優先順位に応じた電力供給制御を説明するための表である。 実施形態5に係るマイクログリッド電力システム500における時間-供給電力、負荷消費電力の関係を説明するためのグラフである。
以下、本発明のマイクログリッド電力システム、制御装置及びマイクログリッド電力制御方法について、図に示す各実施形態に基づいて説明する。各図面は模式図であり、必ずしも実際の形状、構造、構成、工程等を厳密に反映するものではない。以下に説明する各実施形態は、特許請求の範囲に係る発明を限定するものではない。また、各実施形態の中で説明されている諸構成要素及びその組み合わせの全てが本発明に必須であるとは限らない。以下の説明においては実質的に同等とみなせる構成要素に関しては実施形態をまたいで同じ符号を用い、再度の説明を省略する場合がある。
[実施形態1]
図1~図9を用いて、実施形態1に係るマイクログリッド電力システム100(及び制御装置5及びマイクログリッド電力制御方法)について説明する。
マイクログリッド電力システム100の概要
図1は、実施形態1に係るマイクログリッド電力システム100を説明するための図である。マイクログリッド電力システム100は、マイクログリッド6A(マイクログリッド電力系統)と制御装置5とを備える。マイクログリッド6Aは、通常は商用電源系統8と並列(接続)されているが、大規模災害発生時等には、広域をカバーする商用系統開閉器81、マイクログリッド開閉器7A等で解列(切り離し)される。商用電源系統8の火力発電所91、LNG発電所92等の大型発電所(大電源)からの電力供給がなくなる(同様に、マイクログリッド6B、6C等もマイクログリッド開閉器7B、7C等で解列される)。
なお、実施形態1では、本発明を分かりやすく説明するために、主配電線11Aから分岐する分岐配電線12を4本とし、各分岐配電線12から分岐する再分岐配電線16をそれぞれ4本としたが、これらの本数は任意である。また、各分岐配電線12から分岐する再分岐配電線16の数が異なっていてもよい。
マイクログリッド6Aには、商用電源系統8と接続される主配電線11A、主配電線11Aから分岐される分岐配電線12(12A,12B,12C,12D)、分岐配電線12から更に分岐される再分岐配電線16(16A,16B,16C,16D)がある。分岐配電線12又は再分岐配電線16には負荷19が接続されている。マイクログリッド6Aが商用電源系統8とから解列されると、マイクリッド電源1から主配電線11A及び分岐配電線(12、16)を介して負荷19に電力供給が行われる。
実施形態1では、マイクリッド電源1は、第1電源1A(太陽光発電電源)と第2電源1B(蓄電池電源)とを有する。第1電源1Aは、ソーラーパネル1A1(太陽電池)と、その直流出力を交流に変換して出力するパワーコンディショナー1A2(インバーター)とを有する。第2電源1Bは、蓄電池1B1と、その直流出力を交流に変換して出力する双方向インバーター1B2とを有する。双方向インバーター1B2とするのは、マイクログリッド6Aが商用電力系統8と並列されて(接続されて)いる場合に商用電力系統8から蓄電池1B1に充電するためである。第2電源1Bは、マイクログリッド6Aが商用電力系統8と解列(切り離し)された場合には、マイクログリッド6Aに電力を供給するが、商用電力系統8と並列されている場合であっても、例えば、商用電力系統8と並列されている場合に充電する時間帯と電力供給する時間帯とを分けるようにして充電と電力供給とを行うようにして、商用電力系統8に電力を供給するようにしてもよい。
主配電線11Aには、マイクログリッド電力系統6Aの周波数及び電圧を検出する系統検出器3Aが設置されている。周波数及び電圧の検出は、両者を検出する一体化された検出器の他、別体の周波数検出器と電圧検出器とをセットにしたものでもよい。こうした検出器は広く知られており説明を省略する。
分岐配電線12(12A,12B,12C,12D)には、分岐配電線12を通って負荷19で消費される消費電力を検出する分岐検出器14(14A,14B,14C,14D)が設置されている。同様に、再分岐配電線16(16A、16B、16C,16D)にも再分岐検出器18(18A,18B,18C,18D)が設置されている。こうした検出器は広く知られており説明を省略する。
分岐配電線12(12A,12B,12C,12D)には同線の接続遮断をする分岐開閉器13(13A,13B,13C,13D)が設けられ、再分岐配電線16(16A,16B,16C,16D)には同線の接続遮断をする再分岐開閉器17(17A,17B,17C,17D)が設けられている(一部図示省略)。
なお、図1で図示を省略しているが、分岐配電線12(12A,12B,12C,12D)は各建物21(21A,21B,21C,21D)毎に配電されている。再分岐配電線16はそれぞれの分岐配電線12毎に4つずつ分岐されている。分岐配電線12Aで説明すると、図1の左から順に16A1、16A2、16A3、16A4と分岐されている(図示省略)。再分岐開閉器17も左から順に17A1、17A2、17A3、17A4と分岐されている(図示省略)。
制御装置5は、電力供給制御部4Aを有するが、その他に、主配電線11A、分岐配電線12、再分岐配電線16のいずれにマイクログリッド電源1から電力供給されているかの表示制御をする電力網表示制御部101等を有する場合がある。
制御装置5(電力供給制御部4A)は、分岐開閉器13(13A,13B,13C,13D)、再分岐開閉器17(17A,17B,17C,17D)等の接続遮断を制御する。
制御装置5の構成
図2は、実施形態1に係るマイクログリッド電力システム100の制御装置5(及び電力供給制御部4A)を説明するための図である。
制御装置5は、系統検出器3A、分岐検出器14(14A,14B,14C,14D)、再分岐検出器18(18A,18B,18C,18D)、分岐開閉器13(13A,13B,13C,13D)、及び、再分岐開閉器17(17A,17B,17C,17D)と信号線51で接続されている。制御装置5は、系統検出器3A、分岐検出器14、又は再分岐検出器18の検出結果を信号線51を介して受け取り、信号線51を介して分岐開閉器13又は再分岐開閉器17の接続遮断を制御してマイクログリッド電源1から負荷19に供給される電力供給を漸次制御する。
制御装置5は、分岐開閉器13(A、B、C、D)、再分岐開閉器17(A、B、C、D)及び電力供給制御部4Aを有する。電力供給制御部4Aにより、分岐開閉器13及び再分岐開閉器17の接続遮断がされ、マイクログリッド電源1から負荷19に供給される電力供給が漸次増加又は減少するように制御される。段階的に制御されるようにしてもよい。
なお、制御装置5は災害時には、災害による影響を受けない、災害時用の特別な電源から電力が供給される。
制御装置5は電力供給制御部4Aを有する。電力供給制御部4Aは、CPU(Central Processing Unit:演算処理装置)41、ROM(Read Only Memory、読み出し専用のメモリー)42、RAM(Random Access Memory、任意に読み書きできるメモリー)43、I/O(Input/Output controller、入出力コントローラー)44、それらを電気的に結ぶマイコンの内部バス45等を有するマイクロコンピュータにより構成される。ROM42には、表示制御、入出力制御を含めた各種の制御、演算等を行うためのプログラム(処理、制御等をするために組まれた一連の命令)や各種データが格納されている。RAM43には諸データやプログラムがメモリー展開され、CPU41が各種処理を行うためのワーク用のメモリーとして使用される。CPU41は、CPU41に対する命令(処理)を記述したプログラムを読み込んで実行する。なお、電力供給制御部4Aは、プログラムを読み込み、マイクログリッド電源1から負荷19に供給される電力供給を系統検出器3Aの系統電力検出結果に応じて制御する機能を実行するCPU41(マイクロコンピュータ)ということもできる。
電力供給制御部4Aの内部バス45は、インターフェース46を介して信号線51に接続されている。信号線51は外部バスとしての役割も果たす。信号線51は有線でなく無線であってもよい。また、イントラネット、インターネット等で放射状、網目等のネット構成をしていてもよい。
信号線51を介して系統検出器3A、分岐検出器(12、19)の検出結果が制御装置5(電力供給制御部4A、CPU41)に送られ、その逆に、制御装置5(電力供給制御部4A、CPU41)から分岐開閉器(13、17)に接続遮断の制御信号が送られる。
マイクログリッド6Aの形成
実施形態1は、大規模な地震、大型台風等で、商用電力系統8の発電所(91、92)、送電鉄塔、送電網等に被害が出た場合を想定した実施形態である。図3は、実施形態1に係るマイクログリッド電力システム100の災害発生時における電力供給を説明するためのフローチャートである。そのような場合、制御装置5(電力供給制御部4A、CPU41)がマイクログリッド開閉器7Aを遮断する等して、商用電力系統8と解列したマイクログリッド6Aを形成する(図3、ステップS01)。そして、制御装置5は、マイクログリッド6A内の電力供給を一旦初期状態にする(マイクログリッド電源1からの供給電力P1を零とする、S03)。その後、制御装置5はマイクリッド電源1から電力供給を開始する(S05)。
マイクログリッド6内の電力供給制御概要
図4は、実施形態1に係るマイクログリッド電力システム100の周波数・電圧に応じた電力供給制御を説明するためのフローチャートである。電力供給制御部4A(CPU41)の制御(指令)によりマイクリッド電源1から電力供給が行われる(図3、S05参照)と、主配電線11Aに設けられた系統検出器3Aにより周波数及び電圧の検出が行われる(S1)。
電力供給制御部4Aはその検出結果を受けとり、負荷19への電力供給を制限する必要があるか否かを判断する(S2)。
電力供給制御部4Aは、負荷19への電力供給を制限する必要がないと判断すると制御ステップをS1に戻す。
一方、電力供給制御部4Aが負荷19への電力供給を制限する必要があると判断すると、当該負荷19へに接続されている分岐開閉器(13、17)を接続又は遮断して、当該負荷19への電力供給を制御する(S3)。そして電力供給制御部4Aは制御ステップをS1に戻す。
電力供給制御部4Aは同様の制御ステップを繰り返す。電力供給制御部4Aは、1つの分岐開閉器(13、17)の接続又は遮断によっても周波数・電圧の検出結果で更に負荷19への電力供給を制限する必要があると判断すると、別の分岐開閉器(13、17)の接続又は遮断により、別の分岐配電線(12、16)(負荷19)への電力供給を制御する。
供給電力に対する負荷制御
図5は、実施形態1に係るマイクログリッド電力システム100における時間-供給電力、負荷消費電力の関係を説明するためのグラフである。電力供給制御部4A(制御装置5)の制御により、供給電力P1の大きさの変化に対して、系統電力検出結果に応じて負荷19(負荷消費電力P1、負荷19への供給電力P1)が制御される様子を示すグラフである。
災害発生時には、電力供給制御部4Aは、第1電源1A及び第2電源1Bのうち、第2電源1Bを優先して(優先させて)電力供給を開始する。つまり、図5の時刻t0で第2電源1Bから電源供給を開始させるが、供給電力P1の大きさを漸次変化(増大)させるように制御する(図3、S03、S05を併せて参照)。系統検出器3Aはマイクログリッド電源系統6Aに電力供給がされている間、マイクログリッド電力系統6Aの周波数及び電圧を検出しており、電力供給制御部4Aは、系統検出器3Aの系統電力検出結果に応じて負荷19への電力供給を制御する。そのため、消費電力J1は、供給電力P1の大きさに合わせて(追従して)漸次段階的に変化(増大)する。
電力供給制御部4Aの制御により、時刻t1で供給電力P1の大きさは一定の大きさ(PW1)に到達し、それ以上の増大はなくなる。そして、電力供給制御部4Aは、消費電力J1(負荷19への供給電力)をマイクログリッド電源1からの供給電力P1(の大きさ)に追従させる。
なお、マイクログリッド電源1から負荷19への電力供給を終了する際(終了時)には、電力供給制御部4Aは供給電力P1の大きさを漸次変化(減少)させることが好ましい。その場合、電力供給制御部4Aは消費電力J1を供給電力P1の大きさに合わせて(追従して)漸次段階的に変化(減少)させる。負荷19へ電力供給される供給電力の大きさは漸次変化(減少)する。
電力供給制御部4Aは、時刻t2で第1電源1Aからも電力供給を開始させ、その結果、第2電源1B及び第1電源1Aの双方から電力が供給される。電力供給制御部4Aの制御により、時刻t3になると、供給電力P1は、増大がほぼ無くなる大きさ(PW2)に達する。以後、マイクログリッド電源1からの供給電力P1は、雲の状況等の自然環境の変化で供給電力の大きさPW1前後を増減する。電力供給制御部4Aは消費電力J1(負荷19への供給電力)をマイクログリッド電源1からの供給電力P1(の大きさ)に追従させる。
マイクログリッド電源1からの電力供給
電力供給制御部4Aは、電力供給を開始する際(開始時、時刻t0~t1、図5参照)に、第2電源1Bの蓄電池1B1の出力を直流-交流変換する双方向インバーター1B2を制御することにより、供給電力P1(出力)を漸次増加させる。供給電力P1は増加して一定値に達すると増加しなくなる(時刻t1~t2)。第2電源1Bは自然環境の影響による影響を受けにくく、自然環境の影響による増減変動は殆どない。
その後、電力供給制御部4Aは、第1電源1Aのソーラーパネル1A1の出力を直流-交流変換するパワーコンディショナー1A2を制御することにより、供給電力P1(出力)を漸次増加させる(時刻t1~t2)。時刻t1~t2間の供給電力P1は、第2電源1Bからの供給電力と第1電源1Aからの供給電力とが合わさったものである。第1電源1Aは自然環境の影響による影響(天候、雲等の影響)を受けやすく、自然環境の影響による増減変動が生じやすい(晴れの場合は供給電力が多く、雨や曇りの場合は少ない。雲の動きで供給電力が増減する等)。
系統電力検出結果(周波数・電圧)に応じた電力供給制御
図6及び図7を用いて、電力供給制御部4Aによる系統電力検出結果(周波数・電圧)に応じた電力供給制御例を説明する。
図6は、実施形態1に係るマイクログリッド電力システム100における周波数/電圧・負荷・制御の関係を説明するための表である。図6(A)は周波数・負荷・制御の関係を、図6(B)は電圧・負荷・制御の関係を、説明するための表である。
図7は、実施形態1に係るマイクログリッド電力システム100における系統電力検出結果(周波数・電圧)に応じた(図6に関係に基づく)電力供給制御フローチャートである。
図7のフローチャートを、図6を参照しながら説明する。
まず、主配電線11Aに設けられた系統検出器3Aによる周波数及び電圧の検出が行われる(S1)。
次に、電力供給制御部4Aは、図6の表に応じて、負荷19(負荷19の消費電力、負荷19への供給電力)が、過少、過大、適正のいずれであるかを判断し(S21、S22)、それに応じた制御をおこなう(S31、S32、S35、S36)。
周波数・負荷・制御の関係
電力供給制御部4Aが検出周波数によって判断する(S21)場合、図6(A)に基づく制御をする(同図参照)。
つまり、系統検出器3Aにより検出された周波数が一定値より高い(又は上昇した、過大)と判断すると、電力供給制御部4Aは、分岐開閉器(13、17)の一部を接続して負荷19の一部への電力供給を開始する(S31)。負荷19(負荷19の消費電力、負荷19への供給電力)が過小である(一定値より減少した)のを修正するためである。
その逆に、系統検出器3Aにより検出された周波数が一定値より低い(又は低下した、過小)と判断すると、電力供給制御部4Aは、分岐開閉器(13、17)の一部を遮断して負荷19の一部への電力供給を停止する(S32)。負荷19(負荷19の消費電力、負荷19への供給電力)が過大である(一定値より増大した)のを修正するためである。そして電力供給制御部4Aは制御ステップをS1に戻す。
電圧・負荷・制御の関係
電力供給制御部4Aが検出電圧によって判断する(S22)場合、図6(B)に基づく制御をする(同図参照)。
つまり、系統検出器3Aにより検出された電圧が一定値より低い(又は低下した、過小)と判断すると、電力供給制御部4Aは、分岐開閉器(13、17)の一部を遮断して負荷19の一部への電力供給を停止する(S32)。負荷19(負荷19の消費電力、負荷19への供給電力)が過大である(一定値より増大した)のを修正するためである。そして電力供給制御部4Aは制御ステップーをS1に戻す。
その逆に、系統検出器3Aにより検出された電圧が一定値より高い(又は上昇した)と判断すると、電力供給制御部4Aは、分岐開閉器(13、17)の一部を接続して負荷19の一部への電力供給を開始する(S31)。負荷19(負荷19の消費電力、負荷19への供給電力)が過小である(一定値より減少した)のを修正するためである。
なお、図7では、電力供給制御部4Aは、検出周波数に応じた制御をした後で検出電圧に応じた制御をする制御を例示しているが、検出電圧に応じた制御をした後で検出周波数に応じた制御をおこなうようにしてもよい。
系統電力検出結果及び分岐消費電力に応じた電力供給制御
図8は、実施形態1に係るマイクログリッド電力システム100における系統電力検出結果(周波数・電圧)及び分岐消費電力に応じた電力供給制御フローチャートである。図8のフローチャートは、図7のフローチャートに、更に分岐消費電力に応じて電力供給を制御する制御フロー(S41、S42、S43、S45、S46、S47)を追加した電力供給制御フローチャートである。
これらの追加フロー(処理)について説明する。追加以外のフローは図7と同様であり説明を省略する。
図8のフローチャートでは、S31の後で、分岐検出器(14、18)により、分岐配電線(12、16)を通って負荷19で消費される分岐消費電力の検出をする(S41)を、電力供給制御部4AはS42の制御を行う。
S42では、電力供給制御部4Aは、分岐消費電力が過大であるか否かを判断する。過大でないと判断した場合は制御ステップ(処理ステップ)をS22に進める。過大であると判断した場合は制御ステップをS43に進める。
S43では、電力供給制御部4Aは、分岐消費電力が過大であると判断した当該分岐配電線(12、16)について、一旦接続した分岐開閉器(13、17)を遮断する。そして電力供給制御部4Aは制御ステップをS1に戻す。
制御ステップS45、S46及びS47は、制御ステップS41、S42及びS43と同様である。
つまり、制御ステップS35の後で、分岐検出器(14、18)により、分岐配電線(12、16)を通って負荷19で消費される分岐消費電力の検出をする(S45)と、電力供給制御部4Aは制御ステップをS46に進める。
制御ステップS46では、電力供給制御部4Aは、分岐消費電力が過大であるか否かを判断する。分岐消費電力が過大でないと判断した場合は制御ステップをS1に戻す。電力供給制御部4Aが過大であると判断した場合は制御ステップをS47に進める。
S47では、電力供給制御部4A(CPU41)は、過大であると判断した当該分岐配電線(12、16)について、一旦接続した分岐開閉器(13、17)を遮断する。そして制御ステップをS1に戻す。
優先順位に応じた制御
図9は、実施形態1に係るマイクログリッド電力システム100における優先順位に応じた電力供給制御を説明するための表である。
分岐配電線12(建物21)や再分岐配電線16毎に、予め、「建物優先順位(分岐配電線優先順位)」欄及び「再分岐配電線(負荷)優先順位」欄に示す優先順位が付けられている。これらの順位は「建物(分岐配電線)」や「再分岐配電線(負荷)」における重要性、緊急性、公共性等の種類(属性)に基づき順位付けされている。
表の横方向の「建物優先順位(分岐配電線優先順位)」欄には、分岐配電線12、分岐配電線12に対応する建物21(分岐配電線12が引かれた建物)の予め決められた優先順位が記載されている。これは、まずマイクログリッド6A内の建物21(分岐配電線12)に対する電力供給の優先順位を示すものである。つまり、マイクログリッド6A内の、建物A(役場)、建物B(病院)、建物C(避難所)、及び建物D1~D100(一般家屋1~100)の予め決められた優先順位である。
表の更に横方向には、「再分岐配電線16」、「(再分岐配電線16に接続される)負荷19」及び「再分岐配電線(負荷)優先順位」欄が設けられている。
「再分岐配電線(負荷)優先順位」欄に記載された優先順位は、各分岐配電線12(各建物21)における再分岐配電線16(負荷19)の予め決められた優先順位を示すものである。それぞれ1~4の優先順位とされている。
例えば、各分岐配電線12は、それぞれ4つの再分岐配電線16に分岐されている(例えば、建物21Aの分岐配電線12Aは、16A1~16A4の4つの再分岐配電線に分岐されている)。そして、それぞれの再分岐配電線16には種類別に分けた負荷が接続される。そして、建物21A(役場)の再分岐配電線16A1には非常用通信機器、同16A2には非常用照明機器、同16A3には事務機器、同16A4にはその他の電気機器が接続される。「再分岐配線(負荷)優先順位」欄は、各分岐配電線12(各建物21)毎に、このような再分岐配電線16(負荷19)の予め決められた優先順位を示したものである。
表の更に横方向の「全体優先順位」欄には、再分岐配電線16(再分岐配電線16に接続される負荷19)の全体における優先順位が示されている。
「全体優先順位」は、電力供給制御部4Aが、「建物優先順位(分岐配電線優先順位)」と「再分岐配電線(負荷)優先順位」とから決める全体における優先順位である。
電力供給制御部4Aは、「全体優先順位」を、「建物優先順位(分岐配電線優先順位)」順、各分岐配線線12毎にその中で未接続の再分岐配電線16を「再分岐配電線(負荷)優先順位」順に順位付けし、一巡とする再び繰り返す(ニ巡、三巡・・)のようにして、次々に順位付けする。
そして「全体優先順位」に基づいて(順位が一番ものから)順に1つずつ接続することを繰り返す。このようにして「全体優先順位」に応じて、優先順位の高い分岐配電線(12、16、負荷19)を優先的に接続して電力供給する。そして、分岐開閉器(13、17)を段階的に接続遮断することにより負荷19への電力供給を制御する。
分岐開閉器(13、17)を遮断して分岐配電線(12、16)への電力供給を停止(終了)する場合(際)には、逆に、全体優先順位の低いものから遮断して電力供給を停止(終了)する。
その他
(1)マイクログリッド電源1(1A、1B)と並列に(主配電線11A・接地間)大容量コンデンサーを設けても良い。大容量コンデンサーにより、例えば負荷19の消費電力の微小な変動を吸収できる。
(2)電力供給制御部4Aが、「建物優先順位(分岐配電線優先順位)」及び「再分岐配電線(負荷)優先順位」の優先順位を、「建物(分岐配電線)」や「再分岐配電線(負荷)」の種類(属性)に基づいて決め(割り当て)、それらに応じて「全体優先順位」を決める(割り当てる)ようにしてもよい。
(3)マイクログリッド6Aに、第2電源1Bに並列に、更に、第2電源1Bと同様の第3電源(第2電源1Bと同様に、蓄電池1B1と双方向インバーター1B2を有する)を接続してもよい。
そして、電力供給制御部4Aは、第2電源1Bと第3電源(図示なし)の一方から電力供給をしている間に他方を充電するようにしてもよい。
あるいは、電力供給制御部4Aは、第1電源1Aからの供給電力を一定の値以下とし、一定の値以上になると第3電源(又は電力供給をしていない第2電源1B)を充電させるようにしてもよい(ピークシフト)。
なお、電力供給制御部4Aは、再分岐配電線16(負荷19)を接続したところ、そこを介して負荷19に供給される電力(分岐消費電力)の大きさが過大(予め決めた大きさより過大)である場合は、接続を遮断して次に優先順位の高い再分岐配電線16(負荷19)を接続するようにしてもよい。このようにすると、より一層多くの再分岐配電線16(負荷19)に電力を供給することが可能となる。
ところで、商用電力系統8と独立したマイクログリッド電力系統6Aを介して、マイクログリッド電源1から負荷19に電力を供給するマイクログリッド電力制御方法は、マイクログリッド電力系統6Aの周波数及び電圧を検出する工程、及び、系統検出器3Aの系統電力検出結果に応じて負荷19への電力供給を制御する工程、を含むマイクログリッド電力制御とすることができる。
上記のマイクログリッド電力システム100は、上記[1]~[9]で述べた効果を有する。
また、制御装置5は、上記[11]で述べた効果を有する。
更に、マイクログリッド電力制御方法は、上記[12]で述べた効果を有する。
[実施形態2]
図10は、実施形態2に係るマイクログリッド電力システム200における優先順位に応じた電力供給制御を説明するための表である。
実施形態2に係るマイクログリッド電力システム200は、基本的には実施形態1に係るマイクログリッド電力システム100と同様であるが、実施形態1では、電力供給制御部4Aは、「全体優先順位」を、「建物優先順位(分岐配電線優先順位)」順に、各分岐配線線12毎、「再分岐配電線(負荷)優先順位」順に1つずつ付けたのに対し、実施形態2では、電力供給制御部4Aは、「全体優先順位」を、最初の一巡では「建物優先順位(分岐配電線優先順位)」順に、各分岐配線線12毎、「再分岐配電線(負荷)優先順位」順に2つずつ付け、その後の巡(ニ巡、三巡、・・)では、「建物優先順位(分岐配電線優先順位)」順に、各分岐配線線12毎、「再分岐配電線(負荷)優先順位」順に1つずつ付ける点が異なる。
なお、電力供給制御部4Aが、「建物優先順位(分岐配電線優先順位)」及び「再分岐配電線(負荷)優先順位」の優先順位を、「建物(分岐配電線)」や「再分岐配電線(負荷)」の種類(属性)に基づいて決め(割り当て)、それらに応じて「全体優先順位」を決める(割り当てる)ようにしてもよい。
実施形態2は、電力供給制御部4Aは、「全体優先順位」を、最初の一巡では「建物優先順位(分岐配電線優先順位)」順に、各分岐配線線12毎、「再分岐配電線(負荷)優先順位」順に2つずつ付け、その後の巡(ニ巡、三巡、・・)では、「建物優先順位(分岐配電線優先順位)」順に、各分岐配線線12毎、「再分岐配電線(負荷)優先順位」順に1つずつ付け、電力供給制御部4Aはその「全体優先順位」に応じて電力供給を制御する以外の点については実施形態1と同様であるため、実施形態1に係るマイクログリッド電力システム100、制御装置5又はマイクログリッド電力制御方法が有する効果のうち該当する効果も有する。
[実施形態3]
図11は、実施形態3に係るマイクログリッド電力システム300における優先順位に応じた電力供給制御を説明するための表である。
実施形態3に係るマイクログリッド電力システム300は、基本的には実施形態1に係るマイクログリッド電力システム100と同様であるが、実施形態1では、電力供給制御部4Aは、各再分岐配電線16(負荷19)毎に異なる「全体優先順位」を付け、電力供給制御部4Aはその「全体優先順位」に応じて電力供給を制御するのに対し、実施形態3では、電力供給制御部4Aは、複数の再分岐配電線16(負荷19)に同じ「全体優先順位」を付け、電力供給制御部4Aはその「全体優先順位」に応じて電力供給を制御する点が異なる。
つまり、実施形態1では、電力供給制御部4Aは、「全体優先順位」を、「建物優先順位(分岐配電線優先順位)」順に、各分岐配線線12毎、「再分岐配電線(負荷)優先順位」順に1つずつ付けるのに対し、実施形態3では、電力供給制御部4Aは、「全体優先順位」を、需要な建物(建物A、B、C)の「建物優先順位(分岐配電線優先順位)」に同じ順位1、一般家屋1~100の「建物優先順位(分岐配電線優先順位)」に同じ順位2が付けるようにして、複数の再分岐配電線(負荷)に同じ順位を付ける。そして、電力供給制御部4Aはその「全体優先順位」に応じて電力供給を制御する。
そして、電力供給制御部4Aは、「全体優先順位」に応じて分岐開閉器(13、17)を接続遮断する際、「全体優先順位」が同じ再分岐配電線16を任意に選択して分岐開閉器(13、17)を接続遮断する。「全体優先順位」が同じ再分岐配電線16全てについて分岐開閉器(13、17)の接続遮断をした後で、次の「全体優先順位」の再分岐配電線16の接続遮断をおこなう。
なお、電力供給制御部4Aが、「建物優先順位(分岐配電線優先順位)」及び「再分岐配電線(負荷)優先順位」の優先順位を、「建物(分岐配電線)」や「再分岐配電線(負荷)」の種類(属性)に基づいて決め(割り当て)、それらに応じて「全体優先順位」を決める(割り当てる)ようにしてもよい。
なお、実施形態3は、電力供給制御部4Aが、複数の再分岐配電線16に同じ「全体優先順位」が付ける点以外の点においては実施形態1と同様であるため、実施形態1に係るマイクログリッド電力システム100、制御装置5又はマイクログリッド電力制御方法が有する効果のうち該当する効果も有する。
[実施形態4]
図12は、実施形態4に係るマイクログリッド電力システム400における優先順位に応じた電力供給制御を説明するための表である。
実施形態4に係るマイクログリッド電力システム400は、基本的には実施形態1に係るマイクログリッド電力システム100と同様であるが、実施形態1では、電力供給制御部4Aは、各再分岐配電線16(負荷19)毎に異なる「全体優先順位」を付け、電力供給制御部4Aはその「全体優先順位」に応じて電力供給を制御するのに対し、実施形態4では、電力供給制御部4Aは、同じ種類の建物(分岐配電線12)の、同じ種類の再分岐配電線16に、同じ「全体優先順位」を付け、電力供給制御部4Aは複数の同じ「全体優先順位」に応じて電力供給を制御する点が異なる。
つまり、実施形態1では、電力供給制御部4Aは、「全体優先順位」を、「建物優先順位(分岐配電線優先順位)」順に、各分岐配線線12毎、「再分岐配電線(負荷)優先順位」順に1つずつ付けるのに対し、実施形態4では、電力供給制御部4Aは、建物の種類毎、複数の再分岐配電線(負荷)に同じ「全体優先順位」を付ける。
例えば、役場1、2の建物A1、A2には同種の建物として、「建物優先順位(分岐配電線優先順位)」1が付けられているが、電力供給制御部4Aは、再分岐配電線16A1-1、16A2-1に同じ「全体優先順位」1を付ける。同様に、病院1、2の建物B1、B2は同種の建物として「建物優先順位(分岐配電線優先順位)」2が付けられているが、電力供給制御部4Aは、再分岐配電線16B1-1、16B2-1には同じ「全体優先順位」2を付ける。避難所1(12)、一般家屋(1~200)も同様である。
そして、電力供給制御部4Aはそうした「全体優先順位」に応じて分岐開閉器(13、17)の接続をすることにより電力供給をする。
また、電力供給制御部4Aは、「全体優先順位」に応じて、分岐開閉器17A1-1を接続し再分岐配電線16A1-1を介して負荷19に電力を供給するがそこを流れる供給電力の大きさが一定値より大きければ分岐開閉器17A1-1を遮断する。また、同じ「全体優先順位」の分岐開閉器17A2-1を接続して再分岐配電線16A2-1を介して負荷19に電力を供給してそこを流れる供給電力の大きさが一定値以下であれば、再び同じ「全体優先順位」の分岐開閉器17A1-1を接続し再分岐配電線16A1-1を介して負荷19に電力を供給してそこを流れる供給電力の大きさが一定値以下であればそのまま接続し、一定値より大きければ分岐開閉器17A1-1を遮断して、次の「全体優先順位」2においての再分岐配電線16B1-1、16B2-1で同様の制御をする。このような制御(処理)を繰り返す。
ところで、電力供給制御部4Aが、「建物優先順位(分岐配電線優先順位)」及び「再分岐配電線(負荷)優先順位」の優先順位を、「建物(分岐配電線)」や「再分岐配電線(負荷)」の種類(属性)に基づいて決め(割り当て)、それらに応じて「全体優先順位」を決める(割り当てる)ようにしてもよい。
なお、実施形態4は、電力供給制御部4Aが、同じ種類の建物(分岐配電線12)の、同じ種類の再分岐配電線16に、同じ「全体優先順位」を付ける点以外の点においては実施形態1と同様であるため、実施形態1に係るマイクログリッド電力システム100、制御装置5又はマイクログリッド電力制御方法が有する効果のうち該当する効果も有する。
[実施形態5]
図13は、実施形態5に係るマイクログリッド電力システム500における時間-供給電力、負荷消費電力の関係を説明するためのグラフである。
実施形態5に係るマイクログリッド電力システム500は、基本的には実施形態1に係るマイクログリッド電力システム100と同様であるが、第1電源1Aからの供給電力が一定以上の大きさになると第2電源1Bからの電力供給を停止する点で異なる。
実施形態5に係るマイクログリッド電力システム500では、図13に示すように、電力供給制御部4Aは、時刻t0で第2電源1Bから電源供給を開始し、時刻t1で供給電力の大きさが一定の大きさ(PW1)に到達した後、時刻t2(時刻t1~t2間の時間差は零以上、t1=t2でもよい)で第1電源1Aからも電力供給を開始する(以上の点は実施形態1と同様)ように制御する。時刻t2-2で第1電源1Aからの供給電力の大きさが第2電源1Bからの供給電力の大きさ(PW1)と同じ、即ち、両電源からの供給電力の合計が2・PW1になり、時刻t2-3で第1電源1Aからの供給電力の大きさが第2電源1Bからの供給電力の大きさ以上(PW1+Y、即ち、両電源からの供給電力の合計が2・PW1+Y、Yは零以上)になると、第2電源1Bからの供給電力を漸次減少させる(時刻t2-3~t2-4)。マイクログリッド電源1からの電力供給は時刻t2-4で第1電源1Aからだけにする。
そして、電力供給制御部4Aは、第1電源1Aからの供給電力が充分大きくなったため第2電源1Bからの電力供給を停止した場合に、第1電源1Aからの電力を負荷19に供給するとともに第2電源1Bを充電させるようにしてもよい。また、第1電源1Aからの供給電力が一定の大きさを超えたら、それ以上(又はそれを超える)の電力は負荷19に供給せず第2電源1Bの充電用にしてもよい(ピークシフト)。
実施形態5に係るマイクログリッド電力システム500は、上記[10]で述べた効果を有する。
なお、実施形態5に係るマイクログリッド電力システム500では、電力供給制御部4Aは、第1電源1Aからの供給電力が一定以上の大きさになると第2電源1Bからの電力供給を停止する点以外の点においては実施形態1に係る電力制御装置5(制御方法)と同様であるため、実施形態1に係るマイクログリッド電力システム100、制御装置5又はマイクログリッド電力制御方法が有する効果のうち該当する効果も有する。
[実施形態6]
実施形態6に係るマイクログリッド電力システム(図示せず)では、マイクログリッドを元々商用電力系統8と解列されているマイクログリッドとした。
実施形態6に係るマイクログリッド電力システムは、基本的には実施形態1に係る電力制御装置5(制御方法)と同様であるが、制御対象とするマイクログリッド(電源系統)が、例えば、日本列島の主要4島にある商用電源系統8から隔離された離島におけるマイクログリッド(電源系統)のように、元々、商用電源系統8から隔離された(独立した)電源系統であり、商用電源系統8から解列されている点で異なる。
実施形態6に係るマイクログリッド電力システムでは、マイクログリッド6(電源系統)は、元々、商用電源系統8から解列されている(図3、S01参照)。そして、電力供給制御部4Aは、マイクログリッド6(電源系統)の初期状態では供給電力P1を初期状態(零)とする(S03)が、その後、マイクリッド電源1から電源供給をおこなう(S05)。
実施形態6に係るマイクログリッド電力システムは、マイクログリッド(電源系統)が、元々、商用電源系統8から解列されている点以外の点においては実施形態1に係るマイクログリッド電力システム100と同様であるため、実施形態1に係るマイクログリッド電力システム100、制御装置5又はマイクログリッド電力制御方法が有する効果のうち該当する効果も有する。
以上、本発明を上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の形態において実施することが可能である。例えば、下記に示すような変形も可能である。
(1)上記した実施形態1~6においては、第1電源1Aにソーラーパネル1A1を用いたが、例えば、風力発電機を用いてもよい。また、蓄電池1B1を使用した第2電源1Bの代わりに、例えば、EV自動車の電池、小型水力発電機、ガソリン等を燃料とするエンジン発電機等を用いてもよい。
(2)上記した実施形態1~5において、マイクリッド電力系統6Aが商用電力系統8と並列(接続)されているとき、ソーラーパネル1A1で発電した電力を商用電力系統8やマイクログリッド電力系統6Aに供給するようにしてもよい。
(3)上記した実施形態1~5において、マイクログリッド電力系統6Aが商用電力系統8と並列されている(接続されている)ときに蓄電池1B1を充電するようにしてもよい。
(4)上記した実施形態1~6においては、負荷19は再分岐配電線16に接続されるが、再分岐配電線16と分岐配電線12の双方に接続されてもよい。
(5)上記した実施形態1~4において、それぞれ図9~図12で分岐配電線12及び再分岐配電線16の例を示したが、分岐配電線12や再分岐配電線16はこれらに限定されず、例えば、分岐配電線の総数が10~100、1000~1000であってもよい。また、再分岐配電線の総数が100~1000、1000~10000、10000~30000であってもよい。
1…マイクログリッド電源、1A…第1電源、1A1…ソーラーパネル、1A2…パワーコンディショナー、1B…第2電源、1B1…蓄電池、1B2…双方向インバーター、3,3A…系統検出器、4A…電力供給制御部、41…CPU、42…ROM、43…RAM、44…I/O、45…内部バス、46…インターフェース、5…制御装置、51…信号線、6(6A,6B,6C)…マイクリッド(マイクリッド電源系統)、7(7A,7B,7C)…主配電開閉器、8…商用電力系統、9A…大型発電所(火力発電所)、9B…大型発電所(LNG発電所)、11(11A)…主配電線、12(12A,12B,12C,12D)…分岐配電線、13(13A,13B,13C,13D)…分岐開閉器、14(14A,14B,14C,14D)…分岐検出器、16(16A,16B,16C,14D)再分岐配電線、17(17A,17B,17C,17D)…再分岐開閉器、18(18A,18B,18C,18D)…再分岐検出器、19…負荷、21(21A,21B,21C,21D)…建物、91…商用電力系統開閉器、101…電力網表示制御部、P1…供給電力、J1…負荷消費電力、t0,t1,t2,t2-2,t2-3,t2-4,t3…時刻、100,200,300,400,500…マイクログリッド電力システム

Claims (9)

  1. マイクログリッド電源を有するマイクログリッド電力系統を備えるマイクログリッド電力システムであって、
    前記マイクログリッド電源は、自然環境の影響を受けやすい再生エネルギーを利用した第1電源と、自然環境の影響を受けにくい第2電源と、を有し、
    前記マイクログリッド電力系統の周波数及び電圧を検出する系統検出器と、
    前記マイクログリッド電源から負荷に供給される電力供給を前記系統検出器の系統電力検出結果に応じて制御する電力供給制御部を有する制御装置と、を更に備え、
    前記電力供給制御部は、前記第1電源及び前記第2電源のうち、前記第2電源を優先して電力供給を開始し、
    前記電力供給制御部は、前記第1電源からの供給電力が一定以上の大きさになると前記第2電源からの電力供給を停止する
    ことを特徴とするマイクログリッド電力システム。
  2. 請求項1に記載のマイクログリッド電力システムにおいて、
    前記マイクログリッド電力系統は、前記マイクログリッド電源が接続される主配電線と、前記主配電線から直接又は間接的に分岐して前記負荷が接続される複数の分岐配電線と、前記分岐配電線を接続遮断する分岐開閉器と、を更に有し、
    前記電力供給制御部は、前記系統電力検出結果に応じて前記分岐開閉器を選択的に接続遮断することにより前記負荷への電力供給を制御する
    ことを特徴とするマイクログリッド電力システム。
  3. 請求項2に記載のマイクログリッド電力システムにおいて、
    前記電力供給制御部は、前記分岐開閉器を段階的に接続遮断することにより前記負荷への電力供給を制御する
    ことを特徴とするマイクログリッド電力システム。
  4. 請求項2又は3に記載のマイクログリッド電力システムにおいて、
    前記電力供給制御部は、前記分岐配電線の優先順位に応じて前記分岐開閉器を接続遮断する
    ことを特徴とするマイクログリッド電力システム。
  5. 請求項2又は3に記載のマイクログリッド電力システムにおいて、
    前記分岐配電線を介して消費される電力を検出する分岐検出器を更に備え、
    前記電力供給制御部は、前記系統電力検出結果、及び、前記分岐検出器で検出された分岐消費電力に応じて前記分岐開閉器の接続遮断をすることにより、前記負荷への電力供給を制御する
    ことを特徴とするマイクログリッド電力システム。
  6. 請求項5に記載のマイクログリッド電力システムにおいて、
    前記電力供給制御部は、当該分岐開閉器が設けられた前記分岐配電線の前記分岐消費電力が一定の大きさを超えると、当該分岐開閉器を遮断する
    ことを特徴とするマイクログリッド電力システム。
  7. 請求項1~6のいずれかに記載のマイクログリッド電力システムにおいて、
    前記マイクログリッド電源から前記負荷への電力供給を開始する際又は終了する際に、前記電力供給制御部は前記負荷へ電力供給される供給電力の大きさを漸次変化させる
    ことを特徴とするマイクログリッド電力システム。
  8. 請求項1~のいずれかに記載のマイクログリッド電力システムに用いる制御装置であって、
    前記マイクログリッド電源から前記負荷に供給される電力供給を前記系統検出器の前記系統電力検出結果に応じて制御する前記電力供給制御部を有することを特徴とする制御装置。
  9. 商用電力系統と独立したマイクログリッド電力系統を介して、自然環境の影響を受けやすい再生エネルギーを利用した第1電源と、自然環境の影響を受けにくい第2電源と、を有するマイクログリッド電源から負荷に電力を供給するマイクログリッド電力制御方法であって、
    前記マイクログリッド電力系統の周波数及び電圧を検出する工程、
    統検出器の系統電力検出結果に応じて前記負荷への電力供給を制御する工程、
    前記第1電源及び前記第2電源のうち、前記第2電源を優先して電力供給を開始する工程、及び、
    前記第1電源からの供給電力が一定以上の大きさになると前記第2電源からの電力供給を停止する工程、
    を含むことを特徴とするマイクログリッド電力制御方法。
JP2020011650A 2020-01-28 2020-01-28 マイクログリッド電力システム、制御装置及びマイクログリッド電力制御方法 Active JP7372673B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020011650A JP7372673B2 (ja) 2020-01-28 2020-01-28 マイクログリッド電力システム、制御装置及びマイクログリッド電力制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020011650A JP7372673B2 (ja) 2020-01-28 2020-01-28 マイクログリッド電力システム、制御装置及びマイクログリッド電力制御方法

Publications (2)

Publication Number Publication Date
JP2021118639A JP2021118639A (ja) 2021-08-10
JP7372673B2 true JP7372673B2 (ja) 2023-11-01

Family

ID=77175796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020011650A Active JP7372673B2 (ja) 2020-01-28 2020-01-28 マイクログリッド電力システム、制御装置及びマイクログリッド電力制御方法

Country Status (1)

Country Link
JP (1) JP7372673B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223986A (ja) 2004-02-04 2005-08-18 Toshiba Corp 電力系統の連系システムと電力制御方法
JP2009050070A (ja) 2007-08-17 2009-03-05 Kansai Electric Power Co Inc:The 電力遮断装置
WO2018051684A1 (ja) 2016-09-13 2018-03-22 株式会社日立製作所 マイクログリッド運用装置及びマイクログリッド運用方法
JP2018137974A (ja) 2016-12-06 2018-08-30 エービービー・エス.ピー.エー.ABB S.p.A. 電力分配マイクログリッドを制御する方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223986A (ja) 2004-02-04 2005-08-18 Toshiba Corp 電力系統の連系システムと電力制御方法
JP2009050070A (ja) 2007-08-17 2009-03-05 Kansai Electric Power Co Inc:The 電力遮断装置
WO2018051684A1 (ja) 2016-09-13 2018-03-22 株式会社日立製作所 マイクログリッド運用装置及びマイクログリッド運用方法
JP2018137974A (ja) 2016-12-06 2018-08-30 エービービー・エス.ピー.エー.ABB S.p.A. 電力分配マイクログリッドを制御する方法

Also Published As

Publication number Publication date
JP2021118639A (ja) 2021-08-10

Similar Documents

Publication Publication Date Title
El-Bidairi et al. Optimal sizing of Battery Energy Storage Systems for dynamic frequency control in an islanded microgrid: A case study of Flinders Island, Australia
US20210325922A1 (en) Method and apparatus for control of intelligent loads in microgrids
CN109428393B (zh) 不间断电源系统和方法
US10374430B1 (en) Controller for a customized electric power storage device in a collective microgrid
KR101605272B1 (ko) 하이브리드 전력 시스템을 제어하는 방법 및 장치
CN103650285B (zh) 一种整合和管理替代能源、电网功率以及负载之间需求/响应的系统和方法
Chowdhury et al. Load frequency control of multi-microgrid using energy storage system
US10666047B2 (en) Power management concept in DC distributed systems
JP2008154445A (ja) マイクログリッドを制御するためのシステムおよび方法
JP5427006B2 (ja) 分散型電源システム、太陽光発電装置、燃料電池装置、及び、分散型電源システムの電圧調整方法
Amin et al. Integration of renewable energy resources in microgrid
KR20200079755A (ko) 부하환경을 고려한 마이크로그리드 시스템 및 그 운영방법
US20160043556A1 (en) Power management concept in dc distributed systems
Huang et al. Control and load-dispatching strategies for a microgrid with a DC/AC inverter of fixed frequency
Zakir et al. An Optimal Power Management System Based on Load Demand and Resources Availability for PV Fed DC-Microgrid with Power-Sharing among Multiple Nanogrids
Morales-Paredes et al. Cooperative control of power quality compensators in microgrids
Neves et al. Advantages of grid-tied DC microgrid
JP2023020479A (ja) 電力管理システム、充電設備、サーバおよび電力需給バランスの調整方法
JP7372673B2 (ja) マイクログリッド電力システム、制御装置及びマイクログリッド電力制御方法
Bouzid et al. Secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids
JP2017017819A (ja) 電力供給システム
Munje Renewable energy integration into smart grid-energy storage technologies and challenges
Frack et al. Renewable energy supply of refugee camps to decrease fuel consumption and CO 2 emissions
Zaman et al. Frequency Profile Improvement of a Microgrid through Aggregated Demand Response
JP2020184851A (ja) 直流電力網および直流電力網の制御システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200403

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231013

R150 Certificate of patent or registration of utility model

Ref document number: 7372673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150