JP7369862B2 - Hydrophobic silica gel for energy beam curable paint matting - Google Patents

Hydrophobic silica gel for energy beam curable paint matting Download PDF

Info

Publication number
JP7369862B2
JP7369862B2 JP2022517559A JP2022517559A JP7369862B2 JP 7369862 B2 JP7369862 B2 JP 7369862B2 JP 2022517559 A JP2022517559 A JP 2022517559A JP 2022517559 A JP2022517559 A JP 2022517559A JP 7369862 B2 JP7369862 B2 JP 7369862B2
Authority
JP
Japan
Prior art keywords
silica gel
hydrophobic silica
pore volume
value
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022517559A
Other languages
Japanese (ja)
Other versions
JPWO2021220687A1 (en
Inventor
大祐 古城
英紀 中上
雄祐 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Silica Corp
Original Assignee
Tosoh Silica Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Silica Corp filed Critical Tosoh Silica Corp
Publication of JPWO2021220687A1 publication Critical patent/JPWO2021220687A1/ja
Application granted granted Critical
Publication of JP7369862B2 publication Critical patent/JP7369862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3072Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/159Coating or hydrophobisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/42Gloss-reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、エネルギー線硬化型塗料艶消し用疎水性シリカゲルに関する。より詳しくは、本発明は、紫外線(UV)や電子線(EB)などのエネルギー線により硬化する塗料の艶消し剤として使用されるシリコーンオイルで表面処理された疎水性シリカゲルに関する。
関連出願の相互参照
本出願は、2020年4月28日出願の日本特願2020-079708号の優先権を主張し、その全記載は、ここに特に開示として援用される。
The present invention relates to a hydrophobic silica gel for matting energy ray-curable paints. More specifically, the present invention relates to a hydrophobic silica gel surface-treated with silicone oil that is used as a matting agent for paints that are cured by energy rays such as ultraviolet (UV) or electron beam (EB).
Cross-reference to related applications This application claims priority to Japanese Patent Application No. 2020-079708 filed on April 28, 2020, the entire disclosure of which is specifically incorporated herein by reference.

エネルギー線硬化型塗料は、塗膜強度及び速硬化性に優れ、低溶剤化が可能である等の利点があることから、近年、溶剤を使用する従来型塗料にとって代わりその使用量が増加している。 Energy ray-curable paints have advantages such as superior film strength and fast curing properties, and can use less solvent, so their usage has increased in recent years as a replacement for conventional paints that use solvents. There is.

溶剤を使用する従来型塗料でのシリカ艶消し剤は、塗装時と溶剤揮発後の製膜時で膜厚が大きく異なることを利用して表面に凹凸を作り、艶消し効果を実現させていた。しかし、エネルギー線硬化型塗料の場合、塗装時と製膜時の膜厚の減少が少ない。そのため、従来から使用されていたシリカ艶消し剤では十分な艶消し効果を発揮できなかった。 Silica matting agents used in conventional paints that use solvents create a matting effect by creating unevenness on the surface by taking advantage of the large difference in film thickness between painting and film formation after the solvent evaporates. . However, in the case of energy ray-curable paints, the film thickness decreases little during coating and film formation. Therefore, the silica matting agent conventionally used could not exhibit a sufficient matting effect.

この問題を解決するものとしてWAX処理シリカが提案されている。特許文献1に記載のWAX処理シリカは、少なくとも1.5cm/gの細孔容積を持つシリカに融点が85℃未満のWAXを5.6~15重量%、表面処理したシリカである。特許文献2に記載のWAX処理シリカは、2~12μmのメジアン粒子径を持つシリカに15~30重量%のWAXを表面処理したシリカである。いずれもエネルギー線硬化型塗料において高い艶消し性能及び優れた沈降安定性を発揮する。WAX treated silica has been proposed as a solution to this problem. The WAX-treated silica described in Patent Document 1 is silica having a pore volume of at least 1.5 cm 3 /g and surface-treated with 5.6 to 15% by weight of WAX having a melting point of less than 85° C. The WAX-treated silica described in Patent Document 2 is silica having a median particle size of 2 to 12 μm and surface-treated with 15 to 30% by weight of WAX. Both exhibit high matting performance and excellent sedimentation stability in energy beam-curable paints.

特許文献1:特表平11-512124号公報(WO97/08250)
特許文献2:特表2003-522219号公報(WO01/004217)
特許文献1及び2の全記載は、それぞれ、ここに特に開示として援用される。
Patent Document 1: Japanese Patent Publication No. 11-512124 (WO97/08250)
Patent Document 2: Special Publication No. 2003-522219 (WO01/004217)
The entire descriptions of Patent Documents 1 and 2, respectively, are specifically incorporated herein by reference.

最近のエネルギー線硬化型塗料の急速な普及に伴い、艶消し性能以外の性能に対する要求も高まってきている。特に電子機器や家電製品、フローリングのトップコート用としては、下地の成形ムラや傷を隠して表面を保護しつつ高級感のある見た目を実現させるために、シリカを配合した艶消し塗膜が多く使用されている。この用途では、艶消し性能に加えて、耐薬品性及び耐傷性の向上も求められるようになった。 With the recent rapid spread of energy ray-curable paints, demands for performance other than matte performance are also increasing. In particular, for electronic devices, home appliances, and flooring top coats, matte coatings containing silica are often used to hide molding unevenness and scratches on the base, protect the surface, and create a luxurious appearance. It is used. In addition to matte performance, this application requires improved chemical resistance and scratch resistance.

しかしながら、特許文献1及び2のWAX処理シリカは、耐薬品性及び耐傷性が不十分であった。前記WAX処理シリカは、塗料へ配合する際、塗料温度が上がるとWAXが溶出して外観を悪化させる。あるいは、塗料を長期保存するとWAXが溶出し、塗膜物性や外観の悪化が懸念された。 However, the wax-treated silicas of Patent Documents 1 and 2 had insufficient chemical resistance and scratch resistance. When the wax-treated silica is blended into a paint, when the paint temperature rises, the wax dissolves and deteriorates the appearance. Alternatively, if the paint is stored for a long period of time, WAX will be eluted, leading to concerns about deterioration of the physical properties and appearance of the paint film.

そこで本発明者らは、エネルギー線硬化型塗料用に適した艶消し剤であって、艶消し性能に加えて、耐薬品性及び耐傷性にも優れた疎水性シリカゲルについて鋭意検討を行った。 Therefore, the present inventors conducted extensive research on hydrophobic silica gel, which is a matting agent suitable for energy beam-curable paints and has excellent chemical resistance and scratch resistance in addition to matting performance.

その結果、塗膜の耐傷性の問題は、強固な二次粒子凝集構造を有するシリカゲルを用いることで解消できることを見出した。その一方で、そのようなシリカゲルは、耐薬品性に難点があったため、シリカゲルの表面をシリコーンオイルで疎水化処理することにより問題を解決しようとした。エネルギー線硬化型塗料を用いて形成した塗膜の膜厚は、通常5~40μm程度であり、この膜厚の塗膜で艶消し性能を発揮できるように、シリカゲルの粒子径を、例えば、5~20μm程度に調整する。 As a result, it was found that the problem of scratch resistance of the coating film could be solved by using silica gel having a strong secondary particle aggregation structure. On the other hand, such silica gel had a drawback in chemical resistance, and attempts were made to solve this problem by treating the surface of the silica gel to make it hydrophobic with silicone oil. The thickness of a coating film formed using an energy beam curable paint is usually about 5 to 40 μm, and in order to achieve matte performance with a coating film of this thickness, the particle size of the silica gel is adjusted, for example, to 5 μm. Adjust to ~20μm.

ところが、シリコーンオイルで表面処理した疎水性シリカゲルは、表面シラノール基が未処理のシリカゲルに比べて少ない。そのため、溶剤中ではフロキュレートを作らず、沈降安定性が悪くハードケーク化するという、塗料用として本質的な別の問題が生じた。この点は、疎水化処理条件を所定の範囲に制御することで改善でき、かつ耐薬品性と沈降安定性のバランスをとることができることも見出した。 However, hydrophobic silica gel surface-treated with silicone oil has fewer silanol groups on its surface than untreated silica gel. As a result, they do not form flocculates in solvents, and have poor sedimentation stability and turn into hard cakes, which is another problem that is essential for paint applications. It has also been found that this point can be improved by controlling the hydrophobization treatment conditions within a predetermined range, and that a balance between chemical resistance and sedimentation stability can be achieved.

本発明者らは、これらの知見により、艶消し性能に加えて、耐薬品性、耐傷性及び沈降安定性に優れたエネルギー線硬化型塗料艶消し用疎水性シリカゲルを提供できることを見出して、本発明を完成するに至った。 Based on these findings, the present inventors discovered that it is possible to provide a hydrophobic silica gel for energy beam-curable paint matting that has excellent chemical resistance, scratch resistance, and sedimentation stability in addition to matting performance, and has developed the present invention. The invention was completed.

本発明は、以下の通りである。
[1]シリコーンオイルで表面処理された疎水性シリカゲルであって、
窒素吸脱着法で測定された細孔容積が0.6~2ml/gの範囲であり、
M値が5~40vol%の範囲であり、かつ
圧力260MPaでの圧縮前の細孔半径109nm以下の細孔容積に対する前記圧縮後の細孔半径109nm以下の細孔容積の比(圧縮後細孔容積/圧縮前細孔容積)が、0.8~1.5の範囲である、エネルギー線硬化型塗料艶消し用疎水性シリカゲル。
[2]前記疎水性シリカゲルは、レーザー回折法で測定された体積平均粒子径D50値が5~20μmの範囲である、[1]に記載の疎水性シリカゲル。
[3]前記疎水性シリカゲルは、DBA吸着量が30~180mmol/kgの範囲である、[1]又は[2]に記載の疎水性シリカゲル。
[4]前記疎水性シリカゲルは、レーザー回折法で測定された最大粒子径が15~70μmの範囲である、[1]~[3]のいずれか1項に記載の疎水性シリカゲル。
[5]前記疎水性シリカゲルは、レーザー回折法で測定されたD50値に対するD90値の比(D90/D50)が1.8未満である、[1]~[4]のいずれか1項に記載の疎水性シリカゲル。
The present invention is as follows.
[1] Hydrophobic silica gel surface-treated with silicone oil,
The pore volume measured by nitrogen adsorption/desorption method is in the range of 0.6 to 2 ml/g,
The M value is in the range of 5 to 40 vol%, and the ratio of the pore volume with a pore radius of 109 nm or less after compression to the pore volume with a pore radius of 109 nm or less before compression at a pressure of 260 MPa (pore volume after compression) A hydrophobic silica gel for energy beam-curable paint matting, which has a ratio (volume/pore volume before compression) of from 0.8 to 1.5.
[2] The hydrophobic silica gel according to [1], wherein the hydrophobic silica gel has a volume average particle diameter D50 value measured by laser diffraction in a range of 5 to 20 μm.
[3] The hydrophobic silica gel according to [1] or [2], wherein the hydrophobic silica gel has a DBA adsorption amount in the range of 30 to 180 mmol/kg.
[4] The hydrophobic silica gel according to any one of [1] to [3], wherein the hydrophobic silica gel has a maximum particle diameter in the range of 15 to 70 μm as measured by laser diffraction.
[5] The hydrophobic silica gel according to any one of [1] to [4], wherein the ratio of the D90 value to the D50 value (D90/D50) measured by laser diffraction method is less than 1.8. hydrophobic silica gel.

本発明によれば、艶消し性能に加えて、耐薬品性、耐傷性及び沈降安定性に優れたエネルギー線硬化型塗料艶消し用疎水性シリカゲルを提供できる。 According to the present invention, it is possible to provide a hydrophobic silica gel for energy beam-curable paint matting that has excellent chemical resistance, scratch resistance, and sedimentation stability in addition to matting performance.

図1は、実施例1の疎水性シリカゲルの水銀細孔分布を示す。FIG. 1 shows the mercury pore distribution of the hydrophobic silica gel of Example 1. 図2は、比較例1の疎水性シリカゲルの水銀細孔分布を示す。FIG. 2 shows the mercury pore distribution of the hydrophobic silica gel of Comparative Example 1.

<疎水性シリカゲル>
本発明は、シリコーンオイルで表面処理された疎水性シリカゲルであって、
(1)窒素吸脱着法で測定された細孔容積が0.6~2ml/gの範囲であり、
(2)M値が5~40vol%の範囲であり、かつ
(3)圧力260MPaでの圧縮前の109nm以下の細孔容積に対する前記圧縮後の109nm以下の細孔容積の比(圧縮後細孔容積/圧縮前細孔容積)が、0.8~1.5の範囲である、
エネルギー線硬化型塗料艶消し用疎水性シリカゲルに関する。
<Hydrophobic silica gel>
The present invention is a hydrophobic silica gel surface-treated with silicone oil, comprising:
(1) The pore volume measured by nitrogen adsorption/desorption method is in the range of 0.6 to 2 ml/g,
(2) the M value is in the range of 5 to 40 vol%, and (3) the ratio of the pore volume of 109 nm or less after compression to the pore volume of 109 nm or less before compression at a pressure of 260 MPa (pore volume after compression volume/pore volume before compression) is in the range of 0.8 to 1.5.
This invention relates to hydrophobic silica gel for energy beam-curable paint matting.

本発明の疎水性シリカゲルは、シリカゲルの表面をシリコーンオイルで処理されたシリカであり、シリカゲルの表面をシリコーンオイルで処理することで得られる。シリカゲルは、公知の方法で製造される公知のシリカゲルであり、表面処理用のシリコーンオイルも公知のシリコーンオイルであることができる。但し、上記(1)~(3)の特性を有する疎水性シリカゲルは、新規な疎水性シリカゲルであり、これらの物性を満足することで、エネルギー線硬化型塗料艶消し用に適したシリカとなり得る。 The hydrophobic silica gel of the present invention is silica whose surface is treated with silicone oil, and is obtained by treating the surface of silica gel with silicone oil. The silica gel is a known silica gel produced by a known method, and the silicone oil for surface treatment can also be a known silicone oil. However, the hydrophobic silica gel having the properties (1) to (3) above is a new hydrophobic silica gel, and by satisfying these physical properties, it can become a silica suitable for energy beam-curable paint matting. .

(1)本発明の疎水性シリカゲルは、窒素吸脱着法で測定された細孔容積が0.6~2ml/gの範囲である。この範囲であることで、優れた艶消し性能と耐傷性を発揮する。細孔容積が0.6ml/gより小さい場合、シリカの細孔が少な過ぎて、艶消し性能の低下が大きい。細孔容積が増すと細孔の大きさも大きくなる傾向があり、細孔容積が2ml/gを超える場合、細孔が大きくなり過ぎて、シリカ二次粒子凝集構造が弱くなり、耐傷性が悪化する。好ましくは0.7~1.8ml/g、より好ましくは0.8~1.6ml/gの範囲である。窒素吸脱着法による細孔容積の測定方法は実施例で説明する。 (1) The hydrophobic silica gel of the present invention has a pore volume in the range of 0.6 to 2 ml/g as measured by a nitrogen adsorption/desorption method. Within this range, excellent matting performance and scratch resistance can be achieved. When the pore volume is smaller than 0.6 ml/g, the silica has too few pores and the matting performance is greatly reduced. As the pore volume increases, the pore size tends to increase, and if the pore volume exceeds 2 ml/g, the pores become too large, weakening the silica secondary particle aggregate structure and worsening scratch resistance. do. It is preferably in the range of 0.7 to 1.8 ml/g, more preferably 0.8 to 1.6 ml/g. A method for measuring pore volume by nitrogen adsorption/desorption method will be explained in Examples.

(2)本発明の疎水性シリカゲルは、M値が5~40vol%の範囲である。M値の測定方法は実施例で説明するが、M値は、疎水性シリカゲルが懸濁し得るメタノール水溶液のメタノール濃度により、疎水性シリカゲルの疎水化度を示す指標である。M値がこの範囲であること、すなわちこの範囲の疎水化度であることで、特許文献1及び2に記載のWAX処理シリカに比べ、耐薬品性に優れ、かつハードケーク化しにくく再分散性に優れる。M値が5vol%未満の場合では所望の耐薬品性が得られず、M値が40vol%を超えると経時沈澱しやすくなる為、再分散しにくくなる。M値40vol%以下では、既存のM値40vol%超の疎水性シリカゲルに比べシラノール基の残存量が多く、塗料中でフロキュレートを作るため、ハードケーク化しにくい。M値は、好ましくは10~35vol%、より好ましくは15~30vol%である。 (2) The hydrophobic silica gel of the present invention has an M value in the range of 5 to 40 vol%. The method for measuring the M value will be explained in Examples, and the M value is an index that indicates the degree of hydrophobicity of the hydrophobic silica gel based on the methanol concentration of the methanol aqueous solution in which the hydrophobic silica gel can be suspended. Since the M value is in this range, that is, the degree of hydrophobicity is in this range, it has excellent chemical resistance and is less likely to become a hard cake and has better redispersibility than the wax-treated silica described in Patent Documents 1 and 2. Excellent. When the M value is less than 5 vol%, the desired chemical resistance cannot be obtained, and when the M value exceeds 40 vol%, precipitation tends to occur over time, making redispersion difficult. When the M value is 40 vol% or less, the amount of silanol groups remaining is large compared to existing hydrophobic silica gels with an M value of over 40 vol%, and flocculates are formed in the paint, making it difficult to form a hard cake. The M value is preferably 10 to 35 vol%, more preferably 15 to 30 vol%.

(3)本発明の疎水性シリカゲルは、圧力260MPaでの圧縮前の109nm以下の細孔容積に対する前記圧縮後の109nm以下の細孔容積の比(圧縮後細孔容積/圧縮前細孔容積)が、0.80~1.5の範囲である。疎水性シリカゲルをプレス機により圧縮すると、シリカの種類および圧縮の圧力に応じて、シリカ粒子の二次粒子凝集構造が崩壊し、大きい細孔から消滅していく。本発明の疎水性シリカゲルは、260MPaの圧力で圧縮した時に、圧縮前の109nm以下の細孔容積に対する圧縮後の109nm以下の細孔容積の比が、上記範囲にある。109nm以下の細孔容積は、シリカの二次粒子凝集体の表面~内部の細孔構造を示しており、数値が高いほど二次粒子凝集体の空隙が多くなる。シリカの細孔容積が大きくなるほど、シリカ二次粒子一個あたりの密度が小さくなり、単位重量当たりのシリカ二次粒子個数が多くなる。つまり、同じ粒子径のシリカを塗料に同量配合する場合、シリカの細孔容積が大きくなるほど艶消し性能が高くなる。一方で、細孔容積が大きくなるほど、シリカ一次粒子同士の接点が少なくなるため、二次粒子凝集構造は弱くなる。 (3) The hydrophobic silica gel of the present invention has a ratio of the pore volume of 109 nm or less after compression to the pore volume of 109 nm or less before compression at a pressure of 260 MPa (pore volume after compression/pore volume before compression). is in the range of 0.80 to 1.5. When hydrophobic silica gel is compressed using a press, the secondary particle aggregate structure of the silica particles collapses and disappears from large pores, depending on the type of silica and the compression pressure. When the hydrophobic silica gel of the present invention is compressed at a pressure of 260 MPa, the ratio of the pore volume of 109 nm or less after compression to the pore volume of 109 nm or less before compression is within the above range. The pore volume of 109 nm or less indicates the pore structure from the surface to the inside of the silica secondary particle aggregate, and the higher the value, the more voids there are in the secondary particle aggregate. As the pore volume of silica increases, the density per secondary silica particle decreases, and the number of secondary silica particles per unit weight increases. In other words, when the same amount of silica with the same particle size is mixed into a paint, the larger the pore volume of the silica, the higher the matting performance. On the other hand, as the pore volume increases, the number of points of contact between silica primary particles decreases, and thus the secondary particle aggregate structure weakens.

圧縮圧力を260MPaとすることで、109nm以下の細孔を構成する二次粒子凝集構造の強度を評価できる。109nm以下の細孔容積は、水銀圧入法により、0MPaから400MPaまで昇圧したときに計測される。水銀圧入法による109nm以下の細孔容積の測定方法は実施例において説明する。 By setting the compression pressure to 260 MPa, the strength of the secondary particle aggregate structure that constitutes pores of 109 nm or less can be evaluated. The pore volume of 109 nm or less is measured by mercury intrusion porosimetry when the pressure is increased from 0 MPa to 400 MPa. A method for measuring pore volume of 109 nm or less by mercury porosimetry will be explained in Examples.

前記圧縮前後の細孔容積比が0.8~1.5であることは、260MPaの圧縮後もシリカ粒子の二次粒子凝集構造が維持されており、強固であることを示す。つまり、圧縮前後の細孔容積比が0.8~1.5である疎水性シリカゲルは、耐傷性に優れる。圧縮前後の細孔容積比の下限は、好ましくは0.85、より好ましくは0.9である。圧縮前後の細孔容積比の上限は1.5であり、1.5を超える疎水性シリカゲルを提供することは現実的には難しい。圧縮前後の細孔容積比の上限は、好ましくは1.4、より好ましくは1.3、さらに好ましくは1.2、最も好ましくは1.1である。 The fact that the pore volume ratio before and after compression is 0.8 to 1.5 indicates that the secondary particle aggregate structure of the silica particles is maintained and strong even after compression at 260 MPa. In other words, hydrophobic silica gel with a pore volume ratio before and after compression of 0.8 to 1.5 has excellent scratch resistance. The lower limit of the pore volume ratio before and after compression is preferably 0.85, more preferably 0.9. The upper limit of the pore volume ratio before and after compression is 1.5, and it is practically difficult to provide a hydrophobic silica gel with a ratio exceeding 1.5. The upper limit of the pore volume ratio before and after compression is preferably 1.4, more preferably 1.3, even more preferably 1.2, and most preferably 1.1.

(4)本発明の疎水性シリカゲルは、レーザー回折法で測定されたD50値が5~20μmの範囲であることが好ましい。レーザー回折法で測定されたD50値が5~20μmの範囲であることで、一般的な塗膜の膜厚に対して、塗膜に適切な凹凸を付与して艶消し性能を発揮できる。レーザー回折法による体積平均粒子径の測定方法は実施例で説明する。D50値が5μm未満の疎水性シリカゲルは、艶消し性能が低くなる傾向があり、20μmより大きい場合、塗膜表面がざらつき、意匠を損なうため艶消し用途には適さない場合がある。 (4) The hydrophobic silica gel of the present invention preferably has a D50 value measured by laser diffraction in the range of 5 to 20 μm. When the D50 value measured by the laser diffraction method is in the range of 5 to 20 μm, the coating film can be provided with appropriate unevenness and exhibit matte performance for a typical coating film thickness. A method for measuring the volume average particle diameter by laser diffraction method will be explained in Examples. Hydrophobic silica gels with a D50 value of less than 5 μm tend to have poor matte performance, while those with a D50 value of more than 20 μm may be unsuitable for matte applications because the coating surface becomes rough and the design is impaired.

(5)本発明の疎水性シリカゲルは、DBA吸着量が30~180mmol/kgの範囲であることが好ましい。DBA吸着量が上記範囲にあることで、疎水性シリカゲルの特徴である耐薬品性を向上させながら、塗料中での沈澱性を制御できる。30mmol/kg未満の場合、疎水性シリカゲル表面のシラノール基が少なく、シリカ同士のフロキュレートが作られないため、沈澱し再分散できなくなる。180mmol/kgより大きい場合、疎水性シリカゲルの疎水化状態が弱く耐薬品性の向上効果が小さくなる。DBA吸着量は、好ましくは40~170mmol/kg、より好ましくは50mmol/kg~160mmol/kg、さらに好ましくは60~140mmol/kgである。 (5) The hydrophobic silica gel of the present invention preferably has a DBA adsorption amount in the range of 30 to 180 mmol/kg. By having the DBA adsorption amount within the above range, precipitation in the paint can be controlled while improving chemical resistance, which is a characteristic of hydrophobic silica gel. When it is less than 30 mmol/kg, there are few silanol groups on the surface of the hydrophobic silica gel, and flocculate of silica particles is not formed, so that the silica particles precipitate and cannot be redispersed. When it is larger than 180 mmol/kg, the hydrophobic state of the hydrophobic silica gel becomes weak and the effect of improving chemical resistance becomes small. The amount of DBA adsorbed is preferably 40 to 170 mmol/kg, more preferably 50 mmol/kg to 160 mmol/kg, and even more preferably 60 to 140 mmol/kg.

(6)本発明の疎水性シリカゲルは、レーザー回折法で測定された最大粒子径が15~70μmの範囲であることが好ましい。最大粒子径がこの範囲にあることで、適切な凹凸を艶消し塗膜に付与できる。レーザー回折法で測定された最大粒子径が15μm未満の場合、艶消し性能が低くなる傾向がある。70μmより大きい場合、塗膜表面がざらつき、意匠を損なうため艶消し用途には適さない場合がある。レーザー回折法で測定された最大粒子径は、より好ましくは15~65μmの範囲である。 (6) The hydrophobic silica gel of the present invention preferably has a maximum particle diameter in the range of 15 to 70 μm as measured by laser diffraction. When the maximum particle size is within this range, appropriate unevenness can be imparted to the matte coating film. When the maximum particle diameter measured by laser diffraction is less than 15 μm, the matting performance tends to be low. If it is larger than 70 μm, the surface of the coating film becomes rough and the design is impaired, so it may not be suitable for matte applications. The maximum particle size measured by laser diffraction is more preferably in the range of 15 to 65 μm.

(7)本発明の疎水性シリカゲルは、レーザー回折法で測定された粒子径のD90値とD50値の比D90/D50が1.8未満の範囲であることが好ましい。D90/D50が1.8未満の範囲であることでシャープな粒度分布を持ち、艶消し性能がより良好となる。レーザー回折法で測定された粒子径のD90値とD50値の比D90/D50が1.8以上の場合、粒子径がブロードとなり、艶消し性能は相対的に低い。より好ましくはD90/D50が1.7未満の範囲である。 (7) In the hydrophobic silica gel of the present invention, the ratio D90/D50 between the D90 value and the D50 value of the particle diameter measured by laser diffraction is preferably in a range of less than 1.8. When D90/D50 is in a range of less than 1.8, it has a sharp particle size distribution and better matte performance. When the ratio D90/D50 between the D90 value and the D50 value of the particle size measured by laser diffraction method is 1.8 or more, the particle size becomes broad and the matting performance is relatively low. More preferably, D90/D50 is less than 1.7.

<エネルギー線硬化型塗料>
疎水性シリカゲルは、エネルギー線硬化型塗料用以外の分野では知られている。しかし、これら従来の疎水性シリカゲルは、大粒子径で強固な二次粒子凝集構造を持つため、特に極性基を持つ弱溶剤や反応性モノマーを配合した塗料において、比較的短時間で沈澱する。そのため、従来の疎水性シリカゲルはエネルギー線硬化型塗料に使用されていなかった。
<Energy ray curable paint>
Hydrophobic silica gels are known in fields other than energy beam curable paints. However, these conventional hydrophobic silica gels have large particle diameters and a strong secondary particle aggregation structure, so they precipitate in a relatively short time, especially in paints containing weak solvents or reactive monomers with polar groups. Therefore, conventional hydrophobic silica gels have not been used in energy beam-curable paints.

本発明におけるエネルギー線硬化型塗料は、反応性モノマー、有機溶剤及び光重合開始剤を含む塗料である。反応性モノマー、有機溶剤及び光重合開始剤に関しては、限定はなく、公知の材料であることができる。さらに反応性モノマー、有機溶剤及び光重合開始剤以外の成分も適宜含有することができる。 The energy ray-curable paint in the present invention is a paint containing a reactive monomer, an organic solvent, and a photopolymerization initiator. There are no limitations on the reactive monomer, organic solvent, and photopolymerization initiator, and known materials can be used. Furthermore, components other than the reactive monomer, organic solvent, and photopolymerization initiator may also be contained as appropriate.

反応性モノマーは、例えば、極性基を持つ反応性モノマーであり、極性基を持つ反応性モノマーとしては、メチルカルビトールアクリレート、2-エチルヘキシルアクリレート、フェニルアクリレート、C9-フェニルアクリレート、1,9-ノナンジオールジアクリレート、トリプロピレングリコールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート等がある。 The reactive monomer is, for example, a reactive monomer having a polar group, and examples of the reactive monomer having a polar group include methyl carbitol acrylate, 2-ethylhexyl acrylate, phenyl acrylate, C9-phenylacrylate, and 1,9-nonane. Examples include diol diacrylate, tripropylene glycol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and dipentaerythritol hexaacrylate.

有機溶剤は、例えば、極性基を持つ弱溶剤の代表例として、酢酸エチル、酢酸ブチルのようなエステル類やエタノール、メタノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、ジメチルエーテル、ジエチルエーテル等のエーテル類等がある。 Typical examples of organic solvents include weak solvents with polar groups, such as esters such as ethyl acetate and butyl acetate, alcohols such as ethanol and methanol, ketones such as acetone and methyl ethyl ketone, dimethyl ether, diethyl ether, etc. There are ethers, etc.

本発明は、大粒子径で強固な二次粒子凝集構造を持つシリカ粒子に、最適な疎水化状態を付与することで、エネルギー線硬化型塗料においても良好な沈澱状態を保つことを最大の特徴としている。 The main feature of the present invention is that it maintains a good precipitation state even in energy beam-curable paints by imparting an optimal hydrophobic state to silica particles that have a large particle size and a strong secondary particle agglomeration structure. It is said that

本発明のエネルギー線硬化型塗料艶消し用疎水性シリカゲルは、エネルギー線硬化型塗料の艶消し剤として好適に使用される。中でも、粘度が低く沈澱しやすい弱溶剤を配合したエネルギー線硬化型塗料で効果が高いが、これに限定するものではない。 The hydrophobic silica gel for matting energy ray curable paints of the present invention is suitably used as a matting agent for energy ray curable paints. Among these, energy ray-curable paints containing weak solvents that have low viscosity and tend to precipitate are highly effective, but are not limited thereto.

<シリコーンオイル>
本発明の疎水性シリカゲルのための表面処理用のシリコーンオイルは、シリカゲルと混合できるものであれば特に制限されない。メチル基、フェニル基のみを備えた市販のジメチルシリコーンオイル(通称:ストレートシリコーンオイル)を使用するのが、一般的であるが、他にも珪素原子に有機性の置換基を備えた変性タイプのシリコーンオイルも使用することが出来る。置換基の例としては、ポリエーテル、エポキシ、アミン類、カルボキシル基をはじめ、多くの変性タイプのシリコーンオイルが市販されている。変性タイプのシリコーンオイルとしては、例えば、以下の製品を挙げることが出来る。
<Silicone oil>
The silicone oil for surface treatment of the hydrophobic silica gel of the present invention is not particularly limited as long as it can be mixed with the silica gel. It is common to use commercially available dimethyl silicone oil (commonly known as straight silicone oil) that has only methyl and phenyl groups, but there are also modified types that have organic substituents on the silicon atom. Silicone oil can also be used. Examples of substituents include polyether, epoxy, amines, and carboxyl groups, and many modified silicone oils are commercially available. Examples of modified silicone oil include the following products.

<信越化学工業社製 変性シリコーンオイル>
KF-868, 865, 859, 393, 250, 889, 2001, 2004, 99, 9901, 8010, 8012, 8008, 105, 6000, 6001, 6002, 6003, 6123, 2200, 9701, 2012, 857, 8001, 858, 351A, 353, 354L, 355A, 945, 640, 642, 643, 644, 6020, 6204, 6011, 6015, 6017, 412, 413, 414, 4003, 4917, 7235B, 50, 53, 54, 54SS, X-22-343, 2000, 2046, 4741, 4039, 4015, 161A, 161B, 9490, 163, 163A, 163B, 163C, 169AS, 169B, 164, 164AS, 164A, 164B, 164C, 164E, 4952, 4272, 167B, 167C, 162C, 5841, 2445, 1602, 168AS, 168A, 168B, 173BX, 173DX, 170BX, 170DX, 176DX, 176GX-A, 174ASX, 174BX, 2426, 2475, 3710, 2516, 821, 822, 7322, 3265
<Modified silicone oil manufactured by Shin-Etsu Chemical Co., Ltd.>
KF-868, 865, 859, 393, 250, 889, 2001, 2004, 99, 9901, 8010, 8012, 8008, 105, 6000, 6001, 6002, 6003, 6123, 2200, 9701, 20 12, 857, 8001, 858, 351A, 353, 354L, 355A, 945, 640, 642, 643, 644, 6020, 6204, 6011, 6015, 6017, 412, 413, 414, 4003, 4917, 7235B, 50, 53, 54, 54SS, X-22-343, 2000, 2046, 4741, 4039, 4015, 161A, 161B, 9490, 163, 163A, 163B, 163C, 169AS, 169B, 164, 164AS, 164A, 164B, 164C, 164E, 4952, 4272, 167B, 167C, 162C, 5841, 2445, 1602, 168AS, 168A, 168B, 173BX, 173DX, 170BX, 170DX, 176DX, 176GX-A, 174ASX, 174BX, 2426, 2475, 3710, 2516, 821, 822, 7322, 3265

<東レ・ダウコーニング社製 変性シリコーンオイル>
SF 8417, BY 16-205, BY 16-213, BY 16-871, BY 16-893, SF 8411, BY 16-880, SF 8427, BY 16-201, SF 8428, BY 16-846, SF 8419, FS 1265, SH 510, SH 550, SH 710, SH 8400, FZ-77, L-7604
<Modified silicone oil manufactured by Dow Corning Toray>
SF 8417, BY 16-205, BY 16-213, BY 16-871, BY 16-893, SF 8411, BY 16-880, SF 8427, BY 16-201, SF 8428, BY 16-846, SF 8419, FS 1265, SH 510, SH 550, SH 710, SH 8400, FZ-77, L-7604

<モメンティブ・パフォーマンス・マテリアルズ社製 変性シリコーンオイル>
TSF4440, 4441, 4445, 4446, 4452, 4460, 4700, 4701, XF42-B0970
<Momentive Performance Materials modified silicone oil>
TSF4440, 4441, 4445, 4446, 4452, 4460, 4700, 4701, XF42-B0970

<ワッカー・ケミー社製 変性シリコーンオイル>
L03, 033, 066, L653, 655, 656, 662, WT1250, 65000VP, AP100, 150, 200, 500, AR20, 200
<Modified silicone oil manufactured by Wacker Chemie>
L03, 033, 066, L653, 655, 656, 662, WT1250, 65000VP, AP100, 150, 200, 500, AR20, 200

粘度が高いシリコーンオイルを使用する場合、溶媒等で希釈する必要があるため、一般的には動粘度1~500センチストークス程度の粘度を持つシリコーンオイルが好適に使用される。動粘度1~500センチストークスであるシリコーンオイルは、例えば、以下の製品を挙げることができる。 When using a silicone oil with high viscosity, it is necessary to dilute it with a solvent or the like, so silicone oil with a kinematic viscosity of about 1 to 500 centistokes is generally preferably used. Examples of silicone oils having a kinematic viscosity of 1 to 500 centistokes include the following products.

<信越化学工業社製 シリコーンオイル>
KF-96-1cs, 1.5cs, 2.0cs, 5.0cs, 10cs, 20cs, 30cs, 50cs, 100cs, 200cs, 300cs, 350cs, 500cs
<Silicone oil manufactured by Shin-Etsu Chemical Co., Ltd.>
KF-96-1cs, 1.5cs, 2.0cs, 5.0cs, 10cs, 20cs, 30cs, 50cs, 100cs, 200cs, 300cs, 350cs, 500cs

<東レ・ダウコーニング社製 シリコーンオイル>
SH200-1cs, 1.5cs, 2cs, 3cs, 5cs, 10cs, 20cs, 50cs, 100cs, 200cs, 350cs, 500cs
<Silicone oil manufactured by Toray Dow Corning>
SH200-1cs, 1.5cs, 2cs, 3cs, 5cs, 10cs, 20cs, 50cs, 100cs, 200cs, 350cs, 500cs

<モメンティブ・パフォーマンス・マテリアルズ社製 シリコーンオイル>
TSF451-5A, 10, 20, 30, 50, 100, 200, 300, 350, 500
<Silicone oil manufactured by Momentive Performance Materials>
TSF451-5A, 10, 20, 30, 50, 100, 200, 300, 350, 500

<ワッカー・ケミー社製 シリコーンオイル>
AK 1, 10, 35, 50, 100, 350, 500
<Silicone oil manufactured by Wacker Chemie>
AK 1, 10, 35, 50, 100, 350, 500

<シリカゲル>
本発明の疎水性シリカゲルの原料シリカゲルの製造方法について説明する。本発明で用いるシリカゲルは、所望の細孔容積及び圧縮後細孔容積/圧縮前細孔容積を有する疎水性シリカゲルを提供するために、シリカヒドロゲルを乾燥しシリカゲルを製造する工程で、細孔構造がコントロールされる。まず、本発明の製造方法に用いられるシリカヒドロゲルは、常法により得られたものでよい。即ち、珪酸ナトリウム、珪酸カリウム、珪酸リチウム等の珪酸アルカリ金属塩水溶液と硫酸、塩酸、硝酸等の鉱酸とを酸過剰下において反応し均一なシリカヒドロゾルを得る。次に得られたシリカヒドロゾルをゲル化させた後、解砕し、水洗する。水洗工程では、副生塩を除去すると共に必要があれば比表面積を下げる目的で水酸化ナトリウムやアンモニア水溶液を添加、加熱し水熱処理を行っても良い。
<Silica gel>
The method for producing the raw material silica gel for the hydrophobic silica gel of the present invention will be explained. In order to provide a hydrophobic silica gel having a desired pore volume and pore volume after compression/pore volume before compression, the silica gel used in the present invention has a pore structure that is is controlled. First, the silica hydrogel used in the production method of the present invention may be obtained by a conventional method. That is, a homogeneous silica hydrosol is obtained by reacting an aqueous solution of an alkali metal silicate such as sodium silicate, potassium silicate, or lithium silicate with a mineral acid such as sulfuric acid, hydrochloric acid, or nitric acid in an acidic excess. Next, the obtained silica hydrosol is gelled, then crushed and washed with water. In the water washing step, a hydrothermal treatment may be performed by adding and heating an aqueous solution of sodium hydroxide or ammonia for the purpose of removing by-product salts and, if necessary, lowering the specific surface area.

乾燥には、一般に静置乾燥機、バンドドライヤー、パドルドライヤー、流動乾燥機等が使用されるが、これに限定されるものではない。乾燥温度は特に限定されるものではないが、上記範囲の平均乾燥速度で均一な乾燥を行う場合、100~300℃で行うのが適当である。 For drying, a stationary dryer, a band dryer, a paddle dryer, a fluidized dryer, etc. are generally used, but the dryer is not limited thereto. Although the drying temperature is not particularly limited, when uniform drying is to be carried out at an average drying rate within the above range, it is appropriate to carry out the drying at a temperature of 100 to 300°C.

シリカヒドロゲルの乾燥は、所望の細孔容積及び圧縮後細孔容積/圧縮前細孔容積を有する疎水性シリカゲルを提供するための細孔構造コントロールという観点を考慮して行う。この観点から、シリカヒドロゲルの乾燥は、静置乾燥機、流動乾燥機に代表される乾燥速度をコントロールできる乾燥機により行いシリカゲルとすることが好ましい。乾燥後のシリカゲルの含水量は、例えば、3~10%(質量基準)の範囲であることが適当である。 Drying of the silica hydrogel is carried out in consideration of pore structure control in order to provide a hydrophobic silica gel having a desired pore volume and pore volume after compression/pore volume before compression. From this point of view, it is preferable to dry the silica hydrogel to obtain silica gel using a dryer that can control the drying speed, such as a static dryer or a fluidized dryer. The water content of the silica gel after drying is, for example, suitably in the range of 3 to 10% (based on mass).

このようにして得られたシリカゲルは、さらに平均粒子径を調整する目的で、粉砕及び分級をすることができる。粉砕は、公知の方法、例えばロールミル、ボールミル、ハンマーミル、ピンミル、ジェットミル等を用いる方法により行うことができる。さらに、分級は、ミクロンセパレーターのような風力分級機、又は遠心力分級機等を用いて行い、所望の平均粒子径を有するシリカゲルを得ることができる。この時、目標の平均粒子径に合わせる必要はないが、目標の粒度に近づけておくことで、疎水化後の粒度調節が容易となる。 The silica gel thus obtained can be further pulverized and classified for the purpose of adjusting the average particle size. The pulverization can be carried out by a known method, for example, using a roll mill, ball mill, hammer mill, pin mill, jet mill, or the like. Furthermore, classification can be performed using a wind classifier such as a micron separator, a centrifugal classifier, or the like to obtain silica gel having a desired average particle size. At this time, it is not necessary to match the target average particle size, but by keeping it close to the target particle size, it becomes easier to adjust the particle size after hydrophobization.

本発明のエネルギー線硬化型塗料艶消し用疎水性シリカゲルを得るための表面処理剤によるシリカゲルの表面処理法としては、均一処理を行うため、ヘンシェルミキサー等の高速流動混合機等を用いる方法が好ましい。但し、この方法に限られるものではない。シリカゲルの処理に用いる表面処理剤の量は、所望のM値が得られるように調整する。さらに、DBA吸着量の調整のためにも、シリカゲルの処理に用いる表面処理剤の量を調整する。 As the surface treatment method for silica gel using a surface treatment agent to obtain the hydrophobic silica gel for matting energy beam-curable paint of the present invention, a method using a high-speed fluid mixer such as a Henschel mixer is preferred in order to achieve uniform treatment. . However, the method is not limited to this method. The amount of surface treatment agent used to treat silica gel is adjusted to obtain the desired M value. Furthermore, in order to adjust the amount of DBA adsorption, the amount of surface treatment agent used for treating the silica gel is adjusted.

表面処理剤とシリカゲルを混合後、200~600℃の条件で熱処理を行うことで、疎水化が行われる。熱処理は、均一な熱処理を一定時間行えれば、方法は問わない。熱処理時間としては、所望の疎水化状態が得られれば良いが、目安として1~24時間が例示される。熱処理後、必要があれば粉砕、分級を行うこともできる。 After mixing the surface treatment agent and silica gel, heat treatment is performed at 200 to 600°C to make the mixture hydrophobic. Any heat treatment method may be used as long as uniform heat treatment can be performed for a certain period of time. The heat treatment time may be as long as a desired hydrophobic state can be obtained, and as a guide, 1 to 24 hours is exemplified. After the heat treatment, pulverization and classification can be performed if necessary.

以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。 Hereinafter, the present invention will be explained in more detail based on examples. However, the examples are illustrative of the present invention, and the present invention is not intended to be limited to the examples.

物性測定方法
M値
メタノールの濃度を5vol%の間隔で変化させた水との混合溶液を調製し、これを容積10mlの試験管に5ml入れる。次いで供試粉体である疎水性シリカゲル試料を0.1~0.2g入れ、振り混ぜ静置した後、粉体が懸濁する最小のメタノールの濃度を観察し、これをM値とする。
Physical property measurement method M value A mixed solution of methanol and water with varying concentrations at 5 vol % intervals is prepared, and 5 ml of this is placed in a 10 ml test tube. Next, 0.1 to 0.2 g of a hydrophobic silica gel sample, which is a test powder, is added, shaken, and left to stand. The minimum concentration of methanol at which the powder is suspended is observed, and this is taken as the M value.

DBA吸着量
疎水性シリカゲル試料の乾燥試料250mgを精秤し、これにN/500のジ-n-ブチルアミン溶液(石油ベンジン溶媒)50mlを加え、20℃で約2時間放置する。この上澄液25mlにクロロホルム5ml、指示薬(クリスタルバイオレット)2~3滴を加え、紫色が青色に変わるまでN/100の過塩素酸溶液(無水酢酸溶媒)で滴定し、この時の滴定値をA mlとする。
別にブランクを行ないB mlとし、次式によってDBA吸着量を算出した。
DBA吸着量(mmol/kg)=80(B-A)f
ただし、fはN/100の過塩素酸溶液の力価
DBA adsorption amount Accurately weigh 250 mg of a dry hydrophobic silica gel sample, add 50 ml of N/500 di-n-butylamine solution (petroleum benzine solvent), and leave it at 20° C. for about 2 hours. Add 5 ml of chloroform and 2 to 3 drops of an indicator (crystal violet) to 25 ml of this supernatant liquid, and titrate with N/100 perchloric acid solution (acetic anhydride solvent) until the purple color changes to blue. A ml.
Separately, a blank was prepared to obtain B ml, and the amount of DBA adsorption was calculated using the following formula.
DBA adsorption amount (mmol/kg) = 80 (B-A) f
However, f is the titer of perchloric acid solution of N/100

粒子径(D50値、D90値、最大粒子径)
マイクロトラック・ベル社製 レーザー回折式粒度分布測定装置 マイクロトラックMT-3000IIを用いて、疎水性シリカゲル試料の粒度分布における体積積算値の50%の値(D50値)、下位から90%の値(D90値)、及び検出された最大粒子径(最大粒子径)を求めた。なお、溶媒としてイソプロピルアルコール(屈折率:1.38)を使用した。
Particle size (D50 value, D90 value, maximum particle size)
Using Microtrac MT-3000II, a laser diffraction particle size distribution analyzer manufactured by Microtrac Bell Co., Ltd., we measured the 50% value (D50 value) and the lowest 90% value (D50 value) of the volume integrated value in the particle size distribution of a hydrophobic silica gel sample. D90 value) and the maximum detected particle size (maximum particle size) were determined. Note that isopropyl alcohol (refractive index: 1.38) was used as a solvent.

窒素吸脱着法で測定された細孔容積
日本ベル社製 高精度ガス/蒸気吸着量測定装置 Belsorp maxを用いてBarret-Joyner-Halenda法(BJH法)により細孔半径1.6~100nmの範囲の全細孔容積(V)を測定した。なお、測定結果は脱着側の(細孔容積が大きいほうから測定した)細孔容積である。
Pore volume measured by nitrogen adsorption/desorption method Pore radius in the range of 1.6 to 100 nm by Barret-Joyner-Halenda method (BJH method) using Belsorp MAX, a high-precision gas/vapor adsorption measuring device manufactured by Nippon Bell Co., Ltd. The total pore volume (V P ) of the sample was measured. Note that the measurement result is the pore volume on the desorption side (measured from the side with the largest pore volume).

水銀圧入法で測定された細孔容積
Thermo社製 水銀ポロシメーター PASCAL440を使用し、0MPaから400MPaに昇圧して細孔容積が測定される。圧力と水銀導入量が測定され、それぞれの値が出力される。水銀とシリカの接触角は140°を使用した。この測定条件での水銀圧入法により、細孔半径109nm以下の細孔容積を求めた。
Pore volume measured by mercury porosimetry Using a mercury porosimeter PASCAL440 manufactured by Thermo, the pore volume is measured by increasing the pressure from 0 MPa to 400 MPa. The pressure and amount of mercury introduced are measured, and the respective values are output. A contact angle of 140° between mercury and silica was used. The volume of pores with a pore radius of 109 nm or less was determined by the mercury intrusion method under these measurement conditions.

水銀細孔容積測定用試料の前処理(プレス機による圧縮)
前川試験機製作所社製 ブリケッティングプレスを使用した。
Pretreatment of samples for mercury pore volume measurement (compression using a press machine)
A briquetting press manufactured by Maekawa Test Equipment Seisakusho Co., Ltd. was used.

プレス機による圧縮方法
疎水性シリカゲル試料約2gを40mmφのダイに詰め、油圧プレス機で約5tの荷重を掛け、予備圧縮を行う。予備圧縮した試料をダイから取り出し、乳鉢で軽く粉砕する。31mmφの塩ビ製枠に粉砕した試料を詰め、20tの荷重を掛け、10秒圧縮し、圧縮後の疎水性シリカゲル試料を得た。
Compression method using a press Approximately 2 g of a hydrophobic silica gel sample is packed into a 40 mm diameter die, and a load of approximately 5 tons is applied using a hydraulic press to perform preliminary compression. The pre-compressed sample is removed from the die and lightly ground in a mortar. The crushed sample was packed in a 31 mmφ PVC frame, a load of 20 tons was applied, and the sample was compressed for 10 seconds to obtain a compressed hydrophobic silica gel sample.

塗膜調製法(UV塗料試験)
UV塗料の配合表を表1に示す。
配合

オリゴマー:新中村化学工業社製 NKオリゴ UA-1100H
モノマー:ダイセル・オルネクス社製 DPHA
光重合開始剤1:BASF社製 Ormirad 184
光重合開始剤2:BASF社製 Ormirad TPO H
レベリング剤:BYK Chemie社製 BYK-UV-3570
Paint film preparation method (UV paint test)
Table 1 shows the formulation of the UV paint.
combination

Oligomer: NK Oligo UA-1100H manufactured by Shin-Nakamura Chemical Industry Co., Ltd.
Monomer: DPHA manufactured by Daicel Allnex
Photoinitiator 1: Ormirad 184 manufactured by BASF
Photoinitiator 2: Ormirad TPO H manufactured by BASF
Leveling agent: BYK Chemie BYK-UV-3570

ミキサー:プライミクス社製 ラボ・リューション
スプレーガン:アネスト岩田社製 重力型スプレーガン W-101-132G
UV照射装置:アイグラフィックス社製 アイグランデージ ECS-4011GX
光源として水銀ランプを使用した。
Mixer: Made by Primix Co., Ltd. Labo Solution Spray gun: Made by Anest Iwata Co., Ltd. Gravity type spray gun W-101-132G
UV irradiation device: Eye Grandage ECS-4011GX manufactured by Eye Graphics
A mercury lamp was used as the light source.

配合手順
(1)配合物のうち(a)を200mlディスポーザブルカップに計量し、500rpmで5分混合する。
(2)配合物(b)を計量し、500rpmで攪拌中の(a)に投入する。
(3)粉体が塗料中に入り込んだら、回転数を1,000rpmに上昇させ、30min攪拌する。
Blending procedure (1) Weigh out the blend (a) into a 200 ml disposable cup and mix at 500 rpm for 5 minutes.
(2) Mixture (b) is weighed and added to (a) while stirring at 500 rpm.
(3) Once the powder has entered the paint, increase the rotation speed to 1,000 rpm and stir for 30 minutes.

塗装手順
(1)スプレーガンに配合した塗料を充填する。
(2)ABS樹脂板(黒)に塗装する。
(3)5分室温で静置(セッティング)する。
(4)5分80℃のオーブンで乾燥する。
(5)UV照射装置にて出力2kw 照射距離200mm コンベア速度210cm/minの条件で2回UV照射を行い硬化させ、塗膜厚15μmの塗膜を得た。
Painting procedure (1) Fill the spray gun with the mixed paint.
(2) Paint on the ABS resin board (black).
(3) Let stand (set) at room temperature for 5 minutes.
(4) Dry in an oven at 80°C for 5 minutes.
(5) UV irradiation was performed twice using a UV irradiation device under the conditions of an output of 2 kW, an irradiation distance of 200 mm, and a conveyor speed of 210 cm/min to obtain a coating film with a coating thickness of 15 μm.

グロス値測定
日本電色工業社製 グロスメーター VG7000を使用し、60°グロス値を測定した。60°グロス値が39以下を優、40~49を良、50~59を可、60以上を不可と判定した。
Gloss value measurement The 60° gloss value was measured using a gloss meter VG7000 manufactured by Nippon Denshoku Industries. A 60° gloss value of 39 or less was judged as excellent, 40 to 49 as good, 50 to 59 as acceptable, and 60 or more as poor.

透明性
コニカミノルタ社製 分光測色計CM-5を用いてABS板(黒)に塗布した塗膜のL*の値を使用し、13以下を優、13を超え15以下を良、15を超え18以下を可、18を超えるものを不可とした。
Transparency Using the L* value of the coating film applied to the ABS board (black) using a spectrophotometer CM-5 manufactured by Konica Minolta, 13 or less is excellent, more than 13 and 15 or less is good, and 15 is Those exceeding 18 or less were allowed, and those exceeding 18 were unacceptable.

耐摩耗試験
テスター産業社製 学振式摩擦堅牢度試験機AB-301を使用し、加重500g、帆布6号を用いて5000往復後の塗膜状態を観察した。キーエンス社製 超深度形状測定顕微鏡 VK8500を使用し、倍率50倍で、摩耗試験前後の塗膜表面のRz値(10点平均表面粗さ)を測定した。摩耗試験前後のRz値は各3か所で測定し、平均したRzの差を|ΔRz|とした。摩耗試験前後の差(|ΔRz|)が小さいほど傷がついていないと判断し、0.5以下を優、0.5を超え1以下を良、1を超え1.5以下を可、1.5を超えるものを不可と判定した。
Abrasion Resistance Test Using a Gakushin abrasion fastness tester AB-301 manufactured by Tester Sangyo Co., Ltd., the state of the coating film was observed after 5000 reciprocations using a No. 6 canvas under a load of 500 g. The Rz value (10-point average surface roughness) of the coating film surface before and after the abrasion test was measured using an ultra-deep profile measurement microscope VK8500 manufactured by Keyence Corporation at a magnification of 50 times. The Rz values before and after the wear test were measured at three locations each, and the average difference in Rz was defined as |ΔRz|. The smaller the difference (|ΔRz|) before and after the abrasion test, the less scratched it is. 0.5 or less is excellent, more than 0.5 and 1 or less is good, more than 1 and 1.5 or less is acceptable. Those exceeding 5 were judged as unacceptable.

耐薬品性
5%NaOHに浸漬 2hr後の塗膜状態を観察した。
色差測定
コニカミノルタ社製 分光測色計CM-5を使用し耐薬品性試験前後の塗膜のΔEを測定した。ΔEの計算式を数1に示す。
ΔEが小さいほど、耐薬品性が良好となる。4.0以下を可、4.0を超え3.5以下を良、3.5を超え3以下を優と判断した。
Chemical resistance The state of the coating film was observed after 2 hours of immersion in 5% NaOH.
Color difference measurement ΔE of the coating film before and after the chemical resistance test was measured using a spectrophotometer CM-5 manufactured by Konica Minolta. The formula for calculating ΔE is shown in Equation 1.
The smaller ΔE is, the better the chemical resistance is. A score of 4.0 or less was judged as acceptable, a score of more than 4.0 and 3.5 or less was judged as good, and a score of more than 3.5 was judged as excellent.

再分散性試験
酢酸エチル:トルエン=1:1の溶剤50gに対し、疎水性シリカゲル試料2gを配合し、50mlメスシリンダーに50ml入れ、静置した。30min後、1秒に1回の速度で上下反転させ再分散を行い、沈澱物が再分散するのに要した回数を測定した。10回以下を優、11以上30回以下を良、31回以上50回以下を可、50回を超えるものを不可とした。
Redispersibility test 2 g of a hydrophobic silica gel sample was mixed with 50 g of a solvent of ethyl acetate:toluene = 1:1, and 50 ml of the mixture was poured into a 50 ml measuring cylinder and allowed to stand. After 30 minutes, redispersion was performed by turning the tube upside down once every second, and the number of times required for the precipitate to be redispersed was measured. 10 times or less was evaluated as excellent, 11 times or more and 30 times or less as good, 31 times or more and 50 times or less as acceptable, and more than 50 times as unacceptable.

原料シリカゲルの調製
ケイ酸ナトリウム(SiO濃度25wt%、SiO/NaOモル比3.3)と硫酸(HSO 2wt%)をケイ酸ナトリウム流量約15L/分と硫酸をシリカヒドロゾル中の過剰硫酸量が6wt%となる条件で混合ノズルを用いて混合しシリカヒドロゾルを得た。このヒドロゾルをpH7.0で90℃、3~5時間の水熱処理を行った後、水洗、乾燥、粉砕分級を行うことでBET比表面積470~530m/g、レーザー回折法で測定されたD50値が10.4~15.1μmのシリカゲルを得た。
Preparation of raw material silica gel Sodium silicate (SiO 2 concentration 25 wt%, SiO 2 /Na 2 O molar ratio 3.3) and sulfuric acid (H 2 SO 4 2 wt%) were mixed with sodium silicate at a flow rate of about 15 L/min and sulfuric acid with silica hydrochloride. A silica hydrosol was obtained by mixing using a mixing nozzle under conditions such that the amount of excess sulfuric acid in the sol was 6 wt%. This hydrosol was hydrothermally treated at pH 7.0 at 90°C for 3 to 5 hours, washed with water, dried, and pulverized to give a BET specific surface area of 470 to 530 m 2 /g and a D50 measured by laser diffraction method. Silica gel with a value of 10.4-15.1 μm was obtained.

実施例1
原料シリカとしてBET比表面積500m/g、レーザー回折法で測定されたD50値が14.5μmのシリカゲルを使用し、シリコーンオイル(KF96-50cs 信越化学社製)をBET比表面積100m/gに対し3.0部となるよう添加し、ヘンシェルミキサー(三井鉱山社製)で10分混合を行い均一化した。混合した後、内容積10,000cmのセラミック製匣鉢に充填し、連続式加熱炉にて320℃、8時間の熱処理を行い、疎水性シリカゲルを得た。
Example 1
Silica gel with a BET specific surface area of 500 m 2 /g and a D50 value measured by laser diffraction method of 14.5 μm was used as the raw material silica, and silicone oil (KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) was used to have a BET specific surface area of 100 m 2 /g. 3.0 parts of the mixture was added to the solution, and mixed for 10 minutes using a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.) to homogenize. After mixing, the mixture was filled into a ceramic sagger with an internal volume of 10,000 cm 3 and heat-treated at 320° C. for 8 hours in a continuous heating furnace to obtain hydrophobic silica gel.

実施例2
原料シリカとしてBET比表面積530m/g、レーザー回折法で測定されたD50値が13.6μmのシリカゲルを使用し、シリコーンオイル(KF96-50cs 信越化学社製)をBET比表面積100m/gに対し3.4部となるよう添加し、ヘンシェルミキサー(三井鉱山社製)で10分混合を行い均一化した。
混合した後、静置式加熱炉にて350℃、4時間の熱処理を行い、疎水性シリカゲルを得た。
Example 2
Silica gel with a BET specific surface area of 530 m 2 /g and a D50 value measured by laser diffraction method of 13.6 μm was used as the raw material silica, and silicone oil (KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) was used to have a BET specific surface area of 100 m 2 /g. 3.4 parts of the mixture was added, and mixed for 10 minutes using a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.) to homogenize.
After mixing, heat treatment was performed at 350° C. for 4 hours in a static heating furnace to obtain hydrophobic silica gel.

実施例3
原料シリカとしてBET比表面積470m/g、レーザー回折法で測定されたD50値が15.1μmのシリカゲルを使用し、シリコーンオイル(KF96-50cs 信越化学社製)をBET比表面積100m/gに対し3.2部となるよう添加し、ヘンシェルミキサー(三井鉱山社製)で10分混合を行い均一化した。混合した後、静置式加熱炉にて380℃、7時間の熱処理を行い、疎水性シリカゲルを得た。
Example 3
Silica gel with a BET specific surface area of 470 m 2 /g and a D50 value measured by laser diffraction method of 15.1 μm was used as the raw material silica, and silicone oil (KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) was used to have a BET specific surface area of 100 m 2 /g. 3.2 parts of the mixture was added, and mixed for 10 minutes using a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.) to homogenize. After mixing, heat treatment was performed at 380° C. for 7 hours in a static heating furnace to obtain hydrophobic silica gel.

実施例4
原料シリカとしてBET比表面積490m/g、レーザー回折法で測定されたD50値が11.0μmのシリカゲルを使用し、シリコーンオイル(KF96-50cs 信越化学社製)をBET比表面積100m/gに対し3.1部となるよう添加し、ヘンシェルミキサー(三井鉱山社製)で10分混合を行い均一化した。混合した後、静置式加熱炉にて330℃、6時間の熱処理を行い、疎水性シリカゲルを得た。
Example 4
Silica gel with a BET specific surface area of 490 m 2 /g and a D50 value measured by laser diffraction method of 11.0 μm was used as the raw material silica, and silicone oil (KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) was used to have a BET specific surface area of 100 m 2 /g. 3.1 parts of the mixture was added, and mixed for 10 minutes using a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.) to homogenize. After mixing, heat treatment was performed at 330° C. for 6 hours in a static heating furnace to obtain hydrophobic silica gel.

実施例5
原料シリカとしてBET比表面積500m/g、レーザー回折法で測定されたD50値が10.4μmのシリカゲルを使用し、実施例1と同様の方法で疎水性ゲルシリカを得た。その後、得られた疎水性ゲルシリカを粉砕、分級を行いレーザー回折法による粒度分布D50値を5.8μmになるよう粒度を調整し、疎水性シリカゲルを得た。
Example 5
Hydrophobic gel silica was obtained in the same manner as in Example 1 using silica gel having a BET specific surface area of 500 m 2 /g and a D50 value of 10.4 μm measured by laser diffraction method as the raw material silica. Thereafter, the obtained hydrophobic gel silica was crushed and classified, and the particle size was adjusted so that the particle size distribution D50 value by laser diffraction method was 5.8 μm to obtain a hydrophobic silica gel.

実施例1~5の測定結果を表2に示す。また、実施例1の圧縮前と圧縮後の水銀細孔容積分布を図1に示す。
The measurement results of Examples 1 to 5 are shown in Table 2. Further, the mercury pore volume distribution of Example 1 before and after compression is shown in FIG.

参考例1
シリコーンオイル(KF96-50cs 信越化学社製)をBET比表面積100m/gに対し5.0部となるよう添加した以外は実施例1と同様の手順で処理を行い、疎水性シリカゲルを得た。大粒子径で高いM値(55vol%)を持つ疎水性シリカゲルでは、沈降安定性が劣った。
Reference example 1
Hydrophobic silica gel was obtained by the same procedure as in Example 1, except that silicone oil (KF96-50cs, manufactured by Shin-Etsu Chemical Co., Ltd.) was added in an amount of 5.0 parts per BET specific surface area of 100 m 2 /g. . Hydrophobic silica gel with a large particle size and a high M value (55 vol%) had poor sedimentation stability.

参考例2
市販品 Nipsil SS-50B(東ソー・シリカ社製)
粒子径は小さいので沈降安定性には優れるが、艶消し性能が劣った。
Reference example 2
Commercial product Nipsil SS-50B (manufactured by Tosoh Silica)
Since the particle size was small, the sedimentation stability was excellent, but the matting performance was poor.

比較例1
市販品 NIPGEL AY-460(東ソー・シリカ社製) WAX処理ゲルシリカ
このWAX処理シリカは、本発明の疎水性シリカゲルに比べて、透明性及び耐薬品性が劣った。
Comparative example 1
Commercial product NIPGEL AY-460 (manufactured by Tosoh Silica Co., Ltd.) WAX-treated gel silica This WAX-treated silica was inferior in transparency and chemical resistance compared to the hydrophobic silica gel of the present invention.

参考例、比較例1~2の測定結果を表3に示す。また、比較例1の圧縮前と圧縮後の水銀細孔容積分布を図2に示す。
The measurement results of Reference Examples and Comparative Examples 1 and 2 are shown in Table 3. Further, the mercury pore volume distribution of Comparative Example 1 before and after compression is shown in FIG.

本発明は、疎水性シリカゲルに関する分野に有用である。
The present invention is useful in fields related to hydrophobic silica gel.

Claims (5)

シリコーンオイルで表面処理された疎水性シリカゲルであって、
窒素吸脱着法で測定された細孔容積が0.6~2ml/gの範囲であり、
M値が5~40vol%の範囲であり、かつ
圧力260MPaでの圧縮前の細孔半径109nm以下の細孔容積に対する前記圧縮後の細孔半径109nm以下の細孔容積の比(圧縮後細孔容積/圧縮前細孔容積)が、0.8~1.5の範囲である、反応性モノマー、有機溶剤及び光重合開始剤を含むエネルギー線硬化型塗料艶消し用疎水性シリカゲル。
A hydrophobic silica gel surface-treated with silicone oil,
The pore volume measured by nitrogen adsorption/desorption method is in the range of 0.6 to 2 ml/g,
The M value is in the range of 5 to 40 vol%, and the ratio of the pore volume with a pore radius of 109 nm or less after compression to the pore volume with a pore radius of 109 nm or less before compression at a pressure of 260 MPa (pore volume after compression) A hydrophobic silica gel for matting energy ray-curable paints containing a reactive monomer, an organic solvent, and a photopolymerization initiator and having a ratio (volume/pore volume before compression) of 0.8 to 1.5.
前記疎水性シリカゲルは、レーザー回折法で測定された体積平均粒子径D50値が5~20μmの範囲である、請求項1に記載の疎水性シリカゲル。 The hydrophobic silica gel according to claim 1, wherein the hydrophobic silica gel has a volume average particle diameter D50 value measured by laser diffraction in a range of 5 to 20 μm. 前記疎水性シリカゲルは、DBA吸着量が30~180mmol/kgの範囲である、請求項1又は2に記載の疎水性シリカゲル。 The hydrophobic silica gel according to claim 1 or 2, wherein the hydrophobic silica gel has a DBA adsorption amount in the range of 30 to 180 mmol/kg. 前記疎水性シリカゲルは、レーザー回折法で測定された最大粒子径が15~70μmの範囲である、請求項1~3のいずれか1項に記載の疎水性シリカゲル。 The hydrophobic silica gel according to any one of claims 1 to 3, wherein the hydrophobic silica gel has a maximum particle diameter in the range of 15 to 70 μm as measured by laser diffraction. 前記疎水性シリカゲルは、レーザー回折法で測定されたD50値に対するD90値の比(D90/D50)が1.8未満である、請求項1~4のいずれか1項に記載の疎水性シリカゲル。 The hydrophobic silica gel according to any one of claims 1 to 4, wherein the hydrophobic silica gel has a ratio of D90 value to D50 value (D90/D50) measured by laser diffraction method of less than 1.8.
JP2022517559A 2020-04-28 2021-03-26 Hydrophobic silica gel for energy beam curable paint matting Active JP7369862B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020079708 2020-04-28
JP2020079708 2020-04-28
PCT/JP2021/012760 WO2021220687A1 (en) 2020-04-28 2021-03-26 Hydrophobic silica gel for energy-ray-curable coating material matting

Publications (2)

Publication Number Publication Date
JPWO2021220687A1 JPWO2021220687A1 (en) 2021-11-04
JP7369862B2 true JP7369862B2 (en) 2023-10-26

Family

ID=78373470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022517559A Active JP7369862B2 (en) 2020-04-28 2021-03-26 Hydrophobic silica gel for energy beam curable paint matting

Country Status (4)

Country Link
JP (1) JP7369862B2 (en)
KR (1) KR20230002288A (en)
CN (1) CN115135727B (en)
WO (1) WO2021220687A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268717A (en) 2006-03-30 2007-10-18 Dainippon Printing Co Ltd Decorative sheet and decorative plate using the sheet
JP2009078952A (en) 2007-09-27 2009-04-16 Agc Si-Tech Co Ltd Porous inorganic powder having excellent re-dispersibility in water-based medium and method of manufacturing the same
JP2013203804A (en) 2012-03-27 2013-10-07 Tokuyama Corp Aerogel and matting agent comprising the same
JP2014128977A (en) 2014-01-30 2014-07-10 Dainippon Printing Co Ltd Decorative sheet
JP2015163600A (en) 2014-01-29 2015-09-10 日揮触媒化成株式会社 Surface-treated porous inorganic oxide particles, production method thereof, and cosmetic comprising particles thereof
JP2018002987A (en) 2016-07-08 2018-01-11 中国塗料株式会社 Photocurable resin composition, cured coat formed from the composition and base material with coat, and method for producing cured coat and base material with coat
JP2018184583A (en) 2017-02-07 2018-11-22 Dicグラフィックス株式会社 Coating composition, and decorative sheet prepared therewith
JP2019163358A (en) 2018-03-19 2019-09-26 日本ポリプロ株式会社 Polypropylene-based resin composition, and laminate and biaxially oriented polypropylene film formed from the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9517607D0 (en) 1995-08-29 1995-11-01 Unilever Plc Silica products and uv curable systems
CN1970446A (en) * 1997-11-21 2007-05-30 旭化成株式会社 Mesoporous silica, process for synthesizing the same and utilisation thereof
JP3974248B2 (en) * 1998-02-18 2007-09-12 株式会社ブリヂストン Rubber composition and pneumatic tire using the same
DE60003415T2 (en) 1999-04-13 2004-04-22 Grace Gmbh & Co. Kg MATTING AGENT FOR RADIATION CURABLE PAINTS
US7238325B2 (en) * 2000-09-22 2007-07-03 Kawamura Institute Of Chemical Research Very small chemical device and flow rate adjusting method therefor
DE60221950T2 (en) * 2001-11-27 2008-05-15 Mitsubishi Chemical Corp. Silica and process for their preparation
JP4176395B2 (en) * 2002-06-20 2008-11-05 旭化成建材株式会社 Manufacturing method of low specific gravity calcium silicate hardened body
JP5232517B2 (en) * 2008-03-28 2013-07-10 ニチアス株式会社 Silcagel, production method thereof, silica gel-supported paper and silica gel element
JP5912742B2 (en) * 2012-03-27 2016-04-27 テルモ株式会社 Method for producing porous membrane
JP6487785B2 (en) * 2015-06-12 2019-03-20 東ソー・シリカ株式会社 Hydrous silicic acid for rubber reinforcement filling

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268717A (en) 2006-03-30 2007-10-18 Dainippon Printing Co Ltd Decorative sheet and decorative plate using the sheet
JP2009078952A (en) 2007-09-27 2009-04-16 Agc Si-Tech Co Ltd Porous inorganic powder having excellent re-dispersibility in water-based medium and method of manufacturing the same
JP2013203804A (en) 2012-03-27 2013-10-07 Tokuyama Corp Aerogel and matting agent comprising the same
JP2015163600A (en) 2014-01-29 2015-09-10 日揮触媒化成株式会社 Surface-treated porous inorganic oxide particles, production method thereof, and cosmetic comprising particles thereof
JP2014128977A (en) 2014-01-30 2014-07-10 Dainippon Printing Co Ltd Decorative sheet
JP2018002987A (en) 2016-07-08 2018-01-11 中国塗料株式会社 Photocurable resin composition, cured coat formed from the composition and base material with coat, and method for producing cured coat and base material with coat
JP2018184583A (en) 2017-02-07 2018-11-22 Dicグラフィックス株式会社 Coating composition, and decorative sheet prepared therewith
JP2019163358A (en) 2018-03-19 2019-09-26 日本ポリプロ株式会社 Polypropylene-based resin composition, and laminate and biaxially oriented polypropylene film formed from the same

Also Published As

Publication number Publication date
WO2021220687A1 (en) 2021-11-04
CN115135727B (en) 2023-07-18
JPWO2021220687A1 (en) 2021-11-04
CN115135727A (en) 2022-09-30
KR20230002288A (en) 2023-01-05

Similar Documents

Publication Publication Date Title
Ding et al. Silica nanoparticles encapsulated by polystyrene via surface grafting and in situ emulsion polymerization
EP3390297A1 (en) Gas purging for melting furnace and production method for quartz glass
WO2017103131A1 (en) Reduction of the alkaline earth metal content of silica granulate by treating carbon-doped silica granulate at an elevated temperature
EP1717202A1 (en) Sintered silicon dioxide materials
WO2006094876A2 (en) Granules based on pyrogenically prepared silicon dioxide, method for their preparation and use thereof
EP3390293A2 (en) Increasing the silicon content during the production of silica glass
JP2006001832A (en) Surface modified silica gel
WO2017103115A9 (en) Production of a silica glass article in a suspended crucible made of refractory metal
WO2017103112A9 (en) Production of a silica glass article in a suspended sheet metal crucible
EP1603849B1 (en) Unusually narrow particle size distribution calcined kaolins
JP2019002008A (en) Aqueous heat insulation coating and composition thereof
JP2014028947A (en) Thermal resistant yellow water-containing iron oxide pigment and manufacturing method thereof, coating material and resin composition using thermal resistant yellow water-containing iron oxide pigment
US6921781B2 (en) Process for covering silicas with wax
Li et al. Preparation and thermal stability of silica layer multicoated γ-Ce2S3 red pigment microparticles
JP2007197655A (en) Microparticle-containing composition and method for producing the composition
JP7369862B2 (en) Hydrophobic silica gel for energy beam curable paint matting
JP4407789B2 (en) Modified carbon black particle powder and method for producing the same, paint and resin composition containing the modified carbon black particle powder
JP4438925B2 (en) Modified carbon black particle powder and method for producing the same, paint and resin composition containing the modified carbon black particle powder
JP3894292B2 (en) Black composite particle powder and paint and resin composition containing the black composite particle powder
Werner et al. Effect of surface modification on physicochemical properties of precipitated sodium–aluminium silicate, used as a pigment in acrylic dispersion paints
JP5331110B2 (en) Scale glass and coated scale glass
WO2021246191A1 (en) Surface-treated hydrous silicic acid for paint matting and method for producing same
Siwińska-Stefańska et al. Modification of hydrophilic/hydrophobic character of TiO2 surface using selected silane coupling agents
JP2005290059A (en) Red iron oxide pigment, and coating material and resin composition produced by using the same
JP4424461B2 (en) Surface-modified organic pigment and method for producing the same, paint using the surface-modified organic pigment, resin composition using the surface-modified organic pigment, and rubber composition using the surface-modified organic pigment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7369862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150