JP7369610B2 - bonded structure - Google Patents

bonded structure Download PDF

Info

Publication number
JP7369610B2
JP7369610B2 JP2019227242A JP2019227242A JP7369610B2 JP 7369610 B2 JP7369610 B2 JP 7369610B2 JP 2019227242 A JP2019227242 A JP 2019227242A JP 2019227242 A JP2019227242 A JP 2019227242A JP 7369610 B2 JP7369610 B2 JP 7369610B2
Authority
JP
Japan
Prior art keywords
rod
reinforced composite
composite material
shaped
tubular member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019227242A
Other languages
Japanese (ja)
Other versions
JP2021095730A (en
Inventor
豊 林
武俊 中山
穂奈美 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Matere Co Ltd
Original Assignee
Komatsu Matere Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Matere Co Ltd filed Critical Komatsu Matere Co Ltd
Priority to JP2019227242A priority Critical patent/JP7369610B2/en
Publication of JP2021095730A publication Critical patent/JP2021095730A/en
Application granted granted Critical
Publication of JP7369610B2 publication Critical patent/JP7369610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)
  • Standing Axle, Rod, Or Tube Structures Coupled By Welding, Adhesion, Or Deposition (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)

Description

本発明は、接合構造体に関するものである。 The present invention relates to a bonded structure.

炭素繊維やアラミド繊維などの強化繊維と樹脂を複合して得られた棒状繊維強化複合材は、軽量であることから作業性に優れ、金属製のケーブルや鉄筋の代替材料と種々のものに検討されている。 Rod-shaped fiber-reinforced composite materials obtained by combining reinforcing fibers such as carbon fibers and aramid fibers with resin are lightweight and have excellent workability, and are being considered for various purposes as alternative materials for metal cables and reinforcing bars. has been done.

このような棒状繊維強化複合材は、鉄骨や木材やコンクリートと接合するために、端部が、管状の継手などを介し、定着治具となる金属製や樹脂製の棒状のボルトなどの端部と接合される。棒状繊維強化複合材は、前記ボルトと鉄骨等に設けられている前記ボルトに対応したナット部などを有する接合部とを接合したり、鉄骨に溶接にて接合したり、接着剤、紐状物又は帯状物などを用い、鉄骨や木材などに接合される。 In order to connect such rod-shaped fiber-reinforced composite materials to steel frames, wood, or concrete, the ends of the rod-shaped bolts made of metal or resin can be used as fixing jigs through tubular joints, etc. It is joined with. The rod-shaped fiber-reinforced composite material can be used by joining the bolts to a joint part provided on a steel frame etc. that has a nut part corresponding to the bolt, or by welding to the steel frame, or by using an adhesive, a string-like material, etc. Alternatively, it can be joined to steel frames, wood, etc. using strips.

また、棒状繊維強化複合材の端部を、管状部を有する金属製や樹脂製などの定着治具の管状部に挿入し樹脂等を用い接合し、定着治具を接合した棒状繊維強化複合材を用い、当該定着治具を介し鉄骨に溶接したり、接着剤やボルトや紐状物又は帯状物などを用い鉄骨や木材に接合される(例えば、特許文献1、2参照)。 In addition, the end of the rod-shaped fiber-reinforced composite material is inserted into the tubular part of a fixing jig made of metal or resin that has a tubular part, and the rod-shaped fiber-reinforced composite material is bonded using resin or the like. It is welded to a steel frame via the fixing jig, or joined to a steel frame or wood using an adhesive, a bolt, a string-like object, a band-like object, or the like (for example, see Patent Documents 1 and 2).

しかしながら、棒状繊維強化複合材とねじなどの定着治具とを接着剤等を用い接合した場合、大きな引張力が加わると、接合した部分が剥離してしまい、棒状強化繊維複合材の強度や定着治具の強度が十分発揮できず、接合した部分の強度の向上が必要であった。 However, when a rod-shaped fiber-reinforced composite material and a fixing jig such as a screw are bonded using an adhesive or the like, if a large tensile force is applied, the joined part will peel off, and the strength of the rod-shaped fiber-reinforced composite material will deteriorate. The strength of the jig could not be demonstrated sufficiently, and it was necessary to improve the strength of the joined part.

そこで接合した部分の強度を向上させる方法として、本願発明者らは、複数の素線から構成された棒状繊維強化複合材とボルトなどの定着治具との接合において、これらの重なり部を設け、その部分を合成樹脂により被覆し接合することにより、棒状繊維強化複合材及び定着治具の強度以下の強度で接合部から破壊されることを防ぐこともできる、優れた強度を有する接合構造体を見出した(特許文献3参照)。 Therefore, as a method to improve the strength of the joined part, the inventors of the present invention provided an overlapping part when joining a rod-shaped fiber-reinforced composite material made of a plurality of wires and a fixing jig such as a bolt, By covering that part with synthetic resin and joining it, we can create a joined structure with excellent strength that can prevent the joined part from being destroyed at a strength lower than that of the rod-shaped fiber-reinforced composite material and the fixing jig. (See Patent Document 3).

この構成のものでは、特に管状部材を用いる必要が無いため接合構造体が軽量でありながら、優れた強度を有する接合構造体であった。 With this configuration, since there is no need to use a tubular member, the joined structure is lightweight and has excellent strength.

特開2002-097746号公報Japanese Patent Application Publication No. 2002-097746 特開2013-011163号公報Japanese Patent Application Publication No. 2013-011163 特開2017-227059号公報JP 2017-227059 Publication

しかしながら、さらに大きな引張に対する強度を有する箇所に前記接合構造体を用いようとすると、棒状繊維強化複合材とボルトなどの定着治具の重なり部を長くする必要があり、ボルトなどの定着治具の長さが長くなるなどする。これにより、棒状繊維強化複合材及びボルトなどの定着治具の使用量が増し、接合構造体が軽量であるとのメリットが低下することが分かった。 However, when attempting to use the bonded structure in a location that has even greater tensile strength, it is necessary to lengthen the overlap between the rod-shaped fiber-reinforced composite material and a fixing jig such as a bolt. The length may become longer. It has been found that this increases the amount of rod-shaped fiber-reinforced composite materials and fixing jigs such as bolts, which reduces the advantage of a lightweight joined structure.

本発明は、上記のような問題に鑑みてなされたものであり、軽量でより優れた引張強度を有する接合構造体を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a joined structure that is lightweight and has superior tensile strength.

上記の課題を解決するため、本発明は以下の態様を備える。
<1>
繊維材料を複数本束ねた繊維束として形成された素線を複数有する棒状繊維強化複合材と、
端部に棒状部を有する定着治具と、を備え、
前記棒状繊維強化複合材の少なくとも一方の端部に前記定着治具の前記棒状部が挿入されて重なり部が形成され、
前記棒状繊維強化複合材の前記定着治具が挿入された前記端部において、前記複数の素線すべての端部が実質的に揃っており、
前記重なり部において、接着剤により前記棒状繊維強化複合材と前記定着治具とが接合され、
前記棒状部が先端に向かうにつれて縮径するテーパー部を有することを特徴とする接合構造体。
<2>
空洞部を有する管状部材を有し、
前記重なり部が前記管状部材に挿通され、
前記管状部材の前記空洞部に前記接着剤が充填され、
前記接着剤により、前記棒状繊維強化複合材と前記定着治具と前記管状部材とが接合されることを特徴とする<1>に記載の接合構造体
<3>
前記棒状繊維強化複合材が、炭素繊維を含むことを特徴とする<1>または2>に記載の接合構造体。

前記複数の素線が撚り合わされ、
前記重なり部において前記定着治具が前記複数の素線に囲まれていることを特徴とする<1>~<>のうちいずれか一つに記載の接合構造体。
In order to solve the above problems, the present invention includes the following aspects.
<1>
A rod-shaped fiber reinforced composite material having a plurality of strands formed as a fiber bundle made by bundling a plurality of fiber materials;
A fixing jig having a rod-shaped portion at an end,
The rod-shaped part of the fixing jig is inserted into at least one end of the rod-shaped fiber reinforced composite material to form an overlapping part,
At the end of the rod-shaped fiber-reinforced composite material into which the fixing jig is inserted, the ends of all the plurality of wires are substantially aligned;
In the overlapping portion, the rod-shaped fiber reinforced composite material and the fixing jig are joined with an adhesive,
A joining structure characterized in that the rod-shaped portion has a tapered portion whose diameter decreases toward the tip.
<2>
It has a tubular member having a cavity,
the overlapping part is inserted into the tubular member,
the cavity of the tubular member is filled with the adhesive;
The joined structure according to <1>, wherein the rod-shaped fiber-reinforced composite material, the fixing jig, and the tubular member are joined by the adhesive .
<3>
The joined structure according to <1> or <2> , wherein the rod-shaped fiber-reinforced composite material contains carbon fibers.
<4>
The plurality of wires are twisted together,
The bonded structure according to any one of <1> to <3> , wherein the fixing jig is surrounded by the plurality of wires in the overlapping portion.

本発明の接合構造体によれば、繊維強化複合材を用いていることにより軽量でありながら、優れた破断荷重などの引張強度を有しており、また、本発明の接合構造体を用いた構造物の外観の悪化も抑制することができる。 According to the bonded structure of the present invention, the bonded structure of the present invention is lightweight due to the use of fiber-reinforced composite material, and has excellent tensile strength such as breaking load. Deterioration of the appearance of the structure can also be suppressed.

本発明の実施形態における接合構造体を示す一部断面図である。FIG. 1 is a partial cross-sectional view showing a joining structure in an embodiment of the present invention. 同接合構造体の接合構造部を示す断面図である。It is a sectional view showing a joining structure part of the same joining structure. 本発明の実施形態における棒状繊維強化複合材の端部に挿入される棒状部の端部の例を示す側面図である。It is a side view showing an example of the end of the rod-like part inserted into the end of the rod-like fiber reinforced composite material in the embodiment of the present invention.

以下、本発明に係る接合構造体の実施形態について、図面を参照して説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。また、本明細書において「~」という表現を用いる場合、その前後の数値を含む表現として用いる。 Hereinafter, embodiments of the bonded structure according to the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments, and may be arbitrarily modified without departing from the gist of the present invention. It can be implemented by Furthermore, when the expression "~" is used in this specification, it is used as an expression including the numerical values before and after it.

(接合構造体)
図1は本発明の実施形態における接合構造体10の管状部材3周辺の一部断面図である。
図1に示すように、本発明の実施形態における接合構造体10は、棒状繊維強化複合材1と、寸切りボルト(定着治具)2と、管状部材3と、接着剤4と、を備える。
(Joined structure)
FIG. 1 is a partial cross-sectional view of the vicinity of the tubular member 3 of the joining structure 10 in an embodiment of the present invention.
As shown in FIG. 1, a bonded structure 10 according to an embodiment of the present invention includes a rod-shaped fiber-reinforced composite material 1, a threaded bolt (fixing jig) 2, a tubular member 3, and an adhesive 4. .

図1に示すように、棒状繊維強化複合材1は、撚り合わされた複数の素線1sを有する。本実施形態では、複数の素線1sは7本の素線1yを有する。複数の素線1sは撚り合わされるのではなく、引き揃えられてもよい。複数の素線1sを構成する素線1yは、繊維材料が束ねられた繊維束を、樹脂等を材料とする固化材で一体化して形成される。 As shown in FIG. 1, the rod-shaped fiber-reinforced composite material 1 has a plurality of twisted wires 1s. In this embodiment, the plurality of wires 1s includes seven wires 1y. The plurality of wires 1s may be aligned instead of being twisted together. The strands 1y constituting the plurality of strands 1s are formed by integrating fiber bundles of fiber materials with a solidifying material made of resin or the like.

棒状繊維強化複合材1を構成する複数の素線1sは、構成する素線1yの端部1tが揃うように形成される。例えば、棒状繊維強化複合材1において、複数の素線1sが、7本の素線1yを用いたものであって、1本の芯線の周りを6本の側線で撚った形状の場合、撚られた分だけ芯線に比べ側線が長くなる。このような場合は、実質的に、複数の素線1sを構成する素線1yの端部が揃っているものに含まれる。 The plurality of wires 1s constituting the rod-shaped fiber-reinforced composite material 1 are formed such that the end portions 1t of the constituent wires 1y are aligned. For example, in the rod-shaped fiber-reinforced composite material 1, when the plurality of wires 1s uses seven wires 1y and has a shape in which six side wires are twisted around one core wire, The side wire becomes longer than the core wire by the amount of twisting. In such a case, the ends of the wires 1y constituting the plurality of wires 1s are substantially aligned.

寸切りボルト2は、例えばねじの呼びがM16であり、端部に棒状部2tを有する。棒状部2tは、先端tに向かうにつれて一定の変化率で縮径し、先端tが尖るテーパー部2sを有する。棒状部2tは、先端t側が、棒状繊維強化複合材1の端部1tに挿入され、複数の素線1sと寸切りボルト2とが重なる重なり部Olが形成される。 The thread size of the threaded bolt 2 is, for example, M16, and has a rod-shaped portion 2t at the end. The rod-shaped portion 2t has a tapered portion 2s whose diameter decreases at a constant rate of change toward the tip t and has a sharp tip t. The tip t side of the rod-shaped portion 2t is inserted into the end portion 1t of the rod-shaped fiber-reinforced composite material 1, and an overlapping portion Ol where the plurality of wires 1s and the threaded bolt 2 overlap is formed.

図2に示すように、重なり部Olにおいては、複数の素線1sが延びる方向Lから見て、寸切りボルト2が複数の素線1sに囲まれている。重なり部Olにおいては、棒状繊維強化複合材1の複数の素線1sが、寸切りボルト2の先端t側を覆い包んでいる。 As shown in FIG. 2, in the overlapping portion Ol, the threaded bolt 2 is surrounded by the plurality of wires 1s when viewed from the direction L in which the plurality of wires 1s extend. In the overlapping portion Ol, the plurality of strands 1s of the rod-shaped fiber-reinforced composite material 1 cover and wrap the tip t side of the threaded bolt 2.

管状部材3は、軸O周りに形成され、繊維強化プラスチック(FRP)製である。図1に示すように、軸Oは複数の素線1sが延びる方向Lに略一致する。管状部材3は、空洞部3hに重なり部Olが配置され、重なり部Olを覆う。接着剤4は、管状部材3の空洞部3hに充填される。接着剤4により、棒状繊維強化複合材1と、寸切りボルト2と、管状部材3とが接合される。 The tubular member 3 is formed around the axis O and is made of fiber reinforced plastic (FRP). As shown in FIG. 1, the axis O substantially coincides with the direction L in which the plurality of wires 1s extend. In the tubular member 3, an overlapping portion Ol is arranged in the hollow portion 3h, and covers the overlapping portion Ol. The adhesive 4 is filled into the cavity 3h of the tubular member 3. The rod-shaped fiber reinforced composite material 1, the threaded bolt 2, and the tubular member 3 are joined by the adhesive 4.

以降、接着剤4により棒状繊維強化複合材1と、寸切りボルト2とが接合される構造を接合構造部と呼ぶ。 Hereinafter, the structure in which the rod-shaped fiber-reinforced composite material 1 and the threaded bolt 2 are joined by the adhesive 4 will be referred to as a joint structure.

寸切りボルト2の棒状部2tがテーパー部2sを有することにより、棒状繊維強化複合材1を構成する一部の素線1y(特に芯線)を切断し、棒状部2tを挿入するための空間を作らなくとも容易に、棒状繊維強化複合材1の端部1tに棒状部2tを挿入し重なり部Olを形成することができる。 Since the rod-shaped portion 2t of the threaded bolt 2 has the tapered portion 2s, a space for cutting some of the strands 1y (especially the core wire) constituting the rod-shaped fiber reinforced composite material 1 and inserting the rod-shaped portion 2t is created. The rod-shaped portion 2t can be easily inserted into the end portion 1t of the rod-shaped fiber-reinforced composite material 1 to form the overlapping portion Ol without making it.

また、寸切りボルト2の棒状部2tがテーパー部2sを有するため、管状部材3の軸O方向の第一端部(棒状繊維強化複合材1を挿入した方の端部)31近辺まで棒状部2tを挿入しても、図2に示す管状部材3の軸O方向の第一端部31近辺における素線1yの広がりが小さいため、外観品位がよく、意匠性に優れる接合構造体10が得られる。 In addition, since the rod-shaped portion 2t of the threaded bolt 2 has the tapered portion 2s, the rod-shaped portion extends to the vicinity of the first end (the end into which the rod-shaped fiber reinforced composite material 1 is inserted) 31 in the axis O direction of the tubular member 3. Even if 2t is inserted, the spread of the strands 1y in the vicinity of the first end 31 in the axis O direction of the tubular member 3 shown in FIG. It will be done.

棒状部2tのテーパー部2sは、先端に向かって細くなっていればその形状は特に限定されるものではない。例えば、テーパー部は、図3(a)に示すように、先端が曲面形状を有していてもよい。また、棒状部2tのテーパー部は、図3(b)に示すように、半球状であってもよい。テーパー部の先端が尖っている形状が、得られる接合構造体の引張強度、外観品位の観点より好ましい。 The shape of the tapered portion 2s of the rod-shaped portion 2t is not particularly limited as long as it becomes thinner toward the tip. For example, the tapered portion may have a curved tip as shown in FIG. 3(a). Further, the tapered portion of the rod-shaped portion 2t may be hemispherical, as shown in FIG. 3(b). A shape in which the tapered portion has a sharp tip is preferable from the viewpoint of the tensile strength and appearance quality of the resulting joined structure.

寸切りボルト2の棒状部2tがテーパー部2sを有することで、接合構造体10の引張強度が向上する。 Since the rod-shaped portion 2t of the threaded bolt 2 has the tapered portion 2s, the tensile strength of the joined structure 10 is improved.

これに比べ、寸切りボルトの棒状部2tがテーパー部2sを有さず、一定の径であると、管状部材3の第一端部31近辺にまで寸切りボルトの棒状部を挿入すると、管状部材3の第一端部31近辺における素線1yの広がりがみられ外観品位に劣る。また、外観品位が悪化しないようにするため、棒状繊維強化複合材1と寸切りボルト2との重なり部Olを少なくすると十分な強度を発揮できないおそれがある。 In comparison, if the rod-shaped part 2t of the threaded bolt does not have the tapered part 2s and has a constant diameter, when the rod-shaped part of the threaded bolt is inserted to the vicinity of the first end 31 of the tubular member 3, the tubular The strands 1y spread out in the vicinity of the first end 31 of the member 3, and the appearance quality is poor. Further, in order to prevent the appearance quality from deteriorating, if the overlapping portion Ol between the rod-shaped fiber reinforced composite material 1 and the threaded bolt 2 is reduced, there is a risk that sufficient strength cannot be exhibited.

本実施形態の棒状繊維強化複合材1と寸切りボルト2の重なり部Olの長さは、必要とする強度に合わせ任意に設定すればよい。図1に示すように、管状部材3の空洞部3h内における重なり部Olの軸O方向の長さL1が、長さL1と管状部材3の長さL3との差L2よりも長いとよい。つまり、L3=L1+L2において、L1≧L2であるとよい。より好ましくはL1>L2である。 The length of the overlapping portion Ol of the rod-shaped fiber reinforced composite material 1 and the threaded bolt 2 of this embodiment may be arbitrarily set according to the required strength. As shown in FIG. 1, the length L1 of the overlapping portion Ol in the hollow portion 3h of the tubular member 3 in the axis O direction is preferably longer than the difference L2 between the length L1 and the length L3 of the tubular member 3. That is, in L3=L1+L2, it is preferable that L1≧L2. More preferably, L1>L2.

L1<L2であると、得られる接合構造体が十分な引張強度を得られなかったり、引張強度を出すために管状部材3の長さを長くしたり、また、管状部材3の長さを長くすることにより重なり部Olを長くする必要が生じ、意匠性が低下したり、接合構造体の質量が大きくなるおそれがある。 If L1<L2, the resulting bonded structure may not have sufficient tensile strength, or the length of the tubular member 3 may be increased to increase the tensile strength, or the length of the tubular member 3 may be increased. As a result, it becomes necessary to lengthen the overlapping portion Ol, which may deteriorate the design or increase the mass of the joined structure.

L1とL2との長さの割合は、L1:L2=100:0~50:50である。L1とL2との長さの割合は、引張強度及び意匠性の観点より、好ましくはL1:L2=99:1~60:40、より好ましくは、L1:L2=99:1~70:30、さらにより好ましくはL1:L2=99:1~80:20が好ましい。L2を設けることで、管状部材3の第一端部31近辺で素線1yが開かず、良好な外観品位を保つことができる。 The ratio of the lengths of L1 and L2 is L1:L2=100:0 to 50:50. From the viewpoint of tensile strength and design, the ratio of the lengths of L1 and L2 is preferably L1:L2 = 99:1 to 60:40, more preferably L1:L2 = 99:1 to 70:30, Even more preferably, L1:L2=99:1 to 80:20. By providing L2, the strands 1y do not open near the first end 31 of the tubular member 3, and good appearance quality can be maintained.

また、棒状繊維強化複合材1、寸切りボルト2及び管状部材3の長さが短く、各部材の使用量が削減でき、軽量でかつ、優れた強度を有する構造とする観点から、図1に示すように棒状繊維強化複合材1を構成する素線1yの端部1tが、棒状繊維強化複合材1を挿入した管状部材3の第二端部(寸切りボルト2を挿入した方)32にまで挿入されているとよい。 In addition, the lengths of the rod-shaped fiber-reinforced composite material 1, the threaded bolts 2, and the tubular member 3 are short, the amount of each member used can be reduced, and from the viewpoint of creating a structure that is lightweight and has excellent strength, the structure shown in FIG. As shown, the end portion 1t of the wire 1y constituting the rod-like fiber reinforced composite material 1 is attached to the second end portion 32 (the side into which the threaded bolt 2 is inserted) of the tubular member 3 into which the rod-like fiber reinforced composite material 1 is inserted. It is good to have it inserted up to.

また、管状部材3の長さL3は、求められる強度に応じ任意に設定すればよいが、上記で説明した理由によりL3≧L1となる。また、具体的なL3の長さも求められる強度や意匠性に応じ任意に設定すればよいが、10cm~200cm程度であり、この場合の長さL1は5cm~200cm、長さL2は0~100cm程度である。 Further, the length L3 of the tubular member 3 may be arbitrarily set depending on the required strength, but for the reason explained above, L3≧L1. In addition, the specific length of L3 can be set arbitrarily depending on the required strength and design, but it is approximately 10 cm to 200 cm, and in this case, the length L1 is 5 cm to 200 cm, and the length L2 is 0 to 100 cm. That's about it.

なお、本実施形態の接合構造体10の破断荷重は特に限定されるものではなく、必要とされる強度に応じ、重なり部Olの長さ、棒状繊維強化複合材1の強度、寸切りボルト2の強度、管状部材3の使用の有無や管状部材3の長さや強度を適宜設定すればよい。本実施形態の接合構造体10であれば、従来の接合構造体に比べ、重なり部Olの長さを短くしたり、管状部材3を使用する必要をなくしたり、長さの短い管状部材を用いても従来の接合構造体と同等以上の強度を有するものを得ることができる。 Note that the breaking load of the bonded structure 10 of this embodiment is not particularly limited, and depending on the required strength, the length of the overlapping portion Ol, the strength of the rod-shaped fiber reinforced composite material 1, the threaded bolt 2 , whether or not the tubular member 3 is used, and the length and strength of the tubular member 3 may be set as appropriate. Compared to conventional bonded structures, the bonded structure 10 of this embodiment can shorten the length of the overlapping portion Ol, eliminate the need to use the tubular member 3, and use a tubular member with a shorter length. However, it is possible to obtain a bonded structure with strength equal to or greater than that of conventional bonded structures.

従って、本実施形態の接合構造体10の破断荷重の下限は特に限定されるものではないが、対象物の強度を補強するとの観点からは10kNであることが望ましい。接合構造体10の破断荷重は用いる場所や施工方法や用途にもよるが、25kN以上であることが好ましく、80k以上であることがより好ましい。 Therefore, the lower limit of the breaking load of the bonded structure 10 of this embodiment is not particularly limited, but from the viewpoint of reinforcing the strength of the object, it is preferably 10 kN. Although the breaking load of the bonded structure 10 depends on the location, construction method, and application, it is preferably 25 kN or more, and more preferably 80 kN or more.

破断荷重が25kN以上であれば、定着治具として鋼製のM10のボルトを寸切りボルトとして用いた場合においても、接合構造体の接合構造部で破断することを防ぐことができる。破断荷重が80kN以上であれば、定着治具としてSNR400B製のM16のボルトを寸切りボルトとして用いた場合においても、接合構造体10の接合構造部で破断することを防ぐことができる。 If the breaking load is 25 kN or more, even when a steel M10 bolt is used as a cut-off bolt as a fixing jig, it is possible to prevent the joining structure from breaking at the joining structure part of the joining structure. If the breaking load is 80 kN or more, it is possible to prevent the joining structure portion of the joining structure 10 from breaking even when an M16 bolt made of SNR400B is used as a threaded bolt as a fixing jig.

また、接合構造体10の破断荷重の上限についても特に限定されるものではないが、棒状繊維強化複合材1、寸切りボルト2、接着剤4、管状部材3の強度により設定すればよく、300kN程度である。 Further, the upper limit of the breaking load of the bonded structure 10 is not particularly limited, but may be set depending on the strength of the rod-shaped fiber reinforced composite material 1, the threaded bolt 2, the adhesive 4, and the tubular member 3, and is 300 kN. That's about it.

次に、本実施形態の接合構造体10の構成要素の詳細について、構成要素ごとに説明する。 Next, details of the components of the bonded structure 10 of this embodiment will be explained for each component.

(素線について)
複数の素線1sを構成する素線1yは、繊維材料を束ねてなる繊維束を固化剤により一体化したものである。素線1yに用いられる繊維材料としては、例えば、炭素繊維、バサルト繊維、パラ系アラミド繊維、メタ系アラミド繊維、超高分子量ポリエチレン繊維、ポリアリレート繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、ポリフェニレンサルファイド(PPS)繊維、ポリイミド繊維、フッ素繊維、ポリビニルアルコール(PVA繊維)などが使用できる。素線1yに用いられる繊維材料は、特に、難燃性、強度、耐光性の観点より、炭素繊維またはガラス繊維が好ましい。素線1yに用いられる繊維材料は、難燃性の観点からはガラス繊維がより好ましい。
(About wire)
The strands 1y constituting the plurality of strands 1s are made by integrating fiber bundles formed by bundling fiber materials together using a solidifying agent. Examples of the fiber material used for the wire 1y include carbon fiber, basalt fiber, para-aramid fiber, meta-aramid fiber, ultra-high molecular weight polyethylene fiber, polyarylate fiber, polyparaphenylenebenzoxazole (PBO) fiber, and polyphenylene. Sulfide (PPS) fibers, polyimide fibers, fluorine fibers, polyvinyl alcohol (PVA fibers), etc. can be used. The fiber material used for the wire 1y is preferably carbon fiber or glass fiber, especially from the viewpoint of flame retardancy, strength, and light resistance. The fiber material used for the wire 1y is more preferably glass fiber from the viewpoint of flame retardancy.

(炭素繊維を用いる素線について)
以下、素線1yに用いる繊維材料として炭素繊維を用いる例について、詳細に説明を行う。特に素線1yの芯材として炭素繊維を用いる例について、詳細に説明を行う。なお、以下の説明は、炭素繊維以外の繊維材料を用いた素線1yを除くものではない。炭素繊維を用いる素線1Aは、炭素繊維を複数本(通常、数千本から数十万本、あるいは数百万本)束ねた炭素繊維束として形成される。炭素繊維束は、炭素繊維束の長さ方向に垂直に切断した場合のその断面は円形状、扁平状等任意であってもよい。本実施形態の棒状繊維強化複合材1に用いられる素線1Aでは、炭素繊維束は所定の回数の撚りがかけられた状態で、固化剤により一体化されていると好ましい。
(About strands using carbon fiber)
Hereinafter, an example in which carbon fiber is used as the fiber material for the wire 1y will be described in detail. In particular, an example in which carbon fiber is used as the core material of the wire 1y will be described in detail. Note that the following description does not exclude strands 1y using fiber materials other than carbon fibers. The strand 1A using carbon fiber is formed as a carbon fiber bundle made by bundling a plurality of carbon fibers (usually several thousand to several hundred thousand, or several million). The cross section of the carbon fiber bundle when cut perpendicularly to the length direction of the carbon fiber bundle may be arbitrary, such as circular or flat. In the wire 1A used in the rod-shaped fiber-reinforced composite material 1 of the present embodiment, it is preferable that the carbon fiber bundle is twisted a predetermined number of times and then integrated with a solidifying agent.

本実施形態の炭素繊維は、ポリアクリロニトリル(PAN)系、ピッチ系のいずれの炭素繊維も使用できる。この中でも、得られる棒状繊維強化複合材1の強度と弾性率とのバランスの観点から、PAN系炭素繊維糸が好ましい。 As the carbon fiber of this embodiment, either polyacrylonitrile (PAN)-based or pitch-based carbon fiber can be used. Among these, PAN-based carbon fiber yarn is preferred from the viewpoint of the balance between strength and elastic modulus of the rod-shaped fiber reinforced composite material 1 obtained.

炭素繊維を束ねた炭素繊維束は、炭素繊維メーカーから供給される炭素繊維を3000本(3K)、6000本(6K)、12000本(12K)、24000本(24K)、40000本(40K)、60000本(60K)などに束ねた炭素繊維束を、必要とされる強度に応じて1本、またはさらに複数本(2本以上)束ねたものを用いることができる。炭素繊維を束ねた炭素繊維束をさらに複数本束ねる場合の炭素繊維束の本数に特に制限はなく、目的用途に応じで適宜決定されるが、通常、100本以下である。 A carbon fiber bundle made of carbon fibers is made of 3,000 (3K), 6,000 (6K), 12,000 (12K), 24,000 (24K), 40,000 (40K) carbon fibers supplied by a carbon fiber manufacturer. Depending on the required strength, a carbon fiber bundle of 60,000 carbon fibers (60K) or more (two or more carbon fibers) may be used. When a plurality of carbon fiber bundles made of carbon fibers are further bundled, the number of carbon fiber bundles is not particularly limited and is appropriately determined depending on the intended use, but is usually 100 or less.

素線1Aの長さ方向に垂直に切断した際の断面は、円形状、扁平状等任意であってもよいが、円形状が好ましい。断面が円形状の場合、得られる素線1Aの強度が安定するとともに、複数の素線1Aから棒状繊維強化複合材1を特にストランド構造体やマルチストランド構造体として形成する場合にも、安定した構造体を得ることができる。 The cross section of the strand 1A when cut perpendicularly to the length direction may have any shape such as a circular shape or a flat shape, but a circular shape is preferable. When the cross section is circular, the strength of the obtained strand 1A is stable, and when the rod-shaped fiber reinforced composite material 1 is formed from a plurality of strands 1A, especially as a strand structure or a multi-strand structure, the strength is stable. You can get a structure.

素線1Aは、直径が0.5~20mmであることが好ましく、直径が1~5mmであることがより好ましい。素線1Aの直径が0.5~20mm(より好適には1~5mm)であると、後に説明するように素線1Aおよび棒状繊維強化複合材1がドラムに巻きやすくなり、また、任意の形状に追従するなどのフレキシブル性を高めることができる。 The wire 1A preferably has a diameter of 0.5 to 20 mm, more preferably 1 to 5 mm. When the diameter of the wire 1A is 0.5 to 20 mm (more preferably 1 to 5 mm), the wire 1A and the rod-shaped fiber-reinforced composite material 1 can be easily wound around a drum, as will be explained later. Flexibility such as ability to follow shapes can be improved.

なお、本実施形態の棒状繊維強化複合材1に用いられる素線1Aの直径は、固化剤で一体化した棒状繊維強化複合材1の長さ方向に垂直に切断した断面の直径であり、目的とする直径になるように炭素繊維束の直径、固化剤の付与量が選択される。素線1Aの長さ方向に垂直に切断した際の断面が円でない場合は、その断面の長径を直径という。 Note that the diameter of the strand 1A used in the rod-shaped fiber reinforced composite material 1 of this embodiment is the diameter of a cross section cut perpendicularly to the length direction of the rod-shaped fiber reinforced composite material 1 integrated with a solidifying agent. The diameter of the carbon fiber bundle and the amount of solidifying agent applied are selected so that the diameter is as follows. If the cross section of the strand 1A cut perpendicularly to the length direction is not circular, the major axis of the cross section is referred to as the diameter.

炭素繊維束の撚り数の決定においては、得られる棒状繊維強化複合材1の曲げ応力に対する耐性、炭素繊維束のバラケ防止性、炭素繊維束の撚りに対する強度(撚りにより炭素繊維糸が切れない)が考慮される。また、炭素繊維束の撚り数の決定においては、後に説明する素線1Aを得る工程において、固化剤が付与され炭素繊維束と拘束材とが一体化される前の状態のときに拘束材の間から炭素繊維束が飛び出す(目むき)ことが無いように考慮される。炭素繊維束の撚り数は、0~100回/m、好ましくは2~50回/mであり、より好ましくは5~40回/mであり、さらに好ましくは10~30回/mである。 In determining the number of twists of the carbon fiber bundle, the following factors are considered: resistance to bending stress of the rod-shaped fiber-reinforced composite material 1 to be obtained, resistance to unraveling of the carbon fiber bundle, and strength against twisting of the carbon fiber bundle (carbon fiber threads do not break due to twisting) is taken into account. In addition, in determining the number of twists of the carbon fiber bundle, in the process of obtaining strand 1A, which will be explained later, the binding material is Consideration is taken to prevent the carbon fiber bundle from popping out (peeling) from between the two. The number of twists of the carbon fiber bundle is 0 to 100 twists/m, preferably 2 to 50 twists/m, more preferably 5 to 40 twists/m, and even more preferably 10 to 30 twists/m.

素線1Aに用いられる固化剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれも使用できる。また、本実施形態に用いられる固化剤としては、炭素繊維と親和性の高い固化剤が好ましい。本実施形態に用いられる固化剤としては、特に加熱することにより可変性を持たせることができるため、また、接着剤4と棒状繊維強化複合材1との接着性に優れるとの観点からは、熱可塑性樹脂が好ましく用いられる。 As the solidifying agent used for the wire 1A, either a thermoplastic resin or a thermosetting resin can be used. Further, as the solidifying agent used in this embodiment, a solidifying agent having high affinity with carbon fibers is preferable. The solidifying agent used in this embodiment can be made variable especially by heating, and also from the viewpoint of excellent adhesiveness between the adhesive 4 and the rod-shaped fiber reinforced composite material 1. Thermoplastic resins are preferably used.

素線1Aに用いられる固化剤の好適な具体例としては、ポリエーテルエーテルケトン(PEEK)、ポリプロピレン、ポリエチレン、ポリスチレン、ポリアミド(ナイロン6、ナイロン66、ナイロン12、ナイロン42等)、ABS樹脂、アクリル樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、ポリフェニレンオキサイド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルイミド、ポリアリレート、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、フェノール樹脂、シリコーン樹脂、ポリカーボネート樹脂、レゾルシノール樹脂などが挙げられるが、これに制限されない。 Preferred specific examples of the solidifying agent used in the wire 1A include polyether ether ketone (PEEK), polypropylene, polyethylene, polystyrene, polyamide (nylon 6, nylon 66, nylon 12, nylon 42, etc.), ABS resin, and acrylic. Resin, vinyl chloride resin, vinylidene chloride resin, polyphenylene oxide, polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyethersulfone, polyetherimide, polyarylate, epoxy resin, urethane resin, polyimide resin, phenolic resin, silicone resin, polycarbonate Examples include, but are not limited to, resins, resorcinol resins, and the like.

素線1Aに用いられる固化剤は、この中でも酸やアルカリに対する耐久性の観点から、ポリエーテルエーテルケトン(PEEK)、アクリル樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、ポリエチレン樹脂、エポキシ樹脂、ウレタン樹脂、ポリカーボネート樹脂、レゾルシノール樹脂が好適である。本実施形態に用いられる固化剤は、特に耐衝撃性に優れるエポキシ樹脂が好適である。熱可塑性エポキシ樹脂は、ケトン溶剤に溶解が可能で素材分別しリサイクルができる。また、本実施形態に用いられる固化剤は、耐熱性の観点では、ポリイミド樹脂、シリコーン樹脂が好ましい。 From the viewpoint of durability against acids and alkalis, solidifying agents used for the wire 1A include polyether ether ketone (PEEK), acrylic resin, vinyl chloride resin, vinylidene chloride resin, polyethylene resin, epoxy resin, urethane resin, Polycarbonate resins and resorcinol resins are preferred. The solidifying agent used in this embodiment is preferably an epoxy resin, which has particularly excellent impact resistance. Thermoplastic epoxy resins can be dissolved in ketone solvents, and the materials can be separated and recycled. Further, from the viewpoint of heat resistance, the solidifying agent used in this embodiment is preferably a polyimide resin or a silicone resin.

棒状繊維強化複合材1と接着剤4との接着性に優れるとの観点では、固化剤として熱可塑性エポキシ樹脂が好ましく用いられる。熱可塑性エポキシ樹脂は、前記炭素繊維束に付与した後、重合する重合型の熱可塑性エポキシ樹脂が好ましく、特に直鎖状に重合する重合型の熱可塑性エポキシ樹脂が好ましい。 From the viewpoint of excellent adhesion between the rod-shaped fiber-reinforced composite material 1 and the adhesive 4, a thermoplastic epoxy resin is preferably used as the solidifying agent. The thermoplastic epoxy resin is preferably a polymerizable thermoplastic epoxy resin that polymerizes after being applied to the carbon fiber bundle, and particularly preferably a polymerizable thermoplastic epoxy resin that polymerizes linearly.

棒状繊維強化複合材1の芯材に用いられる炭素繊維束に撚りがかけられたものや、後に説明を行う拘束材を用いる素線1Bのように炭素繊維束の周りが拘束材で覆われているものでは、炭素繊維束の内部にまで固化剤としての樹脂を含侵させることが困難である。 The carbon fiber bundle used as the core material of the rod-shaped fiber-reinforced composite material 1 is twisted, or the carbon fiber bundle is covered with a restraining material, such as the wire 1B using a restraining material, which will be explained later. However, it is difficult to impregnate the resin as a solidifying agent into the inside of the carbon fiber bundle.

一方、重合型の熱可塑性エポキシ樹脂は、重合させる前の熱可塑性エポキシ樹脂を有機溶剤で希釈することができるので粘度調整が容易である。そのため、重合型の熱可塑性エポキシ樹脂は、有機溶媒で希釈した低粘度の樹脂溶液を用いることにより、撚りがかけられている炭素繊維束の内部まで(さらには拘束材で覆われている素線1Bであっても外周の拘束材から内部の炭素繊維束まで)重合前の熱可塑性エポキシ樹脂を含浸させることができる。重合前の熱可塑性エポキシ樹脂を炭素繊維束の内部に含侵させた後、当該重合型の熱可塑性エポキシ樹脂を重合させることにより炭素繊維束を構成する各炭素繊維同士(拘束材を用いる場合には、炭素繊維束を構成する各炭素繊維同士及びその炭素繊維束と拘束材)が熱可塑性エポキシ樹脂で一体化された、強度の優れた素線1Aが得られる。 On the other hand, the viscosity of polymerizable thermoplastic epoxy resins can be easily adjusted because the thermoplastic epoxy resin before polymerization can be diluted with an organic solvent. Therefore, by using a low-viscosity resin solution diluted with an organic solvent, polymerizable thermoplastic epoxy resin can be used to reach the inside of twisted carbon fiber bundles (and even to the inside of twisted carbon fiber bundles). 1B, it is possible to impregnate the thermoplastic epoxy resin before polymerization (from the outer peripheral restraining material to the inner carbon fiber bundle). After impregnating the inside of a carbon fiber bundle with a thermoplastic epoxy resin before polymerization, the polymerized thermoplastic epoxy resin is polymerized so that the carbon fibers constituting the carbon fiber bundle can be bonded to each other (when using a restraining material). In this case, a strand 1A with excellent strength is obtained in which the carbon fibers constituting the carbon fiber bundle and the carbon fiber bundle and the restraining material are integrated with a thermoplastic epoxy resin.

また、加熱溶融することにより流動性を付与し用いられる一般的な熱可塑性樹脂は、粘度調整が困難であると共に、一般に結晶性樹脂であるためか加熱溶融を行うことにより結晶配列が変化し、当初の樹脂が有している強度などの性質が変質するおそれがある。しかし、重合型の熱可塑性エポキシ樹脂は、重合前および重合後も非晶質であるため、加熱溶融や加熱変形させても変質のリスクが小さい。 In addition, it is difficult to adjust the viscosity of general thermoplastic resins, which are given fluidity by heating and melting, and because they are generally crystalline resins, heating and melting changes the crystal orientation. There is a risk that the properties of the original resin, such as strength, may change. However, since polymerizable thermoplastic epoxy resins are amorphous before and after polymerization, there is little risk of deterioration even if they are melted or deformed by heating.

炭素繊維束へ上述の樹脂(固化剤)を付与する方法は、スプレーコート法、転写法や刷毛で炭素繊維束に樹脂をコートする方法などでもよい。炭素繊維束へ上述の樹脂(固化剤)を付与する方法は、生産性の観点から、ディップ-ニップ法や樹脂(固化剤)溶液にディップした後、ダイスを通して余分な樹脂を除去し、また、炭素繊維束の長さ方向に垂直な断面の断面形状を整える方法が好適である。 The method for applying the resin (solidifying agent) to the carbon fiber bundle may be a spray coating method, a transfer method, a method of coating the carbon fiber bundle with the resin using a brush, or the like. From the viewpoint of productivity, the method of applying the above-mentioned resin (solidifying agent) to carbon fiber bundles is the dip-nip method, dipping in a resin (solidifying agent) solution, and then removing excess resin through a die. A method of adjusting the cross-sectional shape of a cross section perpendicular to the length direction of the carbon fiber bundle is suitable.

また、炭素繊維を用いる素線1Aは、固化剤により一体化した炭素繊維束のさらにその外周の全面を覆うように別途樹脂層が設けられていてもよい。不燃性向上の観点からは、外周の全面を覆う樹脂層は、ポリイミド樹脂やシリコーン樹脂や塩化ビニル樹脂を用いた樹脂層を設けるとよい。また、意匠性の観点からは、外周の全面を覆う樹脂層は、着色のための顔料などの着色剤を含むとよい。これらの樹脂層は、熱可塑性樹脂、熱硬化性樹脂いずれであっても用いることはできるが、固化剤として熱可塑性樹脂を用いた場合には、別途層に用いられる樹脂も熱可塑性樹脂が好ましい。 Further, in the wire 1A using carbon fibers, a resin layer may be separately provided so as to cover the entire outer periphery of the carbon fiber bundle integrated by a solidifying agent. From the viewpoint of improving nonflammability, the resin layer covering the entire outer periphery is preferably a resin layer using polyimide resin, silicone resin, or vinyl chloride resin. Further, from the viewpoint of design, the resin layer covering the entire outer periphery may contain a coloring agent such as a pigment for coloring. These resin layers can be made of either thermoplastic resin or thermosetting resin, but when a thermoplastic resin is used as a solidifying agent, it is preferable that the resin used for the separate layer is also a thermoplastic resin. .

(拘束材を用いる素線について)
以下、素線1yにおいて繊維材料を束ねてなる繊維束がその周囲に拘束材を巻き回して結束され、当該繊維束と当該拘束材とが共に固化剤によって一体化される例について、詳細に説明を行う。
(About strands using restraining material)
Hereinafter, an example will be described in detail in which a fiber bundle formed by bundling fiber materials in the strand 1y is bound by winding a restraint material around it, and the fiber bundle and the restraint material are integrated by a solidifying agent. I do.

上述した素線1Aと同様に、繊維材料として炭素繊維、特に炭素繊維を芯材として用いたものを例として、説明を行う。なお、以下の説明は、炭素繊維以外の繊維材料を用いた素線1y又は拘束材を用いない素線1yを除くものではない。拘束材を用いる素線1Bは、拘束材以外の基本的構成は上述した素線1Aと同様であるため、適宜説明を省略する。 Similar to the above-mentioned strand 1A, an example in which carbon fiber is used as the fiber material, particularly carbon fiber as the core material, will be explained. Note that the following description does not exclude the wire 1y using a fiber material other than carbon fiber or the wire 1y not using a restraining material. The basic structure of the wire 1B using a restraint material is the same as that of the wire 1A described above except for the restraint material, so the description thereof will be omitted as appropriate.

拘束材は、炭素繊維がばらばらにならないように炭素繊維束を周囲面から結束するとともに素線1Bの形状を安定させることができるものである。拘束材を用いる素線1Bは、繊維束がその周囲に拘束材を巻き回されて結束される構造であることにより、素線1Bと接着剤4との接触面積や構造的な抵抗が増加し、棒状繊維強化複合材1と接着剤4との接着力が向上する。そのため、素線1Bを用いることは、得られる接合構造体10の引張強さ、破断荷重の大きさの観点より好ましい。 The restraining material can bind the carbon fiber bundle from the surrounding surface so that the carbon fibers do not come apart, and can stabilize the shape of the wire 1B. The strand 1B using a restraint material has a structure in which the fiber bundle is bundled by wrapping the restraint material around it, so that the contact area and structural resistance between the strand 1B and the adhesive 4 increase. , the adhesive force between the rod-shaped fiber-reinforced composite material 1 and the adhesive 4 is improved. Therefore, it is preferable to use the strands 1B from the viewpoint of the tensile strength and breaking load of the resulting joined structure 10.

なお、拘束材を用いる素線1Bにおいては、炭素繊維束をより強固に結束するために、特に拘束材により結束した炭素繊維束に固化剤を含浸させ、拘束材と共に炭素繊維束を硬化させることが好ましい。そうすることで、炭素繊維束および拘束材を強固に一体化させることができ、得られる棒状繊維強化複合材、これを用いて得られる接合構造体の形状の安定性が向上したり、強度、特に引張強度が向上する。上述した素線1Aと同様に炭素繊維束は撚りがかかっていると好ましい。 In addition, in the strand 1B using a restraining material, in order to bind the carbon fiber bundle more firmly, the carbon fiber bundle bound by the restraining material is particularly impregnated with a solidifying agent to harden the carbon fiber bundle together with the restraining material. is preferred. By doing so, the carbon fiber bundle and the restraining material can be firmly integrated, and the stability of the shape of the resulting rod-shaped fiber reinforced composite material and the bonded structure obtained using the same can be improved, and the strength and In particular, tensile strength is improved. It is preferable that the carbon fiber bundle is twisted like the strands 1A described above.

拘束材を用いる素線1Bでは、拘束材となる繊維を炭素繊維束の外周に巻きまわして筒状の組紐(丸打)を組むことで、組紐状の拘束材を形成している(筒状の組紐の筒内に炭素繊維束を有することで、炭素繊維束の外周を拘束材で形成された組紐構造で覆ったもの)。組紐状に形成される拘束材は、炭素繊維束を結束すると共に、得られる素線1Bの形状をより安定させることができ、また、拘束材が内部の炭素繊維束を構成する炭素繊維の保護を行う保護層として機能する。また、組紐状に形成される拘束材は、日本伝統の組紐技術が用いられているため、意匠性にも優れる。 In the wire 1B that uses a restraining material, the fibers serving as the restraining material are wound around the outer periphery of the carbon fiber bundle to form a cylindrical braid (circular braid) to form a braided restraining material (cylindrical By having a carbon fiber bundle inside the cylinder of the braid, the outer periphery of the carbon fiber bundle is covered with a braid structure made of a restraining material). The restraining material formed in the shape of a braid can bind the carbon fiber bundles and further stabilize the shape of the obtained strand 1B, and the restraining material can also protect the carbon fibers constituting the internal carbon fiber bundle. It acts as a protective layer. In addition, the restraining material formed into a braided cord has an excellent design because it uses traditional Japanese braiding techniques.

そのため、組紐状に形成される拘束材を用いる素線1Bを用いた接合構造体は、安定した強度を発揮し、外観品位も良く、砂利などの鋭利物と接触しても断線することを防ぐことができる。 Therefore, a bonded structure using strands 1B with a restraining material formed in the form of a braid exhibits stable strength, has a good appearance, and prevents wire breakage even if it comes into contact with sharp objects such as gravel. be able to.

また、拘束材で拘束された炭素繊維束を樹脂(固化剤)溶液にディップした後、ダイスを用いて余分な樹脂を絞るときに炭素繊維束の長さ方向に張力がかかる。しかし、炭素繊維束の外周を拘束材による組紐構造で覆ったものであれば、編物のように目が開いてしまうのではなく、目が閉じた状態で組紐の径が細くなる。そのため、炭素繊維束の外周を拘束材による組紐構造で覆ったものは、内部の炭素繊維束の露出を抑えつつ、拘束材と炭素繊維束の密着性を高めることができるので、得られる接合構造体の強度の観点より好ましい。 Further, after the carbon fiber bundle restrained by the restraining material is dipped in a resin (solidifying agent) solution, tension is applied in the length direction of the carbon fiber bundle when squeezing out excess resin using a die. However, if the outer periphery of the carbon fiber bundle is covered with a braided structure made of a restraining material, the diameter of the braid becomes thinner when the braid is closed, instead of being opened like in a knitted fabric. Therefore, if the outer periphery of the carbon fiber bundle is covered with a braided structure made of a restraining material, it is possible to suppress the exposure of the internal carbon fiber bundle and increase the adhesion between the restraining material and the carbon fiber bundle, resulting in a bonded structure. It is preferable from the viewpoint of body strength.

炭素繊維束の保護、素線1Bの形状の安定による強度の安定、外観品位の低下の抑制との観点からは、拘束材を筒状の組紐にして、当該筒状の組紐の内部に炭素繊維束を配置し、炭素繊維束の表面全体を被覆したものが好ましい。 From the viewpoint of protecting the carbon fiber bundle, stabilizing the strength by stabilizing the shape of the wire 1B, and suppressing deterioration of the appearance quality, the restraining material is made into a cylindrical braid, and the carbon fibers are placed inside the cylindrical braid. It is preferable that the carbon fiber bundles are arranged so that the entire surface of the carbon fiber bundles is covered.

なお、拘束材は炭素繊維束を構成する炭素繊維がばらばらにならないように結束できればよく、拘束材の配置は組紐状に限定されない。また、炭素繊維束の表面は、拘束材で完全に被覆されなくてもよく、炭素繊維束の表面の一部が被覆されていなくてもよい。 Note that the restraining material may be used as long as it can bind the carbon fibers constituting the carbon fiber bundle so that they do not come apart, and the arrangement of the restraining material is not limited to the braided form. Further, the surface of the carbon fiber bundle does not need to be completely covered with the restraining material, and a part of the surface of the carbon fiber bundle does not need to be covered.

他の拘束材の配置の例として、1本の拘束材を螺旋状に巻きつけて炭素繊維束を結束したり、炭素繊維束の周囲面に拘束材となる繊維を巻き回して目の粗い筒状の丸編を編んだ編紐状の拘束材によって炭素繊維束を結束したり、繊維等を所定間隔に配置した拘束材によって炭素繊維束を結束したりする形態であってもよい。 Examples of other ways to arrange the restraint material include wrapping a single restraint material in a spiral to bind carbon fiber bundles, or winding the restraining material around the circumferential surface of the carbon fiber bundle to form an open tube. The carbon fiber bundles may be bound by a restraining material in the form of a braided circular knit, or the carbon fiber bundles may be bound by a restraining material in which fibers or the like are arranged at predetermined intervals.

拘束材としては、柔軟なものが好ましく、ポリアミド(ナイロン等)、ビニロン、ポリアクリル、ポリプロピレン、塩化ビニル、アラミド、セルロース、ポリアミド、ポリエステル、ポリアセタール等の合成繊維や、レーヨン等の再生繊維、アセテート等の半合成繊維、絹、羊毛、麻、綿などの天然繊維等が使用できる。また、拘束材としては、熱安定性に優れる繊維が好ましく、ガラス繊維、バサルト繊維が好ましく、特にはガラス繊維が好ましい。拘束材としてガラス繊維のように熱安定性に優れる繊維を用いることにより、素線1Bが不燃性に優れるとともに、炭素繊維束と拘束材とのずれの発生が抑制され、素線1Bが安定した引張に対する強度と不燃性とを発現することができる。 The restraining material is preferably flexible, such as synthetic fibers such as polyamide (nylon, etc.), vinylon, polyacrylic, polypropylene, vinyl chloride, aramid, cellulose, polyamide, polyester, polyacetal, recycled fibers such as rayon, acetate, etc. Semi-synthetic fibers, natural fibers such as silk, wool, linen, and cotton can be used. Further, as the restraining material, fibers having excellent thermal stability are preferable, glass fibers and basalt fibers are preferable, and glass fibers are particularly preferable. By using a fiber with excellent thermal stability such as glass fiber as a restraining material, the wire 1B has excellent nonflammability, and the occurrence of misalignment between the carbon fiber bundle and the restraining material is suppressed, making the wire 1B stable. It can exhibit tensile strength and nonflammability.

拘束材を用いる素線1Bの太さは、直径が1~25mm、より好適には直径が1~10mm、さらにより好ましくは直径が1~5mmである。このような太さである素線1Bを用いる棒状繊維強化複合材1(ストランド構造体やマルチストランド構造体)は後に説明するようにドラムに巻きやすくなり、また、任意の形状に追従するなどのフレキシブル性を高めることができる。なお、本実施形態の棒状繊維強化複合材1の直径は、炭素繊維束と当該拘束材と共に固化剤によって一体化した素線1Bの長さ方向に垂直に切断した断面の直径であり、目的とする直径になるように炭素繊維束の直径、拘束材の厚み、固化剤の付与量が選択される。素線1Bの長さ方向に垂直に切断し際の断面が円でない場合は、その断面の長径を直径という。 The thickness of the wire 1B using the restraining material is 1 to 25 mm in diameter, more preferably 1 to 10 mm in diameter, and even more preferably 1 to 5 mm in diameter. The rod-shaped fiber-reinforced composite material 1 (strand structure or multi-strand structure) using wires 1B having such a thickness can be easily wound around a drum as will be explained later, and can also be easily adapted to follow any shape. Flexibility can be increased. The diameter of the rod-shaped fiber-reinforced composite material 1 of this embodiment is the diameter of a cross section cut perpendicularly to the length direction of the strand 1B integrated with the carbon fiber bundle and the restraining material by a solidifying agent, and The diameter of the carbon fiber bundle, the thickness of the restraining material, and the amount of solidifying agent applied are selected so that the diameter is as follows. If the cross section of the strand 1B when cut perpendicularly to the length direction is not circular, the major axis of the cross section is referred to as the diameter.

また、素線1Bは、拘束材および固化剤が付与された炭素繊維束の外周の全面を覆うように別途層(繊維材料からなる筒状体や樹脂層等)が設けられていてもよい。拘束材および固化剤が付与された炭素繊維束の外周の全面を覆う層は、不燃性向上の観点から、ポリイミド樹脂やシリコーン樹脂や塩化ビニル樹脂を用いた樹脂層を設けるとよい。また、意匠性の観点からは、拘束材および固化剤が付与された炭素繊維束の外周の全面を覆う層は、着色のための顔料などの着色剤を含むとよい。これらの樹脂層は、熱可塑性樹脂、熱硬化性樹脂いずれでもよいが、固化剤として熱可塑性樹脂を用いた場合には、拘束材および固化剤が付与された炭素繊維束の外周の全面を覆う層に用いられる樹脂も熱可塑性樹脂が好ましい。 Further, the wire 1B may be provided with a separate layer (such as a cylindrical body made of a fiber material, a resin layer, etc.) so as to cover the entire outer periphery of the carbon fiber bundle to which the restraining material and solidifying agent have been applied. From the viewpoint of improving nonflammability, a resin layer using polyimide resin, silicone resin, or vinyl chloride resin is preferably provided as a layer covering the entire outer periphery of the carbon fiber bundle to which the restraining material and solidifying agent have been applied. Further, from the viewpoint of design, the layer covering the entire outer periphery of the carbon fiber bundle to which the restraining material and solidifying agent have been applied may contain a coloring agent such as a pigment for coloring. These resin layers may be made of either thermoplastic resin or thermosetting resin, but if a thermoplastic resin is used as the solidifying agent, it covers the entire outer periphery of the carbon fiber bundle to which the binding material and solidifying agent have been applied. The resin used for the layer is also preferably a thermoplastic resin.

(棒状繊維強化複合材について)
本実施形態の棒状繊維強化複合材1について説明する。
棒状繊維強化複合材1は、上記の炭素繊維を用いる素線1Aと拘束材を用いる素線1Bとのいずれか一方又は両方を用い、これらを複数本、引き揃えたり、撚り合せたりして形成したストランド構造体である。
(About rod-shaped fiber reinforced composite materials)
The rod-shaped fiber-reinforced composite material 1 of this embodiment will be explained.
The rod-shaped fiber-reinforced composite material 1 is formed by aligning or twisting a plurality of wires using either or both of the above-mentioned strands 1A using carbon fibers and strands 1B using a restraining material. It is a strand structure.

例えば、棒状繊維強化複合材1は、上記の拘束材を用いる素線1Bを7本備えてなり、中心に配置された芯線となる1本の素線1Bを他の6本の素線1Bが取り囲むように撚り合わせた構造を有するストランド構造である。このような構造を有する棒状繊維強化複合材1は、棒状繊維強化複合材1の素線1Bと素線1Bとの間に寸切りボルト2のテーパー部2sを有する棒状部2tが挿入しやすい。また、このような構造を有する棒状繊維強化複合材1は、素線1Bによって寸切りボルト2が覆われ、接着剤4による接合において、棒状繊維強化複合材1と寸切りボルト2と管状部材3とが強固に接合し、得られる接合構造体10の引張強度の向上および安定性の観点より好ましい。 For example, the rod-shaped fiber-reinforced composite material 1 includes seven strands 1B using the above-mentioned restraining material, and one strand 1B serving as a core wire arranged at the center is connected to the other six strands 1B. It has a strand structure that is twisted around each other. In the rod-shaped fiber-reinforced composite material 1 having such a structure, the rod-shaped portion 2t having the tapered portion 2s of the threaded bolt 2 can be easily inserted between the strands 1B of the rod-shaped fiber-reinforced composite material 1. In addition, in the rod-shaped fiber reinforced composite material 1 having such a structure, the threaded bolt 2 is covered with the wire 1B, and the rod-shaped fiber reinforced composite material 1, the threaded bolt 2, and the tubular member 3 are bonded by the adhesive 4. This is preferable from the viewpoint of improving the tensile strength and stability of the resulting bonded structure 10.

本実施形態に係る棒状繊維強化複合材1では、芯(芯線)となる素線1yと、芯となる素線1yを取り囲む他の6本の素線1yとが撚り合されるストランド構造を有することで、樹脂を用いて7本の素線1yを一体化しなくとも、バラケを防ぎ一体化できる。棒状繊維強化複合材1は、さらにドラムに巻かれて曲げ応力がかけられた後伸ばして用いられる場合や、曲げ応力が加えられながら用いられる場合においても、優れた引張強度を維持することができる。 The rod-shaped fiber reinforced composite material 1 according to the present embodiment has a strand structure in which a strand 1y serving as a core (core wire) and six other strands 1y surrounding the strand 1y serving as the core are twisted together. By doing so, it is possible to prevent the seven wires 1y from coming apart and to integrate them without using resin to integrate them. The rod-shaped fiber-reinforced composite material 1 can maintain excellent tensile strength even when it is rolled around a drum and subjected to bending stress and then stretched, or when it is used while being subjected to bending stress. .

また、撚りを形成する方向として、
炭素繊維束×ストランド構造体=S方向×Z方向、S方向×S方向、Z方向×Z方向、Z方向×S方向、のいずれでも可能である。
Also, as the direction of twist formation,
Any of the following is possible: carbon fiber bundle x strand structure = S direction x Z direction, S direction x S direction, Z direction x Z direction, Z direction x S direction.

ストランド構造体の撚り数は、目的に応じて1.1~50回/mの範囲で選択される。撚り数が少なすぎると、芯材単位でバラケやすくなる。一方、撚り数が多くなりすぎると引張強度が低下するおそれがある。素線1yの本数が7~37本の場合には、撚り数は1.5~20回/mが好ましい。撚り数は、より好ましくは2~10回/mがよい。 The number of twists of the strand structure is selected in the range of 1.1 to 50 twists/m depending on the purpose. If the number of twists is too small, each core material will easily come apart. On the other hand, if the number of twists is too large, the tensile strength may decrease. When the number of strands 1y is 7 to 37, the number of twists is preferably 1.5 to 20 times/m. The number of twists is more preferably 2 to 10 twists/m.

棒状繊維強化複合材1を構成する素線1yとしては、上記の例示した実施形態のものに限定されず、本発明の素線1yの構成のものであればいずれものでもよい。また、本実施形態における棒状繊維強化複合材1において、本発明の素線1yの要件を満たす素線であれば、異なる素線を複合して用いてもよい。 The strands 1y constituting the rod-shaped fiber-reinforced composite material 1 are not limited to those of the embodiments illustrated above, and any strands having the structure of the strands 1y of the present invention may be used. Moreover, in the rod-shaped fiber-reinforced composite material 1 in this embodiment, different strands may be used in combination as long as they meet the requirements for the strands 1y of the present invention.

例えば、本実施形態でのストランド構造体を構成する素線1yの本数は7本であるが、これに限定されず、目的とする性能(特に破断荷重)、用途を考慮して適宜決定され、特に限定されるものではないが、通常、2~50本である。ストランド構造体を構成する素線1yの本数は、好ましくは7~37本がよい。 For example, the number of strands 1y constituting the strand structure in this embodiment is seven, but is not limited to this, and can be determined as appropriate in consideration of the desired performance (particularly breaking load) and usage. Although not particularly limited, the number is usually 2 to 50. The number of strands 1y constituting the strand structure is preferably 7 to 37.

例えば、炭素繊維を24000本束ねたもの(24k)1本を炭素繊維束として用いた棒状繊維強化複合材1の場合には、ストランド構造体を構成する素線1yの本数は2本~50本程度であるとブレース材等の用途として好適である。 For example, in the case of a rod-shaped fiber-reinforced composite material 1 in which one bundle of 24,000 carbon fibers (24k) is used as a carbon fiber bundle, the number of strands 1y constituting the strand structure is 2 to 50. If it is at a moderate level, it is suitable for use as a brace material, etc.

なお、本実施形態の棒状繊維強化複合材1は、芯線として用いた一本の素線1yを取り囲むように構成された他の素線1yとが一体に撚り合わせられているが、ストランド構造体の構造として、芯となる芯線を設けず、必要本数(例えば、2~50本)の素線1yを束ね、束ねられた素線1y全体に撚りを掛けてもよい。 In addition, in the rod-shaped fiber reinforced composite material 1 of this embodiment, other strands 1y configured to surround one strand 1y used as a core wire are twisted together, but the strand structure is As a structure, a required number (for example, 2 to 50) of strands 1y may be bundled without providing a core wire, and the entire bundled strands 1y may be twisted.

棒状繊維強化複合材1の直径は、2~100mm、より好適には4~50mm、さらにより好適には6~20mmである。このような直径であると、棒状繊維強化複合材1がドラムに巻きやすくなり、また、任意の形状に追従するなどのフレキシブル性を高めることができる。 The diameter of the rod-shaped fiber reinforced composite material 1 is 2 to 100 mm, more preferably 4 to 50 mm, even more preferably 6 to 20 mm. With such a diameter, the rod-shaped fiber-reinforced composite material 1 can be easily wound around a drum, and its flexibility, such as the ability to follow an arbitrary shape, can be enhanced.

なお、棒状繊維強化複合材1は、前記ストランド構造体をさらにより合せた、マルチストランド構造体であってもよい。 Note that the rod-shaped fiber-reinforced composite material 1 may be a multi-strand structure in which the strand structures are further twisted together.

また、棒状繊維強化複合材1は、ストランド構造体やマルチストランド構造体の外周の全面を覆うように別途層(繊維材料からなる筒状体や樹脂層等)が設けられていてもよい。ただし、棒状繊維強化複合材1の端部に、少なくとも一方の端部に他の棒状物を有する部材が挿入できる状態とする必要がある。 Moreover, the rod-shaped fiber-reinforced composite material 1 may be provided with a separate layer (such as a cylindrical body made of a fiber material, a resin layer, etc.) so as to cover the entire outer periphery of the strand structure or multi-strand structure. However, it is necessary to make it possible to insert a member having another rod-shaped object at at least one end into the end of the rod-shaped fiber-reinforced composite material 1.

ストランド構造体やマルチストランド構造体の撚られた素線1yと素線1yとの間には埃等が付着しやすいが、ストランド構造体やマルチストランド構造体の外周の全面を覆うように別途層(繊維材料からなる筒状体や樹脂層等)が設けられていると、これらの埃の付着を抑制することができる。 Dust etc. tend to adhere between the twisted wires 1y of a strand structure or multi-strand structure, but it is necessary to add a separate layer to cover the entire outer periphery of the strand structure or multi-strand structure. (A cylindrical body made of a fiber material, a resin layer, etc.) can suppress the adhesion of these dusts.

また、不燃性向上の観点からは、前記の全面を覆うように設けられた別途層は、ポリイミド樹脂やシリコーン樹脂や塩化ビニル樹脂を用いた樹脂層を設けるとよい。また、意匠性の観点からは、全面を覆うように別途層として着色のための顔料などの着色剤を含む樹脂層を別途設けてもよい。 Further, from the viewpoint of improving nonflammability, the separate layer provided so as to cover the entire surface may be a resin layer using polyimide resin, silicone resin, or vinyl chloride resin. Moreover, from the viewpoint of design, a resin layer containing a coloring agent such as a pigment for coloring may be provided as a separate layer so as to cover the entire surface.

これらの樹脂層は、熱可塑性樹脂、熱硬化性樹脂いずれであっても用いることはできるが、固化剤として、熱可塑性樹脂を用いた場合には、別途層に用いられる樹脂も熱可塑性樹脂が好ましい。 These resin layers can be made of either thermoplastic resin or thermosetting resin, but if thermoplastic resin is used as the solidifying agent, the resin used for the separate layer may also be made of thermoplastic resin. preferable.

また、棒状繊維強化複合材1は、引張強さが100~5000MPaであることが望ましい。引張強さの下限値は、好ましくは500MPa以上が良く、より好ましくは1000MPa以上であるとよい。引張強さが100MPa以上であれば、優れた強度を有する接合構造体10が得られる。一方、引張強さの上限値は、好ましくは4000MPa以下が良く、より好ましくは3000MPa以下がよい。引張強さが5000MPaを超えると接合構造体が重くなってしまったり、柔軟性を失ってしまったりして、接合構造体を巻き取った状態で運搬することや保管することができなくなるおそれがある。 Further, it is desirable that the rod-shaped fiber reinforced composite material 1 has a tensile strength of 100 to 5000 MPa. The lower limit of the tensile strength is preferably 500 MPa or more, more preferably 1000 MPa or more. If the tensile strength is 100 MPa or more, a bonded structure 10 with excellent strength can be obtained. On the other hand, the upper limit of the tensile strength is preferably 4000 MPa or less, more preferably 3000 MPa or less. If the tensile strength exceeds 5000 MPa, the bonded structure may become heavy or lose its flexibility, which may make it impossible to transport or store the bonded structure in a wound state. .

(寸切りボルト(定着治具)について)
寸切りボルト(定着治具)2は、螺子を切った鋼鉄製のボルト(M8、M10、M12、M16などの鋼材(SNR490B、SNR400Bやステンレス製やチタン製のボルトなど))やこれに限らず少なくとも一方の端部が棒状となっているものを用いる。
(About the cut bolt (fixing jig))
The threaded bolt (fixing jig) 2 is not limited to threaded steel bolts (steel materials such as M8, M10, M12, M16 (SNR490B, SNR400B, stainless steel, titanium bolts, etc.)). Use one with at least one end shaped like a rod.

本実施形態では、M16の鋼鉄製(SNR400B:圧延棒鋼)のボルトを用いた。棒状繊維強化複合材1の端部に挿入される寸切りボルト2の棒状部2tは表面の少なくとも一部に螺子を切るなどして凹凸を有すると接着剤4と棒状繊維強化複合材1と寸切りボルト2と管状部材3との接着力が向上し、得られる接合構造体10は、優れた引張強度が得られるとの観点から好ましい。 In this embodiment, bolts made of M16 steel (SNR400B: rolled steel bar) are used. If the rod-shaped part 2t of the threaded bolt 2 inserted into the end of the rod-shaped fiber-reinforced composite material 1 has an uneven surface, such as by cutting a thread on at least a part of the surface, the adhesive 4 and the rod-shaped fiber-reinforced composite material 1 will be sized. This is preferable from the viewpoint that the adhesive force between the cut bolt 2 and the tubular member 3 is improved, and the resulting joined structure 10 has excellent tensile strength.

また、寸切りボルト2のテーパー部2sを有する端部の反対側の端部は、棒状であってもよいし、棒状でネジが切ってあってもよく、また、板状であってもよいし、U字状、輪っか状であってもよく、補強される柱、梁、床、壁、天井、地面や地面等に設置したアンカー等にナットやボルト、釘、螺子、紐や布状物、杭、溶接等で定着できればよい。また、他の定着治具を介して、柱、梁、床、壁、地面等に定着してもよい。 Further, the end of the threaded bolt 2 opposite to the end having the tapered portion 2s may be rod-shaped, may be rod-shaped and threaded, or may be plate-shaped. However, it may be U-shaped or ring-shaped, and may be reinforced with nuts, bolts, nails, screws, strings, or cloth-like objects such as pillars, beams, floors, walls, ceilings, anchors installed on the ground, etc. It is sufficient if it can be fixed with , piles, welding, etc. Further, it may be fixed to a pillar, a beam, a floor, a wall, the ground, etc. via another fixing jig.

(接着剤について)
管状部材3の管内に充填される接着剤4、つまり、棒状繊維強化複合材1と寸切りボルト2と管状部材3との接合に用いられる接着剤4としては、合成樹脂、セメント等を用いることができる。
(About adhesive)
As the adhesive 4 filled in the tube of the tubular member 3, that is, the adhesive 4 used for joining the rod-shaped fiber reinforced composite material 1, the threaded bolt 2, and the tubular member 3, synthetic resin, cement, etc. may be used. I can do it.

合成樹脂としては、エポキシ系、メラミン系、シリコーン系、フェノール系、天然ゴム、合成ゴムなどのゴム系、α―オレフィン系、アクリル系、酢酸ビニル系、ウレタン系、不飽和ポリエステル系、ビニルエステル系などの合成樹脂が挙げられる。接着性の観点からはウレタン系樹脂が好ましく用いられる。 Synthetic resins include epoxy, melamine, silicone, phenol, rubber such as natural rubber and synthetic rubber, α-olefin, acrylic, vinyl acetate, urethane, unsaturated polyester, and vinyl ester. Synthetic resins such as From the viewpoint of adhesiveness, urethane resins are preferably used.

ウレタン系樹脂としては、具体的には、多価アルコールのアルキレンオキサイド付加物であるポリオール及びポリイソシアネートを含むウレタン系樹脂が好ましい。ウレタン系樹脂は、ポリオールの重量平均分子量は600以下のものがよい。また、多価アルコールとしては、グリセリン、トリメチロールプロパン或いは、ペンタエリトリトールが好ましい。また、耐熱性の観点から、当該ウレタン樹脂のガラス転移温度(Tg)が70℃以上より好ましくは80℃以上、さらに好ましくは90℃以上がよい。好ましいガラス転移温度(Tg)の上限は特にないが、当該ウレタン樹脂のガラス転移温度(Tg)の上限は130℃程度である。 Specifically, as the urethane resin, a urethane resin containing a polyol, which is an alkylene oxide adduct of a polyhydric alcohol, and a polyisocyanate is preferable. The weight average molecular weight of the polyol of the urethane resin is preferably 600 or less. Moreover, as the polyhydric alcohol, glycerin, trimethylolpropane, or pentaerythritol is preferable. Further, from the viewpoint of heat resistance, the glass transition temperature (Tg) of the urethane resin is preferably 70°C or higher, preferably 80°C or higher, and even more preferably 90°C or higher. Although there is no particular upper limit of the preferable glass transition temperature (Tg), the upper limit of the glass transition temperature (Tg) of the urethane resin is about 130°C.

セメントとしては、石膏、生石灰、また、生石灰や珪酸塩を用いた高膨張圧が発揮できる材料などが挙げられる。 Examples of cement include gypsum, quicklime, and materials that can exert high expansion pressure using quicklime and silicates.

(管状部材について)
本実施形態の管状部材3は、第一端部31から第二端部32まで空洞部3hを有するものであり、管状部材3の第一端部31の開口からは棒状繊維強化複合材1、第二端部32の開口からは寸切りボルト2が露出する。空洞部3hには棒状繊維強化複合材1と寸切りボルト2が配置されるとともに接着剤4が充填され、棒状繊維強化複合材1、寸切りボルト2、及び管状部材3が接着剤4で接合されている。
(About tubular members)
The tubular member 3 of this embodiment has a cavity 3h from the first end 31 to the second end 32, and from the opening of the first end 31 of the tubular member 3, the rod-shaped fiber reinforced composite material 1, The threaded bolt 2 is exposed from the opening of the second end 32. The rod-shaped fiber-reinforced composite material 1 and the threaded bolt 2 are placed in the hollow portion 3h, and the adhesive 4 is filled, and the rod-shaped fiber-reinforced composite material 1, the threaded bolt 2, and the tubular member 3 are joined with the adhesive 4. has been done.

管状部材3は、鉄、アルミニウム、ステンレス、チタンなどの鋼材を用いたものや合成樹脂製であってもよい。管状部材3は、軽量で強度があるとの観点より、繊維強化複合材(FRP)製であるとよい。 The tubular member 3 may be made of steel such as iron, aluminum, stainless steel, or titanium, or synthetic resin. The tubular member 3 is preferably made of fiber reinforced composite material (FRP) from the viewpoint of being lightweight and strong.

また、管状部材3の長さ方向の断面形状は、円形、楕円形、三角形、四角形、五角形、六角形等の多角形などでよく特に限定されないが、強度の観点からは円形が好ましい。
管状部材3は、具体的にはAGCマテックス株式会社から提供されているプラアロイ(登録商標)などを挙げることができる。
Further, the cross-sectional shape of the tubular member 3 in the longitudinal direction is not particularly limited and may be a polygon such as a circle, an ellipse, a triangle, a quadrangle, a pentagon, or a hexagon, but is preferably circular from the viewpoint of strength.
Specific examples of the tubular member 3 include Plaalloy (registered trademark) provided by AGC Matex Co., Ltd.

また、管状部材3は、その内面に凹凸を有していても良い。管状部材3は、その内面に凹凸を有していると、接着剤4と管状部材3との接合力が物理面でも向上するため、得られる接合構造体の引張強度が向上するとの観点より好ましい。 Moreover, the tubular member 3 may have unevenness on its inner surface. If the tubular member 3 has irregularities on its inner surface, the bonding force between the adhesive 4 and the tubular member 3 will be improved physically, which is preferable from the viewpoint of improving the tensile strength of the resulting bonded structure. .

管状部材3を備える接合構造体10は、引張強度に優れる。また、管状部材3を備える場合、接合構造体10は、屋外などで接合構造体10が使用される場合に、管状部材3により紫外線や雨などから接合構造部が保護され、接合構造体10の経時的な劣化を抑制し耐久性が向上する。また、管状部3材を備える接合構造体10は、棒状繊維強化複合材1とボルトなどの定着治具2との重なり部Olを接着剤4により被覆し接合する際に、型を用いる必要がなく、接着剤4の硬化後、その型を除去する工程が不要であるため、生産性に優れる。 The joined structure 10 including the tubular member 3 has excellent tensile strength. In addition, when the joint structure 10 is provided with the tubular member 3, when the joint structure 10 is used outdoors etc., the joint structure portion is protected by the tubular member 3 from ultraviolet rays, rain, etc. It suppresses deterioration over time and improves durability. In addition, the bonded structure 10 including the tubular portion 3 requires the use of a mold when covering and bonding the overlapping portion Ol between the rod-shaped fiber reinforced composite material 1 and the fixing jig 2 such as a bolt with the adhesive 4. Since there is no need to remove the mold after the adhesive 4 has hardened, productivity is excellent.

また、本発明においては、管状部材3を備えなくともよい。管状部材3を用いない場合には、より軽量な接合構造体が得ることができ、補強される対象物に対し、管状部材3の質量による負荷を軽減することができ、また、施工時の作業者に対する負荷もより軽減することができる。 Further, in the present invention, the tubular member 3 may not be provided. When the tubular member 3 is not used, a lighter joined structure can be obtained, the load due to the mass of the tubular member 3 on the object to be reinforced can be reduced, and the work during construction can be reduced. The burden on the person can also be further reduced.

以上の構成を有する本実施形態の接合構造体10は、優れた強度を有し、意匠性、外観品位にも優れる。従って、本実施形態の接合構造体10は、鉄鋼、鉄筋、木造などを用いて造られた建築物、建造物やテーブル、椅子、手すりなどの家具類、植物用の誘引紐、ワイヤー代替物、柵など種々の構造物の補強材や構造材として用いることができる。 The bonded structure 10 of this embodiment having the above configuration has excellent strength, and is also excellent in design and appearance quality. Therefore, the bonded structure 10 of the present embodiment can be used for buildings, structures, furniture such as tables, chairs, handrails, etc., attraction strings for plants, wire substitutes, etc. made using steel, reinforcing bars, wood, etc. It can be used as a reinforcing material or structural material for various structures such as fences.

以上、本発明の実施形態について述べたが、これらは本発明の例示であり、本発明の技術的思想の範囲内で上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above, these are merely examples of the present invention, and various configurations other than those described above may be adopted within the scope of the technical idea of the present invention.

以下、実施例及び比較例により本発明をさらに詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。
また、本実施例における各種データは以下の方法で測定を行った。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples unless the gist thereof is changed.
Moreover, various data in this example were measured by the following method.

<直径>
素線、棒状繊維強化複合材体の直径はノギスで測定した。
<引張強さおよび破断荷重>
引張強さおよび破断荷重は、インストロンジャパンカンパニリミテッドから供給されている5980フロア型高容量万能試験機 型式5985を使用し、2mm/minの条件で測定した(測定環境は室温(約25℃))。試料が破断したときの荷重(kN)を破断荷重とした。また、破断荷重を棒状繊維強化複合材の長さ方向に垂直に切断した断面積(有効断面積)で割ったものを引張強さ(MPa)とした。各実施例及び比較例の主な仕様及び測定値を表1に示す。
<Diameter>
The diameters of the wire and rod-shaped fiber-reinforced composite bodies were measured using calipers.
<Tensile strength and breaking load>
The tensile strength and breaking load were measured using a 5980 floor-type high-capacity universal testing machine model 5985 supplied by Instron Japan Company Limited at a rate of 2 mm/min (measurement environment was room temperature (approximately 25°C)). ). The load (kN) at which the sample broke was defined as the breaking load. Further, the tensile strength (MPa) was calculated by dividing the breaking load by the cross-sectional area (effective cross-sectional area) cut perpendicularly to the length direction of the rod-shaped fiber-reinforced composite material. Table 1 shows the main specifications and measured values of each example and comparative example.

Figure 0007369610000001
Figure 0007369610000001

(実施例1)
素線1Aを得るために、24Kの炭素繊維束(PAN系炭素繊維。東レ株式会社製。T700SC)を3本束ね、S方向に10回/m撚りをかけたもの1本を炭素繊維束として用い、拘束材としてガラス繊維を用い、製紐機(24打機)を用いて、16打ちの石目打にて、炭素繊維束の外周の全面を組紐状にガラス繊維で拘束した。
(Example 1)
In order to obtain 1A of strands, three 24K carbon fiber bundles (PAN-based carbon fiber, manufactured by Toray Industries, Inc., T700SC) were bundled, and one carbon fiber bundle was twisted 10 times/m in the S direction. Using glass fiber as a restraining material, the entire outer periphery of the carbon fiber bundle was restrained with glass fibers in the form of a braid by using a cord making machine (24 stroke machine) with 16 strokes.

次に、炭素繊維束を拘束したものを、重合型の熱可塑性エポキシ樹脂(DENATITE XNR6850V、固形分85質量%、ナガセケムテックス株式会社製)100質量部、硬化剤(DENATITE XNH6850V、固形分30質量%、ナガセケムテックス株式会社製)6.5質量部、メチルエチルケトン(MEK)10質量部からなる溶液(粘度150mPa・s)にデッピングし、ダイスを通し、余分な溶液を除去するとともに、炭素繊維束の長さ方向に対し垂直に切断した際の断面形状が円形になるように形状を整え、拘束された炭素繊維束に対し、固化剤を付与した。その後、固化材を付与したものに対し熱処理(150℃、20分間)を行うことで、前記重合型の熱可塑性エポキシ樹脂を硬化反応させて、炭素繊維束と拘束材と熱可塑性エポキシ樹脂(固化剤)を一体化させて素線1Aを得た。 Next, the bound carbon fiber bundle was mixed with 100 parts by mass of a polymerized thermoplastic epoxy resin (DENATITE %, manufactured by Nagase ChemteX Co., Ltd.) and 10 parts by mass of methyl ethyl ketone (MEK) (viscosity 150 mPa・s), passed through a die to remove excess solution, and cut into carbon fiber bundles. A solidifying agent was applied to the bound carbon fiber bundle, which was shaped so that the cross-sectional shape when cut perpendicularly to the length direction was circular. Thereafter, heat treatment (150°C, 20 minutes) is performed on the material to which the solidifying material has been applied, so that the polymerized thermoplastic epoxy resin undergoes a curing reaction, and the carbon fiber bundle, the restraint material, and the thermoplastic epoxy resin (solidified agent) to obtain a strand 1A.

得られた素線1Aの断面は円形状で、直径は3mm、質量は12.8g/mであった。得られた素線1Aは、破断荷重は13kN、引張強さは1800MPa(有効断面積50mm)であった。得られた素線1Aは、室温で直径が100cmのドラムに3000m巻きとったところ、折れることなく、スムーズに巻き取ることができた。 The cross section of the obtained wire 1A was circular, the diameter was 3 mm, and the mass was 12.8 g/m. The resulting strand 1A had a breaking load of 13 kN and a tensile strength of 1800 MPa (effective cross-sectional area 50 mm 2 ). When the obtained wire 1A was wound for 3000 m on a drum having a diameter of 100 cm at room temperature, it could be wound smoothly without breaking.

次に、得られた素線1Aを7本用い、中心に芯線として1本の素線1A、その周りを6本の素線1Aで覆うように、120℃に加熱しながら撚り合わせて、ストランド構造とし、棒状繊維強化複合材1を得た。得られた実施例1の棒状繊維強化複合材1は、直径は9mm、質量は80g/mであった。得られた棒状繊維強化複合材1は、破断荷重は90kN、引張強さは1800MPa(有効断面積50mm)であった。 Next, using seven of the obtained strands of strand 1A, they are twisted together while heating to 120°C so that one strand of strand 1A serves as a core wire in the center and six strands of strand 1A surround it. A rod-shaped fiber-reinforced composite material 1 was obtained. The obtained rod-shaped fiber reinforced composite material 1 of Example 1 had a diameter of 9 mm and a mass of 80 g/m. The resulting rod-shaped fiber reinforced composite material 1 had a breaking load of 90 kN and a tensile strength of 1800 MPa (effective cross-sectional area 50 mm 2 ).

次に、棒状繊維強化複合材1を51cmの長さにカットした。なお、棒状繊維強化複合材1を構成する素線1Aについては、芯材をはじめ素線1Aの一部を切り取ることは行わず、素線1Aの長さが、すべて実質的に揃ったものを棒状繊維強化複合材1として用いた。 Next, the rod-shaped fiber reinforced composite material 1 was cut into a length of 51 cm. In addition, regarding the strands 1A constituting the rod-shaped fiber reinforced composite material 1, a part of the strands 1A including the core material is not cut off, and the lengths of the strands 1A are all substantially the same. It was used as a rod-shaped fiber reinforced composite material 1.

次に、寸切りボルト2として、一方の端部の棒状部2tをテーパー状に削った長さ30cmのM16寸切ボルト(SNR400B:直径が16mm。テーパー部分の長さが5cm。テーパー部は、図1に示すような端部が尖った形状)を準備した。 Next, as the threaded bolt 2, a 30cm long M16 threaded bolt (SNR400B: diameter is 16mm. The length of the tapered part is 5cm. The tapered part is A shape with a pointed end as shown in FIG. 1 was prepared.

また、管状部材3として、長さ250mmのFRP製の管状部材3(商品名 プラアロイRP28:AGCマテックス株式会社製:内径28mm、外径34mm)を用いた。 Further, as the tubular member 3, an FRP tubular member 3 (trade name: Plaalloy RP28, manufactured by AGC Matex Co., Ltd.: inner diameter 28 mm, outer diameter 34 mm) with a length of 250 mm was used.

そして、管状部材3の第一端部31より、空洞部3hに棒状繊維強化複合材1を挿入し、管状部材3の第二端部32にまで挿入した。また、管状部材3の第二端部32より、空洞部3hにM16の寸切りボルト2の棒状部2tを挿入した。棒状部2tは、管状部材3の軸Oに重なるように、棒状繊維強化複合材1の端部1tに挿入されるようにして、管状部材3内に21cm挿入した。棒状繊維強化複合材1とM16の寸切りボルト2とが重なり合う重なり部Olの長さL1を21cm、長さL2を4cm、管状部材3の長さL3を25cmとした。 Then, the rod-shaped fiber-reinforced composite material 1 was inserted into the cavity 3h from the first end 31 of the tubular member 3, and even into the second end 32 of the tubular member 3. Further, the rod-shaped portion 2t of the M16 threaded bolt 2 was inserted into the hollow portion 3h from the second end portion 32 of the tubular member 3. The rod-shaped portion 2t was inserted into the end portion 1t of the rod-shaped fiber-reinforced composite material 1 by 21 cm into the tubular member 3 so as to overlap with the axis O of the tubular member 3. The length L1 of the overlapping portion Ol where the rod-shaped fiber-reinforced composite material 1 and the M16 threaded bolt 2 overlap was 21 cm, the length L2 was 4 cm, and the length L3 of the tubular member 3 was 25 cm.

次に、管状部材3の空洞部3hに、接着剤4を充填した。接着剤4として、多価アルコールのアルキレンオキサイド付加物であるポリエーテルポリオールとポリイソシアネートとの混合物を充填し、室温(25℃)で1時間で放置し、前記ポリオールとポリイソシアネートとを反応させて硬化させウレタン樹脂(Tg93℃)を生成した。接着剤4を充填した後、室内にて1週間養生し、接合構造体10を得た。 Next, the cavity 3h of the tubular member 3 was filled with the adhesive 4. As adhesive 4, a mixture of polyether polyol, which is an alkylene oxide adduct of polyhydric alcohol, and polyisocyanate was filled, and the mixture was left at room temperature (25°C) for 1 hour to allow the polyol and polyisocyanate to react. It was cured to produce a urethane resin (Tg 93°C). After filling with the adhesive 4, it was cured indoors for one week to obtain a bonded structure 10.

得られた接合構造体10の破断荷重は81.32kNであった。実施例1の破断の状態は、接合構造部の破壊ではなく、M16の寸切りボルト2が破断しており、接合構造部は十分な強度を有していた。 The breaking load of the obtained bonded structure 10 was 81.32 kN. The state of the fracture in Example 1 was not that the joint structure was destroyed, but that the M16 threaded bolt 2 was fractured, and the joint structure had sufficient strength.

(比較例1)
比較例1として、寸切りボルトの棒状部をテーパー状に削らず、長さ30cmに切断しただけのM16寸切りボルト(SNR400B:直径が16mm)を用いた以外は、実施例1と同様の構成にして接合構造体を得た。得られた接合構造体の破断荷重は77.34kNあった。比較例1の破断の状態は、接合構造部が破壊(管状部材3と接着剤4との界面から抜け(ズレ)が発生し、接着剤4にクラックも発生)されていた。
(Comparative example 1)
Comparative Example 1 had the same configuration as Example 1, except that an M16 threaded bolt (SNR400B: diameter 16mm) was used, in which the rod-shaped part of the threaded bolt was not cut into a tapered shape but was simply cut to a length of 30 cm. A bonded structure was obtained. The breaking load of the obtained bonded structure was 77.34 kN. The state of the fracture in Comparative Example 1 was such that the joint structure was destroyed (displacement occurred from the interface between the tubular member 3 and the adhesive 4, and cracks also occurred in the adhesive 4).

(実施例2)
実施例2として、管状部材3の長さL3が21cmのものを用い、M16の寸切りボルト2を21cm管状部材内に挿入した以外は実施例1と同様にして接合構造体を得た。得られた接合構造体10はL1=21cm、L2は数mm程度、L3=21cmであった。得られた接合構造体10の外観品位は、管状部材3の第一端部31近辺での素線1Aの開きは確認されず、良好な外観品位を保っていた。また、実施例2の破断荷重は72.95kNあり、優れた強度を有していた。実施例2の破断の状態は、接合構造部が破壊(管状部材3と接着剤4との界面から抜け(ズレ)が発生し、接着剤4にクラックも発生)されていた。
(Example 2)
As Example 2, a joined structure was obtained in the same manner as in Example 1 except that a tubular member 3 having a length L3 of 21 cm was used, and an M16 threaded bolt 2 was inserted into the 21 cm tubular member. The obtained bonded structure 10 had L1=21 cm, L2 about several mm, and L3=21 cm. Regarding the appearance quality of the obtained bonded structure 10, no opening of the strands 1A near the first end 31 of the tubular member 3 was observed, and good appearance quality was maintained. Moreover, the breaking load of Example 2 was 72.95 kN, and it had excellent strength. The state of breakage in Example 2 was such that the joint structure was broken (displacement occurred from the interface between the tubular member 3 and the adhesive 4, and cracks also occurred in the adhesive 4).

(実施例3)
実施例3として、管状部材3の材質をFRP製から鋼材製(SS400)に変更した以外は実施例2と同様にして接合構造体10を得た。得られた接合構造体10はL1=21cm、L2は数mm程度、L3=21cmであった。得られた接合構造体10の外観品位は、管状部材3の第一端部31近辺での素線1Aの開きは確認されず、良好な外観品位を保っていた。また、実施例3の破断荷重は78.98kNあった。実施例3の破断の状態は、M16の寸切りボルト2が破断しており、より優れた強度を有する接合構造体10が得られた。
(Example 3)
As Example 3, a bonded structure 10 was obtained in the same manner as Example 2 except that the material of the tubular member 3 was changed from FRP to steel (SS400). The obtained bonded structure 10 had L1=21 cm, L2 about several mm, and L3=21 cm. Regarding the appearance quality of the obtained bonded structure 10, no opening of the strands 1A near the first end 31 of the tubular member 3 was observed, and good appearance quality was maintained. Moreover, the breaking load of Example 3 was 78.98 kN. In Example 3, the M16 threaded bolt 2 was broken, and a joined structure 10 having superior strength was obtained.

(参考例)
参考例として、実施例1の接合構造体10に対し、M16の寸切りボルト2を棒状繊維強化複合材に挿入しやすいように、管状部材3にM16の寸切りボルト2を挿入した長さ(21cm)とほぼ同等の長さだけ、棒状繊維強化複合材を構成する芯材を切り取り、それ以外は実施例1と同様にして接合構造体を得た。得られた接合構造体の破断荷重を測定したところ、68.90kNあった。破断の状態は、接合構造部が破壊(管状部材と接着剤との界面から抜け(ズレ)が発生し、接着剤にクラックも発生)されていた。
(Reference example)
As a reference example, for the joined structure 10 of Example 1, the length of the M16 threaded bolt 2 inserted into the tubular member 3 ( A bonded structure was obtained in the same manner as in Example 1 except that the core material constituting the rod-shaped fiber-reinforced composite material was cut out to a length approximately equivalent to 21 cm). When the breaking load of the obtained bonded structure was measured, it was 68.90 kN. The state of the rupture was that the joint structure was broken (a slippage (displacement) occurred from the interface between the tubular member and the adhesive, and cracks also occurred in the adhesive).

本発明の接合構造体は、軽量で優れた強度を有し、意匠性、外観品位の低下を抑制することにより、木構造又は木質構造、鉄骨構造又は鋼構造、鉄筋コンクリート構造、鉄骨鉄筋コンクリート構造等による家、柵、橋をはじめ様々な建築物、建造物の補強材や構造部材、また、ロープの代替品としても用いることができる。 The bonded structure of the present invention is lightweight and has excellent strength, and by suppressing deterioration in design and appearance quality, it can be made of wood or wood structure, steel structure or steel structure, reinforced concrete structure, steel reinforced concrete structure, etc. It can be used as a reinforcing material or structural member for a variety of buildings, including houses, fences, and bridges, and as a substitute for ropes.

1 棒状繊維強化複合材
1A 炭素繊維を用いる素線
1B 拘束材を用いる素線
1s 複数の素線
1t 端部
1y 素線
10 接合構造体
2 寸切りボルト(定着治具)
2s テーパー部
2t 棒状部
3 管状部材
3h 空洞部
31 第一端部
32 第二端部
4 接着剤
L 複数の素線が延びる方向
Ol 重なり部
t 先端
1 Rod-shaped fiber-reinforced composite material 1A Wire using carbon fiber 1B Wire using restraint material 1s Plural wires 1t End portion 1y Wire 10 Joining structure 2 Cutting bolt (fixing jig)
2s Tapered part 2t Rod-shaped part 3 Tubular member 3h Cavity part 31 First end part 32 Second end part 4 Adhesive L Direction in which the plurality of wires extend Ol Overlapping part t Tip

Claims (4)

繊維材料を複数本束ねた繊維束として形成された素線を複数有する棒状繊維強化複合材と、
端部に棒状部を有する定着治具と、を備え、
前記棒状繊維強化複合材の少なくとも一方の端部に前記定着治具の前記棒状部が挿入されて重なり部が形成され、
前記棒状繊維強化複合材の前記定着治具が挿入された前記端部において、前記複数の素線すべての端部が実質的に揃っており、
前記重なり部において、接着剤により前記棒状繊維強化複合材と前記定着治具とが接合され、
前記棒状部が先端に向かうにつれて縮径するテーパー部を有することを特徴とする接合構造体。
A rod-shaped fiber reinforced composite material having a plurality of strands formed as a fiber bundle made by bundling a plurality of fiber materials;
A fixing jig having a rod-shaped portion at an end,
The rod-shaped part of the fixing jig is inserted into at least one end of the rod-shaped fiber reinforced composite material to form an overlapping part,
At the end of the rod-shaped fiber-reinforced composite material into which the fixing jig is inserted, the ends of all the plurality of wires are substantially aligned;
In the overlapping portion, the rod-shaped fiber reinforced composite material and the fixing jig are joined with an adhesive,
A joining structure characterized in that the rod-shaped portion has a tapered portion whose diameter decreases toward the tip.
空洞部を有する管状部材を有し、
前記重なり部が前記管状部材に挿通され、
前記管状部材の前記空洞部に前記接着剤が充填され、
前記接着剤により、前記棒状繊維強化複合材と前記定着治具と前記管状部材とが接合されることを特徴とする請求項1に記載の接合構造体。
It has a tubular member having a cavity,
the overlapping part is inserted into the tubular member,
the cavity of the tubular member is filled with the adhesive;
The bonded structure according to claim 1, wherein the rod-shaped fiber-reinforced composite material, the fixing jig, and the tubular member are bonded by the adhesive.
前記棒状繊維強化複合材が、炭素繊維を含むことを特徴とする請求項1または請求項2に記載の接合構造体。 The bonded structure according to claim 1 or 2, wherein the rod-shaped fiber-reinforced composite material contains carbon fibers. 前記複数の素線が撚り合わされ、
前記重なり部において前記定着治具が前記複数の素線に囲まれていることを特徴とする請求項1から請求項のうちいずれか一つに記載の接合構造体。
The plurality of wires are twisted together,
The bonded structure according to any one of claims 1 to 3 , wherein the fixing jig is surrounded by the plurality of wires in the overlapping portion.
JP2019227242A 2019-12-17 2019-12-17 bonded structure Active JP7369610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019227242A JP7369610B2 (en) 2019-12-17 2019-12-17 bonded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019227242A JP7369610B2 (en) 2019-12-17 2019-12-17 bonded structure

Publications (2)

Publication Number Publication Date
JP2021095730A JP2021095730A (en) 2021-06-24
JP7369610B2 true JP7369610B2 (en) 2023-10-26

Family

ID=76430821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019227242A Active JP7369610B2 (en) 2019-12-17 2019-12-17 bonded structure

Country Status (1)

Country Link
JP (1) JP7369610B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227059A (en) 2016-06-23 2017-12-28 小松精練株式会社 Junction structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01244054A (en) * 1988-03-23 1989-09-28 Ohbayashi Corp Tool and method of anchor fibrous reinforcing bar

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017227059A (en) 2016-06-23 2017-12-28 小松精練株式会社 Junction structure

Also Published As

Publication number Publication date
JP2021095730A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
JP6129963B2 (en) High-strength fiber composite and strand structure and multi-strand structure
JP5953554B2 (en) High strength fiber wire and composite material having the high strength fiber wire
KR100766954B1 (en) Fiber reinforced polymer bar having self-impregnated protrusion and method for producing the same
JP5758203B2 (en) String-like reinforcing fiber composite, concrete reinforcing bar and brace material
KR101043809B1 (en) Fiber reinforced polymer rod, manufacturing method thereof, and reinforcing method of concrete structure using the same
JP5670230B2 (en) String-like reinforcing fiber composite
JP6794152B2 (en) Joint structure
JP6022186B2 (en) Muscle
JP6830763B2 (en) Seismic retrofitting material
JP6948503B2 (en) How to reinforce concrete structures, concrete structures and flexible continuous fiber reinforcements
JP6022188B2 (en) Tensile material
JP6199440B2 (en) High strength fiber wire and composite material having the high strength fiber wire
JP5808598B2 (en) Joint structure of wooden members
JP7369610B2 (en) bonded structure
JP2021147791A (en) Binding tool, and binding method
KR102009445B1 (en) A method for seismic reinforcing of bricks wall
CN111535178A (en) Prestressed FRP (fiber reinforced Plastic) rib capable of being used for clamping piece anchoring and preparation method thereof
JP3679590B2 (en) Method for reinforcing concrete structures
JP3967957B2 (en) Manufacturing method of fiber reinforced resin strands
JP2009097292A (en) Anchor member, and reinforcement method for concrete member using the same
JP6705958B1 (en) Fiber rod binding tool and fiber rod binding method
JP2013028029A (en) High-strength fiber wire material for reinforcing wooden member, and joint structure of wooden member using the same
JPH0323676B2 (en)
JP6022187B2 (en) Tensile material
JPH11320696A (en) Reinforcing-fiber reinforcing bar and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7369610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150