JP6830763B2 - Seismic retrofitting material - Google Patents

Seismic retrofitting material Download PDF

Info

Publication number
JP6830763B2
JP6830763B2 JP2016092722A JP2016092722A JP6830763B2 JP 6830763 B2 JP6830763 B2 JP 6830763B2 JP 2016092722 A JP2016092722 A JP 2016092722A JP 2016092722 A JP2016092722 A JP 2016092722A JP 6830763 B2 JP6830763 B2 JP 6830763B2
Authority
JP
Japan
Prior art keywords
rod
composite material
reinforced composite
joint
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016092722A
Other languages
Japanese (ja)
Other versions
JP2017201090A (en
Inventor
晃宏 奥谷
晃宏 奥谷
林 豊
豊 林
武俊 中山
武俊 中山
穂奈美 野田
穂奈美 野田
憲泰 江尻
憲泰 江尻
藤田 実
実 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Matere Co Ltd
Original Assignee
Komatsu Matere Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Matere Co Ltd filed Critical Komatsu Matere Co Ltd
Priority to JP2016092722A priority Critical patent/JP6830763B2/en
Publication of JP2017201090A publication Critical patent/JP2017201090A/en
Application granted granted Critical
Publication of JP6830763B2 publication Critical patent/JP6830763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Reinforced Plastic Materials (AREA)

Description

本発明は、棒状の耐震補強材に関するものである。 The present invention relates to a rod-shaped seismic reinforcing material.

鉄筋コンクリート製の建物や木造住宅などの建築物の耐震補強として、既存の建築物に鉄骨製の筋交を用いて補強したり、梁、土台、柱や筋交等の接合部を金物によって補強したり、鋼板を柱に巻きつけたりといったことが行われている。
また、寺社、仏閣、古民家、駅舎をはじめとした伝統的建築物では、外観の美観を維持しながら、耐震性を高める必要がある。そのため、一般の建築物に施されているような大きな鉄骨を用いた補強などは好まれず、あまり目立たない接合部についての金具などの検討がなされている(例えば、特許文献1参照。)。
As seismic reinforcement of buildings such as reinforced concrete buildings and wooden houses, existing buildings are reinforced with steel braces, and joints such as beams, foundations, columns and braces are reinforced with hardware. Or, steel plates are wrapped around pillars.
In addition, in traditional buildings such as temples and shrines, temples, old folk houses, and station buildings, it is necessary to improve earthquake resistance while maintaining the aesthetic appearance. For this reason, reinforcement using a large steel frame, which is applied to general buildings, is not preferred, and metal fittings and the like for joints that are not so conspicuous have been studied (see, for example, Patent Document 1).

特開2013−170373号公報Japanese Unexamined Patent Publication No. 2013-170373

しかしながら、接合部の金具だけでは、伝統的な建築物の美観を維持しながら、十分な耐震性を付与することが困難である。そのため、柱に鋼板を巻きつけるといった美観を犠牲にした耐震補強が行われているところもある。
一方で、鋼板等を巻き付けるなどの耐震補強が行える建物物はまだよいが、補強が行えない建築物もある。たとえば、鋼板や鋼鉄製などの耐震補強材の質量が大きいため、伝統建築物自体がその耐震補強材の質量に対し、耐えることができないものが挙げられる。このような問題は、特に建築物の屋根や梁部などの建築物の上層部に耐震補強材を用いる際に問題となる。
また、鋼板や鋼鉄製の筋交などは、その質量が大きいため、重機を用いて工事現場への搬入や施工が必要となるが、伝統的な建築物が建てられている場所は、重機の乗りいれができない個所も多々あり、特に、高層の建築物にてこのような事項が問題となり、とくに改善が望まれている。
よって、本発明は、軽量でかつ強度があり、伝統建築物の外観品位の悪化を抑制することが可能な耐震補強材を提供することを目的とする。
However, it is difficult to provide sufficient seismic resistance while maintaining the aesthetic appearance of traditional buildings with only the metal fittings at the joints. For this reason, seismic retrofitting is being carried out at the expense of aesthetics, such as wrapping steel plates around columns.
On the other hand, buildings that can be retrofitted by wrapping steel plates, etc. are still good, but there are some buildings that cannot be retrofitted. For example, since the mass of seismic retrofitting material such as steel plate or steel is large, the traditional building itself cannot withstand the mass of the seismic retrofitting material. Such a problem becomes a problem especially when a seismic reinforcing material is used for an upper layer of a building such as a roof or a beam of a building.
In addition, since the mass of steel plates and steel streaks is large, it is necessary to use heavy machinery to bring them to the construction site and perform construction, but the places where traditional buildings are built are heavy machinery. There are many places that cannot be accommodated, and especially in high-rise buildings, such matters become a problem, and improvement is particularly desired.
Therefore, an object of the present invention is to provide a seismic retrofitting material which is lightweight and strong and can suppress deterioration of the appearance quality of a traditional building.

本発明は、以下を提供する。
<1>繊維強化複合材からなる継手であり、少なくとも一方の端部に中空部を有する継手と、前記継手の中空部に挿入され、接合された第1の棒状繊維強化複合材とを有し、前記第1の棒状繊維強化複合材が、固化剤により一体化された繊維束を含む素線を撚り合わせたストランド構造体、または、前記ストランド構造体を撚り合わせたマルチストランド構造体である耐震補強材。
<2>前記継手と前記第1の棒状繊維強化複合材とが接着剤で接合されている<1>に記載の耐震補強材。
<3>前記継手は、前記第1の棒状繊維強化複合材が接合されていない他の一方の端部にも中空部を有し、当該他の一方の端部の中空部に、第2の棒状繊維強化複合材または金属製の材料が挿入され、接合された<1>または<2>に記載の耐震補強材。
>前記継手の密度が、1.0〜5.0g/cm3である<1>から<3>のいずれかに記載の耐震補強材。
>前記継手の質量が、50〜5000g/mである<1>から<4>のいずれかに記載の耐震補強材。
>前記第1の棒状繊維強化複合材の密度が、1.0〜2.5g/cm3である<1>から<>のいずれかに記載の耐震補強材。
>前記第1の棒状繊維強化複合材の質量が、2〜150g/mである<1>から<>のいずれかに記載の耐震補強材。
>前記第1の棒状繊維強化複合材の引張強さが、100〜5000MPaである<1>から<>のいずれかに記載の耐震補強材。
>破断荷重が、3〜300kNである<1>から<>のいずれかに記載の耐震補強材。
10>全体の質量が、5kg以下である<1>から<>のいずれかに記載の耐震補強材。
The present invention provides:
<1> a joint made of a fiber-reinforced composite material, comprising: a coupling having a hollow portion at least one end, is inserted into the hollow portion of the joint, and a first rod-like fiber-reinforced composite material that is bonded , wherein the first rod-like fiber-reinforced composite material, the strand structure by twisting strands comprising the fiber bundle which is integrated by the solidifying agent, or Ru multistrand structures der combined twisting the strands structure Seismic reinforcement.
<2> The seismic retrofitting material according to <1>, wherein the joint and the first rod-shaped fiber reinforced composite material are joined with an adhesive.
<3> The joint also has a hollow portion at the other end portion to which the first rod-shaped fiber reinforced composite material is not joined, and the hollow portion at the other end portion has a second hollow portion. The seismic retrofitting material according to <1> or <2>, wherein a rod-shaped fiber reinforced composite material or a metal material is inserted and joined.
< 4 > The seismic retrofitting material according to any one of <1> to <3>, wherein the joint has a density of 1.0 to 5.0 g / cm 3 .
< 5 > The seismic retrofitting material according to any one of <1> to <4>, wherein the joint has a mass of 50 to 5000 g / m.
< 6 > The seismic retrofitting material according to any one of <1> to < 5 >, wherein the density of the first rod-shaped fiber reinforced composite material is 1.0 to 2.5 g / cm 3 .
< 7 > The seismic retrofitting material according to any one of <1> to < 6 >, wherein the mass of the first rod-shaped fiber reinforced composite material is 2 to 150 g / m.
< 8 > The seismic retrofitting material according to any one of <1> to < 7 >, wherein the first rod-shaped fiber reinforced composite material has a tensile strength of 100 to 5000 MPa.
< 9 > The seismic retrofitting material according to any one of <1> to < 8 >, which has a breaking load of 3 to 300 kN.
< 10 > The seismic retrofitting material according to any one of <1> to < 9 >, wherein the total mass is 5 kg or less.

本発明の耐震補強材によれば、耐震補強材が軽量でありながら優れた引張強さや破断荷重などの引張強度を有しているため、クレーン車などの重機の入ることができない場所に建てられた伝統建築物や従来の耐震補強材の質量に耐えることができず耐震補強できなかった伝統建築物の耐震補強を行うことができ、また、耐震補強による外観の悪化も抑制することができる。 According to the seismic retrofitting material of the present invention, since the seismic retrofitting material is lightweight but has excellent tensile strength and tensile strength such as breaking load, it is built in a place where heavy machinery such as a crane car cannot enter. It is possible to perform seismic retrofitting of traditional buildings and traditional buildings that could not be retrofitted because they could not withstand the mass of conventional seismic retrofitting materials, and it is also possible to suppress deterioration of the appearance due to seismic retrofitting.

本発明の実施の形態における耐震補強材の端部を示す斜視図である。It is a perspective view which shows the end part of the seismic retrofitting material in embodiment of this invention. 棒状繊維強化複合材の第1変形例を示す図である。It is a figure which shows the 1st modification example of a rod-shaped fiber reinforced composite material. 他の拘束材による結束の例を示す図である。It is a figure which shows the example of binding by another restraint material. 他の拘束材による結束の例を示す図である。It is a figure which shows the example of binding by another restraint material. 他の拘束材による結束の例を示す図である。It is a figure which shows the example of binding by another restraint material. 棒状繊維強化複合材の第2変形例を示す図である。It is a figure which shows the 2nd modification of the rod-shaped fiber reinforced composite material.

以下、本発明に係る耐震補強材の実施形態について、図面を参照して説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。また、本明細書において「〜」という表現を用いる場合、その前後の数値を含む表現として用いる。 Hereinafter, embodiments of the seismic reinforcing material according to the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments and is arbitrarily modified as long as the gist of the present invention is not deviated. Can be implemented. In addition, when the expression "-" is used in the present specification, it is used as an expression including numerical values before and after the expression.

(耐震補強材)
図1は本発明の実施の形態における耐震補強材の端部を示す斜視図である。
図1に示すように、本発明の実施形態における耐震補強材10は、繊維強化複合材からなる継手11と、継手11に接合された棒状繊維強化複合材12とからなる。継手11は、少なくとも一方に中空部11aを有する。棒状繊維強化複合材12は、この継手11の中空部11aに挿入されて接合される。
(Seismic retrofitting material)
FIG. 1 is a perspective view showing an end portion of a seismic retrofitting material according to an embodiment of the present invention.
As shown in FIG. 1, the seismic retrofitting material 10 in the embodiment of the present invention is composed of a joint 11 made of a fiber reinforced composite material and a rod-shaped fiber reinforced composite material 12 joined to the joint 11. The joint 11 has a hollow portion 11a on at least one of them. The rod-shaped fiber reinforced composite material 12 is inserted into the hollow portion 11a of the joint 11 and joined.

なお、本実施形態の耐震補強材10は、破断荷重が3〜300kNであることが望ましい。耐震補強材として使用される場所や施工方法にもよるが、下限値は5kN以上であることが好ましく、10k以上であることがより好ましく、30kN以上であることがさらに好ましい。破断荷重が3kN以上であれば、優れた強度を有する耐震補強材10が得られる。 It is desirable that the seismic retrofitting material 10 of the present embodiment has a breaking load of 3 to 300 kN. Depending on the location and construction methods used as seismic reinforcement, it is preferable that the lower limit value is more than 5 kN, more preferably at least 10k N, further preferably at least 30 kN. When the breaking load is 3 kN or more, the seismic retrofitting material 10 having excellent strength can be obtained.

一方、上限値は200kN以下であることが好ましく、100kN以下であることがより好ましい。300kNを超えると、継手11や棒状繊維強化複合材12が太くなり、耐震補強材10が重くなる。また、継手11の太さを太くしたり、長さを長くしたり、継手11と棒状繊維強化複合材12との接合部や、継手11と他の部材との接合部の強度を高める必要がでてくるおそれがあり、耐震補強された建築物の外観品位を損なうおそれがある。 On the other hand, the upper limit is preferably 200 kN or less, and more preferably 100 kN or less. If it exceeds 300 kN, the joint 11 and the rod-shaped fiber reinforced composite material 12 become thick, and the seismic reinforcing material 10 becomes heavy. Further, it is necessary to increase the thickness or length of the joint 11, increase the strength of the joint between the joint 11 and the rod-shaped fiber reinforced composite material 12, or increase the strength of the joint between the joint 11 and other members. There is a risk that the exterior quality of the earthquake-resistant reinforced building will be impaired.

棒状繊維強化複合材12は、その密度が、1.0〜2.5g/cm3であることが望ましい。下限値は、好ましくは1.2g/cm3以上、より好ましくは1.4g/cm3以上がよい。1.0g/cm3以上であれば、優れた強度を有する耐震補強材10が得られる。一方、上限値は、好ましくは2.2g/cm3以下、より好ましくは2.0g/cm3、さらに好ましくは1.8g/cm3以下がよい。2.5g/cm3以下であれば、軽い耐震補強材10が得られる。 It is desirable that the density of the rod-shaped fiber reinforced composite material 12 is 1.0 to 2.5 g / cm 3 . The lower limit is preferably 1.2 g / cm 3 or more, and more preferably 1.4 g / cm 3 or more. If it is 1.0 g / cm 3 or more, a seismic retrofitting material 10 having excellent strength can be obtained. On the other hand, the upper limit is preferably 2.2 g / cm 3 or less, more preferably 2.0 g / cm 3 , and even more preferably 1.8 g / cm 3 or less. If it is 2.5 g / cm 3 or less, a light seismic reinforcing material 10 can be obtained.

また、棒状繊維強化複合材12の質量は、2〜150g/mであることが望ましい。下限値は、好ましくは5g/m以上、より好ましくは10g/m、さらに好ましくは40g/m以上がよい。2g/m以上であれば、優れた強度を有する耐震補強材10が得られる。一方、上限値は、好ましくは120g/m以下、より好ましくは100g/m以下である。150g/m以下であれば軽い耐震補強材10が得られる。 Further, the mass of the rod-shaped fiber reinforced composite material 12 is preferably 2 to 150 g / m. The lower limit is preferably 5 g / m or more, more preferably 10 g / m, and even more preferably 40 g / m or more. If it is 2 g / m or more, a seismic retrofitting material 10 having excellent strength can be obtained. On the other hand, the upper limit is preferably 120 g / m or less, more preferably 100 g / m or less. If it is 150 g / m or less, a light seismic retrofitting material 10 can be obtained.

また、棒状繊維強化複合材12は、引張強さが100〜5000MPaであることが望ましい。下限値について、好ましくは500MPa以上が良く、より好ましくは1000MPa以上であるとよい。100MPa以上であれば、優れた強度を有する耐震補強材10が得られる。一方、上限値について、好ましくは4000MPa以下が良く、より好ましくは3000MPa以下がよい。5000MPaを超えると耐震補強材が重くなってしまったり、柔軟性を失ってしまったりして、巻き取っての移動や保管ができなくなるおそれがある。 Further, it is desirable that the rod-shaped fiber reinforced composite material 12 has a tensile strength of 100 to 5000 MPa. The lower limit is preferably 500 MPa or more, and more preferably 1000 MPa or more. If it is 100 MPa or more, a seismic retrofitting material 10 having excellent strength can be obtained. On the other hand, the upper limit value is preferably 4000 MPa or less, more preferably 3000 MPa or less. If it exceeds 5000 MPa, the seismic retrofitting material may become heavy or lose its flexibility, and it may not be possible to wind it up and move or store it.

継手11と棒状繊維強化複合材12の接合は、接着剤を用いて接合することができる。接着剤としては、エポキシ系、メラミン系、シリコーン系、フェノール系、天然ゴム、合成ゴムなどのゴム系、α―オレフィン系、アクリル系、酢酸ビニル系、ウレタン系などが挙げられる。 The joint 11 and the rod-shaped fiber reinforced composite material 12 can be joined by using an adhesive. Examples of the adhesive include epoxy-based, melamine-based, silicone-based, phenol-based, natural rubber, rubber-based adhesives such as synthetic rubber, α-olefin-based, acrylic-based, vinyl acetate-based, and urethane-based adhesives.

また、継手11の中空部11aや棒状繊維強化複合材12の継手11との接合部に凹凸を設けて接合してもよい。たとえば、継手11の中空部11aに凹部、棒状繊維強化複合材12に凸部を設けて接合してもよい。また、継手11の中空部11aと棒状繊維強化複合材12の中空部11aの挿入部分に螺子を切って、雌螺子と雄螺子を形成し、接合してもよい。 Further, the hollow portion 11a of the joint 11 and the joint portion of the rod-shaped fiber reinforced composite material 12 with the joint 11 may be joined by providing unevenness. For example, the hollow portion 11a of the joint 11 may be provided with a concave portion, and the rod-shaped fiber reinforced composite material 12 may be provided with a convex portion for joining. Further, a female screw and a male screw may be formed and joined by cutting a screw in the hollow portion 11a of the joint 11 and the insertion portion of the hollow portion 11a of the rod-shaped fiber reinforced composite material 12.

なお、仮に、金属の継手と棒状繊維強化複合材とを接合する場合には、接着剤の金属に対する接着力と棒状繊維強化複合材に対する接着力とが大きく異なるため、金属の継手の中空部に螺子を切るなどして凹凸を設けないと、金属の継手と棒状繊維強化複合材の接合部の強度が十分ではないおそれがある。 If a metal joint and a rod-shaped fiber reinforced composite material are to be joined, the adhesive force of the adhesive to the metal and the adhesive force to the rod-shaped fiber reinforced composite material are significantly different, so that the hollow portion of the metal joint is covered. If unevenness is not provided by cutting a screw or the like, the strength of the joint between the metal joint and the rod-shaped fiber reinforced composite material may not be sufficient.

しかしながら、本実施形態では、後述するように、継手11にも棒状繊維強化複合材12にもそれぞれ樹脂が使用されているため、それぞれの樹脂に対し、共に接着力の優れた接着剤を用いることにより、継手11の中空部11aに螺子を切るなどの凹凸を付与しなくとも、優れた強度を有する耐震補強材10が容易に得られる。そのため、継手11と棒状繊維強化複合材12およびこれらの接合部の強度のバランスがとりやすく、外観品位に優れ、強度の安定した耐震補強材10が得られる。
また、継手11が繊維強化複合材であるため、金属に比べて軽く、得られる耐震補強材10も軽い物が得られる。
また、継手11と棒状繊維強化複合材12の接着には、もちろん接着剤と凹凸を有するものを併用して接合してもよい。
However, in the present embodiment, as will be described later, since resins are used for both the joint 11 and the rod-shaped fiber reinforced composite material 12, an adhesive having excellent adhesive strength is used for each resin. As a result, the seismic retrofitting material 10 having excellent strength can be easily obtained without giving unevenness such as cutting a screw to the hollow portion 11a of the joint 11. Therefore, the strength of the joint 11, the rod-shaped fiber reinforced composite material 12, and the joint portion thereof can be easily balanced, the appearance quality is excellent, and the seismic retrofitting material 10 having stable strength can be obtained.
Further, since the joint 11 is a fiber reinforced composite material, it is lighter than metal, and the obtained seismic reinforcing material 10 is also lighter.
Further, for bonding the joint 11 and the rod-shaped fiber reinforced composite material 12, of course, an adhesive and a material having irregularities may be used in combination.

また、継手11の端部の開放された中空部11aは、継手11の棒状繊維強化複合材12が接合されていない他の一方の端部にも有していてもよい。また、継手11の両端に中空部11aを有し、棒状繊維強化複合材12が継手11の両端に接合されていてもよい。また、継手11の一方に棒状繊維強化複合材12が接合され、他の一方に、金属製の材料、たとえば、丸鋼の鉄筋や丸鋼に螺子を切った鉄筋、異形鉄筋や、柱や梁などに本実施形態の耐震補強材10を取り付けるための定着治具が接合されていてもよい。 Further, the open hollow portion 11a at the end of the joint 11 may be provided at the other end to which the rod-shaped fiber reinforced composite material 12 of the joint 11 is not joined. Further, the joint 11 may have hollow portions 11a at both ends, and the rod-shaped fiber reinforced composite material 12 may be joined to both ends of the joint 11. Further, a rod-shaped fiber reinforced composite material 12 is joined to one of the joints 11, and a metal material such as a round steel reinforcing bar or a round steel threaded reinforcing bar, a deformed reinforcing bar, a column or a beam is joined to the other one. A fixing jig for attaching the seismic retrofitting member 10 of the present embodiment may be joined to the above.

なお、金属製の筋材を用いる場合には、継手11との接着強度の観点より、筋材の表面に凹凸を有するものが好ましい。
また、継手11の一方に金属製の材料を接合して用いる場合には、当該金属製の材料は、柱や梁に溶接やボルト、釘、ワイヤー、プレートなどを用いて直接接続するように用いることにより、建築物の負荷が軽減される。
また、継手11は、一方の端部付近、また、両方の端部付近などの一部が中空であって、他の部分は中空で無い物であってもよいし、一方の端から他方の端まで貫通している管状物であってもよい。
When a metal reinforcing material is used, it is preferable that the surface of the reinforcing material has irregularities from the viewpoint of adhesive strength with the joint 11.
When a metal material is joined to one of the joints 11 and used, the metal material is used so as to be directly connected to a column or beam by welding, bolts, nails, wires, plates, or the like. As a result, the load on the building is reduced.
Further, the joint 11 may be partially hollow in the vicinity of one end or in the vicinity of both ends, and the other portion may not be hollow, or from one end to the other. It may be a tubular object that penetrates to the end.

本実施形態の継手11の長さは、必要とする強度に応じて設定すればよいが、10mm〜1000mmがよい。また、外径の太さも必要とする強度に応じて設定すればよいが、3mm〜500mmがよい。なお、施工後の建築物の外観上の観点からは継手11の長さは短い方が、継手11の太さは細い方が好ましく、長さは50cm以下、30cm以下、20cm以下がより好ましく、太さは、10cm以下、5cm以下、3cm以下がより好ましい。また、中空部11aの継手11の長さ方向の長さや太さも、耐震補強材10として必要とされる強度および棒状繊維強化複合材12の太さや強度に応じて設定すればよいが、中空部11aの継手11の長さ方向の長さは10mm〜500mm、中空部11aの太さは2mm〜250mmがよい。 The length of the joint 11 of the present embodiment may be set according to the required strength, but is preferably 10 mm to 1000 mm. Further, the thickness of the outer diameter may be set according to the required strength, but 3 mm to 500 mm is preferable. From the viewpoint of the appearance of the building after construction, the length of the joint 11 is preferably short, the thickness of the joint 11 is preferably thin, and the length is more preferably 50 cm or less, 30 cm or less, and 20 cm or less. The thickness is more preferably 10 cm or less, 5 cm or less, and 3 cm or less. Further, the length and thickness of the joint 11 of the hollow portion 11a in the length direction may also be set according to the strength required for the seismic retrofitting material 10 and the thickness and strength of the rod-shaped fiber reinforced composite material 12, but the hollow portion The length of the joint 11 of 11a in the length direction is preferably 10 mm to 500 mm, and the thickness of the hollow portion 11a is preferably 2 mm to 250 mm.

なお、一般的なM12の鋼材製のボルトを利用した引張材では、破断荷重として46kNのものが用いられているが、本実施形態にて46kNの破断荷重を得るためには、継手の長さは20cm以上が好ましい。
継手の長さが20cm未満の場合、46kNの荷重がかかると、継手の内層と外層の間で滑りが発生するなどして、継手が破壊されるおそれがある。46kN破断荷重に耐える耐震補強材の場合には継手の長さは、好ましくは25cm以上がよい。
また、その際の棒状繊維強化複合材12の継手11への挿入長さは8cm以上が好ましい。より好ましくは10cm以上、さらに好ましくは12cm以上がよい。挿入長さが8cm未満の場合、46kNの荷重がかかった場合に、棒状繊維強化複合材12が、継手11から抜けるおそれがある。
また、継手11の他の一方に一般的なM12の鋼材製のボルトを挿入する場合には、その挿入長さは6cm以上であるとよく、8cm以上であるとより好ましい。挿入長さが6cm未満の場合、M12の鋼材製ボルトが継手11から抜けるおそれがある。
また、一定以上の力がかかった場合に、耐震補強材10が壊れるようにして、建築物に免震性を付与する場合には、継手11と棒状繊維強化複合材12や継手11に接続された部材との少なくとも一方が、一定の力以上で継手11から抜けるようにしたり、継手11が破壊されるような強度としたり、他の部材として極低降伏鋼を用いるなどしてもよい。
In addition, in the tensile material using a general M12 steel bolt, a breaking load of 46 kN is used, but in order to obtain a breaking load of 46 kN in this embodiment, the length of the joint is used. Is preferably 20 cm or more.
If the length of the joint is less than 20 cm and a load of 46 kN is applied, the joint may be broken due to slippage between the inner layer and the outer layer of the joint. In the case of a seismic retrofitting material that can withstand a breaking load of 46 kN, the length of the joint is preferably 25 cm or more.
Further, the insertion length of the rod-shaped fiber reinforced composite material 12 into the joint 11 at that time is preferably 8 cm or more. More preferably 10 cm or more, still more preferably 12 cm or more. If the insertion length is less than 8 cm, the rod-shaped fiber reinforced composite material 12 may come off from the joint 11 when a load of 46 kN is applied.
Further, when a general M12 steel bolt is inserted into the other one of the joint 11, the insertion length is preferably 6 cm or more, more preferably 8 cm or more. If the insertion length is less than 6 cm, the steel bolt of M12 may come off from the joint 11.
Further, when the seismic isolation reinforcing material 10 is broken when a certain force or more is applied to impart seismic isolation to the building, the joint 11 is connected to the rod-shaped fiber reinforced composite material 12 or the joint 11. At least one of the members may be pulled out of the joint 11 with a certain force or more, the strength may be such that the joint 11 is broken, or ultra-low yield steel may be used as the other member.

また、本実施形態の耐震補強材10は、継手11および棒状繊維強化複合材12の少なくとも一方が着色されているとよい。継手11および棒状繊維強化複合材12は、後述するように、繊維と樹脂との複合材料であることより着色が容易であり、任意の色に着色することができる。そのため、耐震補強を行う建築物の補強部分の色に合わせるなどすることにより、より外観品位の低下を抑制することができる。 Further, in the seismic retrofitting material 10 of the present embodiment, at least one of the joint 11 and the rod-shaped fiber reinforced composite material 12 may be colored. As will be described later, the joint 11 and the rod-shaped fiber reinforced composite material 12 are easier to color than being a composite material of fibers and resin, and can be colored in any color. Therefore, it is possible to further suppress the deterioration of the appearance quality by matching the color of the reinforced portion of the building to be seismically reinforced.

また、本実施形態の耐震補強材10の全体の質量は、5kg以下であるとよい。好ましくは3kg以下、より好ましくは1kg以下がよい。棒状繊維強化複合材12の長さ、太さや材質、継手11の太さ、長さや材質、また、その他接合される材料により、耐震補強材10の全体の質量は変わるが、重機等をもちいなくとも、運搬が可能で、高所での作業性の観点より、5kg以下が好ましい。本実施形態の耐震補強材であれば容易に上記の質量以下の耐震補強材が得られる。また、下限は、特に限定されないが、強度の観点からは5g以上が好ましい。 Further, the total mass of the seismic retrofitting member 10 of the present embodiment is preferably 5 kg or less. It is preferably 3 kg or less, more preferably 1 kg or less. The total mass of the seismic retrofitting material 10 varies depending on the length, thickness and material of the rod-shaped fiber reinforced composite material 12, the thickness, length and material of the joint 11, and other materials to be joined, but no heavy machinery or the like is used. In both cases, 5 kg or less is preferable from the viewpoint of transportability and workability in high places. With the seismic retrofitting material of the present embodiment, a seismic retrofitting material having the above mass or less can be easily obtained. The lower limit is not particularly limited, but is preferably 5 g or more from the viewpoint of strength.

(継手)
本実施形態の継手11は、棒状繊維強化複合材12と他の部材とを接合するための部材であって、繊維強化複合材からなり、少なくとも一方が開放された中空状の中空部11aを有する柱状物である。
継手11の密度は1.0〜5.0g/cm3であるとよい。上限値は、好ましくは4.0g/cm3以下であるとよく、より好ましくは3.0g/cm3以下、さらに好ましくは2.0g/cm3以下であるとよい。密度が5.0g/cm3以下であれば軽い耐震補強材10が得られる。
一方、下限値は、好ましくは1.3g/cm3以上であるとよく、より好ましくは1.5g/cm3以上であるとよい。密度が、1.0g/cm3以上であると耐震補強材10として十分な強度を有するものを得ることができる。
(Joining)
The joint 11 of the present embodiment is a member for joining the rod-shaped fiber reinforced composite material 12 and another member, is made of the fiber reinforced composite material, and has a hollow hollow portion 11a in which at least one of them is open. It is a columnar object.
The density of the joint 11 is preferably 1.0 to 5.0 g / cm 3 . The upper limit value is preferably 4.0 g / cm 3 or less, more preferably 3.0 g / cm 3 or less, and further preferably 2.0 g / cm 3 or less. If the density is 5.0 g / cm 3 or less, a light seismic reinforcing material 10 can be obtained.
On the other hand, the lower limit value is preferably 1.3 g / cm 3 or more, and more preferably 1.5 g / cm 3 or more. When the density is 1.0 g / cm 3 or more, a seismic retrofitting material 10 having sufficient strength can be obtained.

また、質量は50g/m〜5000g/mであるとよい。上限値は、好ましくは2000g/m以下がよく、より好ましくは1000g/m、さらに好ましくは500g/m以下がよい。質量が5000g/m以下であれば、軽い耐震補強材10を得ることができる。一方、下限値は、好ましくは100g/m以上がよく、より好ましくは200g/m以上、さらに好ましくは300g/m以上がよい。質量が50g/m以上であれば、十分な強度を有する耐震補強材が得られる。 The mass is preferably 50 g / m to 5000 g / m. The upper limit is preferably 2000 g / m or less, more preferably 1000 g / m, and even more preferably 500 g / m or less. If the mass is 5000 g / m or less, a light seismic retrofitting material 10 can be obtained. On the other hand, the lower limit is preferably 100 g / m or more, more preferably 200 g / m or more, and further preferably 300 g / m or more. When the mass is 50 g / m or more, a seismic reinforcing material having sufficient strength can be obtained.

継手11は、繊維強化複合材からなり、繊維材料と固化剤とを成形し、固化し、一体化したものである。
用いられる繊維材料としては、例えば、炭素繊維、バサルト繊維、パラ系アラミド繊維、メタ系アラミド繊維、超高分子量ポリエチレン繊維、ポリアリレート繊維、PBO(ポリパラフェニレンベンズオキサゾール)繊維、ポリフェニレンサルファイド(PPS)繊維、ポリイミド繊維、フッ素繊維、ポリビニルアルコール(PVA繊維)などが使用できる。用いられる繊維材料は、特に、難燃性、強度、耐光性の観点より、炭素繊維またはガラス繊維が好ましい。難燃性の観点からはガラス繊維が好ましい。また、得られる耐震補強材10の破断強度の向上の観点からは、棒状繊維強化複合材12に用いられる繊維材料と同じものを用いるとよい。
The joint 11 is made of a fiber-reinforced composite material, and is formed by molding, solidifying, and integrating the fiber material and the solidifying agent.
Examples of the fiber material used include carbon fiber, basalt fiber, para-aramid fiber, meta-aramid fiber, ultrahigh molecular weight polyethylene fiber, polyarylate fiber, PBO (polyparaphenylene benzoxazole) fiber, and polyphenylene sulfide (PPS). Fibers, polyimide fibers, fluorine fibers, polyvinyl alcohol (PVA fibers) and the like can be used. The fiber material used is particularly preferably carbon fiber or glass fiber from the viewpoint of flame retardancy, strength, and light resistance. Glass fiber is preferable from the viewpoint of flame retardancy. Further, from the viewpoint of improving the breaking strength of the obtained seismic reinforcing material 10, it is preferable to use the same fiber material as that used for the rod-shaped fiber reinforced composite material 12.

また、継手11に用いられる固化剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれも使用できる。また、繊維材料と親和性の高い固化剤が好ましい。特に加熱することにより可変性を持たせることができるため、また、継手11と棒状繊維強化複合材12とを、接着剤を用いて接合した場合の接着性に優れるとの観点からは、固化剤として熱可塑性樹脂が好ましく用いられる。
固化剤として、具体的には、ポリエーテルエーテルケトン(PEEK)、ポリプロピレン、ポリエチレン、ポリスチレン、ポリアミド(ナイロン6、ナイロン66、ナイロン12、ナイロン42等)、ABS樹脂、アクリル樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、ポリフェニレンオキサイド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、不飽和ポリエステル、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルイミド、ポリアリレート、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、フェノール樹脂、シリコーン樹脂、ポリカーボネート樹脂、レゾルシノール樹脂などが挙げられるが、これに制限されない。接着性の観点からは熱可塑性エポキシ樹脂が好ましい。また、棒状繊維強化複合材12にて用いた樹脂と同様のものが接着性の観点から好ましい。
Further, as the solidifying agent used for the joint 11, either a thermoplastic resin or a thermosetting resin can be used. Further, a solidifying agent having a high affinity with the fiber material is preferable. In particular, since it is possible to give variability by heating, and from the viewpoint of excellent adhesiveness when the joint 11 and the rod-shaped fiber reinforced composite material 12 are joined using an adhesive, a solidifying agent. A thermoplastic resin is preferably used.
As the solidifying agent, specifically, polyetheretherketone (PEEK), polypropylene, polyethylene, polystyrene, polyamide (nylon 6, nylon 66, nylon 12, nylon 42, etc.), ABS resin, acrylic resin, vinyl chloride resin, chloride. Vinylidene resin, polyphenylene oxide, polybutylene terephthalate, polyethylene terephthalate, unsaturated polyester, polysulfon, polyethersulfone, polyetherimide, polyallylate, epoxy resin, urethane resin, polyimide resin, phenol resin, silicone resin, polycarbonate resin, resorcinol Examples include, but are not limited to, resin. From the viewpoint of adhesiveness, a thermoplastic epoxy resin is preferable. Further, a resin similar to the resin used in the rod-shaped fiber reinforced composite material 12 is preferable from the viewpoint of adhesiveness.

また、上記の材料の他に硬化剤、触媒、架橋剤、顔料などの着色剤、触媒、紫外線吸収剤、酸化防止剤、耐光向上剤などを含んでいてもよい。 In addition to the above materials, a curing agent, a catalyst, a cross-linking agent, a colorant such as a pigment, a catalyst, an ultraviolet absorber, an antioxidant, a light resistance improver, and the like may be contained.

また、本実施形態の継手11の形状は、柱状が好ましく、その長さ方向の断面形状は、円形、楕円形、三角形、四角形、五角形、六角形等の多角形など特に限定されものではないが、強度の観点からは円形が好ましい。
なお、継手11として、具体的にはAGCマテックス株式会社から提供されているプラアロイ(登録商標)などを用いることができる。
The shape of the joint 11 of the present embodiment is preferably columnar, and the cross-sectional shape in the length direction thereof is not particularly limited to polygons such as circles, ellipses, triangles, quadrangles, pentagons, and hexagons. From the viewpoint of strength, a circular shape is preferable.
As the joint 11, specifically, a plastic alloy (registered trademark) provided by Agc Matex Co., Ltd. or the like can be used.

また、本実施形態の継手11は、継手11の形状を凹部形成した型を用いて、型の中に樹脂と任意の長さにカットした繊維材料を含むものを注入し、加熱、加熱および加圧や、冷却等を行い製造する方法が挙げられる。また、複数本の長繊維の繊維材料を平行に中空状に配置し、繊維材料を繊維軸方向に移動させながら、樹脂溶液に浸漬し、中空部を形成するための型を通過させ、長尺の中空の管状部を製造した後に、任意の長さに切断し、継手を得る製造方法が挙げられる。当該方法によれば繊維材料の繊維軸方向が、継手11の長さ方向と同じ向きに配置される。得られる耐震補強材10の破断強度などの引張強度向上の観点からは、繊維材料の繊維軸方向が、継手11の長さ方向と同じ向きに配置されているものが好ましい。
なお、本実施形態の継手11の製造方法は、上記の製造方法に限定されるものではない。
Further, as the joint 11 of the present embodiment, using a mold in which the shape of the joint 11 is formed as a recess, a mold containing a resin and a fiber material cut to an arbitrary length is injected into the mold, and heating, heating and addition are performed. Examples thereof include a method of manufacturing by performing pressure, cooling, and the like. In addition, a plurality of long fiber fiber materials are arranged in parallel in a hollow shape, and while the fiber materials are moved in the fiber axis direction, they are immersed in a resin solution and passed through a mold for forming a hollow portion to be long. An example is a manufacturing method in which a hollow tubular portion of the above is manufactured and then cut to an arbitrary length to obtain a joint. According to this method, the fiber axial direction of the fiber material is arranged in the same direction as the length direction of the joint 11. From the viewpoint of improving the tensile strength such as the breaking strength of the obtained seismic reinforcing material 10, it is preferable that the fiber axial direction of the fiber material is arranged in the same direction as the length direction of the joint 11.
The manufacturing method of the joint 11 of the present embodiment is not limited to the above manufacturing method.

(棒状繊維強化複合材)
本実施形態の棒状繊維強化複合材12は、繊維材料を束ねてなる繊維束を固化剤により一体化したものである。
用いられる繊維材料としては、例えば、炭素繊維、バサルト繊維、パラ系アラミド繊維、メタ系アラミド繊維、超高分子量ポリエチレン繊維、ポリアリレート繊維、PBO(ポリパラフェニレンベンズオキサゾール)繊維、ポリフェニレンサルファイド(PPS)繊維、ポリイミド繊維、フッ素繊維、ポリビニルアルコール(PVA繊維)などが使用できる。用いられる繊維材料は、特に、難燃性、強度、耐光性の観点より、炭素繊維またはガラス繊維が好ましい。難燃性の観点からはガラス繊維が好ましい。また、耐震補強材の引張強度の観点からは、継手に用いられる繊維材料と同じものを用いるとよい。
(Stick fiber reinforced composite material)
The rod-shaped fiber-reinforced composite material 12 of the present embodiment is a fiber bundle formed by bundling fiber materials integrated with a solidifying agent.
Examples of the fiber material used include carbon fiber, basalt fiber, para-aramid fiber, meta-aramid fiber, ultrahigh molecular weight polyethylene fiber, polyarylate fiber, PBO (polyparaphenylene benzoxazole) fiber, and polyphenylene sulfide (PPS). Fibers, polyimide fibers, fluorine fibers, polyvinyl alcohol (PVA fibers) and the like can be used. The fiber material used is particularly preferably carbon fiber or glass fiber from the viewpoint of flame retardancy, strength, and light resistance. Glass fiber is preferable from the viewpoint of flame retardancy. Further, from the viewpoint of the tensile strength of the seismic retrofitting material, it is preferable to use the same fiber material as that used for the joint.

以下、繊維材料として炭素繊維、特に炭素繊維を棒状繊維強化複合材12の芯材として用いたものを例として、詳細に説明を行う。以下、炭素繊維を芯材として用いた棒状繊維強化複合材12を棒状炭素繊維複合材12ともいう。なお、炭素繊維以外の繊維材料を用いたものを除くものではない。 Hereinafter, a detailed description will be given of an example in which carbon fiber is used as the fiber material, particularly carbon fiber is used as the core material of the rod-shaped fiber reinforced composite material 12. Hereinafter, the rod-shaped fiber reinforced composite material 12 using carbon fiber as a core material is also referred to as a rod-shaped carbon fiber composite material 12. It does not exclude those using fiber materials other than carbon fiber.

炭素繊維を複数本(通常、数千本から数十万本、あるいは数百万本)束ねた炭素繊維束を用いる。炭素繊維束は、炭素繊維束の長さ方向に垂直に切断した場合のその断面は円形状、扁平状等任意であってもよいが、円形状が好ましい。本実施形態の棒状炭素繊維複合材12では、炭素繊維の束は所定の回数の撚りがかけられた状態で固化剤により、一体化されていると好ましい。炭素繊維束の撚り数は、得られる棒状繊維強化複合材12の曲げ応力に対する耐性、炭素繊維束のバラケ防止性、炭素繊維束の撚りに対する強度(撚りにより炭素繊維糸が切れない)や後に説明する棒状繊維強化複合材12−1を得る工程において、固化剤が付与され炭素繊維束と拘束材とが一体化される前の状態のときに拘束材の間から炭素繊維束が飛び出す(目むき)ことが無いようにすることを考慮して決定される。
炭素繊維束の撚り数は、0〜100回/m、好ましくは2〜50回/mであり、より好ましくは5〜40回/mであり、さらに好ましくは10〜30回/mである。
A carbon fiber bundle in which a plurality of carbon fibers (usually thousands to hundreds of thousands, or millions) are bundled is used. The carbon fiber bundle may have an arbitrary cross section such as a circular shape or a flat shape when cut perpendicularly to the length direction of the carbon fiber bundle, but a circular shape is preferable. In the rod-shaped carbon fiber composite material 12 of the present embodiment, it is preferable that the bundles of carbon fibers are integrated with a solidifying agent in a state of being twisted a predetermined number of times. The number of twists of the carbon fiber bundle will be described later, such as the resistance to the bending stress of the obtained rod-shaped fiber reinforced composite material 12, the anti-breaking property of the carbon fiber bundle, the strength against the twist of the carbon fiber bundle (the carbon fiber yarn is not broken by the twist), and the number of twists. In the step of obtaining the rod-shaped fiber reinforced composite material 12-1, the carbon fiber bundle pops out from between the restraining materials before the solidifying agent is applied and the carbon fiber bundle and the restraining material are integrated (peeling). ) Is decided in consideration of avoiding things.
The number of twists of the carbon fiber bundle is 0 to 100 times / m, preferably 2 to 50 times / m, more preferably 5 to 40 times / m, and further preferably 10 to 30 times / m.

棒状繊維強化複合材12は、直径0.5〜20mmであることが好ましく、直径1〜5mmであることがより好ましい。なお、本実施形態の棒状繊維強化複合材12の直径は、固化剤で一体化した棒状繊維強化複合材12の長さ方向に垂直に切断した断面の直径あり、目的とする直径になるように炭素繊維束の直径、固化剤の付与量が選択される。棒状繊維強化複合材12の長さ方向に垂直に切断した際の断面が円でない場合は、その断面の長径を直径という。
また、棒状繊維強化複合材12の長さ方向に垂直に切断した際の断面は、円形状、扁平状等任意であってもよいが、円形状が好ましい。得られる棒状繊維強化複合材12の強度が安定するとともに、後に説明を行う棒状繊維強化複合材12−1や棒状繊維強化複合材12−2のストランド構造体やマルチストランド構造体とする場合にも、安定したストランド構造体を得ることができる。
また、棒状繊維強化複合材12の直径が直径0.5〜20mm(より好適には1〜5mm)であると、棒状繊維強化複合材12および後に説明する棒状繊維強化複合材12−1、棒状繊維強化複合材12−2(ストランド構造体やマルチストランド構造体)がドラムに巻きやすくなり、また、任意の形状に追従するなどのフレキシブル性を高めることができる。
The rod-shaped fiber reinforced composite material 12 preferably has a diameter of 0.5 to 20 mm, more preferably 1 to 5 mm in diameter. The diameter of the rod-shaped fiber reinforced composite material 12 of the present embodiment is the diameter of the cross section cut perpendicularly to the length direction of the rod-shaped fiber reinforced composite material 12 integrated with the solidifying agent so as to be the target diameter. The diameter of the carbon fiber bundle and the amount of the solidifying agent applied are selected. When the cross section of the rod-shaped fiber reinforced composite material 12 when cut perpendicularly to the length direction is not a circle, the major axis of the cross section is called a diameter.
Further, the cross section of the rod-shaped fiber reinforced composite material 12 when cut perpendicularly to the length direction may be circular, flat, or the like, but a circular shape is preferable. The strength of the obtained rod-shaped fiber-reinforced composite material 12 is stabilized, and also when the rod-shaped fiber-reinforced composite material 12-1 or the rod-shaped fiber-reinforced composite material 12-2, which will be described later, is used as a strand structure or a multi-strand structure. , A stable strand structure can be obtained.
Further, when the diameter of the rod-shaped fiber reinforced composite material 12 is 0.5 to 20 mm (more preferably 1 to 5 mm), the rod-shaped fiber reinforced composite material 12 and the rod-shaped fiber reinforced composite material 12-1 and rod-shaped described later will be described later. The fiber-reinforced composite material 12-2 (strand structure or multi-strand structure) can be easily wound around the drum, and the flexibility such as following an arbitrary shape can be enhanced.

本実施形態の炭素繊維は、ポリアクリロニトリル(PAN)系、ピッチ系のいずれの炭素繊維も使用できる。この中でも、得られる棒状繊維強化複合材12の強度と弾性率とのバランスの観点から、PAN系炭素繊維糸が好ましい。
また、この炭素繊維を束ねた炭素繊維束は、炭素繊維メーカーから供給される炭素繊維を3000本(3K)、6000本(6K)、12000本(12K)、24000本(24K)、40000本(40K)、60000本(60K)などに束ねた炭素繊維束を、必要とされる強度に応じて1本、または複数本(2本以上)束ねたものを用いることができる。炭素繊維を束ねた炭素繊維束を複数本束ねる場合の炭素繊維束の本数に特に制限はなく、目的用途に応じで適宜決定されるが、通常、100本以下である。
As the carbon fiber of the present embodiment, either polyacrylonitrile (PAN) -based carbon fiber or pitch-based carbon fiber can be used. Among these, the PAN-based carbon fiber yarn is preferable from the viewpoint of the balance between the strength and the elastic modulus of the obtained rod-shaped fiber reinforced composite material 12.
In addition, the carbon fiber bundles in which these carbon fibers are bundled include 3000 (3K), 6000 (6K), 12000 (12K), 24000 (24K), and 40,000 carbon fibers supplied by the carbon fiber manufacturer. One or a plurality (two or more) of carbon fiber bundles bundled in 40K), 60,000 fibers (60K), etc. can be used depending on the required strength. The number of carbon fiber bundles in the case of bundling a plurality of carbon fiber bundles in which carbon fibers are bundled is not particularly limited and is appropriately determined according to the intended use, but is usually 100 or less.

本実施形態の固化剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれも使用できる。また、炭素繊維と親和性の高い固化剤が好ましい。特に加熱することにより可変性を持たせることができるため、また、継手11と棒状繊維強化複合材12とを接着剤を用いて接合した場合の接着性に優れるとの観点からは、固化剤として熱可塑性樹脂が好ましく用いられる。
好適な具体例としては、ポリエーテルエーテルケトン(PEEK)、ポリプロピレン、ポリエチレン、ポリスチレン、ポリアミド(ナイロン6、ナイロン66、ナイロン12、ナイロン42等)、ABS樹脂、アクリル樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、ポリフェニレンオキサイド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルイミド、ポリアリレート、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、フェノール樹脂、シリコーン樹脂、ポリカーボネート樹脂、レゾルシノール樹脂などが挙げられるが、これに制限されない。
As the solidifying agent of the present embodiment, either a thermoplastic resin or a thermosetting resin can be used. Further, a solidifying agent having a high affinity for carbon fibers is preferable. In particular, as a solidifying agent, it can be made variable by heating, and from the viewpoint of excellent adhesiveness when the joint 11 and the rod-shaped fiber reinforced composite material 12 are joined using an adhesive. Thermoplastic resin is preferably used.
Suitable specific examples include polyetheretherketone (PEEK), polypropylene, polyethylene, polystyrene, polyamide (nylon 6, nylon 66, nylon 12, nylon 42, etc.), ABS resin, acrylic resin, vinyl chloride resin, vinylidene chloride resin. , Polyphenylene oxide, polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyethersulfone, polyetherimide, polyarylate, epoxy resin, urethane resin, polyimide resin, phenol resin, silicone resin, polycarbonate resin, resorcinol resin, etc. , Not limited to this.

この中でも酸やアルカリに対する耐久性の観点から、ポリエーテルエーテルケトン(PEEK)、アクリル樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、ポリエチレン樹脂、エポキシ樹脂、ウレタン樹脂、ポリカーボネート樹脂、レゾルシノール樹脂が好適であり、特に耐衝撃性に優れ、エポキシ樹脂が好適である。また、熱可塑性エポキシ樹脂であれば、ケトン溶剤に溶解が可能で素材分別しリサイクルができる。また、耐熱性の観点より、ポリイミド樹脂、シリコーン樹脂が好ましい。
また、継手11と棒状繊維強化複合材12とを接着剤を用いて接合した場合の接着性に優れるとの観点からは、固化剤として熱可塑性エポキシ樹脂が好ましく用いられる。
Of these, polyetheretherketone (PEEK), acrylic resin, vinyl chloride resin, vinylidene chloride resin, polyethylene resin, epoxy resin, urethane resin, polycarbonate resin, and resorcinol resin are preferable from the viewpoint of durability against acids and alkalis. In particular, it has excellent impact resistance, and an epoxy resin is suitable. Moreover, if it is a thermoplastic epoxy resin, it can be dissolved in a ketone solvent, and the material can be separated and recycled. Further, from the viewpoint of heat resistance, a polyimide resin and a silicone resin are preferable.
Further, from the viewpoint of excellent adhesiveness when the joint 11 and the rod-shaped fiber reinforced composite material 12 are joined using an adhesive, a thermoplastic epoxy resin is preferably used as the solidifying agent.

また、特に熱可塑性エポキシ樹脂の中でも、炭素繊維束に付与した後、重合する重合型の熱可塑性エポキシ樹脂が好ましく、特に直鎖状に重合する重合型の熱可塑性エポキシ樹脂がこのましい。
棒状炭素繊維複合材12の芯材に用いられる炭素繊維束に撚りがかけられたものや、後に説明を行う棒状炭素繊維複合材12−1のように炭素繊維束の周りが拘束材で覆われているものでは、炭素繊維束の内部にまで樹脂を含侵させることが困難である。
一方、重合型の熱可塑性エポキシ樹脂は、重合させる前の熱可塑性エポキシ樹脂を有機溶剤で希釈することができるので粘度調整が容易である。
そのため、有機溶媒で希釈した低粘度の樹脂溶液を用いることにより、撚りがかけられている炭素繊維束の内部まで(さらには拘束材で覆われている棒状炭素繊維複合材12−1であっても外周の拘束材から内部の炭素繊維束まで)重合前の熱可塑性エポキシ樹脂を含浸させることができる。重合前の熱可塑性エポキシ樹脂を炭素繊維束の内部に含侵させた後、当該重合型の熱可塑性エポキシ樹脂を重合させることにより炭素繊維束と拘束材が熱可塑性エポキシ樹脂で一体化された、強度の優れた棒状炭素繊維複合材12が得られる。
Further, among the thermoplastic epoxy resins, a polymerization type thermoplastic epoxy resin which is polymerized after being applied to a carbon fiber bundle is preferable, and a polymerization type thermoplastic epoxy resin which is polymerized linearly is particularly preferable.
The carbon fiber bundle used for the core material of the rod-shaped carbon fiber composite material 12 is twisted, and the carbon fiber bundle is covered with a restraining material such as the rod-shaped carbon fiber composite material 12-1 described later. It is difficult to impregnate the inside of the carbon fiber bundle with the resin.
On the other hand, in the polymerization type thermoplastic epoxy resin, the viscosity of the thermoplastic epoxy resin before polymerization can be easily adjusted because the thermoplastic epoxy resin can be diluted with an organic solvent.
Therefore, by using a low-viscosity resin solution diluted with an organic solvent, the rod-shaped carbon fiber composite material 12-1 is covered with a restraining material up to the inside of the twisted carbon fiber bundle. (From the restraining material on the outer circumference to the carbon fiber bundle on the inner side) can be impregnated with the thermoplastic epoxy resin before polymerization. After impregnating the inside of the carbon fiber bundle with the thermoplastic epoxy resin before polymerization, the carbon fiber bundle and the restraining material were integrated with the thermoplastic epoxy resin by polymerizing the polymerization type thermoplastic epoxy resin. A rod-shaped carbon fiber composite material 12 having excellent strength can be obtained.

また、加熱溶融することにより流動性を付与し用いられる一般的な熱可塑性樹脂は、粘度調整が困難であると共に、一般に結晶性樹脂であるためか加熱溶融を行うことにより結晶配列が変化し、当初の樹脂が有している強度などの性質が変質するおそれがあるが、重合型の熱可塑性エポキシ樹脂は、重合前および重合後も非晶質であるため、加熱溶融や加熱変形させても変質のリスクが小さい。 Further, it is difficult to adjust the viscosity of a general thermoplastic resin used by imparting fluidity by heating and melting, and the crystal arrangement changes by heating and melting, probably because it is generally a crystalline resin. There is a risk that the properties such as strength of the initial resin will change, but since the polymerized thermoplastic epoxy resin is amorphous before and after polymerization, it can be melted or deformed by heating. The risk of alteration is small.

炭素繊維束への上述の樹脂(固化剤)を付与する方法は、スプレーコート法や刷毛で炭素繊維に樹脂をコートする方法などでもよいが、生産性の観点から、ディップ−ニップ法や樹脂(固化剤)溶液にディップした後、ダイスを通して余分な樹脂を除去し、また、炭素繊維束の長さ方向に垂直な断面の断面形状を整える方法が好適である。 The method of applying the above-mentioned resin (solidifying agent) to the carbon fiber bundle may be a spray coating method or a method of coating the carbon fiber with the resin by a brush, but from the viewpoint of productivity, a dip-nip method or a resin (a resin (solidifying agent)) may be applied. After dipping into the solidifying agent) solution, a method of removing excess resin through a die and adjusting the cross-sectional shape of the cross section perpendicular to the length direction of the carbon fiber bundle is preferable.

また、棒状繊維強化複合材12は、固化剤により一体化した炭素繊維束のさらにその外周の全面を覆うように別途樹脂層が設けられていてもよい。不燃性向上の観点からは、ポリイミド樹脂やシリコーン樹脂や塩化ビニル樹脂を用いた樹脂層を設けるとよい。また、意匠性の観点からは、着色のための顔料などの着色剤を含む樹脂層を設けるとよい。これらの樹脂層は、熱可塑性樹脂、熱硬化性樹脂いずれであっても用いることはできるが、固化剤として、熱可塑性樹脂を用いた場合には、別途層に用いられる樹脂も熱可塑性樹脂が好ましい。 Further, the rod-shaped fiber reinforced composite material 12 may be provided with a separate resin layer so as to cover the entire outer periphery of the carbon fiber bundle integrated by the solidifying agent. From the viewpoint of improving nonflammability, it is preferable to provide a resin layer using a polyimide resin, a silicone resin, or a vinyl chloride resin. Further, from the viewpoint of designability, it is preferable to provide a resin layer containing a colorant such as a pigment for coloring. These resin layers can be used with either a thermoplastic resin or a thermosetting resin, but when a thermoplastic resin is used as the solidifying agent, the resin used for the separate layer is also a thermoplastic resin. preferable.

(棒状繊維強化複合材の変形例1)
本発明の他の実施形態の棒状繊維強化複合材について説明する。図2は棒状繊維強化複合材の第1変形例を示す図である。
図2に示す棒状繊維強化複合材12−1は、繊維材料を束ねてなる繊維束2がその周囲に拘束材3aを巻き回して結束され、当該繊維束2と当該拘束材3aとが共に固化剤(図示せず。)によって一体化されたものである。
なお、繊維束2がその周囲に拘束材3aを巻き回して結束される構造とすることにより、棒状繊維強化複合材12−1と接着剤との接触面積や構造的な抵抗が増加し、継手11と棒状繊維強化複合材12−1との接着力が向上し、得られる耐震補強材の引張強さ、破断荷重の大きさの観点より好ましい。
拘束材3a以外の基本的構成は、上記棒状繊維強化複合材12と同様であるため、適宜説明を省略する。
また、棒状繊維強化複合材12−1では、棒状繊維強化複合材12と同様に、繊維材料として炭素繊維、特に炭素繊維を芯材として用いたものを例として、詳細に説明を行う。以下、炭素繊維を束ねてなる繊維束2を炭素繊維束2ともいう。なお、炭素繊維以外の繊維材料を用いたものを除くものではない。
また、棒状繊維強化複合材12−1を棒状炭素繊維複合材12−1ともいう。なお、炭素繊維以外の繊維材料を用いたものを除くものではない。
(Modification example 1 of rod-shaped fiber reinforced composite material)
The rod-shaped fiber reinforced composite material of another embodiment of the present invention will be described. FIG. 2 is a diagram showing a first modification of the rod-shaped fiber reinforced composite material.
In the rod-shaped fiber reinforced composite material 12-1 shown in FIG. 2, a fiber bundle 2 formed by bundling fiber materials is bound by winding a restraining material 3a around the fiber bundle 2, and both the fiber bundle 2 and the restraining material 3a are solidified. It is integrated by an agent (not shown).
By forming the structure in which the fiber bundle 2 is bound by winding the restraining material 3a around the fiber bundle 2, the contact area and structural resistance between the rod-shaped fiber reinforced composite material 12-1 and the adhesive are increased, and the joint The adhesive strength between 11 and the rod-shaped fiber reinforced composite 12-1 is improved, which is preferable from the viewpoint of the tensile strength of the obtained seismic reinforcing material and the magnitude of the breaking load.
Since the basic configuration other than the restraining material 3a is the same as that of the rod-shaped fiber reinforced composite material 12, the description thereof will be omitted as appropriate.
Further, in the rod-shaped fiber reinforced composite material 12-1, the same as the rod-shaped fiber reinforced composite material 12, a carbon fiber as a fiber material, particularly a material using carbon fiber as a core material will be described in detail. Hereinafter, the fiber bundle 2 formed by bundling carbon fibers is also referred to as a carbon fiber bundle 2. It does not exclude those using fiber materials other than carbon fiber.
Further, the rod-shaped fiber reinforced composite material 12-1 is also referred to as a rod-shaped carbon fiber composite material 12-1. It does not exclude those using fiber materials other than carbon fiber.

拘束材3aは、炭素繊維束2を周囲面から炭素繊維がばらばらにならないように結束するとともに棒状繊維強化複合材12−1の形状を安定させることができるものである。本実施形態では、棒状繊維強化複合材12−1は、炭素繊維束2を拘束材3aで拘束して、そこに固化剤を付与することで、炭素繊維束2と拘束材3aとが固化剤によって一体化している。棒状繊維強化複合材12と同様に炭素繊維束2は撚りがかかっていると好ましい。 The restraining material 3a can bind the carbon fiber bundle 2 so that the carbon fibers do not fall apart from the peripheral surface, and can stabilize the shape of the rod-shaped fiber reinforced composite material 12-1. In the present embodiment, in the rod-shaped fiber reinforced composite material 12-1, the carbon fiber bundle 2 is restrained by the restraining material 3a and a solidifying agent is applied thereto, so that the carbon fiber bundle 2 and the restraining material 3a are solidified. Is integrated by. It is preferable that the carbon fiber bundle 2 is twisted as in the rod-shaped fiber reinforced composite material 12.

本実施形態の棒状繊維強化複合材12−1では、拘束材3aとなる繊維を炭素繊維束の外周に巻きまわして筒状の組紐(丸打)を組むことで、組紐状の拘束材3aを形成している。拘束材3aを組紐状にすることで、炭素繊維束2を結束すると共に、得られる棒状繊維強化複合材12−1の形状をより安定させることができ、また、拘束材3aが内部の炭素繊維束2を構成する炭素繊維の保護を行う保護層として機能する。また、日本伝統の組紐技術が用いられているため、伝統建築物に用いても外観品位の低下を抑制することができる。 In the rod-shaped fiber reinforced composite material 12-1 of the present embodiment, the braided fiber-reinforced composite material 3a is formed by winding the fiber serving as the restraining material 3a around the outer circumference of the carbon fiber bundle to assemble a tubular braid (rounding). Is forming. By forming the restraining material 3a into a braided shape, the carbon fiber bundle 2 can be bound and the shape of the obtained rod-shaped fiber reinforced composite material 12-1 can be made more stable, and the restraining material 3a is an internal carbon fiber. It functions as a protective layer that protects the carbon fibers that make up the bundle 2. In addition, since traditional Japanese braid technology is used, deterioration of appearance quality can be suppressed even when used in traditional buildings.

そのため、このような構成の棒状繊維強化複合材12−1を引張材等の耐震補強材として用いた場合では、安定した強度を発揮し、外観品位も良く、砂利などの鋭利物と接触しても断線することを防ぐことができる。
また、拘束材3aで拘束された炭素繊維束2を樹脂(固化剤)溶液にディップした後、ダイスで扱いて余分な樹脂を絞るときに炭素繊維束2の長さ方向に張力がかかるが、拘束材3aが組紐構造であれば編物のように目が開いてしまうのではなく、目が閉じた状態で組紐の径が細くなる。そのため、内部の炭素繊維束2の露出を抑えつつ、拘束材3aと炭素繊維束2の密着性を高めることができるので、得られる耐震補強材の強度の観点より好ましい。
Therefore, when the rod-shaped fiber reinforced composite material 12-1 having such a structure is used as a seismic reinforcing material such as a tensile material, it exhibits stable strength, has good appearance quality, and comes into contact with sharp objects such as gravel. Can also be prevented from breaking.
Further, after dipping the carbon fiber bundle 2 restrained by the restraining material 3a into a resin (solidifying agent) solution, tension is applied in the length direction of the carbon fiber bundle 2 when handling with a die and squeezing excess resin. If the restraining material 3a has a braided structure, the diameter of the braid is reduced with the eyes closed, instead of opening the eyes like a knit. Therefore, it is possible to improve the adhesion between the restraining material 3a and the carbon fiber bundle 2 while suppressing the exposure of the carbon fiber bundle 2 inside, which is preferable from the viewpoint of the strength of the obtained seismic reinforcing material.

なお、拘束材3aは炭素繊維束2を構成する炭素繊維がばらばらにならないように結束できればよく、拘束材3aの配置は組紐状に限定されない。また、炭素繊維束2の表面を拘束材3aで完全に被覆する必要もなく、炭素繊維束2の表面の一部が被覆されていなくてもよい。
他の拘束材による結束の例として、1本の拘束材を螺旋状に巻きつけて炭素繊維束を結束したり(図示せず。)、図3に示すように、炭素繊維束2の周囲面に拘束材3bとなる繊維を巻き回して目の粗い筒状の丸編を編んだ編紐状の拘束材3bによって炭素繊維束2を結束したり、図4に示すように、繊維等を所定間隔に配置した拘束材3cによって炭素繊維束2を結束したりする形態であってもよい。
一方で、炭素繊維束2の保護、棒状繊維強化複合材12−1の形状の安定による強度の安定、外観品位の低下の抑制との観点からは、図5に示すように、拘束材3dを組紐状にして、炭素繊維束2の表面全体を被覆することが好ましい。
The restraining material 3a may be bound so that the carbon fibers constituting the carbon fiber bundle 2 do not come apart, and the arrangement of the restraining material 3a is not limited to the braided shape. Further, it is not necessary to completely cover the surface of the carbon fiber bundle 2 with the restraining material 3a, and a part of the surface of the carbon fiber bundle 2 may not be covered.
As an example of binding by another restraining material, one restraining material is spirally wound to bind the carbon fiber bundle (not shown), or as shown in FIG. 3, the peripheral surface of the carbon fiber bundle 2 The carbon fiber bundle 2 is bound by the braided string-shaped restraining material 3b in which the fibers to be the restraining material 3b are wound around and the coarse-meshed tubular circular knitting is knitted, or the fibers and the like are specified as shown in FIG. The carbon fiber bundle 2 may be bound by the restraining materials 3c arranged at intervals.
On the other hand, from the viewpoints of protecting the carbon fiber bundle 2, stabilizing the strength by stabilizing the shape of the rod-shaped fiber reinforced composite material 12-1, and suppressing the deterioration of the appearance quality, as shown in FIG. 5, the restraining material 3d is used. It is preferable to form a braid and cover the entire surface of the carbon fiber bundle 2.

拘束材3a〜3dとしては、柔軟なものが好ましく、ポリアミド(ナイロン等)、ビニロン、ポリアクリル、ポリプロピレン、塩化ビニル、アラミド、セルロース、ポリアミド、ポリエステル、ポリアセタール等の合成繊維や、レーヨン等の再生繊維、アセテート等の半合成繊維、絹、羊毛、麻、綿などの天然繊維等が使用できる。また、熱安定性に優れる繊維が好ましく、ガラス繊維、バサルト繊維が好ましく、特にはガラス繊維が好ましい。ガラス繊維のように熱安定性に優れる繊維を用いることにより、熱がかかったときに、不燃性に優れるとともに、炭素繊維束2と拘束材3a〜3dとのずれの発生を抑制し、安定した引張に対する強度と不燃性を発現することができる。 The restraining materials 3a to 3d are preferably flexible, and are preferably synthetic fibers such as polyamide (nylon, etc.), vinylon, polyacrylic, polypropylene, vinyl chloride, aramid, cellulose, polyamide, polyester, polyacetal, and recycled fibers such as rayon. , Semi-synthetic fibers such as acetate, natural fibers such as silk, wool, linen and cotton can be used. Further, fibers having excellent thermal stability are preferable, glass fibers and basalt fibers are preferable, and glass fibers are particularly preferable. By using a fiber having excellent thermal stability such as glass fiber, it is excellent in nonflammability when heat is applied, and the occurrence of deviation between the carbon fiber bundle 2 and the restraint materials 3a to 3d is suppressed and stable. It can exhibit strength against tension and nonflammability.

なお、繊維強化複合材12−1においては、炭素繊維束2をより強固に結束するために、特に拘束材3a〜3dにより結束した炭素繊維束2に固化剤を含浸させ、拘束材3a〜3dと共に炭素繊維束2を硬化させることが好ましい。そうすることで、炭素繊維束2および拘束材3a〜3dを強固に一体化させることができる。 In the fiber-reinforced composite material 12-1, in order to bind the carbon fiber bundles 2 more firmly, the carbon fiber bundles 2 bound by the restraint materials 3a to 3d are impregnated with a solidifying agent, and the restraint materials 3a to 3d are impregnated. It is preferable to cure the carbon fiber bundle 2 at the same time. By doing so, the carbon fiber bundle 2 and the restraint materials 3a to 3d can be firmly integrated.

棒状繊維強化複合材12−1の太さは、直径1〜25mm、より好適には1〜10mm、さらにより好ましくは1〜5mmであると、棒状繊維強化複合材12−1および後に説明する棒状繊維強化複合材12−2(ストランド構造体やマルチストランド構造体)がドラムに巻きやすくなり、また、任意の形状に追従するなどのフレキシブル性を高めることができる。なお、本実施形態の棒状繊維強化複合材12−1の直径は、炭素繊維束2と当該拘束材3a〜3dと共に固化剤によって一体化した棒状繊維強化複合材12−1の長さ方向に垂直に切断した断面の直径であり、目的とする直径になるように炭素繊維束2の直径、固化剤の付与量が選択される。棒状繊維強化複合材12−1の長さ方向に垂直に切断し際の断面が円でない場合は、その断面の長径を直径という。 The thickness of the rod-shaped fiber-reinforced composite material 12-1 is 1 to 25 mm in diameter, more preferably 1 to 10 mm, and even more preferably 1 to 5 mm, the rod-shaped fiber-reinforced composite material 12-1 and the rod-shaped material described later. The fiber-reinforced composite material 12-2 (strand structure or multi-strand structure) can be easily wound around the drum, and flexibility such as following an arbitrary shape can be enhanced. The diameter of the rod-shaped fiber-reinforced composite material 12-1 of the present embodiment is perpendicular to the length direction of the rod-shaped fiber-reinforced composite material 12-1 integrated with the carbon fiber bundle 2 and the restraining materials 3a to 3d by a solidifying agent. It is the diameter of the cross section cut into the above, and the diameter of the carbon fiber bundle 2 and the amount of the solidifying agent applied are selected so as to have the desired diameter. When the cross section of the rod-shaped fiber reinforced composite 12-1 is not circular when cut perpendicularly to the length direction, the major axis of the cross section is called the diameter.

また、棒状繊維強化複合材12−1は、拘束材3a〜3dおよび固化剤が付与された炭素繊維束2の外周の全面を覆うように別途層(繊維材料からなる筒状体や樹脂層等)が設けられていてもよい。不燃性向上の観点から、ポリイミド樹脂やシリコーン樹脂や塩化ビニル樹脂を用いた樹脂層を設けるとよい。また、意匠性の観点からは、着色のための顔料などの着色剤を含む樹脂層を別途設けてもよい。これらの樹脂層は、熱可塑性樹脂、熱硬化性樹脂いずれであっても用いることはできるが、固化剤として、熱可塑性樹脂を用いた場合には、別途層に用いられる樹脂も熱可塑性樹脂が好ましい。 Further, the rod-shaped fiber reinforced composite material 12-1 is provided with a separate layer (cylindrical body made of fiber material, resin layer, etc.) so as to cover the entire outer circumference of the carbon fiber bundle 2 to which the restraining materials 3a to 3d and the solidifying agent are applied. ) May be provided. From the viewpoint of improving nonflammability, it is preferable to provide a resin layer using a polyimide resin, a silicone resin, or a vinyl chloride resin. Further, from the viewpoint of designability, a resin layer containing a colorant such as a pigment for coloring may be separately provided. These resin layers can be used with either a thermoplastic resin or a thermosetting resin, but when a thermoplastic resin is used as the solidifying agent, the resin used for the separate layer is also a thermoplastic resin. preferable.

(棒状繊維強化複合材の変形例2)
本発明の他の実施形態の棒状繊維強化複合材12−2について説明する。図6は棒状繊維強化複合材の第2変形例を示す図である。
棒状繊維強化複合材12−2は、上記の棒状繊維強化複合材12および棒状繊維強化複合材12−1のいずれか一方または両方を芯線として用い、これらを複数本、引き揃えたり、撚り合せたりして形成したストランド構造体である。
例えば、図6に示すように、棒状繊維強化複合材12−2が、上記の棒状繊維強化複合材12−1を7本備えてなり、中心に配置された1本の棒状繊維強化複合材12−1を他の6本の棒状繊維強化複合材12−1が取り囲む構造を有するストランド構造とすることにより、継手11と棒状繊維強化複合材12−2の接合において、棒状繊維強化複合材12−2と接着剤との接触面積や構造的な抵抗が増加し、継手と棒状繊維強化複合材12−2との接着力が向上し、得られる耐震補強材の引張強度の向上および安定性の観点より好ましい。
(Modification example 2 of rod-shaped fiber reinforced composite material)
The rod-shaped fiber reinforced composite material 12-2 of another embodiment of the present invention will be described. FIG. 6 is a diagram showing a second modification of the rod-shaped fiber reinforced composite material.
As the rod-shaped fiber reinforced composite material 12-2, one or both of the above-mentioned rod-shaped fiber reinforced composite material 12 and the rod-shaped fiber reinforced composite material 12-1 is used as a core wire, and a plurality of these are aligned or twisted together. It is a strand structure formed in the above.
For example, as shown in FIG. 6, the rod-shaped fiber-reinforced composite material 12-2 includes seven rod-shaped fiber-reinforced composite materials 12-1 described above, and one rod-shaped fiber-reinforced composite material 12 is arranged at the center. By forming -1 as a strand structure having a structure surrounded by the other six rod-shaped fiber-reinforced composite materials 12-1, the rod-shaped fiber-reinforced composite material 12- is used in joining the joint 11 and the rod-shaped fiber-reinforced composite material 12-2. The contact area and structural resistance between 2 and the adhesive are increased, the adhesive strength between the joint and the rod-shaped fiber reinforced composite 12-2 is improved, and the tensile strength and stability of the obtained seismic reinforcing material are improved. More preferable.

ストランド構造体を構成する芯線としては、棒状繊維強化複合材12、棒状繊維強化複合材12−1を例示したがこれに限定されず、本発明の棒状繊維強化複合材の構成のものであればいずれものでもよい。また、本実施形態における芯線おいて、芯線を構成する芯線は同一の芯線であるが、本発明の芯線の要件を満たす芯線であれば、異なる芯線を複合して用いてもよい。 Examples of the core wire constituting the strand structure include the rod-shaped fiber reinforced composite material 12 and the rod-shaped fiber reinforced composite material 12-1, but the present invention is not limited to this, and any core wire having the structure of the rod-shaped fiber reinforced composite material of the present invention can be used. Any one may be used. Further, in the core wire of the present embodiment, the core wire constituting the core wire is the same core wire, but different core wires may be used in combination as long as the core wire satisfies the requirements of the core wire of the present invention.

本実施形態に係る棒状繊維強化複合材12−2では、芯となる芯線と、芯となる芯線を取り囲む他の6本の芯線が撚り合されているストランド構造を有していることで、樹脂を用いて7本の芯線を一体化しなくとも、バラケを防ぎ一体化できる。棒状繊維強化複合材12−2は、さらにドラムに巻き曲げ応力がかけられた後、伸ばして用いた場合や、曲げ応力がかかる箇所にもちいても優れた引張強度を維持することができる。 The rod-shaped fiber reinforced composite material 12-2 according to the present embodiment has a strand structure in which the core wire as the core and the other six core wires surrounding the core wire as the core are twisted together. Even if the seven core wires are not integrated by using the above, it is possible to prevent the core wires from falling apart and integrate them. The rod-shaped fiber reinforced composite 12-2 can maintain excellent tensile strength even when it is stretched and used after the drum is further subjected to bending stress, or when it is used in a place where bending stress is applied.

また、撚りを形成する方向として、
炭素繊維束×ストランド構造体=S方向×Z方向、S方向×S方向、Z方向×Z方向、Z方向×S方向、のいずれでも可能である。
Also, as the direction of forming the twist,
Any of carbon fiber bundle × strand structure = S direction × Z direction, S direction × S direction, Z direction × Z direction, and Z direction × S direction is possible.

ストランド構造体の撚り数は、目的に応じて1.1〜50回/mで選択される。撚り数が少なすぎると、芯材単位でバラケやすくなる。一方、撚り数が多くなりすぎると引張強度が低下するおそれがある。芯線の本数が7〜37本の場合には、1.5〜20回/mが好ましい。より好ましくは2〜10回/mがよい。 The number of twists of the strand structure is selected at 1.1 to 50 times / m depending on the purpose. If the number of twists is too small, the core material tends to be separated. On the other hand, if the number of twists is too large, the tensile strength may decrease. When the number of core wires is 7 to 37, 1.5 to 20 times / m is preferable. More preferably, 2 to 10 times / m is preferable.

また、ストランド構造体を構成する芯線の本数は7本であるが、これに限定されず、目的とする性能(特に破断荷重)、用途を考慮して適宜決定され、特に限定されるものではないが、通常、2〜50本である。好ましくは、7〜37本がよい。
例えば、炭素繊維を24000本束ねたもの(24k)1本を炭素繊維束として用いた棒状炭素繊維複合材12または棒状炭素繊維複合材12−1の場合には、ストランド構造体を構成する芯線の本数は2本〜50本程度であるとブレース材等の用途として好適である。
The number of core wires constituting the strand structure is 7, but is not limited to this, and is appropriately determined in consideration of the target performance (particularly breaking load) and application, and is not particularly limited. However, it is usually 2 to 50 pieces. Preferably, 7 to 37 pieces are preferable.
For example, in the case of a rod-shaped carbon fiber composite material 12 or a rod-shaped carbon fiber composite material 12-1 in which one 24,000 carbon fibers bundled (24k) is used as a carbon fiber bundle, the core wire constituting the strand structure When the number of fibers is about 2 to 50, it is suitable for use as a brace material or the like.

なお、本実施形態の棒状繊維強化複合材12−2は、芯線として用いた一本の棒状炭素繊維複合材12または棒状炭素繊維複合材12−1を取り囲むように芯となる棒状炭素繊維複合材12または棒状炭素繊維複合材12−1と他の芯線とが撚り合わせられているが、ストランド構造体の構造として、芯となる芯線を設けず、必要本数(例えば、2〜50本)の芯線を束ね、束ねられた芯線全体に撚りを掛けてもよい。 The rod-shaped fiber reinforced composite material 12-2 of the present embodiment is a rod-shaped carbon fiber composite material having a core so as to surround one rod-shaped carbon fiber composite material 12 or a rod-shaped carbon fiber composite material 12-1 used as a core wire. 12 or rod-shaped carbon fiber composite material 12-1 and other core wires are twisted together, but the structure of the strand structure is such that the core wire is not provided and the required number of core wires (for example, 2 to 50) is used. May be bundled and the entire bundled core wire may be twisted.

棒状繊維強化複合材12−2の直径が直径2〜100mm、より好適には4〜50mm、さらにより好適には6〜20mmであると、棒状繊維強化複合材12−2がドラムに巻きやすくなり、また、任意の形状に追従するなどのフレキシブル性を高めることができる。
なお、棒状炭素繊維複合材12−2として、前記ストランド構造体をさらにより合せた、マルチストランド構造体であってもよい。
また、棒状繊維強化複合材12−2は、ストランド構造体やマルチストランド構造体の外周の全面を覆うように別途層(繊維材料からなる筒状体や樹脂層等)が設けられていてもよい。
ストランド構造体やマルチストランド構造体は撚られた芯線と芯線の間に埃等が付着しやすいが、これらの埃の付着を抑制することができる。
また、不燃性向上の観点からは、前記の全面を覆うように別途層は、ポリイミド樹脂やシリコーン樹脂や塩化ビニル樹脂を用いた樹脂層を設けるとよい。
また、意匠性の観点からは、全面を覆うように別途層として着色のための顔料などの着色剤を含む樹脂層を別途設けてもよい。
これらの樹脂層は、熱可塑性樹脂、熱硬化性樹脂いずれであっても用いることはできるが、固化剤として、熱可塑性樹脂を用いた場合には、別途層に用いられる樹脂も熱可塑性樹脂が好ましい。
When the diameter of the rod-shaped fiber reinforced composite material 12-2 is 2 to 100 mm, more preferably 4 to 50 mm, and even more preferably 6 to 20 mm, the rod-shaped fiber reinforced composite material 12-2 can be easily wound around the drum. In addition, flexibility such as following an arbitrary shape can be enhanced.
The rod-shaped carbon fiber composite material 12-2 may be a multi-strand structure obtained by further twisting the strand structure.
Further, the rod-shaped fiber reinforced composite material 12-2 may be provided with a separate layer (a tubular body made of a fiber material, a resin layer, etc.) so as to cover the entire outer circumference of the strand structure or the multi-strand structure. ..
In the strand structure and the multi-strand structure, dust and the like are likely to adhere between the twisted core wires, and the adhesion of these dusts can be suppressed.
Further, from the viewpoint of improving nonflammability, it is preferable to provide a resin layer using a polyimide resin, a silicone resin, or a vinyl chloride resin as a separate layer so as to cover the entire surface.
Further, from the viewpoint of designability, a resin layer containing a colorant such as a pigment for coloring may be separately provided as a separate layer so as to cover the entire surface.
These resin layers can be used with either a thermoplastic resin or a thermosetting resin, but when a thermoplastic resin is used as the solidifying agent, the resin used for the separate layer is also a thermoplastic resin. preferable.

以上の構成を有する本実施形態の棒状繊維強化複合材12は、軽量でかつ優れた強度を有することにより、クレーン車などの重機の入れない場所に建てられた伝統建築物や従来の耐震補強材の質量に耐えることができず耐震補強できなかった伝統建築物の耐震補強を行うことができ、また、細い耐震補強材を用いるため伝統建築物の外観の悪化も抑制することができる。 The rod-shaped fiber reinforced composite material 12 of the present embodiment having the above configuration is lightweight and has excellent strength, so that it is a traditional building or a conventional seismic retrofitting material built in a place where heavy machinery such as a crane car cannot enter. It is possible to perform seismic retrofitting of traditional buildings that could not withstand the mass of the crane and could not be retrofitted, and it is also possible to suppress deterioration of the appearance of traditional buildings because a thin seismic retrofitting material is used.

以上、本発明の実施形態について述べたが、これらは本発明の例示であり、本発明の技術的思想の範囲内で上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than the above can be adopted within the scope of the technical idea of the present invention.

以下、実施例により本発明をさらに詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。
また、本実施例における各種データは以下の方法で測定を行った。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is changed.
In addition, various data in this example were measured by the following methods.

<直径>
棒状繊維強化複合材体および継手の直径(外径、内径)はノギスで測定した。
<質量>
棒状繊維強化複合材および継手を10cmに切断し、電子天秤を用いて質量を測定し、その値を10倍して、1m当たりの質量を求めた。また、実施例で得られた耐震補強材全体の質量も天秤を用いて測定した。
<密度>
JIS K7112:1999 A法(水中置換法)に準じて測定をおこなった。
<Diameter>
The diameters (outer diameter, inner diameter) of the rod-shaped fiber reinforced composite and the joint were measured with calipers.
<Mass>
The rod-shaped fiber reinforced composite material and the joint were cut to 10 cm, the mass was measured using an electronic balance, and the value was multiplied by 10 to obtain the mass per 1 m. In addition, the mass of the entire seismic retrofitting material obtained in the examples was also measured using a balance.
<Density>
The measurement was performed according to JIS K7112: 1999 A method (underwater substitution method).

<引張強さおよび破断荷重>
引張強さおよび破断荷重は、インストロンジャパンカンパニリミテッドから供給されている5980フロア型高容量万能試験機 型式5985を使用し、2mm/minの条件で測定した。試料が破断したときの荷重(kN)を破断荷重とし、破断荷重を棒状繊維強化複合材の長さ方向に垂直に切断した断面積(有効断面積)で割ったものを引張強さ(MPa)とした。耐震補強材は、場所により太さが異なり、場所により断面積が異なるため破断荷重のみを測定した。
なお、耐震補強材の破断荷重を測定するため、継手に接続された棒状繊維強化複合材の継手から出ている部分を22cmの長さとなるように切断し、ねじを切った鋼管(長さ20cm、内径18mm、外径27mm)に当該棒状繊維強化複合材の継手に接続されていない端部を挿入し、ウレタン系接着剤を用いて鋼管と接合した。棒状繊維強化複合材の鋼管内に接合された長さは20cmであった。
当該鋼管と実施例1に記載の耐震補強材のボルト部を試験機のつかみ部分でつかみ引張強さおよび破断荷重を求めた。
<Tensile strength and breaking load>
The tensile strength and breaking load were measured under the condition of 2 mm / min using a 5980 floor type high capacity universal testing machine model 5985 supplied by Instron Japan Company Limited. The breaking load (kN) when the sample breaks is defined as the breaking load, and the breaking load is divided by the cross-sectional area (effective cross-sectional area) cut perpendicular to the length direction of the rod-shaped fiber reinforced composite material to obtain the tensile strength (MPa). And said. Since the thickness of the seismic retrofitting material differs depending on the location and the cross-sectional area differs depending on the location, only the breaking load was measured.
In addition, in order to measure the breaking load of the seismic reinforcing material, the part protruding from the joint of the rod-shaped fiber reinforced composite material connected to the joint was cut to a length of 22 cm, and a threaded steel pipe (length 20 cm). , Inner diameter 18 mm, outer diameter 27 mm), the end not connected to the joint of the rod-shaped fiber reinforced composite material was inserted, and joined to the steel pipe using a urethane-based adhesive. The length of the rod-shaped fiber reinforced composite material joined in the steel pipe was 20 cm.
The steel pipe and the bolt portion of the seismic retrofitting material described in Example 1 were grasped by the gripping portion of the testing machine, and the tensile strength and the breaking load were determined.

また、棒状繊維強化複合材の引張強さおよび破断荷重を測定するため、棒状繊維強化複合材の両端に、ウレタン系接着剤を用いてねじを切った鋼管(長さ20cm、内径23mm、外径31mm)と接合した。棒状繊維強化複合材の鋼管内に接合された長さは各端部それぞれ20cmであった。
当該鋼管を試験機のつかみ部分でつかみ棒状繊維強化複合材の引張強さおよび破断荷重を求めた。
In addition, in order to measure the tensile strength and breaking load of the rod-shaped fiber reinforced composite material, steel pipes (length 20 cm, inner diameter 23 mm, outer diameter) threaded with urethane adhesive at both ends of the rod-shaped fiber reinforced composite material are used. It was joined with 31 mm). The length of the rod-shaped fiber reinforced composite material joined in the steel pipe was 20 cm at each end.
The steel pipe was grasped by the gripping portion of the testing machine, and the tensile strength and breaking load of the rod-shaped fiber reinforced composite material were determined.

(実施例1)
24Kの炭素繊維束(PAN系炭素繊維。東レ株式会社製。T700SC。)を3本束ね、S方向に10回/m撚りをかけたもの1本を炭素繊維束として用い、拘束材としてガラス繊維を用い、製紐機(24打機)を用いて、8打ちの石目打にて、炭素繊維束の周りの全面を組紐状にガラス繊維で拘束した。
(Example 1)
Three 24K carbon fiber bundles (PAN-based carbon fiber, manufactured by Toray Industries, Inc., T700SC) are bundled, and one that is twisted 10 times / m in the S direction is used as a carbon fiber bundle, and glass fiber is used as a restraining material. The entire surface around the carbon fiber bundle was restrained with glass fibers in a braided shape by 8 striking stones using a string making machine (24 striking machine).

次に、
重合型の熱可塑性エポキシ樹脂(DENATITE XNR6850V、固形分85質量%、ナガセケムテックス株式会社製)100質量部、
硬化剤(DENATITE XNH6850V、固形分30質量%、ナガセケムテックス株式会社製) 6.5質量部、
メチルエチルケトン(MEK)10質量部
からなる溶液(粘度80mPa・s)にデッピングし、ダイスを通し、余分な溶液を除去するとともに、炭素繊維束の長さ方向に対し垂直に切断した際の断面形状が円形になるように形状を整え、拘束された炭素繊維束に対し、固化剤を付与した。その後、熱処理(150℃、20分間)を行うことで、前記重合型の熱可塑性エポキシ樹脂を重合させて、炭素繊維束と拘束材と熱可塑性エポキシ樹脂(固化剤)を一体化させて棒状繊維強化複合材を得た。
next,
Polymerized thermoplastic epoxy resin (DENATITE XNR6850V, solid content 85% by mass, manufactured by Nagase ChemteX Corporation) 100 parts by mass,
Hardener (DENATITE XNH6850V, solid content 30% by mass, manufactured by Nagase ChemteX Corporation) 6.5 parts by mass,
Depping into a solution (viscosity 80 mPa · s) consisting of 10 parts by mass of methyl ethyl ketone (MEK), passing through a die to remove excess solution, and the cross-sectional shape when cut perpendicular to the length direction of the carbon fiber bundle The shape was adjusted so as to be circular, and a solidifying agent was applied to the restrained carbon fiber bundle. After that, by performing heat treatment (150 ° C., 20 minutes), the polymerized thermoplastic epoxy resin is polymerized, and the carbon fiber bundle, the restraining material, and the thermoplastic epoxy resin (solidifying agent) are integrated to form a rod-shaped fiber. A reinforced composite material was obtained.

得られた実施例1の棒状炭素繊維複合材の断面は円形状で、直径3mmであった。
棒状炭素繊維複合材は、室温で直径100cmのドラムに3000m巻きとったところ、折れることなく、スムーズに巻き取ることができた。得られた棒状炭素繊維複合材を芯線として用いた。
The cross section of the obtained rod-shaped carbon fiber composite material of Example 1 was circular and had a diameter of 3 mm.
When the rod-shaped carbon fiber composite material was wound 3000 m on a drum having a diameter of 100 cm at room temperature, it could be wound smoothly without breaking. The obtained rod-shaped carbon fiber composite material was used as a core wire.

次に、得られた芯線を7本用い、中心に1本の芯線、その周りを6本の芯線で覆うように、120℃に加熱しながら撚り合わせて、ストランド構造とし、棒状繊維強化複合材を得た。
得られた実施例1の棒状繊維強化複合材は、直径9mm、密度は1.6g/m3、質量は80g/mであった。破断荷重90kN、引張強さは1800MPa(有効断面積50mm2)であった。
Next, using seven of the obtained core wires, one core wire is used in the center, and six core wires surround the core wire, and the core wires are twisted while heating at 120 ° C. to form a strand structure, which is a rod-shaped fiber reinforced composite material. Got
The obtained rod-shaped fiber reinforced composite material of Example 1 had a diameter of 9 mm, a density of 1.6 g / m 3 , and a mass of 80 g / m. The breaking load was 90 kN and the tensile strength was 1800 MPa (effective cross-sectional area 50 mm 2 ).

次に、継手として、ガラス繊維を繊維軸方向が継手の長さ方向と同じ向きになるように、また、中空の管状となるように配置し、不飽和ポリエステル樹脂と複合した管状物を得た。管状物はその一端から他方端まで貫通した中空部を有していた。また、継手の外径は27mm、内径は21mm、長さが26cm、密度が1.8g/m3、質量は460g/mである。 Next, as a joint, glass fibers were arranged so that the fiber axis direction was the same as the length direction of the joint and was a hollow tubular body, and a tubular material composited with an unsaturated polyester resin was obtained. .. The tubular object had a hollow portion penetrating from one end to the other. The outer diameter of the joint is 27 mm, the inner diameter is 21 mm, the length is 26 cm, the density is 1.8 g / m 3 , and the mass is 460 g / m.

次に、前記継手の中空部に、一方の端部から長さ8mに切断した棒状繊維強化複合材を挿入し、また、もう一方の端部から長さ20cmの螺子M12(外径12mm。質量700g/m)のボルト(鋼材)を挿入し、これらを、ウレタン系接着剤を用い接合し耐震補強材を得た。
なお、棒状繊維強化複合材の継手内に挿入され接着剤で接合された部分は15cmであった。また。ボルトの継手内に挿入され接着剤で接合された部分は、11cmであった。
Next, a rod-shaped fiber reinforced composite material cut to a length of 8 m from one end is inserted into the hollow portion of the joint, and a screw M12 (outer diameter 12 mm, mass) having a length of 20 cm from the other end. A 700 g / m) bolt (steel material) was inserted, and these were joined with a urethane adhesive to obtain a seismic reinforcing material.
The portion of the rod-shaped fiber reinforced composite material inserted into the joint and joined with an adhesive was 15 cm. Also. The portion inserted into the bolt joint and joined with an adhesive was 11 cm.

得られた耐震補強材の全体の質量を測定したところ、約8mの耐震補強材で1.0kgととても軽いものであった。当該耐震補強材を20本まとめて運搬しても20kgである。
また、破断荷重47kN(ボルト部が破断)であった。
また、今回の破断荷重と同等の強度を有する棒状の鋼材(実施例1に用いた鋼材製のボルト)のみからなる耐震補強材8mでは、その全体の質量が5.6kg以上となる。当該耐震補強材を20本まとめて運搬すると112kgとなり、重機なしには運搬できない。
When the total mass of the obtained seismic retrofitting material was measured, it was as light as 1.0 kg with a seismic retrofitting material of about 8 m. Even if 20 seismic retrofitting materials are transported together, the weight is 20 kg.
Further, the breaking load was 47 kN (the bolt portion was broken).
Further, the seismic retrofitting material 8 m made of only the rod-shaped steel material (steel bolt used in Example 1) having the same strength as the breaking load this time has a total mass of 5.6 kg or more. When 20 seismic retrofitting materials are transported together, the weight is 112 kg, which cannot be transported without heavy machinery.

したがって、本願発明の耐震補強材は、軽量でかつ強度に優れるため、クレーンなどの重機を用いなくとも、施工現場に、多くの耐震補強材を容易に運びこみ、施工することがで、耐震補強される建築物への負荷も小さく、種々の伝統的建築物に用いることができる。また、耐震補強材が細く伝統建築物のイメージの変化を抑え、意匠性の低下も抑制することができる。 Therefore, since the seismic retrofitting material of the present invention is lightweight and has excellent strength, many seismic retrofitting materials can be easily carried to the construction site and installed without using a heavy machine such as a crane. The load on the building is small, and it can be used for various traditional buildings. In addition, the seismic retrofitting material is thin, which suppresses changes in the image of traditional buildings and suppresses deterioration of design.

本発明の耐震補強材は、鉄筋コンクリート製の建物や木造住宅などの建築物に耐震補強を施すための耐震補強材として有用である。特に、本願発明の耐震補強材は、伝統的な建築物の美観を維持しながら、十分な耐震性を付与することができるものとして好適である。 The seismic retrofitting material of the present invention is useful as a seismic retrofitting material for applying seismic retrofitting to buildings such as reinforced concrete buildings and wooden houses. In particular, the seismic retrofitting material of the present invention is suitable as it can impart sufficient seismic resistance while maintaining the aesthetic appearance of a traditional building.

2 繊維束(炭素繊維束)
3a〜3d 拘束材
10 耐震補強材
11 継手
11a 中空部
12,12−1,12−2 棒状繊維強化複合材(棒状炭素繊維複合材)
2 Fiber bundle (carbon fiber bundle)
3a to 3d Restraint material 10 Seismic retrofitting material 11 Joint 11a Hollow part 12, 12-1, 12-2 Rod-shaped fiber reinforced composite material (rod-shaped carbon fiber composite material)

Claims (6)

繊維強化複合材からなる継手であり、両方の端部に中空部を有する管状物である継手と、
前記継手の一方の端部の中空部に挿入され、接合された第1の棒状繊維強化複合材と、
前記継手の他の一方の端部の中空部に挿入され、接合された金属製の材料とを有し、
前記第1の棒状繊維強化複合材が、固化剤により一体化された繊維束を含む芯線を撚り合わせたストランド構造体、または、前記ストランド構造体を撚り合わせたマルチストランド構造体であり、
前記継手と、前記第1の棒状繊維強化複合材および前記金属製の材料とが接着剤で接合されており、
前記接着剤がウレタン系接着剤であり、
前記固化剤が熱可塑性エポキシ樹脂であり、
破断荷重が、3〜300kNであり、
全体の質量が、5kg以下である耐震補強材。
A joint made of a fiber reinforced composite material , which is a tubular material having hollow portions at both ends , and a joint.
With the first rod-shaped fiber reinforced composite material inserted and joined into the hollow portion of one end of the joint ,
Having a metal material inserted and joined into the hollow portion of the other end of the joint .
Said first rod-like fiber-reinforced composite material, the strand structure by twisting the core wire comprising a fiber bundle which is integrated by the solidifying agent, or Ri multistrand structures der that twisting the strands structure,
The joint, the first rod-shaped fiber reinforced composite material, and the metal material are joined with an adhesive.
The adhesive is a urethane-based adhesive,
The solidifying agent is a thermoplastic epoxy resin,
The breaking load is 3 to 300 kN,
Total mass, 5 kg or less der Ru seismic reinforcements.
前記継手の密度が、1.0〜5.0g/cm3である請求項に記載の耐震補強材。 Density of the joint, seismic reinforcement according to claim 1 which is 1.0 to 5.0 g / cm 3. 前記継手の質量が、50〜5000g/mである請求項1または2に記載の耐震補強材。 The seismic retrofitting material according to claim 1 or 2 , wherein the mass of the joint is 50 to 5000 g / m. 前記第1の棒状繊維強化複合材の密度が、1.0〜2.5g/cm3である請求項1からのいずれか1項に記載の耐震補強材。 The seismic retrofitting material according to any one of claims 1 to 3 , wherein the density of the first rod-shaped fiber reinforced composite material is 1.0 to 2.5 g / cm 3 . 前記第1の棒状繊維強化複合材の質量が、2〜150g/mである請求項1からのいずれか1項に記載の耐震補強材。 The seismic retrofitting material according to any one of claims 1 to 4 , wherein the mass of the first rod-shaped fiber reinforced composite material is 2 to 150 g / m. 前記第1の棒状繊維強化複合材の引張強さが、100〜5000MPaである請求項1からのいずれか1項に記載の耐震補強材。 The seismic retrofitting material according to any one of claims 1 to 5 , wherein the tensile strength of the first rod-shaped fiber reinforced composite material is 100 to 5000 MPa.
JP2016092722A 2016-05-02 2016-05-02 Seismic retrofitting material Active JP6830763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016092722A JP6830763B2 (en) 2016-05-02 2016-05-02 Seismic retrofitting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016092722A JP6830763B2 (en) 2016-05-02 2016-05-02 Seismic retrofitting material

Publications (2)

Publication Number Publication Date
JP2017201090A JP2017201090A (en) 2017-11-09
JP6830763B2 true JP6830763B2 (en) 2021-02-17

Family

ID=60264983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016092722A Active JP6830763B2 (en) 2016-05-02 2016-05-02 Seismic retrofitting material

Country Status (1)

Country Link
JP (1) JP6830763B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7101498B2 (en) * 2018-03-09 2022-07-15 小松マテーレ株式会社 Fiber reinforced composite material for concrete reinforcement, concrete structure
JP7329666B2 (en) * 2018-03-09 2023-08-18 小松マテーレ株式会社 Fiber-reinforced composite materials for reinforcing concrete, concrete structures
DE102019102600A1 (en) * 2019-02-01 2020-08-06 Sandvik Materials Technology Deutschland Gmbh Method and device for producing a rod-shaped element

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296044A (en) * 1988-09-30 1990-04-06 Kobe Steel Ltd Joint construction of fiber-reinforced resin reinforcing wire and reinforcing bar
JPH0693579A (en) * 1992-07-24 1994-04-05 Nippon Steel Corp Composite material and its production
JP3412918B2 (en) * 1993-06-25 2003-06-03 新日本製鐵株式会社 Continuous fiber reinforced plastic tube
JPH07178728A (en) * 1993-12-22 1995-07-18 Sumitomo Chem Co Ltd Moist hardenable prepreg, use thereof and method for application thereof
JP3520117B2 (en) * 1994-09-29 2004-04-19 株式会社熊谷組 FRP steel replacement material and method of manufacturing the same
US20040048055A1 (en) * 2002-09-11 2004-03-11 Alfonso Branca Continuous fiber composite reinforced synthetic wood elements
JP2004257011A (en) * 2003-02-24 2004-09-16 Mitsubishi Kagaku Sanshi Corp Reinforcing method and structure for structure
JP2005288939A (en) * 2004-04-01 2005-10-20 Itom Kensetsu Kk Hardening linear material and its application method
CN101044284B (en) * 2004-10-19 2010-12-01 东京制纲株式会社 Cable composed of high strength fiber composite material
JP2006348506A (en) * 2005-06-14 2006-12-28 Keiichi Ikeda Brace material fixture and reinforcing brace having this brace material fixture
JP6022186B2 (en) * 2011-04-01 2016-11-09 小松精練株式会社 Muscle
JP6022188B2 (en) * 2011-04-01 2016-11-09 小松精練株式会社 Tensile material
EP3006611B1 (en) * 2013-06-05 2019-02-20 KOMATSU MATERE Co., Ltd. Strand structure, and multi-strand structure

Also Published As

Publication number Publication date
JP2017201090A (en) 2017-11-09

Similar Documents

Publication Publication Date Title
JP6129963B2 (en) High-strength fiber composite and strand structure and multi-strand structure
JP5953554B2 (en) High strength fiber wire and composite material having the high strength fiber wire
KR100766954B1 (en) Fiber reinforced polymer bar having self-impregnated protrusion and method for producing the same
JP5758203B2 (en) String-like reinforcing fiber composite, concrete reinforcing bar and brace material
US20080282664A1 (en) Composite rope structures and systems and methods for making composite rope structures
JP6830763B2 (en) Seismic retrofitting material
WO2006043311A1 (en) Cable composed of high strength fiber composite material
KR101043809B1 (en) Fiber reinforced polymer rod, manufacturing method thereof, and reinforcing method of concrete structure using the same
JP2021147791A (en) Binding tool, and binding method
JP6794152B2 (en) Joint structure
JP6022186B2 (en) Muscle
JP5808598B2 (en) Joint structure of wooden members
NZ210628A (en) Structural tension member:rod bundle
JP6022188B2 (en) Tensile material
JP6199440B2 (en) High strength fiber wire and composite material having the high strength fiber wire
KR102060285B1 (en) Method for manufacturing frp-mesh for reinforcing concrete
JP5801129B2 (en) Method of joining wooden members
JP5801130B2 (en) High-strength fiber wire for reinforcing wooden members and joining structure of wooden members using the same
CN111535178A (en) Prestressed FRP (fiber reinforced Plastic) rib capable of being used for clamping piece anchoring and preparation method thereof
WO2016117384A1 (en) Structure manufacturing method, joint, rod having joint and construction member
JP6576865B2 (en) Non-combustible carbon fiber composite material
JP7369610B2 (en) bonded structure
JP6705958B1 (en) Fiber rod binding tool and fiber rod binding method
CN210105377U (en) FRP (fiber reinforced Plastic) -expansion ECC (error correction code) composite pipe for prestress reinforcement of pressure steel pipe
JP6022187B2 (en) Tensile material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210127

R150 Certificate of patent or registration of utility model

Ref document number: 6830763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250