JP2017227059A - Junction structure - Google Patents

Junction structure Download PDF

Info

Publication number
JP2017227059A
JP2017227059A JP2016124666A JP2016124666A JP2017227059A JP 2017227059 A JP2017227059 A JP 2017227059A JP 2016124666 A JP2016124666 A JP 2016124666A JP 2016124666 A JP2016124666 A JP 2016124666A JP 2017227059 A JP2017227059 A JP 2017227059A
Authority
JP
Japan
Prior art keywords
resin
rod
strand
composite material
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016124666A
Other languages
Japanese (ja)
Other versions
JP6794152B2 (en
Inventor
晃宏 奥谷
Akihiro Okutani
晃宏 奥谷
林 豊
Yutaka Hayashi
豊 林
武俊 中山
Taketoshi Nakayama
武俊 中山
穂奈美 野田
Honami Noda
穂奈美 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Seiren Co Ltd
Original Assignee
Komatsu Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Seiren Co Ltd filed Critical Komatsu Seiren Co Ltd
Priority to JP2016124666A priority Critical patent/JP6794152B2/en
Publication of JP2017227059A publication Critical patent/JP2017227059A/en
Application granted granted Critical
Publication of JP6794152B2 publication Critical patent/JP6794152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforcement Elements For Buildings (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lightweight and strong junction structure capable of suppressing a deterioration in appearance grade of a structure reinforced with the junction structure.SOLUTION: Characteristically, a junction structure includes: a first member that is made of a rod-like fiber-reinforced composite material composed of a plurality of wires; a second member that is arranged in such a way as to be superposed on an end of the first member or inserted thereinto; and a synthetic resin coating part that makes at least a part of an overlap portion of the first and second members joined by being coated with a synthetic resin.SELECTED DRAWING: Figure 1A

Description

本発明は、棒状の繊維強化複合材を用いた接合構造体に関するものである。   The present invention relates to a bonded structure using a rod-like fiber reinforced composite material.

炭素繊維やアラミド繊維などの強化繊維と樹脂を複合して得られた棒状繊維強化複合材は、軽量であることから作業性に優れ、金属製のケーブルや鉄筋の代替材料と種々のものに検討されている。
このような棒状繊維強化複合材は、鉄骨や木材やコンクリートと接合するために、棒状繊維強化複合材の端部は、管状の継手などを介し定着用治具となる金属製や樹脂製の棒状のボルトなどの端部と接合され、前記ボルトと鉄骨等に設けられている前記ボルトに対応したナット部などを有する接合部と接合したり、鉄骨に溶接にて接合したり、接着剤、紐状物・帯状物などを用い鉄骨や木材などに接合されていた。
The rod-like fiber reinforced composite material obtained by combining carbon fiber, aramid fiber, and other reinforcing fibers with resin is excellent in workability due to its light weight. Has been.
Since such rod-like fiber reinforced composites are joined to steel, wood, and concrete, the ends of the rod-like fiber reinforced composites are made of metal or resin rods that serve as fixing jigs via tubular joints. Bonded to the end of a bolt or the like, and joined to a joint having a nut or the like corresponding to the bolt and the bolt provided on the steel frame, or joined to the steel by welding, adhesive, string It was joined to steel frames, wood, etc. using strips and strips.

また、棒状繊維強化複合材の端部を、管状部を有する金属製や樹脂製などの定着治具の管状部に挿入し樹脂等を用い接合し、定着治具を接合した棒状繊維強化複合材を用い、当該定着治具を介し鉄骨に溶接したり、接着剤やボルトや紐・帯状物などを用い鉄骨や木材に接合されていた(例えば、特許文献1、2)。   Moreover, the rod-like fiber reinforced composite material in which the end portion of the rod-like fiber reinforced composite material is inserted into the tubular portion of a fixing jig made of metal or resin having a tubular portion and joined using a resin or the like, and the fixing jig is joined. Is welded to the steel frame via the fixing jig, or is bonded to the steel frame or wood using an adhesive, a bolt, a string, or a strip (for example, Patent Documents 1 and 2).

特開2002−97746号公報JP 2002-97746 A 特開2013−11163号公報JP 2013-11163 A

しかしながら、管状の継手や管状の端部を有する定着冶具を用いた場合には、次のような課題を有していた。
鋼鉄製の管状の継手や管状の端部を有する定着冶具(以下、これらを鋼管ともいう。)は重いため、繊維強化複合材と鋼管とを組み合わせた複合材料は、補強する構造物に対し、負荷が大きい。また、鋼管と棒状繊維強化複合材と合成樹脂で接着する場合、樹脂と鋼管、樹脂と棒状繊維強化複合材の接着強度が異なるため、鋼管の内側に螺子を切るなどして凹凸を形成し、合成樹脂と鋼管との接着強度を向上させる必要があり、工程が増えてしまう。さらに、鋼管が目視できる部分に使用される場合は構造物の美観を損なうおそれがあった。
However, when a fixing jig having a tubular joint or a tubular end portion is used, it has the following problems.
Since fixing jigs with steel tubular joints and tubular ends (hereinafter also referred to as steel pipes) are heavy, composite materials combining fiber-reinforced composites and steel pipes are The load is large. Also, when bonding steel pipe and rod-like fiber reinforced composite material with synthetic resin, because the adhesive strength of resin and steel pipe, resin and rod-like fiber reinforced composite material is different, unevenness is formed by cutting screws inside the steel pipe, It is necessary to improve the adhesive strength between the synthetic resin and the steel pipe, which increases the number of processes. Furthermore, when the steel pipe is used in a portion where it can be visually observed, there is a possibility that the aesthetic appearance of the structure is impaired.

また、樹脂製の管状物の継手や管状の端部を有する定着冶具(以下、これらを樹脂管ともいう。)は、鋼管に比べれば軽いものの、引張強さや破断荷重などの引張強度が十分ではなく、大きな力がかかると、棒状繊維強化複合材の破断や棒状繊維強化複合材と樹脂管の接合部から棒状繊維強化複合材が抜けるのではなく、樹脂管が層状破壊などにより破壊されることがあった。このような樹脂管の破壊を防ぐためには、樹脂管を太くしたり、長くしたりする必要性があり、鋼管と同様に構造物の美観を損ねるおそれがあった。   In addition, fixing jigs having tubular joints made of resin and tubular ends (hereinafter also referred to as resin pipes) are lighter than steel pipes, but have insufficient tensile strength such as tensile strength and breaking load. If a large force is applied, the rod-shaped fiber reinforced composite material will not be broken or the rod-shaped fiber reinforced composite material will not come out of the joint between the rod-shaped fiber reinforced composite material and the resin tube. was there. In order to prevent such breakage of the resin tube, it is necessary to make the resin tube thicker or longer, and there is a possibility that the aesthetic appearance of the structure is impaired like the steel tube.

よって、本発明は、軽量で強度があり、かつ、接合構造体で補強された構造物の外観品位の悪化を抑制することが可能な接合構造体を提供することを目的とする。   Therefore, an object of the present invention is to provide a joined structure that is lightweight and strong, and that can suppress deterioration in appearance quality of a structure reinforced with the joined structure.

本発明の接合構造体は、複数の素線から構成された棒状繊維強化複合材からなる第1部材と、前記第1部材の端部に重ねてまたは挿入されて配置される第2部材と、前記第1部材と前記第2部材との重なり部の少なくとも一部を合成樹脂により覆って接合する合成樹脂被覆部とから構成されることを特徴とする接合構造体である。
このような構成にすることにより、軽量でありながら優れた引張強さや破断荷重などの引張強度を有し、構造物に対して負荷も小さい、接合構造体とすることができる。また、本発明の接合構造体を用いた構造物の外観の悪化も抑制することが可能である。
また、前記第1部材の端部の素線をバラケさせることができるので、大きさや形状が異なる第2部材を重ねてまたは挿入して配置しやすい。
なお、「重なり部」とは、前記第1部材の端部に前記第2部材が重ねてまたは挿入され配置されることで、前記第1部材と前記第2部材が重なった部分を意味する。
The joined structure of the present invention includes a first member made of a rod-like fiber reinforced composite material composed of a plurality of strands, a second member that is placed on or inserted into an end of the first member, A joint structure comprising: a synthetic resin covering portion that covers and joins at least a part of an overlapping portion between the first member and the second member with a synthetic resin.
By adopting such a configuration, it is possible to obtain a bonded structure that is lightweight but has excellent tensile strength such as tensile strength and breaking load and has a small load on the structure. Moreover, it is possible to suppress the deterioration of the external appearance of the structure using the joint structure of the present invention.
Moreover, since the strands at the end of the first member can be separated, it is easy to place the second members having different sizes and shapes on top of each other or by inserting them.
The “overlapping portion” means a portion where the first member and the second member overlap each other when the second member is overlapped or inserted into an end portion of the first member.

また、前記第1部材の端部は、前記第2部材が重ねてまたは挿入されて配置される空隙部を有することが好ましい。
このような構造とすることにより、得られる接合構造体の重なり部の合成樹脂によって覆われている部分(接合部分)が太くなることを抑制し、得られる接合部構造体の外観の美観の低下を抑制する。また、前記第1部材と前記第2部材との接着強度を安定させ、優れた引張強さや破断荷重などの引張強度を発揮でき好ましい。
Moreover, it is preferable that the edge part of the said 1st member has a space | gap part by which the said 2nd member is piled up or inserted and arrange | positioned.
By adopting such a structure, it is possible to suppress a portion (joint portion) covered with the synthetic resin of the overlapping portion of the obtained joint structure from being thickened, and to reduce the appearance of the resulting joint structure. Suppress. In addition, it is preferable because the adhesive strength between the first member and the second member can be stabilized and excellent tensile strength such as tensile strength and breaking load can be exhibited.

また、棒状繊維強化複合材は、芯線とその周囲に配置された素線とを有し、前記第2部材が挿入されて配置される空隙部を有することが好ましい。
このような構成にすることにより、前記第1部材と前記第2部材との接着強度をより安定させることができ、得られる接合構造体は、優れた引張強さや破断荷重などの引張強度を発揮することができる。また、前記第2部材の端部が、芯線の周囲に配置された素線でかこまれており、外観品位(意匠性)の観点からも好ましい。
Moreover, it is preferable that a rod-like fiber reinforced composite material has a space | gap part which has a core wire and the strand arrange | positioned around it, and the said 2nd member is inserted and arrange | positioned.
By adopting such a configuration, the adhesive strength between the first member and the second member can be further stabilized, and the resulting bonded structure exhibits excellent tensile strength such as tensile strength and breaking load. can do. Moreover, the edge part of the said 2nd member is enclosed by the strand arrange | positioned around the core wire, and it is preferable also from a viewpoint of external appearance quality (designability).

また、難燃性、強度、耐光性の観点より、前記棒状繊維強化複合材が炭素繊維を含むことが好ましい。   Moreover, it is preferable that the said rod-shaped fiber reinforced composite material contains a carbon fiber from a flame retardance, intensity | strength, and a light-resistant viewpoint.

また、前記合成樹脂がウレタン樹脂またはエポキシ樹脂であると第1部材と第2部材とをより強固に接着しやすいため、前記合成樹脂がウレタン樹脂またはエポキシ樹脂であることが好ましい。   Moreover, since it is easy to adhere | attach a 1st member and a 2nd member more firmly when the said synthetic resin is a urethane resin or an epoxy resin, it is preferable that the said synthetic resin is a urethane resin or an epoxy resin.

本発明の接合構造体によれば、軽量でありながら優れた強度を有し、接合構造体を用いた構造物の外観の悪化も抑制することができる。   According to the joint structure of the present invention, it is lightweight but has excellent strength, and deterioration of the appearance of the structure using the joint structure can also be suppressed.

本発明の実施形態1に係る接合構造体の側面図である。It is a side view of the junction structure concerning Embodiment 1 of the present invention. 図1Aの接合構造体の断面図である。It is sectional drawing of the joining structure of FIG. 1A. 本発明の実施形態1に係る素線の斜視図である。It is a perspective view of the strand which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る接合構造体の側面図である。It is a side view of the junction structure concerning Embodiment 2 of the present invention. 図3Aの接合構造体の断面図である。It is sectional drawing of the joining structure of FIG. 3A. 本発明の実施形態3に係る接合構造体の側面図である。It is a side view of the junction structure concerning Embodiment 3 of the present invention. 図4Aの接合構造体の断面図である。It is sectional drawing of the joining structure of FIG. 4A. 実施例1の接合構造体の写真である。2 is a photograph of a bonded structure according to Example 1.

以下、本発明に係る接合構造体の実施形態について、説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。また、本明細書において「〜」という表現を用いる場合、その前後の数値を含む表現として用いる。   Hereinafter, embodiments of the bonded structure according to the present invention will be described. However, the present invention is not limited to the following embodiments, and can be arbitrarily modified without departing from the gist of the present invention. Further, when the expression “to” is used in the present specification, it is used as an expression including numerical values before and after the expression.

(実施形態1)
図1Aは、本発明の実施形態1における接合構造体100を示す側面図である。また、図1Bは、接合構造体100の断面図である。
本発明の実施形態における接合構造体100は、芯線となる素線131とその周囲に配置された素線132から構成された棒状繊維強化複合材110からなる第1部材120と、前記第1部材120の端部に挿入されて配置される第2部材140と、第1部材120と第2部材140との重なり部を合成樹脂によって覆って接合する合成樹脂被覆部150とから構成されている。また、素線131の長さが棒状繊維強化複合材110の長さより短くなっており、第1部材120の端部は、第2部材140が挿入されて配置される空隙部を有する。すなわち、第1部材120と第2部材140との重なり部は、第1部材120の端部の空隙部に、第2部材140の端部が挿入され構成されている。第1部材120及び第2部材140、合成樹脂被覆部150を形成する合成樹脂の詳細については後述する。
(Embodiment 1)
FIG. 1A is a side view showing a joint structure 100 according to Embodiment 1 of the present invention. FIG. 1B is a cross-sectional view of the bonded structure 100.
The bonded structure 100 according to the embodiment of the present invention includes a first member 120 made of a rod-like fiber reinforced composite material 110 composed of a wire 131 serving as a core wire and a wire 132 arranged around the wire 131, and the first member. The second member 140 is inserted and arranged at the end of 120, and the synthetic resin covering portion 150 is formed by covering and joining the overlapping portion of the first member 120 and the second member 140 with synthetic resin. Moreover, the length of the strand 131 is shorter than the length of the rod-like fiber reinforced composite material 110, and the end portion of the first member 120 has a void portion in which the second member 140 is inserted. That is, the overlapping portion between the first member 120 and the second member 140 is configured such that the end portion of the second member 140 is inserted into the gap portion at the end portion of the first member 120. Details of the first member 120, the second member 140, and the synthetic resin forming the synthetic resin coating 150 will be described later.

また、第1部材120と第2部材140との重なり部は、第1部材120の端部の少なくとも一方に形成されていればよく、第1部材の複数の端部において第2部材140との重なり部を形成されていてもよい。
また、本実施形態においては、合成樹脂被覆部150は、第1部材120と第2部材140との重なり部の全体を覆っているが、重なり部の少なくとも一部を覆っている構成でもよい。
Moreover, the overlapping part of the 1st member 120 and the 2nd member 140 should just be formed in at least one of the edge parts of the 1st member 120, and the 2nd member 140 in the several edge part of the 1st member is sufficient as it. An overlapping portion may be formed.
In the present embodiment, the synthetic resin covering portion 150 covers the entire overlapping portion of the first member 120 and the second member 140, but may be configured to cover at least a part of the overlapping portion.

本実施形態の接合構造体100の合成樹脂被覆部150の長さL2は、必要とする強度に応じて設定すればよいが、10mm〜1000mmがよい。また、合成樹脂被覆部の直径(太さ)W2も必要とする強度に応じて設定すればよいが、3mm〜500mmがよい。なお、施工後の建築物や家具など構造物の外観上の観点からは合成樹脂被覆部150の長さL2は短い方が、好ましく、長さは50cm以下、30cm以下、20cm以下がより好ましい。また、その太さは、10cm以下、5cm以下、3cm以下がより好ましい。
なお、「合成樹脂被覆部150の直径」とは、図1Bに示すように接合構造体100の合成樹脂被覆部150の長さL2方向に垂直な断面の最大の直径をいう。接合構造体100の合成樹脂被覆部150の長さL2方向に垂直に切断した際の断面が円でない場合は、その断面の長径を直径という。
The length L2 of the synthetic resin coating 150 of the bonded structure 100 of the present embodiment may be set according to the required strength, but is preferably 10 mm to 1000 mm. Moreover, what is necessary is just to set the diameter (thickness) W2 of a synthetic resin coating | coated part according to the intensity | strength to require, but 3 mm-500 mm are good. In addition, from the viewpoint of the appearance of structures such as buildings and furniture after construction, the length L2 of the synthetic resin coating 150 is preferably shorter, and the length is more preferably 50 cm or less, 30 cm or less, and 20 cm or less. The thickness is more preferably 10 cm or less, 5 cm or less, and 3 cm or less.
The “diameter of the synthetic resin coating 150” refers to the maximum diameter of the cross section perpendicular to the length L2 direction of the synthetic resin coating 150 of the bonded structure 100 as shown in FIG. 1B. In the case where the cross section when cut perpendicular to the length L2 direction of the synthetic resin coating portion 150 of the bonded structure 100 is not a circle, the major axis of the cross section is referred to as the diameter.

重なり部の長さ方向の長さL1や重なり部の直径(太さ)W1も、必要とされる強度に応じて設定すればよいが、重なり部の長さ方向の長さL1は10mm〜500mm、重なり部の直径W1は2mm〜250mmがよい。なお、「重なり部の直径」とは、重なり部の長さL1方向に垂直な断面の最大の直径であり、重なり部の長さL1方向に垂直に切断した際の断面が円でない場合は、その断面の長径を直径という。   The length L1 in the length direction of the overlap portion and the diameter (thickness) W1 of the overlap portion may be set according to the required strength, but the length L1 in the length direction of the overlap portion is 10 mm to 500 mm. The diameter W1 of the overlapping portion is preferably 2 mm to 250 mm. The “diameter of the overlapping portion” is the maximum diameter of the cross section perpendicular to the length L1 direction of the overlapping portion, and when the cross section when cut perpendicular to the length L1 direction of the overlapping portion is not a circle, The major axis of the cross section is called the diameter.

本実施形態においては、重なり部の長さL1は、合成樹脂被覆部150の長さL2より短く、重なり部の直径W1は、合成樹脂被覆部150の直径W2より細くなっているが、重なり部の長さと合成樹脂被覆部150の長さの関係及び重なり部の直径と合成樹脂被覆部150の直径の関係は、本発明の目的を達成できる範囲で、使用目的に応じて適宜設定できる。   In the present embodiment, the length L1 of the overlapping portion is shorter than the length L2 of the synthetic resin coating portion 150, and the diameter W1 of the overlapping portion is smaller than the diameter W2 of the synthetic resin coating portion 150. The length relationship between the length of the synthetic resin coating portion 150 and the relationship between the diameter of the overlapping portion and the diameter of the synthetic resin coating portion 150 can be appropriately set according to the purpose of use within the scope of achieving the object of the present invention.

例えば、本発明の目的を達成できれば、接合構造体は、重なり部の長さが合成樹脂被覆部150の長さより長く、合成樹脂被覆部150の直径が重なり部の直径よりも太い構造であってもよい。   For example, if the object of the present invention can be achieved, the bonded structure has a structure in which the length of the overlapping portion is longer than the length of the synthetic resin coating portion 150 and the diameter of the synthetic resin coating portion 150 is thicker than the diameter of the overlapping portion. Also good.

また、接合構造体は、重なり部の長さが合成樹脂被覆部150の長さより短く、合成樹脂被覆部150の直径が重なり部の直径よりも細い構造であってもよい。すなわち、重なり部の棒状繊維強化複合材の表面の少なくとも一部が合成樹脂によって覆われずにはみ出し、外部に出ている構造であってもよい。また、このとき、合成樹脂で、重なり部の第2部材は全て覆われていることが好ましい。   Further, the bonded structure may have a structure in which the length of the overlapping portion is shorter than the length of the synthetic resin coating portion 150 and the diameter of the synthetic resin coating portion 150 is narrower than the diameter of the overlapping portion. That is, it may be a structure in which at least a part of the surface of the overlapping rod-shaped fiber reinforced composite material protrudes without being covered with the synthetic resin and is exposed to the outside. At this time, it is preferable that the second member of the overlapping portion is entirely covered with the synthetic resin.

なお、本実施形態の接合構造体100は、破断荷重が3〜300kNであることが望ましい。接合構造体は、用いる場所や施工方法や用途にもよるが、下限値は5kN以上であることが好ましく、10kN以上であることがより好ましく、30kN以上であることがさらに好ましい。破断荷重が3kN以上であれば、優れた強度を有する接合構造体100が得られる。   In addition, as for the joining structure body 100 of this embodiment, it is desirable for a breaking load to be 3-300 kN. The bonded structure depends on the place of use, construction method, and application, but the lower limit is preferably 5 kN or more, more preferably 10 kN or more, and further preferably 30 kN or more. When the breaking load is 3 kN or more, the bonded structure 100 having excellent strength can be obtained.

一方、上限値は200kN以下であることが好ましく、100kN以下であることがより好ましい。300kNを超えると、合成樹脂被覆部150の長さL2が長くなったり、合成樹脂被覆部150の直径W2が太くなり、外観品位が悪化するおそれがある。   On the other hand, the upper limit value is preferably 200 kN or less, and more preferably 100 kN or less. If it exceeds 300 kN, the length L2 of the synthetic resin coating portion 150 may become long, or the diameter W2 of the synthetic resin coating portion 150 may increase, and the appearance quality may deteriorate.

また、本実施形態の接合構造体100の質量は、特に限定されるものではないが、伝統建築物の補強材として用いる場合には、5kg以下であるとよい。好ましくは3kg以下、より好ましくは1kg以下がよい。第1部材120の長さ、直径や材質、第2部材140の材料や大きさにより、接合構造体100の質量は変わるが、軽量で重機等をもちいなくとも、運搬が可能で、高所での作業性の観点より、5kg以下が好ましい。本実施形態の接合構造体であれば容易に上記の質量以下の接合構造体が得られる。また、下限は、特に限定されないが、強度の観点からは5g以上が好ましい。   Moreover, although the mass of the joining structure 100 of this embodiment is not specifically limited, When using as a reinforcing material of a traditional building, it is good in it being 5 kg or less. Preferably it is 3 kg or less, more preferably 1 kg or less. The mass of the joint structure 100 varies depending on the length, diameter and material of the first member 120 and the material and size of the second member 140, but it is lightweight and can be transported without using heavy machinery. From the viewpoint of workability, 5 kg or less is preferable. If it is the joining structure of this embodiment, the joining structure of said mass or less can be obtained easily. The lower limit is not particularly limited, but is preferably 5 g or more from the viewpoint of strength.

また、接合構造体100を構成する第1部材120及び第2部材140、合成樹脂被覆部150を形成する合成樹脂は、接合構造体100が用いられる構造物の意匠性に合わせて、着色してもよい。また、合成樹脂は透明であっても、不透明であってもよい。このようにすることで外観品位の低下を抑制するだけではなく、接合構造体100を用いることで、構造物の様々なデザインに応じ、より構造物の外観の意匠性を高めることができる。   Further, the first member 120 and the second member 140 constituting the bonded structure 100 and the synthetic resin forming the synthetic resin coating 150 are colored in accordance with the design of the structure in which the bonded structure 100 is used. Also good. The synthetic resin may be transparent or opaque. In this way, not only the deterioration of the appearance quality is suppressed, but by using the joint structure 100, the design of the appearance of the structure can be further improved according to various designs of the structure.

以下、本発明の炭素繊維複合材の構成要素である第1部材120及び第2部材140、合成樹脂被覆部150について詳細に説明する。   Hereinafter, the first member 120, the second member 140, and the synthetic resin coating portion 150, which are components of the carbon fiber composite material of the present invention, will be described in detail.

(第1部材120) (First member 120)

第1部材120は、芯線となる素線131とその周囲に配置された素線132から構成された棒状繊維強化複合材110である。本実施形態において、素線131および素線132は、繊維材料を束ねてなる繊維束を固化剤により一体化した素線130A、または、繊維材料を束ねてなる繊維束がその周囲に拘束材を巻き回して結束され、当該繊維束と当該拘束材とが共に固化剤によって一体化された素線130Bのいずれか一方または両方である。   The first member 120 is a rod-like fiber reinforced composite material 110 composed of a wire 131 serving as a core wire and a wire 132 arranged around the wire 131. In this embodiment, the strand 131 and the strand 132 are the strand 130A which integrated the fiber bundle which bundles the fiber material with the solidifying agent, or the fiber bundle which bundles the fiber material has a restraining material around it. It is one or both of the strands 130B which are wound and bundled, and the fiber bundle and the restraining material are integrated together by a solidifying agent.

以下、素線130A、素線130Bについて詳細に説明する。なお、棒状繊維強化複合材110の詳細は後述する。   Hereinafter, the strand 130A and the strand 130B will be described in detail. The details of the rod-like fiber reinforced composite material 110 will be described later.

(素線130A)
棒状繊維強化複合材110を構成する素線130Aは、繊維材料を束ねてなる繊維束を固化剤により一体化したものである。
用いられる繊維材料としては、例えば、炭素繊維、バサルト繊維、パラ系アラミド繊維、メタ系アラミド繊維、超高分子量ポリエチレン繊維、ポリアリレート繊維、PBO(ポリパラフェニレンベンズオキサゾール)繊維、ポリフェニレンサルファイド(PPS)繊維、ポリイミド繊維、フッ素繊維、ポリビニルアルコール(PVA繊維)などが使用できる。用いられる繊維材料は、特に、難燃性、強度、耐光性の観点より、炭素繊維またはガラス繊維が好ましい。難燃性の観点からはガラス繊維が好ましい。
(Wire 130A)
The strand 130A which comprises the rod-shaped fiber reinforced composite material 110 integrates the fiber bundle formed by bundling fiber materials with a solidifying agent.
Examples of the fiber material used include carbon fiber, basalt fiber, para-aramid fiber, meta-aramid fiber, ultrahigh molecular weight polyethylene fiber, polyarylate fiber, PBO (polyparaphenylene benzoxazole) fiber, and polyphenylene sulfide (PPS). Fiber, polyimide fiber, fluorine fiber, polyvinyl alcohol (PVA fiber) and the like can be used. The fiber material used is particularly preferably carbon fiber or glass fiber from the viewpoint of flame retardancy, strength, and light resistance. Glass fiber is preferable from the viewpoint of flame retardancy.

以下、繊維材料として炭素繊維、特に炭素繊維を素線の芯材として用いたものを例として、詳細に説明を行う。なお、炭素繊維以外の繊維材料を用いたものを除くものではない。   Hereinafter, the fiber material will be described in detail by taking as an example a carbon fiber, in particular, a material using carbon fiber as a core material of a strand. In addition, the thing using fiber materials other than carbon fiber is not excluded.

炭素繊維を複数本(通常、数千本から数十万本、あるいは数百万本)束ねた炭素繊維束を用いる。炭素繊維束は、炭素繊維束の長さ方向に垂直に切断した場合のその断面は円形状、扁平状等任意であってもよいが、円形状が好ましい。本実施形態の棒状繊維強化複合材110に用いられる素線130Aでは、炭素繊維の束は所定の回数の撚りがかけられた状態で固化剤により、一体化されていると好ましい。炭素繊維束の撚り数は、得られる棒状繊維強化複合材110の曲げ応力に対する耐性、炭素繊維束のバラケ防止性、炭素繊維束の撚りに対する強度(撚りにより炭素繊維糸が切れない)や後に説明する素線を得る工程において、固化剤が付与され炭素繊維束と後述する拘束材とが一体化される前の状態のときに拘束材の間から炭素繊維束が飛び出す(目むき)ことが無いようにすることを考慮して決定される。
炭素繊維束の撚り数は、0〜100回/m、好ましくは2〜50回/mであり、より好ましくは5〜40回/mであり、さらに好ましくは10〜30回/mである。
A carbon fiber bundle obtained by bundling a plurality of carbon fibers (usually several thousand to several hundred thousand or millions) is used. The carbon fiber bundle may have an arbitrary cross section such as a circular shape or a flat shape when cut perpendicular to the length direction of the carbon fiber bundle, but a circular shape is preferred. In the strand 130A used for the rod-like fiber reinforced composite material 110 of this embodiment, it is preferable that the bundle of carbon fibers is integrated by a solidifying agent in a state where a predetermined number of twists are applied. The number of twists of the carbon fiber bundle is the resistance to bending stress of the rod-like fiber reinforced composite material 110 obtained, the anti-breaking property of the carbon fiber bundle, the strength against twist of the carbon fiber bundle (the carbon fiber yarn cannot be cut by twisting), and will be described later. In the step of obtaining the element wire, the carbon fiber bundle does not jump out from between the restraining materials in a state before the solidifying agent is applied and the carbon fiber bundle and the restraining material described later are integrated. To be determined in consideration of
The twist number of the carbon fiber bundle is 0 to 100 times / m, preferably 2 to 50 times / m, more preferably 5 to 40 times / m, and further preferably 10 to 30 times / m.

素線130Aは、直径0.5〜20mmであることが好ましく、直径1〜5mmであることがより好ましい。なお、本実施形態の棒状繊維強化複合材110に用いられる素線130Aの直径は、固化剤で一体化した素線130Aの長さ方向に垂直に切断した断面の直径あり、目的とする直径になるように炭素繊維束の直径、固化剤の付与量が選択される。素線130Aの長さ方向に垂直に切断した際の断面が円でない場合は、その断面の長径を直径という。   The strand 130A preferably has a diameter of 0.5 to 20 mm, and more preferably has a diameter of 1 to 5 mm. In addition, the diameter of the strand 130A used for the rod-shaped fiber reinforced composite material 110 of the present embodiment is a diameter of a cross section cut perpendicularly to the length direction of the strand 130A integrated with a solidifying agent, and has a target diameter. The diameter of the carbon fiber bundle and the application amount of the solidifying agent are selected so as to be. When the cross section of the strand 130A cut perpendicularly to the length direction is not a circle, the major axis of the cross section is called a diameter.

また、素線130Aの長さ方向に垂直に切断した際の断面は、円形状、扁平状等任意であってもよいが、円形状が好ましい。得られる素線130Aの強度が安定するとともに、棒状繊維強化複合材110(ストランド構造体)やマルチストランド構造体とする場合にも、安定した構造体を得ることができる。
また、素線130Aの直径が直径0.5〜20mm(より好適には1〜5mm)であると、素線130Aおよび後に説明する棒状繊維強化複合材110がドラムに巻きやすくなり、また、任意の形状に追従するなどのフレキシブル性を高めることができる。
Further, the cross section of the strand 130A cut perpendicularly to the length direction may be arbitrary such as a circular shape or a flat shape, but a circular shape is preferable. The strength of the obtained strand 130A is stabilized, and a stable structure can be obtained even when the rod-like fiber reinforced composite material 110 (strand structure) or multistrand structure is used.
Further, when the diameter of the strand 130A is 0.5 to 20 mm (more preferably 1 to 5 mm), the strand 130A and the rod-like fiber reinforced composite material 110 described later can be easily wound around the drum. Flexibility, such as following the shape, can be improved.

本実施形態の炭素繊維は、ポリアクリロニトリル(PAN)系、ピッチ系等任意の炭素繊維を使用できる。この中でも、得られる棒状繊維強化複合材110の強度と弾性率とのバランスの観点から、PAN系炭素繊維糸が好ましい。
また、この炭素繊維を束ねた炭素繊維束は、炭素繊維メーカーから供給される炭素繊維を3000本(3K)、6000本(6K)、12000本(12K)、24000本(24K)、40000本(40K)、60000本(60K)などに束ねた炭素繊維束を、必要とされる強度に応じて1本、または複数本(2本以上)束ねたものを用いることができる。炭素繊維を束ねた炭素繊維束を複数本束ねる場合の炭素繊維束の本数に特に制限はなく、目的用途に応じで適宜決定されるが、通常、100本以下である。
Arbitrary carbon fibers, such as a polyacrylonitrile (PAN) type and a pitch type, can be used for the carbon fiber of this embodiment. Among these, a PAN-based carbon fiber yarn is preferable from the viewpoint of the balance between the strength and the elastic modulus of the rod-like fiber reinforced composite material 110 to be obtained.
In addition, carbon fiber bundles obtained by bundling the carbon fibers are 3000 (3K), 6000 (6K), 12000 (12K), 24000 (24K), 40000 carbon fibers supplied from a carbon fiber manufacturer ( 40K), 60000 (60K), or the like, and carbon fiber bundles bundled in one or more (two or more) depending on the required strength can be used. The number of carbon fiber bundles in the case of bundling a plurality of carbon fiber bundles obtained by bundling carbon fibers is not particularly limited and is appropriately determined depending on the intended use, but is usually 100 or less.

本実施形態の固化剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれも使用できる。また、炭素繊維と親和性の高い固化剤が好ましい。特に加熱することにより可変性を持たせることができるため、また、合成樹脂被覆部150の合成樹脂と棒状繊維強化複合材110とを接着剤を用いて接合した場合の接着性に優れるとの観点からは、固化剤として熱可塑性樹脂が好ましく用いられる。   As the solidifying agent of this embodiment, either a thermoplastic resin or a thermosetting resin can be used. Further, a solidifying agent having high affinity with carbon fiber is preferable. Since it can be given variability by heating in particular, the viewpoint of excellent adhesion when the synthetic resin of the synthetic resin coating 150 and the rod-like fiber reinforced composite material 110 are bonded using an adhesive. Is preferably a thermoplastic resin as a solidifying agent.

好適な具体例としては、ポリエーテルエーテルケトン(PEEK)、ポリプロピレン、ポリエチレン、ポリスチレン、ポリアミド(ナイロン6、ナイロン66、ナイロン12、ナイロン42等)、ABS樹脂、アクリル樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、ポリフェニレンオキサイド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルイミド、ポリアリレート、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、フェノール樹脂、シリコーン樹脂、ポリカーボネート樹脂、レゾルシノール樹脂などが挙げられるが、これに制限されない。   Preferred examples include polyetheretherketone (PEEK), polypropylene, polyethylene, polystyrene, polyamide (nylon 6, nylon 66, nylon 12, nylon 42, etc.), ABS resin, acrylic resin, vinyl chloride resin, vinylidene chloride resin. , Polyphenylene oxide, polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyethersulfone, polyetherimide, polyarylate, epoxy resin, urethane resin, polyimide resin, phenol resin, silicone resin, polycarbonate resin, resorcinol resin, etc. Not limited to this.

この中でも酸やアルカリに対する耐久性の観点から、ポリエーテルエーテルケトン(PEEK)、アクリル樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、ポリエチレン樹脂、エポキシ樹脂、ウレタン樹脂、ポリカーボネート樹脂、レゾルシノール樹脂が好適であり、特に耐衝撃性に優れ、エポキシ樹脂が好適である。また、熱可塑性エポキシ樹脂であれば、ケトン溶剤に溶解が可能で素材分別しリサイクルができる。また、耐熱性の観点より、ポリイミド樹脂、シリコーン樹脂が好ましい。
また、棒状繊維強化複合材110と合成樹脂被覆部150の合成樹脂との接着性に優れるとの観点からは、固化剤として熱可塑性エポキシ樹脂が好ましく用いられる。
Among these, from the viewpoint of durability against acids and alkalis, polyether ether ketone (PEEK), acrylic resin, vinyl chloride resin, vinylidene chloride resin, polyethylene resin, epoxy resin, urethane resin, polycarbonate resin, resorcinol resin are preferable. In particular, it is excellent in impact resistance, and an epoxy resin is suitable. Moreover, if it is a thermoplastic epoxy resin, it can melt | dissolve in a ketone solvent and can separate a material and can recycle. Moreover, a polyimide resin and a silicone resin are preferable from a heat resistant viewpoint.
Further, from the viewpoint of excellent adhesion between the rod-like fiber reinforced composite material 110 and the synthetic resin of the synthetic resin coating 150, a thermoplastic epoxy resin is preferably used as a solidifying agent.

また、特に熱可塑性エポキシ樹脂の中でも、炭素繊維束に付与した後、重合する重合型の熱可塑性エポキシ樹脂が好ましく、特に直鎖状に重合する重合型の熱可塑性エポキシ樹脂が好ましい。
棒状繊維強化複合材110の芯材に用いられる炭素繊維束に撚りがかけられたものや、後に説明を行う炭素繊維束の周りが拘束材で覆われている素線130Bでは、炭素繊維束の内部にまで樹脂を含侵させることが困難である。
一方、重合型の熱可塑性エポキシ樹脂は、重合させる前の熱可塑性エポキシ樹脂を有機溶剤で希釈することができるので粘度調整が容易である。
そのため、有機溶媒で希釈した低粘度の樹脂溶液を用いることにより、撚りがかけられている炭素繊維束の内部まで(さらには拘束材で覆われている素線130Bであっても外周の拘束材から内部の炭素繊維束まで)重合前の熱可塑性エポキシ樹脂を含浸させることができる。重合前の熱可塑性エポキシ樹脂を炭素繊維束の内部に含侵させた後、当該重合型の熱可塑性エポキシ樹脂を重合させることにより炭素繊維束と拘束材が熱可塑性エポキシ樹脂で一体化された、強度の優れた素線が得られる。
Further, among thermoplastic epoxy resins, a polymerization type thermoplastic epoxy resin that polymerizes after imparting to a carbon fiber bundle is preferable, and a polymerization type thermoplastic epoxy resin that polymerizes in a straight chain is particularly preferable.
In the strand 130B in which the carbon fiber bundle used for the core material of the rod-like fiber reinforced composite material 110 is twisted or the wire 130B around which the carbon fiber bundle described later is covered with a restraining material, It is difficult to impregnate the resin to the inside.
On the other hand, the polymerization-type thermoplastic epoxy resin can be easily adjusted in viscosity because the thermoplastic epoxy resin before polymerization can be diluted with an organic solvent.
Therefore, by using a low-viscosity resin solution diluted with an organic solvent, the inside of the carbon fiber bundle that has been twisted (even if the strand 130B is covered with the restraint, the outer restraint To the inner carbon fiber bundle) can be impregnated with a thermoplastic epoxy resin prior to polymerization. After impregnating the thermoplastic epoxy resin before polymerization into the inside of the carbon fiber bundle, the carbon fiber bundle and the restraining material were integrated with the thermoplastic epoxy resin by polymerizing the thermoplastic epoxy resin of the polymerization type, A strand with excellent strength can be obtained.

また、加熱溶融することにより流動性を付与し用いられる一般的な熱可塑性樹脂は、粘度調整が困難であると共に、一般に結晶性樹脂であるためか加熱溶融を行うことにより結晶配列が変化し、当初の樹脂が有している強度などの性質が変質するおそれがあるが、重合型の熱可塑性エポキシ樹脂は、重合前および重合後も非晶質であるため、加熱溶融や加熱変形させても変質のリスクが小さい。   In addition, a general thermoplastic resin used to impart fluidity by heating and melting is difficult to adjust the viscosity, and the crystal arrangement is changed by heating or melting because it is generally a crystalline resin, Although properties such as strength of the original resin may be altered, the polymerization type thermoplastic epoxy resin is amorphous before and after polymerization, so it can be melted and deformed by heating. The risk of alteration is small.

炭素繊維束への上述の樹脂(固化剤)を付与する方法は、スプレーコート法や刷毛で炭素繊維に樹脂をコートする方法などでもよいが、生産性の観点から、ディップ−ニップ法や樹脂(固化剤)溶液にディップした後、ダイスを通して余分な樹脂を除去し、また、炭素繊維束の長さ方向に垂直な断面の断面形状を整える方法が好適である。   The method of applying the above resin (solidifying agent) to the carbon fiber bundle may be a spray coating method or a method of coating the carbon fiber with a brush, but from the viewpoint of productivity, a dip-nip method or a resin ( After dipping into the solidifying agent solution, a method of removing excess resin through a die and adjusting the cross-sectional shape of the cross section perpendicular to the length direction of the carbon fiber bundle is preferable.

また、素線130Aは、固化剤により一体化した炭素繊維束のさらにその外周の全面を覆うように別途樹脂層が設けられていてもよい。不燃性向上の観点からは、ポリイミド樹脂やシリコーン樹脂や塩化ビニル樹脂を用いた樹脂層を設けるとよい。また、意匠性の観点からは、着色のための顔料などの着色剤を含む樹脂層を設けるとよい。これらの樹脂層は、熱可塑性樹脂、熱硬化性樹脂いずれであっても用いることはできるが、固化剤として、熱可塑性樹脂を用いた場合には、別途層に用いられる樹脂も熱可塑性樹脂が好ましい。   The strand 130A may be provided with a separate resin layer so as to cover the entire outer periphery of the carbon fiber bundle integrated with the solidifying agent. From the viewpoint of improving incombustibility, it is preferable to provide a resin layer using a polyimide resin, a silicone resin, or a vinyl chloride resin. Further, from the viewpoint of design properties, a resin layer containing a colorant such as a pigment for coloring may be provided. These resin layers can be used with either a thermoplastic resin or a thermosetting resin. However, when a thermoplastic resin is used as a solidifying agent, the resin used for the separate layer is also a thermoplastic resin. preferable.

(素線130B)
次に、本発明の他の実施形態の素線130Bについて説明する。
図2は、素線130Bを示す斜視図である。素線130Bは、繊維材料を束ねてなる繊維束2がその周囲に拘束材3aを巻き回して結束され、当該繊維束2と当該拘束材3aとが共に固化剤によって一体化されたものである。
なお、繊維束2がその周囲に拘束材3aを巻き回して結束される構造とすることにより、素線130Bと合成樹脂被覆部150の合成樹脂との接触面積や構造的な抵抗が増加し、棒状繊維強化複合材110と合成樹脂被覆部150の合成樹脂との接着力が向上し、得られる接合構造体100の引張強さ、破断荷重の大きさの観点より好ましい。
拘束材3a以外の基本的構成は、上述した素線130Aと同様であるため、適宜説明を省略する。
また、素線130Bでは、上述した素線130Aと同様に、繊維材料として炭素繊維、特に炭素繊維を芯材として用いたものを例として、詳細に説明を行う。以下、炭素繊維を束ねてなる繊維束を炭素繊維束ともいう。なお、炭素繊維以外の繊維材料を用いたものを除くものではない。
(Wire 130B)
Next, the strand 130B of other embodiment of this invention is demonstrated.
FIG. 2 is a perspective view showing the strand 130B. The strand 130B is obtained by binding a fiber bundle 2 formed by bundling fiber materials around a restraint material 3a, and the fiber bundle 2 and the restraint material 3a are both integrated by a solidifying agent. .
In addition, by making the fiber bundle 2 have a structure in which the binding material 3a is wound around the fiber bundle 2, the contact area between the strand 130B and the synthetic resin of the synthetic resin coating 150 and the structural resistance increase, The adhesive strength between the rod-like fiber reinforced composite material 110 and the synthetic resin of the synthetic resin covering portion 150 is improved, which is preferable from the viewpoint of the tensile strength and the breaking load of the obtained bonded structure 100.
Since the basic configuration other than the restraining material 3a is the same as that of the above-described strand 130A, description thereof will be omitted as appropriate.
In addition, the wire 130B will be described in detail by taking carbon fiber as the fiber material, in particular, using carbon fiber as the core material as an example, similarly to the above-described wire 130A. Hereinafter, a fiber bundle formed by bundling carbon fibers is also referred to as a carbon fiber bundle. In addition, the thing using fiber materials other than carbon fiber is not excluded.

拘束材3aは、炭素繊維束2を周囲面から炭素繊維がばらばらにならないように結束するとともに素線130Bの形状を安定させることができるものである。本実施形態では、素線130Bは、炭素繊維束2を拘束材3aで拘束して、そこに固化剤を付与することで、炭素繊維束2と拘束材3aとが固化剤によって一体化している。また、素線130Aと同様に炭素繊維束2は撚りがかかっていると好ましい。   The restraining material 3a is capable of binding the carbon fiber bundle 2 from the peripheral surface so that the carbon fibers are not separated and stabilizing the shape of the strand 130B. In the present embodiment, the strand 130B constrains the carbon fiber bundle 2 with the restraining material 3a, and gives the solidifying agent thereto, so that the carbon fiber bundle 2 and the restraining material 3a are integrated by the solidifying agent. . Moreover, it is preferable that the carbon fiber bundle 2 is twisted like the strand 130A.

本実施形態の素線130Bでは、拘束材3aとなる繊維を炭素繊維束2の外周に巻きまわして筒状の組紐(丸打)を組むことで、組紐状の拘束材3aを形成している(筒状の組紐の筒内に炭素繊維束2を有することで、炭素繊維束2の外周を拘束材3aで形成された組紐構造で覆ったもの。)。拘束材3aを組紐状にすることで、炭素繊維束2を結束すると共に、得られる素線130Bの形状をより安定させることができ、また、拘束材3aが内部の炭素繊維束2を構成する炭素繊維の保護を行う保護層として機能する。また、日本伝統の組紐技術が用いられているため、意匠性にも優れる。   In the strand 130B of this embodiment, the braided restraining material 3a is formed by winding the fiber used as the restraining material 3a around the outer periphery of the carbon fiber bundle 2 to form a tubular braid (round punching). (Those having the carbon fiber bundle 2 in the cylinder of the tubular braid so that the outer periphery of the carbon fiber bundle 2 is covered with the braid structure formed of the restraining material 3a). By making the restraining material 3a into a braid shape, the carbon fiber bundle 2 can be bound, and the shape of the obtained strand 130B can be further stabilized, and the restraining material 3a constitutes the carbon fiber bundle 2 inside. It functions as a protective layer that protects carbon fibers. In addition, since traditional Japanese braid technology is used, it is also excellent in design.

そのため、このような構成の素線130Bを用いた接合構造体100を引張材などに用いた場合では、安定した強度を発揮し、外観品位も良く、砂利などの鋭利物と接触しても断線することを防ぐことができる。
また、拘束材3aで拘束された炭素繊維束2を樹脂(固化剤)溶液にディップした後、ダイスで扱いて余分な樹脂を絞るときに炭素繊維束2の長さ方向に張力がかかるが、炭素繊維束2の外周を拘束材3aによる組紐構造で覆ったものであれば編物のように目が開いてしまうのではなく、目が閉じた状態で組紐の径が細くなる。そのため、内部の炭素繊維束2の露出を抑えつつ、拘束材3aと炭素繊維束2の密着性を高めることができるので、得られる接合構造体100の強度の観点より好ましい。
Therefore, when the joining structure 100 using the strand 130B having such a configuration is used as a tensile material or the like, it exhibits stable strength, good appearance quality, and breaks even when it comes into contact with sharp objects such as gravel. Can be prevented.
In addition, after dipping the carbon fiber bundle 2 restrained by the restraining material 3a into a resin (solidifying agent) solution, tension is applied in the length direction of the carbon fiber bundle 2 when handling excess resin with a die. If the outer periphery of the carbon fiber bundle 2 is covered with a braid structure made of the restraining material 3a, the eyes will not open like a knitted fabric, but the diameter of the braid will be reduced with the eyes closed. Therefore, the adhesion of the restraining material 3a and the carbon fiber bundle 2 can be enhanced while suppressing the exposure of the carbon fiber bundle 2 inside, which is preferable from the viewpoint of the strength of the obtained bonded structure 100.

なお、拘束材3aは炭素繊維束2を構成する炭素繊維がばらばらにならないように結束できればよく、拘束材3aの配置は組紐状に限定されない。また、炭素繊維束2の表面を拘束材3aで完全に被覆する必要もなく、炭素繊維束2の表面の一部が被覆されていなくてもよい。
他の拘束材による結束の例として、1本の拘束材を螺旋状に巻きつけて炭素繊維束を結束したり、炭素繊維束の周囲面に拘束材となる繊維を巻き回して目の粗い筒状の丸編を編んだ編紐状の拘束材によって炭素繊維束を結束したり、繊維等を所定間隔に配置した拘束材によって炭素繊維束を結束したりする形態であってもよい。
一方で、炭素繊維束の保護、素線130Bの形状の安定による強度の安定、外観品位の低下の抑制との観点からは、拘束材を筒状の組紐にして、当該筒状の組紐の内部に炭素繊維束を配置し、炭素繊維束の表面全体を被覆したものが好ましい。
In addition, the restraint material 3a should just be bound so that the carbon fiber which comprises the carbon fiber bundle 2 may not become disjoint, and arrangement | positioning of the restraint material 3a is not limited to braid shape. Further, it is not necessary to completely cover the surface of the carbon fiber bundle 2 with the restraining material 3a, and a part of the surface of the carbon fiber bundle 2 may not be covered.
As an example of binding with other restraining materials, a single restraining material is wound in a spiral shape to bind a carbon fiber bundle, or a fiber serving as a restraining material is wound around the carbon fiber bundle to form a coarse tube Alternatively, the carbon fiber bundle may be bundled by a knitted string-like restraining material obtained by knitting a circular knitting, or the carbon fiber bundle may be bundled by a restraining material in which fibers or the like are arranged at predetermined intervals.
On the other hand, from the viewpoint of protecting the carbon fiber bundle, stabilizing the strength due to the stability of the shape of the strand 130B, and suppressing the deterioration of the appearance quality, the restraint material is a tubular braid, and the inside of the tubular braid It is preferable that the carbon fiber bundle is disposed on the surface and the entire surface of the carbon fiber bundle is covered.

拘束材3aとしては、柔軟なものが好ましく、ポリアミド(ナイロン等)、ビニロン、ポリアクリル、ポリプロピレン、塩化ビニル、アラミド、セルロース、ポリアミド、ポリエステル、ポリアセタール等の合成繊維や、レーヨン等の再生繊維、アセテート等の半合成繊維、絹、羊毛、麻、綿などの天然繊維等が使用できる。また、熱安定性に優れる繊維が好ましく、ガラス繊維、バサルト繊維が好ましく、特にはガラス繊維が好ましい。ガラス繊維のように熱安定性に優れる繊維を用いることにより、熱がかかったときに、不燃性に優れるとともに、炭素繊維束と拘束材とのずれの発生を抑制し、安定した引張に対する強度と不燃性を発現することができる。   The constraining material 3a is preferably a flexible material, such as polyamide (nylon or the like), vinylon, polyacryl, polypropylene, vinyl chloride, aramid, cellulose, polyamide, polyester, polyacetal or the like synthetic fiber, rayon or other regenerated fiber, acetate. Semi-synthetic fibers such as silk, wool, hemp, cotton and other natural fibers can be used. Moreover, the fiber excellent in heat stability is preferable, a glass fiber and a basalt fiber are preferable, and especially a glass fiber is preferable. By using a fiber with excellent thermal stability such as glass fiber, when heated, it has excellent non-flammability and suppresses the occurrence of deviation between the carbon fiber bundle and the restraint material, Nonflammability can be expressed.

なお、素線130Bにおいては、炭素繊維束2をより強固に結束するために、特に拘束材3aにより結束した炭素繊維束2に固化剤を含浸させ、拘束材3aと共に炭素繊維束2を硬化させることが好ましい。そうすることで、炭素繊維束2および拘束材3aを強固に一体化させることができ、得られる棒状繊維強化複合材110、これを用いて得られる接合構造体100の形状の安定性が向上したり、強度、特に引張強度が向上する。   In addition, in the strand 130B, in order to bind the carbon fiber bundle 2 more firmly, in particular, the carbon fiber bundle 2 bound by the restraint material 3a is impregnated with a solidifying agent, and the carbon fiber bundle 2 is cured together with the restraint material 3a. It is preferable. By doing so, the carbon fiber bundle 2 and the restraint material 3a can be firmly integrated, and the stability of the shape of the obtained rod-like fiber reinforced composite material 110 and the joint structure 100 obtained by using this can be improved. Or strength, especially tensile strength is improved.

素線130Bの太さは、直径1〜25mm、より好適には1〜10mm、さらにより好ましくは1〜5mmであると、素線130Bおよび後に説明する棒状繊維強化複合材110(ストランド構造体)やマルチストランド構造体がドラムに巻きやすくなり、また、任意の形状に追従するなどのフレキシブル性を高めることができる。なお、本実施形態の棒状繊維強化複合材110に用いられる素線130Bの直径は、炭素繊維束2と当該拘束材3aと共に固化剤によって一体化した素線130Bの長さ方向に垂直に切断した断面の直径であり、目的とする直径になるように炭素繊維束2の直径、拘束材3aでの被覆の厚み、固化剤の付与量が選択される。素線130Bの長さ方向に垂直に切断し際の断面が円でない場合は、その断面の長径を直径という。   The strand 130B has a diameter of 1 to 25 mm, more preferably 1 to 10 mm, and even more preferably 1 to 5 mm. The strand 130B and a rod-like fiber reinforced composite material 110 (strand structure) described later are used. And the multi-strand structure can be easily wound around the drum, and flexibility such as following an arbitrary shape can be improved. In addition, the diameter of the strand 130B used for the rod-like fiber reinforced composite material 110 of the present embodiment is cut perpendicularly to the length direction of the strand 130B integrated by the solidifying agent together with the carbon fiber bundle 2 and the restraining material 3a. The diameter of the carbon fiber bundle 2, the thickness of the coating with the restraining material 3 a, and the amount of the solidifying agent applied are selected so that the diameter is a cross-sectional diameter. When the cross section of the strand 130B cut perpendicularly to the length direction is not a circle, the major axis of the cross section is called a diameter.

また、素線130Bは、拘束材および固化剤が付与された炭素繊維束の外周の全面を覆うように別途層(繊維材料からなる筒状体や樹脂層等)が設けられていてもよい。不燃性向上の観点から、ポリイミド樹脂やシリコーン樹脂や塩化ビニル樹脂を用いた樹脂層を設けるとよい。また、意匠性の観点からは、着色のための顔料などの着色剤を含む樹脂層を別途設けてもよい。これらの樹脂層は、熱可塑性樹脂、熱硬化性樹脂いずれであっても用いることはできるが、固化剤として、熱可塑性樹脂を用いた場合には、別途層に用いられる樹脂も熱可塑性樹脂が好ましい。   In addition, the strand 130B may be provided with a separate layer (such as a cylindrical body or a resin layer made of a fiber material) so as to cover the entire outer periphery of the carbon fiber bundle to which the restraining material and the solidifying agent are applied. From the viewpoint of improving incombustibility, a resin layer using a polyimide resin, a silicone resin, or a vinyl chloride resin may be provided. Further, from the viewpoint of designability, a resin layer containing a colorant such as a pigment for coloring may be separately provided. These resin layers can be used with either a thermoplastic resin or a thermosetting resin. However, when a thermoplastic resin is used as a solidifying agent, the resin used for the separate layer is also a thermoplastic resin. preferable.

(棒状繊維強化複合材110)
本発明の棒状繊維強化複合材110について説明する。
棒状繊維強化複合材110は、中心に配置された芯線となる1本の素線131を他の6本の素線132が取り囲む構造を有するストランド構造体である。このような構造とすることにより、合成樹脂被覆部150において、棒状繊維強化複合材110と合成樹脂との接触面積や構造的な抵抗が増加し、合成樹脂と棒状繊維強化複合材110との接着力が向上し、得られる接合構造体100の引張強度の向上および安定性の観点より好ましい。
なお、「ストランド構造体」とは、同一径又は異なる直径の2本〜数十本の素線が単層又は多層に引き揃えられた構造、または、同一径又は異なる直径の2本〜数十本の素線が単層又は多層に撚り合わされた構造を意味する。
(Bar-like fiber reinforced composite 110)
The rod-like fiber reinforced composite material 110 of the present invention will be described.
The rod-like fiber reinforced composite material 110 is a strand structure having a structure in which one strand 131 serving as a core wire disposed in the center is surrounded by the other six strands 132. With such a structure, in the synthetic resin coating 150, the contact area and structural resistance between the rod-like fiber reinforced composite material 110 and the synthetic resin are increased, and the adhesion between the synthetic resin and the rod-like fiber reinforced composite material 110 is increased. The strength is improved, which is preferable from the viewpoints of improvement in tensile strength and stability of the bonded structure 100 to be obtained.
The “strand structure” means a structure in which two to several tens of strands having the same diameter or different diameters are arranged in a single layer or multiple layers, or two to several tens of diameters having the same diameter or different diameters. It means a structure in which the strands of a book are twisted into a single layer or multiple layers.

なお、棒状繊維強化複合材110は、上記の素線130Aおよび素線130Bのいずれか一方または両方を構成体として用い、これらを複数本、撚り合せて形成したストランド構造体の代わりに、上記の素線130Aおよび素線130Bのいずれか一方または両方を構成体として用い、これらを複数本、引き揃えて形成したストランド構造体としてもよい。   The rod-like fiber reinforced composite material 110 uses either one or both of the above-described strands 130A and 130B as a constituent body, and instead of the strand structure formed by twisting a plurality of them, the above-described strand structure is used. One or both of the strands 130A and 130B may be used as a constituent body, and a plurality of these strand structures may be formed to be aligned.

また、棒状繊維強化複合材を構成する素線としては、素線130A、素線130Bを例示したがこれに限定されず、本発明の素線の構成のものであればいずれものでもよい。また、本発明の素線の要件を満たす素線であれば、異なる素線を複合して用いてもよい。   Moreover, although the strand 130A and the strand 130B were illustrated as a strand which comprises a rod-shaped fiber reinforced composite material, it is not limited to this, Any may be sufficient as long as it is the structure of the strand of this invention. Further, different strands may be used in combination as long as they satisfy the requirements of the strand of the present invention.

また、本実施形態に係る棒状繊維強化複合材110では、芯(芯線)となる素線131と、芯となる素線131を取り囲む他の6本の素線132が撚り合されているストランド構造を有していることで、樹脂を用いて7本の素線を一体化しなくとも、バラケを防ぎ一体化できる。棒状繊維強化複合材110は、さらにドラムに巻き曲げ応力がかけられた後、伸ばして用いた場合や、曲げ応力がかかる箇所にもちいても優れた引張強度を維持することができる。   Further, in the rod-like fiber reinforced composite material 110 according to the present embodiment, the strand structure in which the strand 131 serving as the core (core wire) and the other six strands 132 surrounding the strand 131 serving as the core are twisted together. Therefore, even if the seven strands are not integrated using a resin, they can be prevented and integrated. The rod-like fiber reinforced composite material 110 can maintain an excellent tensile strength even when the drum-like fiber reinforced composite material 110 is further stretched after being subjected to a winding bending stress or used in a location where the bending stress is applied.

また、撚りを形成する方向として、
炭素繊維束×ストランド構造体=S方向×Z方向、S方向×S方向、Z方向×Z方向、Z方向×S方向、のいずれでも可能である。
Also, as the direction to form the twist,
Carbon fiber bundle × strand structure = S direction × Z direction, S direction × S direction, Z direction × Z direction, Z direction × S direction are all possible.

ストランド構造体の撚り数は、目的に応じて1.1〜50回/mで選択される。撚り数が少なすぎると、芯材単位でバラケやすくなる。一方、撚り数が多くなりすぎると引張強度が低下するおそれがある。素線の本数が7〜37本の場合には、1.5〜20回/mが好ましい。より好ましくは2〜10回/mがよい。   The number of twists of the strand structure is selected from 1.1 to 50 times / m depending on the purpose. If the number of twists is too small, it will be easy to break apart in units of core material. On the other hand, if the number of twists is too large, the tensile strength may decrease. When the number of strands is 7 to 37, 1.5 to 20 times / m is preferable. More preferably, it is 2 to 10 times / m.

また、ストランド構造体を構成する素線の本数は7本であるが、これに限定されず、目的とする性能(特に破断荷重)、用途を考慮して適宜決定され、特に限定されるものではないが、通常、2〜50本である。好ましくは、7〜37本がよい。
例えば、炭素繊維を24000本束ねたもの(24k)1本を炭素繊維束として用いた棒状繊維強化複合材110の場合には、ストランド構造体を構成する素線の本数は2本〜50本程度であるとブレース材等の用途として好適である。
Further, the number of strands constituting the strand structure is seven, but is not limited to this, and is appropriately determined in consideration of the intended performance (particularly breaking load) and application, and is not particularly limited. Usually, there are 2-50. The number is preferably 7 to 37.
For example, in the case of the rod-like fiber reinforced composite material 110 using one bundle of 24,000 carbon fibers (24k) as a carbon fiber bundle, the number of strands constituting the strand structure is about 2 to 50 It is suitable for uses such as brace material.

なお、本実施形態の棒状繊維強化複合材110は、芯線として用いた一本の素線を取り囲むように構成された他の素線とが一体に撚り合わせられているが、ストランド構造体の構造として、芯となる芯線を設けず、必要本数(例えば、2〜50本)の素線を束ね、束ねられた素線全体に撚りを掛けてもよい。   The rod-like fiber reinforced composite material 110 of the present embodiment is integrally twisted with other strands configured to surround one strand used as a core wire, but the structure of the strand structure As a matter of course, a core wire that is a core may not be provided, a necessary number (for example, 2 to 50) of strands may be bundled, and the entire bundled strands may be twisted.

また、本実施形態の棒状繊維強化複合材110は、芯線として1本の素線131を用いているが、より太い芯線が必要な場合には、複数本の素線を束ねるように配置すればよく、特に断面が円形になるように配置することが好ましい。
なお、芯線を構成する素線の本数はその使用目的に合わせて適宜決定すればよい。
Further, the rod-like fiber reinforced composite material 110 of the present embodiment uses one strand 131 as a core wire, but if a thicker core wire is required, a plurality of strands may be bundled. In particular, it is particularly preferable that the cross section be circular.
In addition, what is necessary is just to determine suitably the number of the strands which comprise a core wire according to the use purpose.

また、棒状繊維強化複合材110は、芯線となる素線131の長さが棒状繊維強化複合材110の長さより短く、棒状繊維強化複合材110の端部は、第2部材140が挿入されて配置される空隙部を有する。すなわち、空隙部は、棒状繊維強化複合材110の端面に向かって開口した中空部となっている。
棒状繊維強化複合材110の端部は、空隙部を有することで、第1部材の端部に第2部材の端部を挿入しやすく、また、第1部材120と第2部材140との軸が直線状となり、得られる接合構造体はより優れた引張強さや破断荷重などの引張強度を発揮することができる。
Further, in the rod-like fiber reinforced composite material 110, the length of the strand 131 serving as a core wire is shorter than the length of the rod-like fiber reinforced composite material 110, and the second member 140 is inserted into the end of the rod-like fiber reinforced composite material 110. It has a void portion to be arranged. In other words, the void portion is a hollow portion that opens toward the end face of the rod-like fiber reinforced composite material 110.
Since the end of the rod-like fiber reinforced composite material 110 has a gap, it is easy to insert the end of the second member into the end of the first member, and the shaft of the first member 120 and the second member 140 Becomes a linear shape, and the resulting bonded structure can exhibit more excellent tensile strength such as tensile strength and breaking load.

棒状繊維強化複合材110の端部に空隙部ができるように長さの異なる素線を用いてストランド構造体を形成したり、ストランド構造体を形成させた後に素線を切り取って形成させることもできる。   It is also possible to form a strand structure using strands having different lengths so that a gap is formed at the end of the rod-like fiber reinforced composite material 110, or to cut and form the strand after forming the strand structure. it can.

なお、第1部材の端部に第2部材が挿入され配置されていれば、芯線となる素線の長さは、棒状繊維強化複合材110の長さと同等であってもよい。
棒状繊維強化複合材の両端部は、同一形状でもよいが、同一形状である必要はなく、一方の端部に空隙部を有し、一方の端部は空隙部を有さない構造でもよい。
In addition, as long as the 2nd member is inserted and arrange | positioned at the edge part of the 1st member, the length of the strand used as a core wire may be equivalent to the length of the rod-shaped fiber reinforced composite material 110.
Both ends of the rod-like fiber reinforced composite material may have the same shape, but need not have the same shape, and may have a structure having a void at one end and no void at one end.

棒状繊維強化複合材110の直径が直径2〜100mm、より好適には4〜50mm、さらにより好適には6〜20mmであると、棒状繊維強化複合材110がドラムに巻きやすくなり、また、任意の形状に追従するなどのフレキシブル性を高めることができる。   When the diameter of the rod-like fiber reinforced composite material 110 is 2 to 100 mm, more preferably 4 to 50 mm, and even more preferably 6 to 20 mm, the rod-like fiber reinforced composite material 110 can be easily wound around a drum. Flexibility, such as following the shape, can be improved.

なお、棒状繊維強化複合材110として、前記ストランド構造体をさらにより合せた、マルチストランド構造体であってもよい。   The rod-like fiber reinforced composite material 110 may be a multi-strand structure obtained by further combining the strand structures.

また、棒状繊維強化複合材110は、ストランド構造体やマルチストランド構造体の外周を覆うように被覆層(繊維材料からなる筒状体や樹脂層等)が設けられていてもよい。
ただし、棒状繊維強化複合材110は、少なくとも一方の端部に、第2部材140が挿入されて配置でき、棒状繊維強化複合材110と第2部材との重なり部の少なくとも一部を合成樹脂により覆って接合できる状態にする必要がある。棒状繊維強化複合材110の端部をバラケさせたり、重なり部の内部に合成樹脂が染み込んで接着できるように、重なり部は被覆層がない状態にする必要がある。なお、棒状繊維強化複合材の端部の被覆層を裂いて用いる場合は、重なり部に被覆層が残っていてもよい。
Further, the rod-like fiber reinforced composite material 110 may be provided with a coating layer (a cylindrical body or a resin layer made of a fiber material) so as to cover the outer periphery of the strand structure or the multi-strand structure.
However, the rod-like fiber reinforced composite material 110 can be arranged with the second member 140 inserted into at least one end, and at least a part of the overlapping portion between the rod-like fiber reinforced composite material 110 and the second member is made of synthetic resin. It is necessary to cover and join. The overlapping portion needs to be in a state without a covering layer so that the ends of the rod-like fiber reinforced composite material 110 can be separated or the synthetic resin can penetrate and adhere inside the overlapping portion. In addition, when tearing and using the coating layer of the edge part of a rod-shaped fiber reinforced composite material, the coating layer may remain in the overlapping part.

ストランド構造体やマルチストランド構造体は撚られた素線と素線の間に埃等が付着しやすいが、別途、被覆層を設けることで、これらの埃の付着を抑制することができる。
また、不燃性向上の観点からは、前記の全面を覆うように被覆層は、ポリイミド樹脂やシリコーン樹脂や塩化ビニル樹脂を用いた樹脂層を設けるとよい。
また、意匠性の観点からは、全面を覆うように被覆層として着色のための顔料などの着色剤を含む樹脂層を別途設けてもよい。
これらの樹脂層は、熱可塑性樹脂、熱硬化性樹脂いずれであっても用いることはできるが、固化剤として、熱可塑性樹脂を用いた場合には、被覆層に用いられる樹脂も熱可塑性樹脂が好ましい。
In the strand structure and the multi-strand structure, dust or the like easily adheres between the twisted strands. However, by separately providing a coating layer, the adhesion of these dusts can be suppressed.
Further, from the viewpoint of improving nonflammability, the coating layer may be provided with a resin layer using a polyimide resin, a silicone resin, or a vinyl chloride resin so as to cover the entire surface.
From the viewpoint of design, a resin layer containing a colorant such as a pigment for coloring may be separately provided as a coating layer so as to cover the entire surface.
These resin layers can be used with either a thermoplastic resin or a thermosetting resin. However, when a thermoplastic resin is used as a solidifying agent, the resin used for the coating layer is also a thermoplastic resin. preferable.

棒状繊維強化複合材110は、その密度が、1.0〜2.5g/cm3であることが望ましい。下限値は、好ましくは1.2g/cm3以上、より好ましくは1.4g/cm3以上がよい。1.0g/cm3以上であれば、優れた強度を有する接合構造体100が得られる。一方、上限値は、好ましくは2.2g/cm3以下、より好ましくは2.0g/cm3、さらに好ましくは1.8g/cm3以下がよい。2.5g/cm3以下であれば、軽い接合構造体100が得られる。 The rod-like fiber reinforced composite material 110 desirably has a density of 1.0 to 2.5 g / cm 3 . The lower limit is preferably 1.2 g / cm 3 or more, more preferably 1.4 g / cm 3 or more. If it is 1.0 g / cm 3 or more, the bonded structure 100 having excellent strength can be obtained. On the other hand, the upper limit is preferably 2.2 g / cm 3 or less, more preferably 2.0 g / cm 3 , and even more preferably 1.8 g / cm 3 or less. If it is 2.5 g / cm 3 or less, a light bonded structure 100 is obtained.

また、棒状繊維強化複合材110の質量は、2〜150g/mであることが望ましい。下限値は、好ましくは5g/m以上、より好ましくは10g/m、さらに好ましくは40g/m以上がよい。2g/m以上であれば、優れた強度を有する接合構造体100が得られる。一方、上限値は、好ましくは120g/m以下、より好ましくは100g/m以下である。150g/m以下であれば軽い接合構造体100が得られる。   The mass of the rod-like fiber reinforced composite material 110 is desirably 2 to 150 g / m. The lower limit is preferably 5 g / m or more, more preferably 10 g / m, and still more preferably 40 g / m or more. If it is 2 g / m or more, the bonded structure 100 having excellent strength can be obtained. On the other hand, the upper limit is preferably 120 g / m or less, more preferably 100 g / m or less. If it is 150 g / m or less, the light joining structure 100 is obtained.

また、棒状繊維強化複合材110は、引張強さが100〜5000MPaであることが望ましい。下限値について、好ましくは500MPa以上が良く、より好ましくは1000MPa以上であるとよい。100MPa以上であれば、優れた強度を有する接合構造体100が得られる。一方、上限値について、好ましくは4000MPa以下が良く、より好ましくは3000MPa以下がよい。5000MPaを超えると接合構造体が重くなってしまったり、柔軟性を失ってしまったりして、巻き取っての移動や保管ができなくなるおそれがある。   The rod-like fiber reinforced composite material 110 preferably has a tensile strength of 100 to 5000 MPa. About a lower limit, Preferably it is 500 Mpa or more, More preferably, it is good in it being 1000 Mpa or more. If it is 100 MPa or more, the bonded structure 100 having excellent strength can be obtained. On the other hand, the upper limit value is preferably 4000 MPa or less, and more preferably 3000 MPa or less. If the pressure exceeds 5000 MPa, the bonded structure becomes heavy or loses flexibility, and there is a possibility that it cannot be wound up and stored.

(第2部材140)
第2部材140は、M8の鋼鉄製のボルトを用いている。
なお、第2部材140としては、第1部材120の端部に挿入されて配置できる構造のものであればよく、例えば、螺子を切った鋼鉄製のボルト(M8、M10、M12の鋼鉄製ボルトなど)等少なくとも一方の端部が棒状となっているものを用いることができる。第2部材140の第1部材に挿入されて配置される端部は、棒状であることが好ましいが、らせん状や、板状であってもよいし、U字状、輪っか状であってもよい。
第2部材は第1部材と同一素材であってもよい。第1部材120の端部に重ねられる第2部材140の端部は、表面が螺子を切るなどして凹凸を有すると合成樹脂被覆部150において、合成樹脂と第2部材140との接着力が向上し、得られる接合構造体100は、優れた引張強度が得られるとの観点から好ましい。
(Second member 140)
The second member 140 uses M8 steel bolts.
The second member 140 may have any structure as long as it can be inserted into the end of the first member 120. For example, a steel bolt with a screw cut (M8, M10, M12 steel bolt). Etc.) or the like having at least one end in a rod shape can be used. The end of the second member 140 that is inserted into the first member is preferably rod-shaped, but may be spiral, plate-shaped, U-shaped, or ring-shaped. Good.
The second member may be the same material as the first member. If the end of the second member 140 overlapped with the end of the first member 120 has irregularities such as by cutting the surface of a screw, the synthetic resin covering portion 150 has an adhesive force between the synthetic resin and the second member 140. The bonded structure 100 obtained by improvement is preferable from the viewpoint that excellent tensile strength can be obtained.

また、第2部材140の形状は特に限定されず、第1部材120の端部に挿入されていない側の端部は、棒状であってもよいし、棒状でネジが切ってあってもよく、また、板状であってもよいし、U字状、輪っか状であってもよく、補強される柱、梁、床、壁、地面に、第1部材120の端部に挿入されない側の端部をナットやボルト、釘、紐や布状物や杭等で定着できればよい。また、接合構造体100は、第2部材140の第1部材120の端部に挿入されない側の端部をナットやボルト、釘、紐や布状物や杭等と接合後、さらに他の定着治具を介して、柱、梁、床、壁、地面等に定着してもよい。   The shape of the second member 140 is not particularly limited, and the end portion of the first member 120 that is not inserted into the end portion may be a rod shape or may be a rod shape and screwed. In addition, it may be plate-shaped, U-shaped or ring-shaped, on the side that is not inserted into the end of the first member 120 on the pillar, beam, floor, wall, or ground to be reinforced. It is only necessary that the end can be fixed with a nut, a bolt, a nail, a string, a cloth-like object, a pile, or the like. In addition, the bonded structure 100 is bonded to the other end of the second member 140 that is not inserted into the end of the first member 120 with a nut, a bolt, a nail, a string, a cloth-like object, a pile, or the like. You may fix to a pillar, a beam, a floor, a wall, the ground, etc. via a jig | tool.

(合成樹脂被覆部150)
合成樹脂被覆部150の合成樹脂は、ウレタン樹脂である。なお、合成樹脂は、ウレタン樹脂に限定されず、本発明の目的を達成できる範囲で、合成樹脂は適宜選択できる。合成樹脂被覆部150の合成樹脂として、ウレタン樹脂の代わりに、エポキシ樹脂、メラミン樹脂、シリコーン樹脂、フェノール樹脂、天然ゴム、合成ゴムなどのゴム系、α―オレフィン樹脂、アクリル樹脂、酢酸ビニル樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂などの合成樹脂を用いてもよい。接着性の観点からはウレタン樹脂またはエポキシ樹脂が好ましく用いられる。
具体的には、多価アルコールのアルキレンオキサイド付加物であるポリオール及びポリイソシアネートを含むウレタン樹脂が好ましい。ポリオールの重量平均分子量は600以下のものがよい。また、多価アルコールとしては、グリセリン、トリメチロールプロパン或いは、ペンタエリトリトールが好ましい。また、耐熱性の観点から、ガラス転移温度(Tg)は70℃以上が好ましく、より好ましくは80℃以上、さらに好ましくは90℃以上である。上限は特にないが、130℃程度である。
(Synthetic resin coating 150)
The synthetic resin of the synthetic resin coating 150 is a urethane resin. The synthetic resin is not limited to the urethane resin, and the synthetic resin can be appropriately selected as long as the object of the present invention can be achieved. As a synthetic resin of the synthetic resin coating portion 150, instead of urethane resin, epoxy resin, melamine resin, silicone resin, phenol resin, natural rubber, synthetic rubber and other rubber-based materials, α-olefin resin, acrylic resin, vinyl acetate resin, Synthetic resins such as unsaturated polyester resins and vinyl ester resins may be used. From the viewpoint of adhesiveness, a urethane resin or an epoxy resin is preferably used.
Specifically, a urethane resin containing a polyol and a polyisocyanate, which is an alkylene oxide adduct of a polyhydric alcohol, is preferable. The weight average molecular weight of the polyol is preferably 600 or less. As the polyhydric alcohol, glycerin, trimethylolpropane, or pentaerythritol is preferable. Further, from the viewpoint of heat resistance, the glass transition temperature (Tg) is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and further preferably 90 ° C. or higher. Although there is no upper limit in particular, it is about 130 degreeC.

<実施形態2>
図3Aは、本発明の実施形態2における接合構造体101の側面図である。また、図3Bは、接合構造体101の断面図である。なお、図3A、図3Bにおいては、図1と同じ構成のものは同符号を付して説明を省略する。
図3Aに示すように、接合構造体101は、第1部材である棒状繊維強化複合材111と、棒状繊維強化複合材111の端部に重ねて配置される第2部材140と、重なり部の少なくとも一部を合成樹脂により覆って接合する合成樹脂被覆部150からなる。
<Embodiment 2>
FIG. 3A is a side view of the bonding structure 101 according to Embodiment 2 of the present invention. FIG. 3B is a cross-sectional view of the bonded structure 101. 3A and 3B, the same components as those in FIG.
As shown in FIG. 3A, the bonded structure 101 includes a rod-shaped fiber reinforced composite material 111 that is a first member, a second member 140 that is stacked on the end of the rod-shaped fiber reinforced composite material 111, and an overlapping portion. It consists of a synthetic resin coating 150 that covers and joins at least a portion with a synthetic resin.

本実施形態においては、重なり部の長さL3は、合成樹脂被覆部150の長さL4より長く、重なり部の直径W3は、合成樹脂被覆部150の直径W4より細くなっているが、重なり部の長さL3と合成樹脂被覆部150の長さL4の関係及び重なり部の直径W3と合成樹脂被覆部150の直径W3の関係は、実施形態1と同様に使用目的に応じて適宜設定できる。   In the present embodiment, the length L3 of the overlapping portion is longer than the length L4 of the synthetic resin coating portion 150, and the diameter W3 of the overlapping portion is smaller than the diameter W4 of the synthetic resin coating portion 150. The relationship between the length L3 and the length L4 of the synthetic resin coating 150 and the relationship between the diameter W3 of the overlapping portion and the diameter W3 of the synthetic resin coating 150 can be set as appropriate according to the purpose of use as in the first embodiment.

棒状繊維強化複合材111は、芯線となる素線133を他の6本の素線134が取り囲む構造を有するストランド構造体であり、素線133の長さが棒状繊維強化複合材111の長さとほぼ同じで端部に空隙部を有さない構造である他は、棒状繊維強化複合材110と同様である。芯線となる素線133は、長さが異なる以外は、素線131と同様である。素線134は素線132と同様である。
なお、実施形態1と同様に、本発明の目的を阻害しない範囲で、棒状繊維強化複合材111の素線の種類や本数等は適宜変更できる。また、棒状繊維強化複合材111は、素線を複数本、引き揃えた構成や、芯線がない構成であってもよい。また、棒状繊維強化複合材111は、マルチストランド構造体であってもよい。
The rod-shaped fiber reinforced composite material 111 is a strand structure having a structure in which the other strands 134 surround the core wire 133, and the length of the strand 133 is equal to the length of the rod-shaped fiber reinforced composite material 111. The structure is the same as that of the rod-like fiber reinforced composite material 110 except that the structure is substantially the same and does not have a gap at the end. The strand 133 used as a core wire is the same as the strand 131 except that length differs. The strand 134 is the same as the strand 132.
As in the first embodiment, the type and number of the strands of the rod-like fiber reinforced composite material 111 can be changed as appropriate without departing from the object of the present invention. Further, the rod-like fiber reinforced composite material 111 may have a configuration in which a plurality of strands are aligned, or a configuration without a core wire. Further, the rod-like fiber reinforced composite material 111 may be a multi-strand structure.

第2部材140は、実施形態1と同様に、棒状繊維強化複合材111の端部に重ねて配置できる構造のものであればよく、例えば、螺子を切った鋼鉄製のボルト(M8、M10、M12の鋼鉄製ボルトなど)等少なくとも一方の端部が棒状となっているものを用いることができる。なお、第2部材140の棒状繊維強化複合材111に重ねて配置される端部は、棒状であることが好ましいが、らせん状や、板状であってもよいし、U字状、輪っか状であってもよい。第2部材140は、棒状繊維強化複合材111と同一であってもよい。   Similarly to the first embodiment, the second member 140 may have a structure that can be placed on the end portion of the rod-like fiber reinforced composite material 111. For example, a steel bolt (M8, M10, For example, an M12 steel bolt or the like having at least one end in a rod shape can be used. Note that the end portion of the second member 140 that is disposed so as to overlap the rod-like fiber reinforced composite material 111 is preferably rod-like, but may be spiral or plate-like, U-shaped, or ring-shaped. It may be. The second member 140 may be the same as the rod-like fiber reinforced composite material 111.

合成樹脂被覆部150の合成樹脂は、ウレタン樹脂であるが、実施形態1と同様に、ウレタン樹脂に限定されず、本発明の目的を達成できる範囲で、合成樹脂は適宜選択できる。合成樹脂被覆部150の合成樹脂として、ウレタン樹脂の代わりに、エポキシ樹脂、メラミン樹脂、シリコーン樹脂、フェノール樹脂、天然ゴム、合成ゴムなどのゴム系、α―オレフィン樹脂、アクリル樹脂、酢酸ビニル樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂などの合成樹脂を用いてもよい。   The synthetic resin of the synthetic resin coating portion 150 is a urethane resin, but is not limited to the urethane resin as in the first embodiment, and the synthetic resin can be appropriately selected as long as the object of the present invention can be achieved. As a synthetic resin of the synthetic resin coating portion 150, instead of urethane resin, epoxy resin, melamine resin, silicone resin, phenol resin, natural rubber, synthetic rubber, etc., α-olefin resin, acrylic resin, vinyl acetate resin, Synthetic resins such as unsaturated polyester resins and vinyl ester resins may be used.

<実施形態3>
図4Aは、本発明の実施形態3における接合構造体102の側面図である。また、図4Bは、接合構造体102の断面図である。なお、図4A、図4Bにおいては、図1と同じ構成のものは同符号を付して説明を省略する。
<Embodiment 3>
FIG. 4A is a side view of the joint structure 102 according to Embodiment 3 of the present invention. FIG. 4B is a cross-sectional view of the bonded structure 102. In FIG. 4A and FIG. 4B, the same components as those in FIG.

接合構造体102は、第1部材である棒状繊維強化複合材112と、棒状繊維強化複合材112の端部に重ねて配置される第2部材140と、重なり部を合成樹脂により覆って接合する合成樹脂被覆部150からなる。また、棒状繊維強化複合材112の端部は、第2部材140が重ねて配置される空隙部を有する。   The joint structure 102 is joined by covering the overlapping portion with a synthetic resin and the second member 140 disposed to overlap the end portion of the rod-like fiber reinforced composite material 112, which is a first member. It consists of a synthetic resin coating 150. Moreover, the edge part of the rod-shaped fiber reinforced composite material 112 has the space | gap part by which the 2nd member 140 is piled up and arranged.

本実施形態においては、重なり部の長さL5は、合成樹脂被覆部150の長さL6より短く、重なり部の直径W5は、合成樹脂被覆部150の直径W6より細くなっているが、重なり部の長さL5と合成樹脂被覆部150の長さL6の関係及び重なり部の直径W5と合成樹脂被覆部150の直径W6の関係は、実施形態1と同様に使用目的に応じて適宜設定できる。   In the present embodiment, the length L5 of the overlapping portion is shorter than the length L6 of the synthetic resin coating portion 150, and the diameter W5 of the overlapping portion is smaller than the diameter W6 of the synthetic resin coating portion 150. The length L5 and the length L6 of the synthetic resin coating portion 150 and the relationship between the overlapping portion diameter W5 and the synthetic resin coating portion 150 diameter W6 can be appropriately set according to the purpose of use as in the first embodiment.

第1部材である棒状繊維強化複合材112は、芯線となる素線135を4本の素線136と2本の素線137の計6本の素線が取り囲む構造を有するストランド構造体である。図4Aに示すように、棒状繊維強化複合材112は、芯線となる素線135の周囲に配置された6本の素線のうち2本の素線137の長さが他の4本の素線136の長さより短く、端部に空隙部を有する構造である。
棒状繊維強化複合材112は、素線135及び素線137の長さが異なる他は、棒状繊維強化複合材110と同様である。芯線となる素線135は、長さが異なる以外は、素線131と同様である。素線136は素線132と同様である。素線137は、長さが異なる以外は、素線132と同様である。
なお、実施形態1と同様に、本発明の目的を阻害しない範囲で、棒状繊維強化複合材112の素線の種類や本数等は適宜変更できる。また、棒状繊維強化複合材112は、素線を複数本、引き揃えた構成や、芯線がない構成であってもよい。また、棒状繊維強化複合材112は、マルチストランド構造体であってもよい。
The rod-like fiber reinforced composite material 112 as the first member is a strand structure having a structure in which a total of six strands of four strands 136 and two strands 137 surround a strand 135 serving as a core wire. . As shown in FIG. 4A, the rod-shaped fiber reinforced composite material 112 is composed of two strands 137 of the six strands arranged around the strand 135 serving as the core. It is shorter than the length of the line 136 and has a gap at the end.
The rod-like fiber reinforced composite material 112 is the same as the rod-like fiber reinforced composite material 110 except that the lengths of the wire 135 and the wire 137 are different. The strand 135 used as a core wire is the same as the strand 131 except that length differs. The strand 136 is the same as the strand 132. The strand 137 is the same as the strand 132 except that the length is different.
As in the first embodiment, the type and number of the strands of the rod-like fiber reinforced composite material 112 can be changed as appropriate without departing from the object of the present invention. Further, the rod-like fiber reinforced composite material 112 may have a configuration in which a plurality of strands are aligned, or a configuration without a core wire. Further, the rod-like fiber reinforced composite material 112 may be a multi-strand structure.

第2部材140は、実施形態1と同様に、棒状繊維強化複合材112の端部に重ねて配置できる構造のものであればよく、例えば、螺子を切った鋼鉄製のボルト(M8、M10、M12の鋼鉄製ボルトなど)等少なくとも一方の端部が棒状となっているものを用いることができる。なお、第2部材140の棒状繊維強化複合材112に重ねて配置される端部は、棒状であることが好ましいが、らせん状や、板状であってもよいし、U字状、輪っか状であってもよい。第2部材140は、棒状繊維強化複合材111と同一であってもよい。   Similarly to the first embodiment, the second member 140 may have a structure that can be placed on the end of the rod-like fiber reinforced composite material 112. For example, a steel bolt (M8, M10, For example, an M12 steel bolt or the like having at least one end in a rod shape can be used. Note that the end of the second member 140 that is placed on the rod-shaped fiber reinforced composite material 112 is preferably rod-shaped, but may be spiral or plate-shaped, U-shaped, or ring-shaped. It may be. The second member 140 may be the same as the rod-like fiber reinforced composite material 111.

合成樹脂被覆部150の合成樹脂は、エポキシ樹脂であるが、実施形態1と同様に、当該樹脂に限定されず、本発明の目的を達成できる範囲で、合成樹脂は適宜選択できる。合成樹脂被覆部150の合成樹脂として、エポキシ樹脂の代わりに、ウレタン樹脂、メラミン樹脂、シリコーン樹脂、フェノール樹脂、天然ゴム、合成ゴムなどのゴム系、α―オレフィン樹脂、アクリル樹脂、酢酸ビニル樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂などの合成樹脂を用いてもよい。   The synthetic resin of the synthetic resin coating portion 150 is an epoxy resin, but is not limited to the resin as in the first embodiment, and the synthetic resin can be appropriately selected within a range in which the object of the present invention can be achieved. As a synthetic resin of the synthetic resin coating portion 150, instead of an epoxy resin, a urethane resin, a melamine resin, a silicone resin, a phenol resin, a natural rubber, a synthetic rubber or other rubber type, an α-olefin resin, an acrylic resin, a vinyl acetate resin, Synthetic resins such as unsaturated polyester resins and vinyl ester resins may be used.

[接合構造体の用途]
以上の構成を有する本実施形態の接合構造体100、101、102は、軽量でかつ優れた強度を有し、意匠性、外観品位の低下を抑制することにより、クレーン車などの重機の入れない場所に建てられた伝統建築物や従来の耐震補強材の質量に耐えることができず耐震補強できなかった伝統建築物の耐震補強を行うことができる。さらに、鉄鋼、鉄筋、木造などの一般の建築物やテーブル、椅子、手すりなどの家具類、植物用の誘引紐、ワーヤー代替物、柵など種々の構造物の補強材や構造材として用いることができる。
[Application of bonded structure]
The joint structure 100, 101, 102 of the present embodiment having the above configuration is lightweight and has excellent strength, and can prevent heavy machinery such as crane trucks from entering by suppressing deterioration in design and appearance quality. It is possible to perform seismic reinforcement of traditional buildings built in the place and traditional buildings that could not withstand the mass of conventional seismic reinforcements and could not withstand earthquakes. Furthermore, it can be used as a reinforcing material or a structural material for various structures such as steel, steel bars, wooden structures, etc., furniture such as tables, chairs, handrails, plant attracting strings, wire replacements, and fences. it can.

以上、本発明の実施形態について述べたが、これらは本発明の例示であり、本発明の技術的思想の範囲内で上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above can also be employ | adopted within the scope of the technical idea of this invention.

以下、実施例により本発明をさらに詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。
また、本実施例における各種データは以下の方法で測定を行った。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is changed.
Various data in this example were measured by the following method.

<直径>
素線、棒状繊維強化複合材の直径、重なり部、合成樹脂被覆部の長さ、太さはノギスで測定した。
<質量>
棒状繊維強化複合材および素線を10cmに切断し、電子天秤を用いて質量を測定し、その値を10倍して、1m当たりの質量を求めた。
<密度>
JIS K7112:1999 A法(水中置換法)に準じて測定をおこなった。
<引張強さおよび破断荷重>
引張強さおよび破断荷重は、インストロンジャパンカンパニリミテッドから供給されている5980フロア型高容量万能試験機 型式5985を使用し、2mm/minの条件で測定した(測定環境は室温(約25℃))。試料が破断したときの荷重(kN)を破断荷重とした。試料が破断したときの荷重(kN)を破断荷重とし、破断荷重を棒状繊維強化複合材の長さ方向に垂直に切断した断面積(有効断面積)で割ったものを引張強さ(MPa)とした。
<Diameter>
The diameter of the wire, the rod-like fiber reinforced composite material, the overlapping portion, and the length and thickness of the synthetic resin coating portion were measured with calipers.
<Mass>
The rod-like fiber reinforced composite material and the strand were cut into 10 cm, the mass was measured using an electronic balance, the value was multiplied by 10, and the mass per 1 m was determined.
<Density>
Measurement was performed according to JIS K7112: 1999 A method (underwater substitution method).
<Tensile strength and breaking load>
Tensile strength and breaking load were measured under the condition of 2 mm / min using a 5980 floor type high capacity universal testing machine model 5985 supplied from Instron Japan Ltd. (measurement environment is room temperature (about 25 ° C.) ). The load (kN) when the sample broke was taken as the rupture load. Tensile strength (MPa) is obtained by dividing the load (kN) when the sample broke into the breaking load, and dividing the breaking load by the cross-sectional area (effective cross-sectional area) cut perpendicular to the length direction of the rod-like fiber reinforced composite material. It was.

(実施例1)
24Kの炭素繊維束(PAN系炭素繊維。東レ株式会社製。T700SC。)を3本束ね、S方向に10回/m撚りをかけたもの1本を炭素繊維束として用い、拘束材としてガラス繊維を用い、製紐機(24打機)を用いて、16打ちの石目打にて、炭素繊維束の外周の全面を組紐状にガラス繊維で拘束した。
Example 1
Three bundles of 24K carbon fiber bundles (PAN-based carbon fiber, manufactured by Toray Industries, Inc., T700SC), one of which is twisted 10 times / m in the S direction, are used as carbon fiber bundles, and glass fiber as a restraining material. , And the entire outer circumference of the carbon fiber bundle was constrained by braided glass fibers with 16 striking stones using a stringing machine (24 hammering machine).

次に、
重合型の熱可塑性エポキシ樹脂(DENATITE XNR6850V、固形分85質量%、ナガセケムテックス株式会社製)100質量部、
硬化剤(DENATITE XNH6850V、固形分30質量%、ナガセケムテックス株式会社製) 6.5質量部、
メチルエチルケトン(MEK)10質量部
からなる溶液(粘度150mPa・s)にデッピングし、ダイスを通し、余分な溶液を除去するとともに、炭素繊維束の長さ方向に対し垂直に切断した際の断面形状が円形になるように形状を整え、拘束された炭素繊維束に対し、固化剤を付与した。その後、熱処理(150℃、20分間)を行うことで、前記重合型の熱可塑性エポキシ樹脂を重合させて、炭素繊維束と拘束材と熱可塑性エポキシ樹脂(固化剤)を一体化させて素線を得た。
next,
Polymerization type thermoplastic epoxy resin (DENATITE XNR6850V, solid content 85% by mass, manufactured by Nagase ChemteX Corporation), 100 parts by mass,
Curing agent (DENATEITE XNH6850V, solid content 30% by mass, manufactured by Nagase ChemteX Corporation) 6.5 parts by mass,
Dipping into a solution (viscosity 150 mPa · s) consisting of 10 parts by weight of methyl ethyl ketone (MEK), passing through a die to remove excess solution, and the cross-sectional shape when cut perpendicular to the length direction of the carbon fiber bundle is The shape was adjusted to be circular, and a solidifying agent was applied to the restrained carbon fiber bundle. Thereafter, the polymerized thermoplastic epoxy resin is polymerized by heat treatment (150 ° C., 20 minutes), and the carbon fiber bundle, the binding material, and the thermoplastic epoxy resin (solidifying agent) are integrated to form a strand. Got.

得られた実施例1の素線の断面は円形状で、直径3mm、質量は12.8g/mであった。破断荷重13kN、引張強さは1800MPa(有効断面積7.1mm2)であった。
であった。
素線は、室温で直径100cmのドラムに3000m巻きとったところ、折れることなく、スムーズに巻き取ることができた。
The obtained strand of Example 1 had a circular cross section, a diameter of 3 mm, and a mass of 12.8 g / m. The breaking load was 13 kN, and the tensile strength was 1800 MPa (effective sectional area 7.1 mm 2 ).
Met.
When the strand was wound on a drum having a diameter of 100 cm at a room temperature of 3000 m, it could be wound smoothly without breaking.

次に、得られた素線を7本用い、中心に芯線として1本の素線、その周りを6本の素線で覆うように、120℃に加熱しながら撚り合わせて、ストランド構造とし、棒状繊維強化複合材を得た。
得られた実施例1の棒状繊維強化複合材は、直径9mm、密度は1.6g/m3、質量は80g/mであった。破断荷重90kN、引張強さは1800MPa(有効断面積50mm2)であった。
次に、棒状繊維強化複合材の芯材を端部から9cm切り取った。これを第1部材として用いた。
Next, 7 strands obtained were used, one strand as a core wire at the center, and twisted while heating at 120 ° C. so as to cover the periphery with 6 strands, to form a strand structure, A rod-like fiber reinforced composite material was obtained.
The obtained rod-like fiber reinforced composite material of Example 1 had a diameter of 9 mm, a density of 1.6 g / m 3 , and a mass of 80 g / m. The breaking load was 90 kN, and the tensile strength was 1800 MPa (effective sectional area 50 mm 2 ).
Next, 9 cm of the core material of the rod-like fiber reinforced composite material was cut off from the end. This was used as the first member.

次に、第2部材として、長さ15cmの螺子を切った鋼鉄製のボルト(以下、M8ボルトという。太さ(太い部分7.7mm))を用い、M8ボルトを棒状繊維強化複合材の芯材を切り取った部分に、挿入し、重なり部を構成した。重なり部の長さは9cmであった。また、重なり部の太さは、太い部分で1.55cmであった。   Next, as a second member, a steel bolt (hereinafter referred to as an M8 bolt; thickness (thick portion: 7.7 mm)) having a 15 cm long screw cut is used, and the M8 bolt is used as a core of a rod-like fiber reinforced composite material. It was inserted into the part where the material was cut out to form an overlapping part. The length of the overlapping portion was 9 cm. The thickness of the overlapping portion was 1.55 cm at the thick portion.

次に、重なり部を合成樹脂で接合するために、長さ10cm、内径21mmの合成樹脂製の管内(剥離用フィルムが管内壁に取り付けた物)に、重なり部が全て入るように挿入し、当該管内に、多価アルコールのアルキレンオキサイド付加物であるポリエーテルポリオールとポリイソシアネートの混合物を充填し、室温(25℃)で1時間放置し、前記ポリオールとポリイソシアネートを反応・硬化させウレタン樹脂(Tg93℃)を生成した。ウレタン樹脂の硬化後、当該管を取り除き、室内に1週間養生し、第1部材と、第2部材と、第1部材と第2部材が重なり合う重なり部の全体がウレタン樹脂で覆われ接合される合成樹脂被覆部から構成される接合構造体を得た。図5に接合構造体の写真を示す。   Next, in order to join the overlapping portion with a synthetic resin, the tube is inserted into a synthetic resin tube having a length of 10 cm and an inner diameter of 21 mm (with a peeling film attached to the inner wall of the tube) so that the entire overlapping portion enters, The tube is filled with a mixture of polyether polyol and polyisocyanate, which is an alkylene oxide adduct of polyhydric alcohol, and left at room temperature (25 ° C.) for 1 hour to react and cure the polyol and polyisocyanate to obtain a urethane resin ( Tg93 ° C.). After the urethane resin is cured, the tube is removed and cured for one week in the room, and the first member, the second member, and the entire overlapping portion where the first member and the second member overlap are covered with the urethane resin and bonded. A bonded structure composed of a synthetic resin coating was obtained. FIG. 5 shows a photograph of the bonded structure.

得られた接合構造体の破断荷重を測定したところ、20kNであった。破断の状態は、合成樹脂被覆部の破壊ではなく、M8ボルトが破断しており、重なり部はウレタン樹脂により十分な強度を有しているものであった。ウレタン樹脂つまり合成樹脂で接合された合成樹脂被覆部の太さは2cm、長さは10cmと細く、短いものであり意匠性に優れていた。さらに、合成樹脂被覆部は透明であり、ウレタン樹脂で覆われた棒状繊維強化複合材、素線、M8ボルトが透けて見えるものであり、この観点からも意匠性に優れていた。   When the breaking load of the obtained bonded structure was measured, it was 20 kN. The state of the break was not the destruction of the synthetic resin coating part, but the M8 bolt was broken, and the overlapping part had sufficient strength by the urethane resin. The thickness of the synthetic resin coating part joined by the urethane resin, that is, the synthetic resin was as thin as 2 cm and the length was as small as 10 cm, and was short and excellent in design. Furthermore, the synthetic resin coating portion was transparent, and the rod-like fiber reinforced composite material covered with the urethane resin, the strands, and the M8 bolts could be seen through. From this viewpoint, the design was excellent.

本発明の接合構造体は、軽量でかつ優れた強度を有し、意匠性、外観品位の低下を抑制することにより、クレーン車などの重機の入れない場所に建てられた伝統建築物や従来の耐震補強材の質量に耐えることができず耐震補強できなかった伝統建築物の耐震補強を行うことができる。さらに、鉄鋼、鉄筋、木造、コンクリートなどの一般の建築物やテーブル、椅子、手すりなどの家具類、植物用の誘引紐、ワイヤー代替物、柵など種々の構造物の補強材や構造材として用いることができる。   The bonded structure of the present invention is lightweight and has excellent strength, and suppresses deterioration in design and appearance quality, so that traditional buildings built in places where heavy machinery such as crane cars cannot enter and conventional structures Seismic reinforcement of traditional buildings that could not withstand the mass of seismic reinforcement and could not be seismically reinforced is possible. Furthermore, it is used as a reinforcing material or structural material for various structures such as general buildings such as steel, rebar, wooden, concrete, furniture such as tables, chairs, and handrails, attracting strings for plants, wire substitutes, and fences. be able to.

2 炭素繊維束
3a 拘束材
100、101、102 接合構造体
110、111、112 棒状繊維強化複合材
120 第1部材
130A、130B 素線
131、133、135 芯線
132、134、136、137 芯線の周囲に配置された素線
140 第2部材
150 合成樹脂被覆部
2 Carbon fiber bundle 3a Restraint material 100, 101, 102 Bonded structure 110, 111, 112 Rod-like fiber reinforced composite material 120 First member 130A, 130B Wire 131, 133, 135 Core wire 132, 134, 136, 137 Around the core wire Wires arranged in 140 140 Second member 150 Synthetic resin coating

Claims (5)

複数の素線から構成された棒状繊維強化複合材からなる第1部材と、
前記第1部材の端部に重ねてまたは挿入されて配置される第2部材と、
前記第1部材と前記第2部材との重なり部の少なくとも一部を合成樹脂により覆って接合する合成樹脂被覆部と
から構成されることを特徴とする接合構造体。
A first member made of a rod-like fiber reinforced composite material composed of a plurality of strands;
A second member that is placed over or inserted into an end of the first member;
A joining structure comprising: a synthetic resin covering portion that covers and joins at least a part of an overlapping portion between the first member and the second member with a synthetic resin.
前記第1部材の端部は、前記第2部材が重ねてまたは挿入されて配置される空隙部を有することを特徴とする請求項1に記載の接合構造体。   2. The joint structure according to claim 1, wherein an end portion of the first member has a gap portion in which the second member is arranged to be overlapped or inserted. 前記棒状繊維強化複合材は、芯線とその周囲に配置された素線とを有し、
前記第1部材の端部は、前記第2部材が挿入されて配置される空隙部を有する
ことを特徴とする請求項1又は2に記載の接合構造体。
The rod-like fiber reinforced composite material has a core wire and a strand arranged around the core wire,
3. The joint structure according to claim 1, wherein an end portion of the first member has a gap portion in which the second member is inserted.
前記棒状繊維強化複合材が炭素繊維を含むことを特徴とする請求項1〜3のいずれか1項に記載の接合構造体。   The joined structure according to any one of claims 1 to 3, wherein the rod-like fiber reinforced composite material includes carbon fibers. 前記合成樹脂がウレタン樹脂またはエポキシ樹脂であることを特徴とする請求項1〜4のいずれか1項に記載の接合構造体。   The joined structure according to any one of claims 1 to 4, wherein the synthetic resin is a urethane resin or an epoxy resin.
JP2016124666A 2016-06-23 2016-06-23 Joint structure Active JP6794152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016124666A JP6794152B2 (en) 2016-06-23 2016-06-23 Joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016124666A JP6794152B2 (en) 2016-06-23 2016-06-23 Joint structure

Publications (2)

Publication Number Publication Date
JP2017227059A true JP2017227059A (en) 2017-12-28
JP6794152B2 JP6794152B2 (en) 2020-12-02

Family

ID=60891067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016124666A Active JP6794152B2 (en) 2016-06-23 2016-06-23 Joint structure

Country Status (1)

Country Link
JP (1) JP6794152B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019156669A (en) * 2018-03-09 2019-09-19 小松マテーレ株式会社 Fiber reinforced composite material for concrete reinforcement, and concrete structure
JP2021095730A (en) * 2019-12-17 2021-06-24 小松マテーレ株式会社 Junction structure body
JP2022126885A (en) * 2018-03-09 2022-08-30 小松マテーレ株式会社 Fiber-reinforced composite material for reinforcing concrete and concrete structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146439A (en) * 1981-03-02 1982-09-09 Hitachi Cable Ltd Connection of stranded wire
JPH0296044A (en) * 1988-09-30 1990-04-06 Kobe Steel Ltd Joint construction of fiber-reinforced resin reinforcing wire and reinforcing bar
JPH06322893A (en) * 1993-05-18 1994-11-22 Nippon Steel Corp Method and device for fixing continuous fiber reinforced plastic stranded wire
US5613334A (en) * 1994-12-15 1997-03-25 Cornell Research Foundation, Inc. Laminated composite reinforcing bar and method of manufacture
KR20100038870A (en) * 2008-10-07 2010-04-15 (주)하이본 Rebar made of fiber reinforced plastics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146439A (en) * 1981-03-02 1982-09-09 Hitachi Cable Ltd Connection of stranded wire
JPH0296044A (en) * 1988-09-30 1990-04-06 Kobe Steel Ltd Joint construction of fiber-reinforced resin reinforcing wire and reinforcing bar
JPH06322893A (en) * 1993-05-18 1994-11-22 Nippon Steel Corp Method and device for fixing continuous fiber reinforced plastic stranded wire
US5613334A (en) * 1994-12-15 1997-03-25 Cornell Research Foundation, Inc. Laminated composite reinforcing bar and method of manufacture
KR20100038870A (en) * 2008-10-07 2010-04-15 (주)하이본 Rebar made of fiber reinforced plastics

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019156669A (en) * 2018-03-09 2019-09-19 小松マテーレ株式会社 Fiber reinforced composite material for concrete reinforcement, and concrete structure
JP7101498B2 (en) 2018-03-09 2022-07-15 小松マテーレ株式会社 Fiber reinforced composite material for concrete reinforcement, concrete structure
JP2022126885A (en) * 2018-03-09 2022-08-30 小松マテーレ株式会社 Fiber-reinforced composite material for reinforcing concrete and concrete structure
JP7329666B2 (en) 2018-03-09 2023-08-18 小松マテーレ株式会社 Fiber-reinforced composite materials for reinforcing concrete, concrete structures
JP2021095730A (en) * 2019-12-17 2021-06-24 小松マテーレ株式会社 Junction structure body
JP7369610B2 (en) 2019-12-17 2023-10-26 小松マテーレ株式会社 bonded structure

Also Published As

Publication number Publication date
JP6794152B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
JP6129963B2 (en) High-strength fiber composite and strand structure and multi-strand structure
JP5953554B2 (en) High strength fiber wire and composite material having the high strength fiber wire
KR100766954B1 (en) Fiber reinforced polymer bar having self-impregnated protrusion and method for producing the same
JP5758203B2 (en) String-like reinforcing fiber composite, concrete reinforcing bar and brace material
JP6794152B2 (en) Joint structure
JP2021147791A (en) Binding tool, and binding method
JP5670230B2 (en) String-like reinforcing fiber composite
JP6830763B2 (en) Seismic retrofitting material
JP6022186B2 (en) Muscle
JP6022188B2 (en) Tensile material
JP5808598B2 (en) Joint structure of wooden members
JP6199440B2 (en) High strength fiber wire and composite material having the high strength fiber wire
JP4667069B2 (en) Carbon fiber sheet
KR102060285B1 (en) Method for manufacturing frp-mesh for reinforcing concrete
JP5801130B2 (en) High-strength fiber wire for reinforcing wooden members and joining structure of wooden members using the same
JP5801129B2 (en) Method of joining wooden members
JP6576865B2 (en) Non-combustible carbon fiber composite material
JP6705958B1 (en) Fiber rod binding tool and fiber rod binding method
JP7369610B2 (en) bonded structure
JP4236478B2 (en) Reinforcing fiber sheet
JP5132326B2 (en) Carbon fiber tape material for concrete repair and reinforcement
JP5437108B2 (en) Reinforcing anchor for building and manufacturing method thereof
JP6022187B2 (en) Tensile material
JPH08303018A (en) Concrete structure reinforcing material and concrete structure reinforcing method using the material
JP7454363B2 (en) Shear reinforcement method and shear reinforcement structure for concrete members in concrete structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201111

R150 Certificate of patent or registration of utility model

Ref document number: 6794152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150