JP7369577B2 - Manufacturing method of polysulfone porous hollow fiber membrane - Google Patents

Manufacturing method of polysulfone porous hollow fiber membrane Download PDF

Info

Publication number
JP7369577B2
JP7369577B2 JP2019177320A JP2019177320A JP7369577B2 JP 7369577 B2 JP7369577 B2 JP 7369577B2 JP 2019177320 A JP2019177320 A JP 2019177320A JP 2019177320 A JP2019177320 A JP 2019177320A JP 7369577 B2 JP7369577 B2 JP 7369577B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
weight
polysulfone
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019177320A
Other languages
Japanese (ja)
Other versions
JP2020054994A (en
Inventor
遼太 齋藤
真央 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Publication of JP2020054994A publication Critical patent/JP2020054994A/en
Application granted granted Critical
Publication of JP7369577B2 publication Critical patent/JP7369577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Description

本発明は、ポリスルホン多孔質中空糸膜の製造法に関する。さらに詳しくは、浄水膜などとして好適に使用されるポリスルホン多孔質中空糸膜の製造法に関する。 The present invention relates to a method for producing polysulfone porous hollow fiber membranes. More specifically, the present invention relates to a method for producing a polysulfone porous hollow fiber membrane suitable for use as a water purification membrane or the like.

精密ろ過膜、限外ろ過膜など多孔質膜を用いたろ過操作は、医薬分野、浄水分野あるいは食品産業における除菌や半導体産業における超純水製造など多くの分野で実用化されている。近年では、浄水分野における除菌に対して、ポリスルホン類を材料とした膜の実用化が非常に盛んである。 Filtration operations using porous membranes such as microfiltration membranes and ultrafiltration membranes have been put to practical use in many fields, such as sterilization in the pharmaceutical field, water purification field, or food industry, and ultrapure water production in the semiconductor industry. In recent years, membranes made of polysulfones have been widely used for sterilization in the water purification field.

ポリスルホン類としては、ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホンなどが挙げられ、家庭用浄水用途としてはポリスルホンが用いられることが多い(特許文献1参照)。 Examples of polysulfones include polysulfone, polyethersulfone, polyphenylsulfone, and the like, and polysulfone is often used for household water purification (see Patent Document 1).

昨今、残留塩素などの除去を目的として、浄水膜と活性炭を組み合わせた浄水器が使われることが多くなっているが、これらの組み合わせによるサイズ増大の一方、デザイン性といった面からサイズ低減の要望が年々高まってきているといった実情がある。したがって、浄水膜の高透水量化の要求も高まっており、これへの対策としてポリスルホンを膜原料とする紡糸に際し、ポリスルホン可溶の水溶性有機溶媒、例えばN,N-ジメチルホルムアミド(DMF)を用いての紡糸が行われている(特許文献2)。 Recently, water purifiers that combine water purification membranes and activated carbon are increasingly being used to remove residual chlorine, etc. However, while these combinations increase the size, there is also a demand for smaller size from the standpoint of design. The reality is that it is increasing year by year. Therefore, there is an increasing demand for high water permeability of water purification membranes, and as a countermeasure to this, when spinning polysulfone as a membrane raw material, a water-soluble organic solvent that is soluble in polysulfone, such as N,N-dimethylformamide (DMF), is used. (Patent Document 2).

この際、芯液にポリスルホン可溶性の水溶性有機溶媒を用いることで中空糸膜の内壁が疎な構造となるので高透水量の中空糸膜が得られるものの、100重量%N,N-ジメチルホルムアミドを芯液として用いて製膜された中空糸膜に通水すると、ろ過水、特に流し始めの初流ろ過水に膜構成成分からなる異物がろ過水へ混入する場合がある。異物としては、微細な粒状のポリスルホン樹脂の発生がみられる。 At this time, by using a water-soluble organic solvent that is soluble in polysulfone as the core liquid, the inner wall of the hollow fiber membrane becomes a loose structure, so a hollow fiber membrane with high water permeability can be obtained. When water is passed through a hollow fiber membrane formed by using the core liquid as a core liquid, foreign matter consisting of membrane constituents may be mixed into the filtrate water, especially the initial filtrate water at the beginning of the flow. As foreign matter, fine particles of polysulfone resin are observed.

これらの異物が生成されるメカニズムとしては、膜が相分離によって形成される際、内壁が溶媒交換されるまで一定の時間がかかるため、芯液がポリスルホン可溶性溶媒である100重量%N,N-ジメチルホルムアミドでは、芯液中へドープ液の一部が拡散してしまい、その後凝固液中において拡散したドープ液が中空糸膜内部で析出するためであると考えられる。 The mechanism by which these foreign substances are generated is that when a membrane is formed by phase separation, it takes a certain amount of time for the inner wall to undergo solvent exchange. This is thought to be because, in the case of dimethylformamide, a portion of the dope liquid diffuses into the core liquid, and then the dope liquid that diffuses into the coagulation liquid precipitates inside the hollow fiber membrane.

特公平3-47127号公報Special Publication No. 3-47127 特開平2-268821号公報Japanese Patent Application Publication No. 2-268821 特開平5-168881号公報Japanese Patent Application Publication No. 5-168881

本発明の目的は、非溶媒誘起相分離法を用いた乾湿式紡糸により製造されたポリスルホン多孔質中空糸膜に通水した際、ろ過水への中空糸膜構成成分の異物混入がみられず、かつ中空糸膜内膜の二層構造、例えば膜厚が50~70μmの中空糸膜にあっては、膜の内表面から膜厚方向に約3~8μmの辺りに形成される疎な構造部分および膜外表面から膜厚方向に約45~60μmの辺りに形成される密な構造部分の間で剥離が生じることがないものを製造する方法を提供することにある。 The purpose of the present invention is to prevent contamination of hollow fiber membrane components into filtrate when water is passed through a polysulfone porous hollow fiber membrane manufactured by dry-wet spinning using a non-solvent induced phase separation method. , and a two-layer structure of the hollow fiber inner membrane, for example, in a hollow fiber membrane with a membrane thickness of 50 to 70 μm, a sparse structure is formed approximately 3 to 8 μm from the inner surface of the membrane in the membrane thickness direction. It is an object of the present invention to provide a method for producing a film in which peeling does not occur between the dense structure portion and the dense structure portion formed approximately 45 to 60 μm in the film thickness direction from the outer surface of the film.

かかる本発明の目的は、ポリスルホン12~25重量%、ポリビニルピロリドン5~20重量%およびエチレングリコール1~5重量%を含有するN,N-ジメチルホルムアミド溶液よりなる紡糸原液を、イソプロピルアルコール25~30重量%およびN,N-ジメチルホルムアミド75~70重量%の混合液を芯液として、2重環状ノズルを用いて非溶媒誘起相分離法による乾湿式紡糸を行い、ポリスルホン多孔質中空糸膜を製造することによって達成される。 The object of the present invention is to prepare a spinning dope consisting of an N,N-dimethylformamide solution containing 12 to 25 % by weight of polysulfone, 5 to 20 % by weight of polyvinylpyrrolidone, and 1 to 5 % by weight of ethylene glycol, and add 25 to 30% by weight of isopropyl alcohol. Using a mixed solution of 75 to 70 % by weight of N,N-dimethylformamide as the core liquid, dry-wet spinning is performed using a non-solvent induced phase separation method using a double annular nozzle to produce a polysulfone porous hollow fiber membrane. This is achieved by

従来の製造方法により得られた中空糸膜では、微細な粒状のポリスルホン樹脂の発生を避けることが難しかったが、本発明のポリスルホン多孔質中空糸膜の製造方法により得られた中空糸膜では、通水した際のろ過水への中空糸膜構成成分の異物混入がみられないといったすぐれた効果を奏する。一方で、中空糸膜内膜に形成される二層構造、例えば膜厚が50~70μmの中空糸膜にあっては、膜の内表面から膜厚方向に約3~8μmの辺りに形成される疎な構造部分および膜外表面から膜厚方向に約45~60μmの辺りに形成される密な構造部分の間で剥離が生じることもない。 In hollow fiber membranes obtained by conventional manufacturing methods, it was difficult to avoid the generation of fine grains of polysulfone resin, but in hollow fiber membranes obtained by the method for manufacturing porous polysulfone hollow fiber membranes of the present invention, It has an excellent effect in that no foreign matter from the hollow fiber membrane components is found in the filtered water when water is passed through it. On the other hand, in the case of a two-layer structure formed on the inner membrane of a hollow fiber membrane, for example, a hollow fiber membrane with a membrane thickness of 50 to 70 μm, the membrane is formed approximately 3 to 8 μm in the thickness direction from the inner surface of the membrane. Peeling does not occur between the sparse structural portion and the dense structural portion formed approximately 45 to 60 μm in the film thickness direction from the outer surface of the film.

実施例で得られたポリスルホン多孔質中空糸膜の(a) SEM 1000倍 断面、(b) SEM 3000倍 内表面を示す図である。FIG. 2 is a diagram showing (a) a cross section of the polysulfone porous hollow fiber membrane obtained in Examples, (a) SEM 1000x cross section, and (b) SEM 3000x inner surface. 比較例1で得られたポリスルホン多孔質中空糸膜の(a) SEM 1000倍 断面、(b) SEM 3000倍 内表面を示す図である。FIG. 2 is a diagram showing (a) a cross section of the polysulfone porous hollow fiber membrane obtained in Comparative Example 1, viewed at 1000x SEM, and (b) an inner surface viewed at 3000x SEM. 比較例2で得られたポリスルホン多孔質中空糸膜の(a) SEM 1000倍 断面、(b) SEM 3000倍 内表面を示す図である。FIG. 4 is a diagram showing (a) a cross section of the polysulfone porous hollow fiber membrane obtained in Comparative Example 2 (SEM 1000 times), and (b) SEM 3000 times the inner surface. 比較例3で得られたポリスルホン多孔質中空糸膜の(a) SEM 1000倍 断面、(b) SEM 3000倍 内表面を示す図である。FIG. 3 is a diagram showing (a) a cross section of the polysulfone porous hollow fiber membrane obtained in Comparative Example 3, viewed at 1000x SEM, and (b) an inner surface viewed at 3000x SEM.

ポリスルホンは、市販品、例えばソルベイスペシャルティポリマーズ製品等をそのまま使用することができる。 As the polysulfone, commercially available products such as Solvay Specialty Polymers products can be used as they are.

ポリスルホンを製膜成分とする紡糸原液には、さらにポリビニルピロリドンおよびエチレングリコールを含有する水溶性有機溶媒が配合される。かかるエチレングリコール以外の水溶性有機溶媒(以下、単に「水溶性有機溶媒」とする)として、紡糸安定性の点からN,N-ジメチルホルムアミドが用いられる。 A water-soluble organic solvent containing polyvinylpyrrolidone and ethylene glycol is further blended into the spinning stock solution containing polysulfone as a film-forming component. As the water-soluble organic solvent other than ethylene glycol (hereinafter simply referred to as "water-soluble organic solvent"), N,N-dimethylformamide is used from the viewpoint of spinning stability .

紡糸原液は、ポリスルホン約12~25重量%、ポリビニルピロリドン約5~20重量%およびエチレングリコールが約1~5重量%で、残余が水溶性有機溶媒で占められる配合割合のものが用いられる。ポリスルホンの配合割合がこれより低いと、紡糸時に中空糸膜の強度が低下し、中空糸膜の形成が難しくなることから紡糸を行うことができず、一方、ポリスルホンの配合割合がこれより高いと、中空糸膜に孔が空きにくくなるため、透過性能が低下するようになる。また、ポリビニルピロリドンあるいはエチレングリコールの配合割合がこれより低い場合には、膜の親水性の低下および中空糸膜の孔径が小さくなり、透過性能の低下を招いてしまうようになり、一方これらいずれかの配合割合が高い場合には、製膜原液が不安定になり、白濁化を招き、紡糸を行うことが困難となる。 The spinning stock solution used has a blending ratio of about 12 to 25% by weight of polysulfone, about 5 to 20% by weight of polyvinylpyrrolidone, and about 1 to 5% by weight of ethylene glycol, with the remainder being a water-soluble organic solvent. If the blending ratio of polysulfone is lower than this, the strength of the hollow fiber membrane will decrease during spinning, making it difficult to form a hollow fiber membrane, making spinning impossible. On the other hand, if the blending ratio of polysulfone is higher than this, spinning will not be possible. , it becomes difficult to form holes in the hollow fiber membrane, resulting in a decrease in permeation performance. In addition, if the blending ratio of polyvinylpyrrolidone or ethylene glycol is lower than this, the hydrophilicity of the membrane will decrease and the pore size of the hollow fiber membrane will decrease, resulting in a decrease in permeation performance. When the blending ratio of is high, the membrane-forming stock solution becomes unstable and becomes cloudy, making it difficult to perform spinning.

かかる紡糸原液を用いてのポリスルホン多孔質中空糸膜の製膜は、2重環状ノズルを用い、イソプロピルアルコール25~30重量%およびN,N-ジメチルホルムアミド75~70重量%の混合液を芯液として、非溶媒誘起相分離法による乾湿式紡糸によって行われる。イソプロピルアルコールの割合がこれより低い場合には、製膜した中空糸膜を用いてろ過したろ過水に膜成分からなる異物が混入するようになり、一方イソプロピルアルコールの割合がこれより高い場合には、製膜した中空糸膜内壁に形成される密な構造部分と中空糸膜外表面側に形成される疎な構造部分との間で分離が起きて、内壁剥がれが生じるようになる。 To form a polysulfone porous hollow fiber membrane using such a spinning dope, a mixture of 25 to 30% by weight of isopropyl alcohol and 75 to 70% by weight of N,N-dimethylformamide is added to the core liquid using a double ring nozzle. It is carried out by dry-wet spinning using a non-solvent induced phase separation method. If the proportion of isopropyl alcohol is lower than this, foreign matter consisting of membrane components will be mixed into the filtered water using the hollow fiber membrane produced, whereas if the proportion of isopropyl alcohol is higher than this, Separation occurs between the dense structural portion formed on the inner wall of the hollow fiber membrane and the sparse structural portion formed on the outer surface of the hollow fiber membrane, resulting in inner wall peeling.

なお、特許文献3の実施例には、イソプロピルアルコール95重量%およびN,N-ジメチルホルムアミド5重量%の混合液を芯液として用いて製造された多孔質ポリスルホン中空糸膜が開示されているが、かかる混合液を芯液として用いた場合には、内壁剥がれが生じる可能性があり、本発明の実施態様からは明確に除外される。 Note that the example of Patent Document 3 discloses a porous polysulfone hollow fiber membrane manufactured using a mixed solution of 95% by weight of isopropyl alcohol and 5% by weight of N,N-dimethylformamide as the core liquid. If such a mixed liquid is used as a core liquid, peeling of the inner wall may occur, and this is clearly excluded from the embodiments of the present invention.

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例
ポリスルホン(Sovay社製品P1700) 16重量%、ポリビニルピロリドン(ISP社製品PVP K-30)11重量%、エチレングリコール 2重量%およびN,N-ジメチルホルムアミド 71重量%よりなる紡糸原液を室温にて調製した。
Example A spinning stock solution consisting of 16% by weight of polysulfone (P1700, manufactured by Sovay), 11% by weight of polyvinylpyrrolidone (PVP K-30, manufactured by ISP), 2% by weight of ethylene glycol, and 71% by weight of N,N-dimethylformamide was brought to room temperature. It was prepared using

得られた紡糸原液を、イソプロピルアルコール 25重量%およびN,N-ジメチルホルムアミド 75重量%からなる芯液を用いて、乾湿式紡糸法により2重環状ノズルから水凝固浴中に吐出した。その後、洗浄槽を通した後ボビンに巻き取り、121℃、60分間のオートクレーブによる洗浄処理を行い、その後25℃で15時間乾燥させてポリスルホン多孔質中空糸膜を得た。 The obtained spinning stock solution was discharged from a double annular nozzle into a water coagulation bath by a wet-dry spinning method using a core liquid consisting of 25% by weight of isopropyl alcohol and 75% by weight of N,N-dimethylformamide. Thereafter, it was passed through a cleaning tank, wound up onto a bobbin, and washed in an autoclave at 121°C for 60 minutes, followed by drying at 25°C for 15 hours to obtain a polysulfone porous hollow fiber membrane.

得られた多孔質中空糸膜に圧力40kPaで通水し、通水後5秒間以内に採取したろ過水中の異物の有無を目視にて確認したところ異物はみられず、さらにHACH製濁度計(2100AN)を用いてホルマジン濁度を測定したところ、ろ過水濁度/NTUは0.20であった。 Water was passed through the obtained porous hollow fiber membrane at a pressure of 40kPa, and the presence of foreign matter in the filtrate water collected within 5 seconds was visually confirmed. No foreign matter was found. When formazin turbidity was measured using (2100AN), filtrate water turbidity/NTU was 0.20.

また、中空糸膜内壁の剥がれの有無をSEM画像により確認したところ、内壁の剥がれは確認されなかった。中空糸膜断面および中空糸膜内表面をSEMで観察した画像は、図1(a)~(b)に示される。 Furthermore, when the presence or absence of peeling of the inner wall of the hollow fiber membrane was confirmed using a SEM image, no peeling of the inner wall was confirmed. SEM images of the cross section of the hollow fiber membrane and the inner surface of the hollow fiber membrane are shown in Figures 1(a) and 1(b).

比較例1
実施例において、芯液としてN,N-ジメチルホルムアミド 100重量%のものが用いられたところ、内壁の剥がれはみられなかったものの、ろ過水中に異物の混入が確認され、ろ過水濁度/NTUは1.91であった。中空糸膜断面および中空糸膜内表面をSEMで観察した画像は、図2(a)~(b)に示される。
Comparative example 1
In the example, when 100% by weight N,N-dimethylformamide was used as the core liquid, no peeling of the inner wall was observed, but the contamination of foreign matter into the filtrate water was confirmed, and the filtrate turbidity/NTU was 1.91. SEM images of the cross section of the hollow fiber membrane and the inner surface of the hollow fiber membrane are shown in FIGS. 2(a) and 2(b).

比較例2
実施例において、芯液としてイソプロピルアルコール 5重量%、N,N-ジメチルホルムアミド 95重量%からなるものが用いられたところ、内壁の剥がれはみられなかったものの、ろ過水中に異物の混入が確認され、ろ過水濁度/NTUは3.71であった。中空糸膜断面および中空糸膜内表面をSEMで観察した画像は、図3(a)~(b)に示される。
Comparative example 2
In the example, when a core liquid consisting of 5% by weight of isopropyl alcohol and 95% by weight of N,N-dimethylformamide was used, no peeling of the inner wall was observed, but contamination of foreign matter into the filtered water was confirmed. The filtered water turbidity/NTU was 3.71. SEM images of the cross section of the hollow fiber membrane and the inner surface of the hollow fiber membrane are shown in FIGS. 3(a) and 3(b).

比較例3
実施例において、芯液としてイソプロピルアルコール 50重量%、N,N-ジメチルホルムアミド 50重量%からなるものが用いられたところ、ろ過水中に異物の混入は確認されず、ろ過水濁度/NTUは0.27であったが、内壁の剥がれが確認された。中空糸膜断面および中空糸膜内表面をSEMで観察した画像は、図4(a)~(b)に示される。
Comparative example 3
In the example, when a core liquid consisting of 50% by weight of isopropyl alcohol and 50% by weight of N,N-dimethylformamide was used, no foreign matter was observed in the filtrated water, and the filtrated water turbidity/NTU was 0.27. However, peeling of the inner wall was confirmed. SEM images of the cross section of the hollow fiber membrane and the inner surface of the hollow fiber membrane are shown in FIGS. 4(a) and 4(b).

Claims (1)

ポリスルホン12~25重量%、ポリビニルピロリドン5~20重量%およびエチレングリコール1~5重量%を含有するN,N-ジメチルホルムアミド溶液よりなる紡糸原液を、イソプロピルアルコール25~30重量%およびN,N-ジメチルホルムアミド75~70重量%の混合液を芯液として、2重環状ノズルを用いて非溶媒誘起相分離法による乾湿式紡糸を行うことを特徴とするポリスルホン多孔質中空糸膜の製造法。 A spinning stock solution consisting of an N,N-dimethylformamide solution containing 12-25 % by weight of polysulfone , 5-20 % by weight of polyvinylpyrrolidone and 1-5 % by weight of ethylene glycol was mixed with 25-30 % by weight of isopropyl alcohol and N,N- A method for producing a polysulfone porous hollow fiber membrane, which is characterized by performing wet-dry spinning using a non-solvent induced phase separation method using a 75 to 70 % by weight mixture of dimethylformamide as a core liquid using a double annular nozzle.
JP2019177320A 2018-10-03 2019-09-27 Manufacturing method of polysulfone porous hollow fiber membrane Active JP7369577B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018188159 2018-10-03
JP2018188159 2018-10-03

Publications (2)

Publication Number Publication Date
JP2020054994A JP2020054994A (en) 2020-04-09
JP7369577B2 true JP7369577B2 (en) 2023-10-26

Family

ID=70081850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019177320A Active JP7369577B2 (en) 2018-10-03 2019-09-27 Manufacturing method of polysulfone porous hollow fiber membrane

Country Status (2)

Country Link
JP (1) JP7369577B2 (en)
CN (1) CN110975641B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113244784A (en) * 2021-04-27 2021-08-13 陕西禹慧智通环保科技有限公司 Porous hydrophobic microporous membrane and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119833A (en) 2000-10-16 2002-04-23 Nok Corp Method for washing porous hollow fiber membrane manufactured by dry wet spinning method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54151574A (en) * 1978-05-20 1979-11-28 Nippon Zeon Co Ltd Manufacture of acrylonitrile hollow fiber
JP3232611B2 (en) * 1991-12-17 2001-11-26 エヌオーケー株式会社 Manufacturing method of porous polysulfone hollow fiber membrane
CN101402023A (en) * 2008-10-24 2009-04-08 东华大学 Antimicrobial flat-plate separation film and method of producing the same
CN101396641B (en) * 2008-10-31 2013-06-05 北京坎普尔环保技术有限公司 Composite thermotropic phase separation film-making method
CN102580577B (en) * 2012-03-02 2014-04-16 天津工业大学 Preparation method of enhanced polyacrylonitrile hollow fiber membrane
KR101758906B1 (en) * 2015-01-22 2017-07-17 경상대학교산학협력단 Dual-layer ultrafiltration hollow fiber membrane and manufacturing method thereof
JP2017051880A (en) * 2015-09-07 2017-03-16 Nok株式会社 Membrane production liquid concentrate for non-solvent induction phase separation method, and porous hollow fiber membrane manufacturing method using the liquid concentrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119833A (en) 2000-10-16 2002-04-23 Nok Corp Method for washing porous hollow fiber membrane manufactured by dry wet spinning method

Also Published As

Publication number Publication date
CN110975641A (en) 2020-04-10
JP2020054994A (en) 2020-04-09
CN110975641B (en) 2021-12-28

Similar Documents

Publication Publication Date Title
US20170304780A1 (en) Hollow fiber filtration membrane
Li et al. Engineering design of outer‐selective tribore hollow fiber membranes for forward osmosis and oil‐water separation
KR101161709B1 (en) Method of producing porous hollow fiber membranes based on acetylated alkyl cellulose
JP7369577B2 (en) Manufacturing method of polysulfone porous hollow fiber membrane
WO2016113964A1 (en) Porous hollow fiber membrane
JP4724914B2 (en) Dry / wet spinning method of porous hollow fiber membrane
JP6374291B2 (en) Hollow fiber membrane module
US11534723B2 (en) Method of filtration using porous membranes
JP2012187575A (en) Composite membrane and method for manufacturing the same
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JP6390326B2 (en) Method for producing porous filtration membrane for water treatment
KR101675455B1 (en) A preparation method of a membrane having improved chlorine resistance and a chlorine resistant membrane prepared by the same
WO2018159353A1 (en) Method for preparing polyphenylsulfone porous hollow fiber membrane
WO2020100763A1 (en) Filtration method in which porous membrane is used
KR20120077011A (en) Water treatment membrane of poly(ethylenechlorotrifluoroethylene) and manufacturing method thereof
JP2006224051A (en) Porous membrane, porous membrane element, and membrane filter apparatus
KR102306426B1 (en) Composite porous membrane of acetylated alkyl cellulose and polyolefinketone
JP2015221400A (en) Manufacturing method of hollow fiber membrane for ultrafiltration membrane
JP7383851B2 (en) Manufacturing method of hollow fiber membrane
JP6649779B2 (en) Hollow fiber type semipermeable membrane and method for producing the same
JPH05161833A (en) Production of semipermeable membrane having high water permeability
JP2018143904A (en) Method for producing polysulfone hollow fiber membrane
JP2019047778A (en) Method for producing tea beverage using porous film
JP6832440B2 (en) Method of producing brewed liquor using a porous membrane
JPH06343842A (en) Cellulose acetate hollow fiber separation membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220622

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7369577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150