JP7369504B2 - Method of manufacturing piezoelectric single crystal element, method of manufacturing ultrasonic transmitting/receiving element, and method of manufacturing ultrasonic probe - Google Patents

Method of manufacturing piezoelectric single crystal element, method of manufacturing ultrasonic transmitting/receiving element, and method of manufacturing ultrasonic probe Download PDF

Info

Publication number
JP7369504B2
JP7369504B2 JP2019177059A JP2019177059A JP7369504B2 JP 7369504 B2 JP7369504 B2 JP 7369504B2 JP 2019177059 A JP2019177059 A JP 2019177059A JP 2019177059 A JP2019177059 A JP 2019177059A JP 7369504 B2 JP7369504 B2 JP 7369504B2
Authority
JP
Japan
Prior art keywords
single crystal
electric field
piezoelectric
manufacturing
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019177059A
Other languages
Japanese (ja)
Other versions
JP2021057388A (en
Inventor
祐 坂野
翼 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2019177059A priority Critical patent/JP7369504B2/en
Publication of JP2021057388A publication Critical patent/JP2021057388A/en
Application granted granted Critical
Publication of JP7369504B2 publication Critical patent/JP7369504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、適用機器の製造歩留まりを高めることができ、かつ誘電特性および圧電特性を向上させ得る圧電単結晶素子、その製造方法、並びに前記圧電単結晶素子の用途に関するものである。 The present invention relates to a piezoelectric single crystal element that can increase the production yield of applied equipment and improve dielectric properties and piezoelectric properties, a method for manufacturing the piezoelectric single crystal element, and uses of the piezoelectric single crystal element.

各種の超音波診断装置や超音波画像検査装置には、圧電素子を有する超音波送受信素子を備えた超音波送受信機能を有する電子操作式のアレイ式超音波プローブが主に用いられている。 2. Description of the Related Art Electronically operated array-type ultrasound probes having an ultrasound transmission/reception function and equipped with ultrasound transmission/reception elements having piezoelectric elements are mainly used in various ultrasound diagnostic apparatuses and ultrasound imaging apparatuses.

一般的な超音波プローブは、特許文献1に記載されているように、圧電体の両面に電極を形成してなる圧電素子がバッキング材上に接合され、圧電素子上に音響整合層が接合された上で、アレイ加工されて複数のチャンネルが形成され、さらに音響整合層上に音響レンズが形成されて構成されている。このような形態の超音波プローブは、圧電素子のそれぞれの電極が、制御信号基板(フレキシブル印刷配線板、FPC)とケーブルとを介して、医療用超音波診断装置および超音波画像検査装置の装置本体に接続される。 As described in Patent Document 1, a typical ultrasonic probe has a piezoelectric element formed by forming electrodes on both sides of a piezoelectric body bonded onto a backing material, and an acoustic matching layer bonded onto the piezoelectric element. Then, array processing is performed to form a plurality of channels, and an acoustic lens is further formed on the acoustic matching layer. In this type of ultrasonic probe, each electrode of the piezoelectric element is connected to a medical ultrasonic diagnostic device and an ultrasonic image inspection device via a control signal board (flexible printed wiring board, FPC) and a cable. Connected to the main unit.

超音波プローブに用いられる圧電素子は、比誘電率および圧電定数が大きいことと、誘電損失が小さいこととが要求される。加えて、圧電素子の内部および複数の圧電素子間において、誘電率、誘電損失などの誘電特性と、圧電定数などの圧電特性とが均一であることが要求され、以前は、ジルコンチタン酸鉛系圧電セラミックスや、前記圧電セラミックス/樹脂複合体からなるコンポジット圧電体を使用したものが主流であったが、これらの素子では上記のような要請に応えることは容易ではなく、近年では、単結晶板を採用することで、圧電素子の性能を高める検討がなされている。 A piezoelectric element used in an ultrasonic probe is required to have a large relative dielectric constant and piezoelectric constant, and a small dielectric loss. In addition, dielectric properties such as dielectric constant and dielectric loss, and piezoelectric properties such as piezoelectric constant are required to be uniform inside a piezoelectric element and between multiple piezoelectric elements. The mainstream was to use piezoelectric ceramics or composite piezoelectric materials made of the piezoelectric ceramic/resin composite described above, but it is not easy to meet the above requirements with these devices, and in recent years single crystal plates have been used. Studies have been conducted to improve the performance of piezoelectric elements by adopting .

このような単結晶板としては、例えば、チタン酸鉛(PbTiO)と、Pb(BNb)O(Bは、Mg、Zn、In、Sc、Ybなどのうち少なくとも一つ)とから構成されるリラクサ系鉛複合ペロブスカイト組成物で構成されたものや、前記組成物に少量の酸化マンガンや酸化ジルコニウムなどを添加した材料で構成されたものが用いられている。 Such single crystal plates include, for example, lead titanate (PbTiO 3 ), Pb(B 1 Nb)O 3 (B 1 is at least one of Mg, Zn, In, Sc, Yb, etc.). Some are made of a relaxer-based lead composite perovskite composition, and others are made of a material in which small amounts of manganese oxide, zirconium oxide, etc. are added to the above composition.

上記のような単結晶板を用いた圧電素子は、通常、単結晶板を所定サイズに切断し、必要に応じて所定厚みとなるように研磨した後に、両主面(平板面)のそれぞれに電極を形成してから、直流電界の印加による分極処理を施す工程を得て製造される。 A piezoelectric element using a single-crystal plate as described above is usually made by cutting the single-crystal plate to a predetermined size, polishing it to a predetermined thickness as necessary, and then cutting the single-crystal plate to a predetermined thickness. It is manufactured by forming an electrode and then performing a polarization process by applying a DC electric field.

また、圧電素子の分極処理の改善も試みられている。例えば特許文献2には、種々の条件での加熱冷却処理を施した後に特定条件での分極処理を行うことで、圧電素子の電気機械結合係数や周波数定数を改善できることが示されている。 Also, attempts have been made to improve the polarization process of piezoelectric elements. For example, Patent Document 2 shows that the electromechanical coupling coefficient and frequency constant of a piezoelectric element can be improved by performing a polarization treatment under specific conditions after heating and cooling treatment under various conditions.

他方、特許文献3、4には、直流電界ではなく交流電界を印加する分極処理を経て圧電素子を製造することで、素子の誘電率や圧電定数を向上させ得ることが示されている。 On the other hand, Patent Documents 3 and 4 show that the dielectric constant and piezoelectric constant of the element can be improved by manufacturing a piezoelectric element through a polarization process in which an alternating current electric field is applied instead of a direct current electric field.

特開7-50898号公報Japanese Patent Application Publication No. 7-50898 特開2003-282986号公報JP2003-282986A 特開2014-045411号公報JP2014-045411A 特開2014-187285号公報Japanese Patent Application Publication No. 2014-187285

例えば特許文献3、4に記載の技術であれば、一定の効果は見込めるものの、単結晶板の性能不足や高い交流周波数による分極反転速度の速さから、分極時の応力によって加工面からマイクロクラックが発生する虞がある。このようなマイクロクラックが生じた単結晶板を有する圧電素子を使用して、例えば超音波プローブを製造しようとすると、FPCやバッキング材、音響整合層と接合し加工した際に、圧電素子が破損するなどしてしまい、超音波プローブの製造歩留まりを低下させてしまう。圧電素子製造時の分極処理の際に発生するマイクロクラックによる適用機器の製造歩留まりの低下は、電極面積が2cmを超えるような大型の圧電素子において特に問題となる。 For example, the techniques described in Patent Documents 3 and 4 can be expected to have certain effects, but due to the insufficient performance of the single crystal plate and the fast polarization reversal speed due to high AC frequencies, micro cracks occur from the machined surface due to stress during polarization. There is a possibility that this may occur. If, for example, an ultrasonic probe is manufactured using a piezoelectric element having a single crystal plate with such microcracks, the piezoelectric element may be damaged when it is bonded and processed to an FPC, backing material, or acoustic matching layer. As a result, the manufacturing yield of ultrasonic probes decreases. Decreased manufacturing yield of applied equipment due to microcracks generated during polarization treatment during piezoelectric element manufacturing is particularly problematic in large piezoelectric elements with electrode areas exceeding 2 cm 2 .

本発明は、上記事情に鑑みてなされたものであり、その目的は、適用機器の製造歩留まりを高めることができ、かつ誘電特性および圧電特性を向上させ得る圧電単結晶素子、その製造方法、並びに前記圧電単結晶素子の用途を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to provide a piezoelectric single crystal element capable of increasing the production yield of applied equipment and improving dielectric properties and piezoelectric properties, a method for producing the same, and An object of the present invention is to provide uses of the piezoelectric single crystal element.

本発明の圧電単結晶素子は、酸化マグネシウム、酸化ニオブおよびチタン酸鉛を含む鉛複合ペロブスカイト組成物により構成された矩形の単結晶板の両主面に電極を有してなり、 前記単結晶板は、(001)面を主面とし、かつ(100)面および(010)面を側面とし、(100)方位の長さLと(010)方位の幅Wとの比L/Wが4~20であり、分極方向に直交する横方向振動モードの共振周波数frと、振動方向の長さlとの積で表される周波数定数N31が、25℃において、520~700Hz・mであることを特徴とするものである。 The piezoelectric single crystal element of the present invention has electrodes on both main surfaces of a rectangular single crystal plate made of a lead composite perovskite composition containing magnesium oxide, niobium oxide, and lead titanate, and the single crystal plate has electrodes on both main surfaces. has the (001) plane as the main plane, the (100) plane and the (010) plane as the side faces, and the ratio L/W of the length L in the (100) direction to the width W in the (010) direction is 4 to 20, and the frequency constant N 31 expressed as the product of the resonance frequency fr of the transverse vibration mode perpendicular to the polarization direction and the length l in the vibration direction is 520 to 700 Hz m at 25 ° C. It is characterized by:

本発明の圧電単結晶素子は、酸化マグネシウム、酸化ニオブおよびチタン酸鉛を含む鉛複合ペロブスカイト組成物により構成された矩形の単結晶板の両主面に電極を形成する電極形成工程と、上記電極形成工程後の単結晶板に、室温以上、疑似立方晶から相転移する相転移温度Tfの温度下で、0.0001Hz以上0.1Hz未満の周波数での交流電界を3~50サイクル印加して分極処理を施す分極処理工程とを有する本発明の製造方法によって製造することができる。 The piezoelectric single crystal element of the present invention comprises an electrode forming step of forming electrodes on both main surfaces of a rectangular single crystal plate made of a lead composite perovskite composition containing magnesium oxide, niobium oxide and lead titanate; After the formation process, an alternating current electric field at a frequency of 0.0001 Hz or more and less than 0.1 Hz is applied for 3 to 50 cycles to the single crystal plate after the formation process at a temperature of room temperature or higher and a phase transition temperature Tf at which the phase transition from pseudo cubic crystal occurs. It can be manufactured by the manufacturing method of the present invention, which includes a polarization treatment step of performing polarization treatment.

上記鉛複合ペロブスカイト組成物は、チタン酸鉛の含有量により2種の相転移の形態を有する。第1の形態として疑似立方晶から正方晶へ相転移する相転移温度Trtと、第2の形態として疑似立晶から単斜晶へ相転移する相転移温度Trmとを有する場合があり、これらの相転移温度は70℃以上110℃以下の範囲内に存在する。本明細書では、上記の疑似立晶からの相転移温度を総称して相転移温度Tfとする。 The lead composite perovskite composition has two types of phase transition forms depending on the content of lead titanate. The first form may have a phase transition temperature Trt at which the phase transitions from pseudocubic to tetragonal, and the second form may have a phase transition temperature Trm at which the phase transitions from pseudocubic to monoclinic. The phase transition temperature is within the range of 70°C or higher and 110°C or lower. In this specification, the above-mentioned phase transition temperatures from pseudo-orectic crystals are collectively referred to as phase transition temperatures Tf.

また、本発明の圧電単結晶素子を有する超音波送受信素子や超音波プローブも、本発明に含まれる。 Further, the present invention also includes an ultrasonic transmitting/receiving element and an ultrasonic probe having the piezoelectric single crystal element of the present invention.

本発明によれば、適用機器の歩留まりを高めることができ、かつ誘電特性および圧電特性を向上させ得る圧電単結晶素子、その製造方法、並びに前記圧電単結晶素子の用途を提供することができる。 According to the present invention, it is possible to provide a piezoelectric single crystal element that can increase the yield of applied equipment and improve dielectric properties and piezoelectric properties, a method for manufacturing the piezoelectric single crystal element, and uses of the piezoelectric single crystal element.

本発明の圧電単結晶素子の一例を模式的に表す斜視図である。FIG. 1 is a perspective view schematically showing an example of a piezoelectric single crystal element of the present invention. 電極形成後の単結晶板に分極処理を施す際の処理条件の一例を表すグラフである。It is a graph showing an example of processing conditions when polarizing a single crystal plate after electrode formation.

上記の通り、圧電素子は、通常、直流電界による分極処理を経て製造されるが、このようにして得られる圧電素子では、その性能を十分に高めることが困難である。他方、上記の通り、交流電界による分極処理を経て圧電素子を製造することの提案もあるが、この場合、素子を構成する単結晶板にマイクロクラックが入ってしまう。 As mentioned above, piezoelectric elements are usually manufactured through polarization treatment using a direct current electric field, but it is difficult to sufficiently improve the performance of piezoelectric elements obtained in this way. On the other hand, as mentioned above, there is also a proposal to manufacture a piezoelectric element through polarization treatment using an alternating current electric field, but in this case, microcracks will occur in the single crystal plate constituting the element.

圧電単結晶素子や圧電単結晶素子を用いた超音波プローブの製造においては、精密な加工が必要となるため、こうしたマイクロクラックが適用機器の製造歩留まりの低下を引き起こす虞がある。 In the manufacture of piezoelectric single crystal elements or ultrasonic probes using piezoelectric single crystal elements, precise processing is required, and therefore, such microcracks may cause a decrease in the manufacturing yield of applied equipment.

本発明者らは、特定の周波数条件で交流電界を印加して分極処理を施すことで、単結晶板のマイクロクラックの発生を抑制でき、かつ柔軟性が高い圧電単結晶素子が得られること、および、このようにして得られた圧電単結晶素子は、誘電特性および圧電特性が向上することに加えて、素子の適用機器(超音波プローブなど)を製造するために他の部材(バッキング材やFPC、音響整合層など)と接合し加工した際に、破損などが生じ難く、適用機器の製造歩留まりを高め得ることを見出し、本発明を完成するに至った。 The present inventors have discovered that by applying an alternating current electric field under specific frequency conditions and performing polarization treatment, it is possible to suppress the generation of microcracks in a single crystal plate and to obtain a piezoelectric single crystal element with high flexibility. In addition to improved dielectric and piezoelectric properties, the piezoelectric single crystal element thus obtained has improved dielectric properties and piezoelectric properties. The present inventors have discovered that when bonded to FPC (FPC, acoustic matching layer, etc.) and processed, breakage is less likely to occur and the manufacturing yield of applicable devices can be increased, leading to the completion of the present invention.

本発明の圧電単結晶素子は、酸化マグネシウム、酸化ニオブおよびチタン酸鉛を含む鉛複合ペロブスカイト組成物により構成された矩形の単結晶板の両主面に電極を有している。 The piezoelectric single crystal element of the present invention has electrodes on both main surfaces of a rectangular single crystal plate made of a lead composite perovskite composition containing magnesium oxide, niobium oxide, and lead titanate.

図1に、本発明の圧電単結晶素子の一例を模式的に表す斜視図を示す。ただし、図1は、圧電単結晶素子の構造の理解を容易にするためのものであり、各要素のサイズは必ずしも正確ではない。圧電単結晶素子1は、単結晶板2の両主面〔(001)面。図中の上下面。〕に電極3、3を有している。図中横方向の矢印は、周波数定数N31を求める際に測定する横方向振動モード31の方向を意味しており、図中上から下への矢印は、分極処理の際に印加する交流電界Eの方向を意味している。また、図中に左側には、結晶方位を示している。 FIG. 1 is a perspective view schematically showing an example of the piezoelectric single crystal element of the present invention. However, FIG. 1 is provided to facilitate understanding of the structure of the piezoelectric single crystal element, and the size of each element is not necessarily accurate. The piezoelectric single crystal element 1 has both main surfaces of a single crystal plate 2 [(001) plane. Upper and lower surfaces in the figure. ] has electrodes 3, 3. The horizontal arrow in the figure indicates the direction of the transverse vibration mode 31 measured when determining the frequency constant N31 , and the arrow from top to bottom in the figure indicates the AC electric field applied during polarization processing. It means the direction of E. Further, the left side of the figure shows the crystal orientation.

単結晶板を構成する鉛複合ペロブスカイト組成物としては、酸化マグネシウム、酸化ニオブおよびチタン酸鉛を含むもの、例えば、Pb(Mg1/3Nb2/3)O-PbTiO〕(PMN-PT)が挙げられる。上記鉛複合ペロブスカイト組成物は、本発明の効果を損なわない範囲で、少量の酸化マンガンや酸化ジルコニウムを含んでいてもよい。 The lead composite perovskite composition constituting the single crystal plate includes one containing magnesium oxide, niobium oxide and lead titanate, for example, Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 ] (PMN-PT). ). The lead composite perovskite composition may contain a small amount of manganese oxide or zirconium oxide as long as the effects of the present invention are not impaired.

単結晶板は、キュリー温度が、128℃以上であることが好ましく、130℃以上であることがより好ましく、また、140℃以下であることが好ましく、136℃以下であることがさらに好ましい。このようなキュリー温度を有する単結晶板を用いることで、素子の誘電特性や圧電特性がより良好となり、また、より広い温度域で使用できるようになる。なお、単結晶板を構成する鉛複合ペロブスカイト組成物の成分組成(特にチタン酸鉛の割合)を調整することで、そのキュリー温度を調節することができる。具体的には、単結晶板を構成する鉛複合ペロブスカイト組成物におけるチタン酸鉛の割合を、27~30mol%とすることで、キュリー温度を上記の範囲に調節することができる。 The Curie temperature of the single crystal plate is preferably 128°C or higher, more preferably 130°C or higher, further preferably 140°C or lower, and even more preferably 136°C or lower. By using a single crystal plate having such a Curie temperature, the dielectric properties and piezoelectric properties of the element will be better, and the element can be used in a wider temperature range. Note that by adjusting the component composition (particularly the proportion of lead titanate) of the lead composite perovskite composition constituting the single crystal plate, its Curie temperature can be adjusted. Specifically, by setting the proportion of lead titanate in the lead composite perovskite composition constituting the single crystal plate to 27 to 30 mol %, the Curie temperature can be adjusted within the above range.

本明細書でいう単結晶板のキュリー温度は、恒温槽の中に試料を配置し、周波数1kHz、1℃/minで温度上昇させ、LCRメーターを用いて測定される静電容量の最大値から求められる値である。 The Curie temperature of a single crystal plate in this specification is determined from the maximum value of capacitance measured using an LCR meter by placing a sample in a constant temperature bath and increasing the temperature at a frequency of 1 kHz and 1°C/min. This is the required value.

単結晶板は、矩形である。そして、単結晶板は、圧電単結晶素子の特性を良好にする観点から、主面(平板面)が(001)面であり、側面が(100)面および(010)面である。 The single crystal plate is rectangular. In order to improve the characteristics of the piezoelectric single crystal element, the single crystal plate has a main surface (flat plate surface) of a (001) plane, and side surfaces of a (100) plane and a (010) plane.

単結晶板は、(100)方位の長さLと(010)方位の幅Wとの比L/Wが大きすぎると、圧電単結晶素子の適用機器における他の部材との接合などの際に、素子がより破損しやすくなる。よって、上記の破損を抑制する観点から、単結晶板における比L/Wは、20以下とする。他方、本発明の圧電単結晶素子は、特定の周波数定数を有するものであるが、比L/Wが小さすぎると正確な周波数定数が得られないため、単結晶板におけるL/Wは、4以上とする。 If the ratio L/W of the length L in the (100) direction and the width W in the (010) direction is too large, the monocrystalline plate may be difficult to bond to other components in equipment to which the piezoelectric single crystal element is applied. , the element is more likely to be damaged. Therefore, from the viewpoint of suppressing the above-mentioned damage, the ratio L/W in the single crystal plate is set to 20 or less. On the other hand, the piezoelectric single crystal element of the present invention has a specific frequency constant, but if the ratio L/W is too small, an accurate frequency constant cannot be obtained. The above shall apply.

圧電単結晶素子に係る単結晶板は、例えば、市販の原料単結晶板を使用し、これを所定サイズに切断した後、必要に応じて表面を研磨して厚みを調整して得ることができる。 A single crystal plate related to a piezoelectric single crystal element can be obtained, for example, by using a commercially available raw material single crystal plate, cutting it into a predetermined size, and then polishing the surface as necessary to adjust the thickness. .

原料単結晶板として使用し得る市販品の具体例としては、ティーアールエス・テクノロジーズ・インコーポレーテッド社製の「X2B(商品名)」(PMN-PT)、シーティーエスコーポレーション社製のPMN-28PT(Type A)やPMN-32PT(Type B)などが挙げられる。 Specific examples of commercially available products that can be used as raw material single crystal plates include "X2B (trade name)" (PMN-PT) manufactured by TS Technologies Inc., and PMN-28PT (Type A) and PMN-32PT (Type B).

原料単結晶板の切断方法については特に制限はなく、ダイシングソーなどの精密切断装置を用いて切断すればよい。なお、上記市販の単結晶板は、主面(平板面)が(001)面であるため、切断面が(100)面および(010)面となるように切断する。 There are no particular restrictions on the method of cutting the raw material single crystal plate, and a precision cutting device such as a dicing saw may be used to cut it. Note that the commercially available single crystal plate has a main surface (flat plate surface) that is a (001) plane, and therefore is cut so that the cut planes are a (100) plane and a (010) plane.

単結晶板の厚みは、0.1mm以上であることが好ましく、また、0.5mm以下であることが好ましく、0.45mm以下であることがより好ましい。原料単結晶板が、これより厚い場合には、グラインダーなどを用いて表面を研磨して、厚みを上記の値に調整すればよい。 The thickness of the single crystal plate is preferably 0.1 mm or more, more preferably 0.5 mm or less, and more preferably 0.45 mm or less. If the raw material single crystal plate is thicker than this, the surface may be polished using a grinder or the like to adjust the thickness to the above value.

上記の切断や研磨を経て得られた単結晶板には、大気中で熱処理を施すことが好ましい。この熱処理によって切断や研磨の際に単結晶板に付加された応力を緩和して、単結晶板の機械的強度を高めることが可能となる。 The single crystal plate obtained through the above cutting and polishing is preferably subjected to heat treatment in the atmosphere. This heat treatment makes it possible to relieve the stress applied to the single crystal plate during cutting and polishing, thereby increasing the mechanical strength of the single crystal plate.

単結晶板の熱処理方法については特に制限はなく、例えば、アルミナ製やマグネシア製匣鉢などの焼成容器に単結晶板を封入し、小型電気炉で熱処理を行うことができる。 There are no particular restrictions on the method of heat treatment of the single crystal plate; for example, the single crystal plate may be sealed in a firing container such as an alumina or magnesia sagger, and heat treated in a small electric furnace.

熱処理温度は、200℃以上であることが好ましく、800℃以下であることが好ましく、600℃以下であることがより好ましい。また、熱処理時間は、30分以上であることが好ましく、24時間以下であることが好ましい。 The heat treatment temperature is preferably 200°C or higher, preferably 800°C or lower, and more preferably 600°C or lower. Further, the heat treatment time is preferably 30 minutes or more, and preferably 24 hours or less.

前記のような単結晶板の両主面(平板面)に、電極形成工程において電極を形成し、その後に分極処理工程において分極処理を施して、圧電単結晶素子を得ることができる。 A piezoelectric single crystal element can be obtained by forming electrodes on both main surfaces (flat plate surfaces) of the single crystal plate as described above in an electrode forming step, and then performing a polarization treatment in a polarization treatment step.

電極は、例えば、Ni、Cr、Ti、Au、Pt、Pd、Ag、Cu、Alなどの金属を用いて、スパッタ法、メッキ法、蒸着法などによって、単結晶板の両主面に形成することができる。電極の厚みは、100~2000nmであることが好ましい。 The electrodes are formed on both main surfaces of the single crystal plate by sputtering, plating, vapor deposition, etc. using metals such as Ni, Cr, Ti, Au, Pt, Pd, Ag, Cu, and Al. be able to. The thickness of the electrode is preferably 100 to 2000 nm.

単結晶板の両主面に電極を形成した後に、分極処理工程で分極処理を施す。 After forming electrodes on both main surfaces of the single crystal plate, polarization treatment is performed in a polarization treatment step.

分極処理は、室温以上、疑似立方晶から相転移する相転移温度Tf以下の温度下で実施する。本明細書でいう「室温」とは、25℃を意味している。なお、分極処理時の温度は、高すぎると圧電単結晶素子の誘電特性や圧電特性を十分に確保できないことから、
Tf以下の温度とする。
The polarization treatment is carried out at a temperature above room temperature and below the phase transition temperature Tf at which phase transition from pseudo cubic crystal occurs. "Room temperature" as used herein means 25°C. Note that if the temperature during polarization treatment is too high, the dielectric and piezoelectric properties of the piezoelectric single crystal element cannot be maintained sufficiently.
The temperature shall be below Tf.

本明細書でいう単結晶板の、疑似立方晶から相転移する相転移温度Tf(「実用限界温度」ともいう)は、恒温槽の中に試料を配置し、周波数1kHz、1℃/minで温度上昇させ、LCRメーターを用いて測定される、70℃以上110℃以下の温度範囲内における静電容量の最大値を示すときの温度として求められる値である。 In this specification, the phase transition temperature Tf (also referred to as "practical limit temperature") at which a single crystal plate undergoes a phase transition from a pseudo-cubic crystal is determined by placing a sample in a constant temperature bath and heating at a frequency of 1 kHz and 1°C/min. This value is determined as the temperature at which the capacitance reaches the maximum value within a temperature range of 70° C. or higher and 110° C. or lower, which is measured using an LCR meter when the temperature is increased.

図2に、電極形成後の単結晶板に分極処理を施す際の処理条件の一例を表すグラフを示している。図2のグラフでは、縦軸に電界強度を表し、横軸に時間(処理時間)を表しており、最初の数サイクルを同一の周波数および交流電界を印加した後、周波数および電界を変更して交流電界を印加する条件を示している。図2に示すように、電界強度が0からプラス方向の最高値に達した後にマイナス方向の最低値に達し、その後に0に戻るまでが、交流電界の1サイクルにあたり、この1サイクルにかかる時間が長いほど、交流電界の周波数が低いことを意味している。そして、図2中、V1やVnは印加した電界の強度を示している。 FIG. 2 shows a graph showing an example of processing conditions when polarizing a single crystal plate after electrode formation. In the graph in Figure 2, the vertical axis represents electric field strength and the horizontal axis represents time (processing time). After applying the same frequency and AC electric field for the first few cycles, the frequency and electric field are changed. The conditions for applying an alternating current electric field are shown. As shown in Figure 2, one cycle of the AC electric field is when the electric field strength reaches the highest value in the positive direction from 0, reaches the lowest value in the negative direction, and then returns to 0, and the time taken for this one cycle. The longer the value, the lower the frequency of the alternating current electric field. In FIG. 2, V1 and Vn indicate the strength of the applied electric field.

分極処理時に印加する交流電界の周波数は、高すぎると単結晶板にマイクロクラックが発生するため、これを抑制する観点から、0.1Hz未満であり、0.05Hz以下であることが好ましい。ただし、分極処理時に印加する交流電界の周波数が低すぎると、非常に長時間の分極処理が必要になって、素子の生産性が低下する。よって、圧電単結晶素子を良好な生産性で生産できるようにする観点から、分極処理時に印加する交流電界の周波数は、0.0001Hz以上であり、0.002Hz以上であることが好ましい。 If the frequency of the alternating current electric field applied during the polarization treatment is too high, microcracks will occur in the single crystal plate, so from the viewpoint of suppressing this, it is preferably less than 0.1 Hz, and preferably 0.05 Hz or less. However, if the frequency of the alternating current electric field applied during the polarization process is too low, the polarization process will be required for a very long time, reducing device productivity. Therefore, from the viewpoint of producing piezoelectric single crystal elements with good productivity, the frequency of the alternating current electric field applied during the polarization treatment is preferably 0.0001 Hz or more, and preferably 0.002 Hz or more.

分極処理時における交流電界のサイクルは、分極処理の効果を十分に確保して、素子の誘電特性および圧電特性を良好に高める観点から、3サイクル以上であり、分極処理時の放電破壊の発生を抑える観点から、50サイクル以下である。 The cycle of the alternating current electric field during the polarization process is three or more cycles in order to ensure the sufficient effect of the polarization process and improve the dielectric and piezoelectric properties of the element. From the viewpoint of suppression, it is 50 cycles or less.

交流電界を印加する際は、分極処理の効果を十分に確保して、素子の誘電特性および圧電特性を良好に高める観点から、ピークトゥピーク電界で、0.3kV/mm以上であることが好ましく、分極処理時の放電破壊の発生を抑える観点から、ピークトゥピーク電界で、4kV/mm以下であることが好ましい。 When applying an alternating current electric field, the peak-to-peak electric field is preferably 0.3 kV/mm or more, from the viewpoint of sufficiently ensuring the effect of polarization treatment and improving the dielectric properties and piezoelectric properties of the element. From the viewpoint of suppressing the occurrence of discharge breakdown during polarization treatment, the peak-to-peak electric field is preferably 4 kV/mm or less.

分極処理工程においては、交流電界および周波数を少なくとも1回変更することが望ましい。そして、交流電界の変更に関しては、より後のサイクルでの交流電界を、それより前のサイクルでの交流電界よりも強くする変更を少なくとも1回含むことが好ましい。また、周波数の変更に関しては、より後のサイクルでの周波数を、それより前のサイクルでの周波数よりも低くする変更を少なくとも1回含むことが好ましい。 In the polarization process, it is desirable to change the alternating current electric field and frequency at least once. Regarding the change in the alternating current electric field, it is preferable to include at least one change in which the alternating current electric field in a later cycle is made stronger than the alternating current electric field in an earlier cycle. Regarding the change in frequency, it is preferable to include at least one change in which the frequency in a later cycle is lower than the frequency in an earlier cycle.

分極処理における交流電界の周波数は、上記の通り、低いことが好ましい一方で、良好な誘電特性や圧電特性を有する素子とするには、分極処理時間が長くなる。よって、分極処理中のいずれかの段階での周波数を、上記の範囲の中でも比較的高い値に設定して数サイクル(例えば3サイクル以上)の交流電界を印加し、それに続いて低い周波数に変更して数サイクル(例えば3サイクル以上)の交流電界を印加することで、圧電単結晶素子におけるマイクロクラックの発生を良好に抑制しつつ、分極処理時間を可及的に短くして、その生産性も高めることができる。 As mentioned above, the frequency of the alternating current electric field in the polarization treatment is preferably low, but the polarization treatment time is long in order to obtain an element with good dielectric properties and piezoelectric properties. Therefore, the frequency at any stage during the polarization process is set to a relatively high value within the above range, and an AC electric field is applied for several cycles (for example, 3 cycles or more), and then the frequency is changed to a lower frequency. By applying an alternating current electric field for several cycles (for example, 3 cycles or more), the generation of microcracks in the piezoelectric single crystal element can be suppressed, and the polarization processing time can be shortened as much as possible, increasing productivity. can also be increased.

また、分極処理における交流電界は、分極処理中のいずれかの段階での交流電界を、上記の範囲の中でもより低く設定して数サイクル(例えば3サイクル以上)印加し、それに続いて強い交流電界に変更して数サイクル(例えば3サイクル以上)印加することで、得られる圧電単結晶素子の誘電特性や圧電特性を、より向上させることができる。 In addition, the AC electric field in the polarization process is applied at any stage during the polarization process by setting the AC electric field lower than the above range and applying it for several cycles (for example, 3 cycles or more), followed by applying a strong AC electric field. The dielectric properties and piezoelectric properties of the piezoelectric single crystal element obtained can be further improved by changing the temperature and applying it for several cycles (for example, three or more cycles).

分極処理工程において、交流電界および周波数を変更する回数は、特に制限はなく、1回、2回、3回、それ以上とすることが可能であるが、変更回数を2回まで(すなわち、一度の分極処理で採用する電界および周波数の条件は、いずれも3条件以下)とすることが通常である。電界および周波数の変更回数が2回以上の場合、各電界は、変更する1つ前の電界よりも強いことが好ましく、各周波数は、変更する1つ前の周波数よりも低いことが好ましい。また、各条件での交流電界は、いずれも3サイクル以上印加することが好ましいが、各条件でのサイクルの合計数は50サイクル以下となるようにする。 In the polarization process, the number of times the AC electric field and frequency are changed is not particularly limited and can be changed once, twice, three times, or more. The electric field and frequency conditions employed in the polarization process are usually 3 or less. When the electric field and frequency are changed two or more times, each electric field is preferably stronger than the electric field immediately before changing, and each frequency is preferably lower than the frequency before changing. Further, it is preferable that the alternating current electric field is applied for three or more cycles under each condition, but the total number of cycles under each condition is set to be 50 cycles or less.

また、電界および周波数の条件を変更する場合、両者を同時に(同じサイクルのときに)変更してもよく、それぞれ別のサイクルのときで変更してもよいが、通常は同時に変更する。 Further, when changing the electric field and frequency conditions, they may be changed at the same time (in the same cycle) or in different cycles, but usually they are changed at the same time.

また、交流電界の波形には、三角波のみならず正弦波、台形波などを用いてもよい。 Further, as the waveform of the AC electric field, not only a triangular wave but also a sine wave, a trapezoidal wave, etc. may be used.

交流電界を印加した後には、ピークトゥピーク電界の50%以上の直流電界を印加してもよい。交流電界後に直流電界を印加して分極処理を行うと最適な誘電特性や圧電特性を確保することができるためである。 After applying the AC electric field, a DC electric field of 50% or more of the peak-to-peak electric field may be applied. This is because optimal dielectric properties and piezoelectric properties can be ensured by applying a direct current electric field after an alternating current electric field to perform polarization treatment.

このようにして得られる圧電単結晶素子は、分極方向に直交する横方向振動モードの共振周波数frと、振動方向の長さlとの積で表される周波数定数N31が、25℃において、700Hz・m以下となる。このような低い周波数定数N31を有する圧電単結晶素子は、直流電界を印加する分極処理を経て得られた圧電単結晶素子や、公知の条件で交流電界を印加する分極処理を経て得られた圧電単結晶素子に比べて、ドメイン壁密度が変わっていることで、柔軟性が向上していると考えられる。そのため、適用機器(超音波プローブなど)を製造するために他の部材(バッキング材やFPC、音響整合層など)と接合し加工した際に、破損などが生じ難く、適用機器の歩留まりを高めることができ、また、誘電特性および圧電特性も優れている。 The piezoelectric single crystal element thus obtained has a frequency constant N 31 expressed as the product of the resonance frequency fr of the transverse vibration mode perpendicular to the polarization direction and the length l in the vibration direction at 25°C. It becomes 700Hz・m or less. A piezoelectric single crystal element having such a low frequency constant N31 is a piezoelectric single crystal element obtained through a polarization process that applies a direct current electric field, or a piezoelectric single crystal element obtained through a polarization process that applies an alternating current electric field under known conditions. Compared to piezoelectric single-crystal devices, the change in domain wall density is thought to improve flexibility. Therefore, when it is bonded and processed with other parts (backing material, FPC, acoustic matching layer, etc.) in order to manufacture applied equipment (ultrasonic probes, etc.), damage is less likely to occur, increasing the yield of applied equipment. It also has excellent dielectric and piezoelectric properties.

ただし、圧電単結晶素子の上記周波数定数N31が低すぎると、誘電特性や圧電特性の再現性が低下する虞があり、また、使用温度範囲が70℃以下に限定されるようになるため、上記周波数定数N31は、520Hz・m以上であり、600Hz・m以上であることが好ましい。先に説明した製造方法・条件を採用することで周波数定数N31が上記上限値以下であり、かつ上記下限値以上である圧電単結晶素子を得ることができる。 However, if the frequency constant N 31 of the piezoelectric single crystal element is too low, there is a risk that the reproducibility of dielectric properties and piezoelectric properties will decrease, and the operating temperature range will be limited to 70°C or less. The frequency constant N 31 is 520 Hz·m or more, preferably 600 Hz·m or more. By employing the manufacturing method and conditions described above, it is possible to obtain a piezoelectric single crystal element in which the frequency constant N 31 is less than or equal to the upper limit value and greater than or equal to the lower limit value.

本発明の圧電単結晶素子は、従来から圧電単結晶素子が適用されている医療用超音波診断装置や超音波画像検査装置の超音波プローブなどの機器の超音波送受信素子に好適であり、また、従来の圧電素子が適用されている他の用途にも適用することができる。 The piezoelectric single crystal element of the present invention is suitable for ultrasonic transmitting and receiving elements of devices such as medical ultrasound diagnostic equipment and ultrasound probes of ultrasound imaging equipment, to which piezoelectric single crystal elements have been conventionally applied, and , it can also be applied to other applications where conventional piezoelectric elements are applied.

また、本発明の製造方法によれば、マイクロクラックの発生や電極剥離が抑制された圧電単結晶素子が得られるため、マッチング層を貼り付ける際の素子折れやチッピングが減少し、適用機器の製造歩留まりを高め得る圧電単結晶素子を製造することができる。しかも、本発明の製造方法によれば、低コストで素子の誘電特性や圧電特性を大幅に向上させ得るため、その工業的な重要性も極めて高い。 Furthermore, according to the manufacturing method of the present invention, a piezoelectric single crystal element with suppressed occurrence of microcracks and electrode peeling can be obtained, which reduces element folding and chipping when pasting a matching layer, and manufactures applicable equipment. A piezoelectric single crystal element can be manufactured with improved yield. Moreover, according to the manufacturing method of the present invention, the dielectric properties and piezoelectric properties of the element can be significantly improved at low cost, and therefore its industrial importance is extremely high.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on Examples. However, the following examples do not limit the present invention.

実施例1
Pb(Mg1/3Nb2/3)O-PbTiO(PMN-PT)の原料単結晶板の両主面〔(001面)〕を、グラインダー(株式会社ディスコ製)で研磨して、厚みを0.30mmとした。この単結晶板を、ダイシングソー(株式会社ディスコ製)を用いて、切断面が(100)面および(010)面となるように切断して、(100)方位の長さLが20mm、(010)方位の幅Wが5mmの単結晶板を得た。原料単結晶板のキュリー温度Tc、実用限界温度Tfおよび単結晶板のサイズを表1に示す。
Example 1
Both main surfaces [(001 plane)] of a raw material single crystal plate of Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT) were polished with a grinder (manufactured by DISCO Co., Ltd.). The thickness was set to 0.30 mm. This single crystal plate was cut using a dicing saw (manufactured by DISCO Co., Ltd.) so that the cut planes were (100) plane and (010) plane, and the length L in the (100) direction was 20 mm, ( 010) A single crystal plate with an orientation width W of 5 mm was obtained. Table 1 shows the Curie temperature Tc, practical limit temperature Tf, and size of the single crystal plate of the raw material single crystal plate.

得られた単結晶板をマグネシア製匣鉢に封入し、小型電気炉を用いて、大気中、300℃で5時間熱処理した。熱処理後の単結晶板の両主面〔(001面)〕に、スパッタ装置を用いて、厚みが50nmのクロムからなる下地層と、厚みが200nmの金からなる上地層とを有する電極を形成した。そして、電極を形成した単結晶板に、25℃で、表2に示す条件で交流電界を印加して分極処理を施し、図1に示す外観の圧電単結晶素子を得た。 The obtained single-crystal plate was sealed in a magnesia sagger, and heat-treated in the atmosphere at 300° C. for 5 hours using a small electric furnace. Electrodes having a base layer made of chromium with a thickness of 50 nm and a top layer made of gold with a thickness of 200 nm are formed on both main surfaces [(001 plane)] of the single crystal plate after heat treatment using a sputtering device. did. Then, the single crystal plate on which the electrodes were formed was subjected to polarization treatment by applying an alternating current electric field at 25° C. under the conditions shown in Table 2, to obtain a piezoelectric single crystal element having the appearance shown in FIG. 1.

実施例2~12、比較例1~5
表1に示すキュリー温度の原料単結晶板を使用し、単結晶板を表1に示すサイズとし、交流電界を表2に示す条件で印加した以外は、実施例1と同様にして圧電単結晶素子を得た。
Examples 2 to 12, Comparative Examples 1 to 5
A piezoelectric single crystal was prepared in the same manner as in Example 1, except that a raw material single crystal plate having the Curie temperature shown in Table 1 was used, the single crystal plate was made to have the size shown in Table 1, and an AC electric field was applied under the conditions shown in Table 2. I got the element.

Figure 0007369504000001
Figure 0007369504000001

Figure 0007369504000002
Figure 0007369504000002

なお、表2に記載の「ステップ」の数は、分極処理時に採用した交流電界および周波数の条件の数を意味し、「ステップ1」は最初に採用した条件を、「ステップ2」は2番目に採用した条件を、「ステップ3」は3番目に採用した条件を、それぞれ示している。また、表2の「電界」は、ピークトゥピーク電界を意味している。 The number of "steps" listed in Table 2 means the number of AC electric field and frequency conditions adopted during the polarization process, with "Step 1" being the first condition adopted, and "Step 2" being the second condition. "Step 3" shows the conditions adopted in the third step, and "Step 3" shows the conditions adopted in the third step. Moreover, "electric field" in Table 2 means a peak-to-peak electric field.

実施例および比較例の各圧電単結晶素子について、分極処理から24時間以上経過した後に、下記の各測定を行った。各測定は、室温にて下記の方法で行った。ただし、最初の周波数を10Hzとし、変更後の周波数を100Hzとして分極処理を行った比較例5においては、処理の途中で絶縁破壊を起こしたため、下記の各測定は実施しなかった。 For each of the piezoelectric single crystal elements of Examples and Comparative Examples, the following measurements were performed 24 hours or more after the polarization treatment. Each measurement was performed at room temperature using the following method. However, in Comparative Example 5, in which polarization treatment was performed with the initial frequency at 10 Hz and the changed frequency at 100 Hz, dielectric breakdown occurred during the treatment, so the following measurements were not performed.

<周波数定数N31
実施例および比較例の各圧電単結晶素子の周波数定数N31は、キーサイト・テクノロジー社製の「インピーダンスアナライザー 4294A(商品名)」を用いて求めた横方向振動モード31(図1中横の矢印)の共振周波数frと、圧電単結晶素子の振動方向の長さl(すなわち、単結晶板の長さL)とから、下記式によって算出した。
<Frequency constant N 31 >
The frequency constant N 31 of each piezoelectric single crystal element in Examples and Comparative Examples is determined using the “Impedance Analyzer 4294A (trade name)” manufactured by Keysight Technologies Inc. It was calculated by the following formula from the resonance frequency fr of the arrow) and the length l of the piezoelectric single crystal element in the vibration direction (that is, the length L of the single crystal plate).

31 = fr × l N31 = fr × l

<比誘電率>
実施例および比較例の各圧電単結晶素子の比誘電率は、キーサイト・テクノロジー社製の「インピーダンスアナライザー 4294A(商品名)」を用いて測定した静電容量から、下記式によって算出した。
<Relative dielectric constant>
The relative permittivity of each piezoelectric single crystal element in the Examples and Comparative Examples was calculated by the following formula from the capacitance measured using "Impedance Analyzer 4294A (trade name)" manufactured by Keysight Technologies.

比誘電率 = 静電容量×単結晶板の厚み
÷ (真空の誘電率×単結晶板の長さL×単結晶板の幅W)
Relative permittivity = capacitance x thickness of single crystal plate
÷ (vacuum permittivity x length of single crystal plate L x width of single crystal plate W)

<圧電定数>
実施例および比較例の各圧電単結晶素子の圧電定数は、中国科学院声楽研究所製「ピエゾd33メーター(商品名)」を用いて測定した。測定は、実施例および比較例のいずれも、3つの試料について実施し、これらの平均値を各圧電単結晶素子の圧電定数とした。
<Piezoelectric constant>
The piezoelectric constant of each piezoelectric single crystal element of Examples and Comparative Examples was measured using "Piezo D 33 Meter (trade name)" manufactured by the Institute of Vocal Music, Chinese Academy of Sciences. Measurements were carried out on three samples in both Examples and Comparative Examples, and the average value thereof was taken as the piezoelectric constant of each piezoelectric single crystal element.

キュリー温度が128℃の単結晶板を使用した実施例1~3および比較例1、2の圧電単結晶素子における上記の評価結果を表3に示す。 Table 3 shows the above evaluation results for the piezoelectric single crystal elements of Examples 1 to 3 and Comparative Examples 1 and 2 in which single crystal plates with a Curie temperature of 128° C. were used.

Figure 0007369504000003
Figure 0007369504000003

表3に示す通り、適正な周波数条件で交流電界を印加する分極処理工程を経て製造して得られ、適正な周波数定数N31を有する実施例1~3の圧電単結晶素子は、比誘電率、圧電定数d33のいずれもが高く、誘電特性および圧電特性が優れていた。また、交流電界を印加している途中で電界および周波数の条件を1回変更して分極処理を行った実施例2の素子は、電界および周波数の条件を変えずに交流電界を印加して分極処理を行った実施例1の素子よりも誘電特性および圧電特性が優れており、交流電界を印加している途中で電界および周波数の条件を2回変更して分極処理を行った実施例3の素子は、実施例2の素子よりもさらに誘電特性および圧電特性が優れていた。 As shown in Table 3, the piezoelectric single crystal elements of Examples 1 to 3, which were manufactured through a polarization process in which an alternating current electric field was applied under appropriate frequency conditions and had an appropriate frequency constant N 31 , had a relative dielectric constant of , piezoelectric constant d33 were high, and the dielectric properties and piezoelectric properties were excellent. In addition, the device of Example 2, which was polarized by changing the electric field and frequency conditions once while applying an AC electric field, was polarized by applying an AC electric field without changing the electric field and frequency conditions. The dielectric properties and piezoelectric properties are better than those of Example 1, which was subjected to the treatment, and the element of Example 3, in which the polarization treatment was performed by changing the electric field and frequency conditions twice during the application of an alternating electric field. The device had even better dielectric and piezoelectric properties than the device of Example 2.

これに対し、直流電界のみを印加して分極処理を行って製造した比較例1の圧電単結晶素子、および高い周波数で交流電界を印加する分極処理を行って製造した比較例2の素子は、周波数定数N31を低くすることができず、比誘電率、圧電定数d33のいずれもが低く、誘電特性および圧電特性が劣っていた。 On the other hand, the piezoelectric single crystal element of Comparative Example 1, which was manufactured by performing polarization treatment by applying only a DC electric field, and the element of Comparative Example 2, which was manufactured by performing polarization treatment by applying AC electric field at a high frequency, The frequency constant N 31 could not be lowered, both the dielectric constant and the piezoelectric constant d 33 were low, and the dielectric properties and piezoelectric properties were poor.

また、キュリー温度が128℃の以外の単結晶板を使用した実施例4~12および比較例3、4の圧電単結晶素子における上記の評価結果を表4に示す。 Further, Table 4 shows the above evaluation results for the piezoelectric single crystal elements of Examples 4 to 12 and Comparative Examples 3 and 4 in which single crystal plates other than those having a Curie temperature of 128° C. were used.

Figure 0007369504000004
Figure 0007369504000004

表4に示す通り、適正な周波数条件で交流電界を印加する分極処理工程を経て製造して得られ、適正な周波数定数N31を有する実施例4~12の圧電単結晶素子は、実施例1~3の素子と同様に、比誘電率、圧電定数d33のいずれもが高く、誘電特性および圧電特性が優れていた。また、同じキュリー温度の単結晶板を使用した実施例4~6の素子同士、実施例7~9の素子同士、および実施例10~12の素子同士を比較すると、一部の例外を除き、実施例1~3の場合と同様に、交流電界の印加の途中で周波数および電界の条件の変更回数が多いほど、誘電特性および圧電特性が優れていることが確認できた。 As shown in Table 4, the piezoelectric single crystal elements of Examples 4 to 12, which were manufactured through a polarization process in which an alternating current electric field was applied under appropriate frequency conditions and had an appropriate frequency constant N 31 , were Similar to the elements No. 3 to 3, both the relative permittivity and piezoelectric constant d33 were high, and the dielectric and piezoelectric properties were excellent. Furthermore, when comparing the devices of Examples 4 to 6, the devices of Examples 7 to 9, and the devices of Examples 10 to 12, which used single crystal plates with the same Curie temperature, with some exceptions, As in Examples 1 to 3, it was confirmed that the more times the frequency and electric field conditions were changed during application of the AC electric field, the better the dielectric and piezoelectric properties were.

これに対し、高い周波数で交流電界を印加する分極処理を行って製造した比較例3、42の素子は、比較例2の素子と同様に、周波数定数N31を低くすることができず、比誘電率、圧電定数d33のいずれもが低く、誘電特性および圧電特性が劣っていた。 On the other hand, the elements of Comparative Examples 3 and 42, which were manufactured by performing polarization treatment by applying an alternating electric field at a high frequency, could not lower the frequency constant N 31 as well as the element of Comparative Example 2, and Both the dielectric constant and the piezoelectric constant d33 were low, and the dielectric properties and piezoelectric properties were poor.

<圧電単結晶素子を適用機器用部材に接合し加工した際の歩留まり評価>
実施例3、4、8および比較例1の圧電単結晶素子のそれぞれを、導電性を有するエポキシ樹脂を用いて超音波送受信素子用のバッキング材(EVAゴム系でショアA硬度が70、音響インピーダンスが4MRaylsの材料)に接着し、上記のダイシングソーを用いてピッチ:1.2mmでスリット加工を行って圧電単結晶素子の部分を50分割した。これを、LCRメーターを用いて分割したチャンネルごとの静電容量を測定し、その結果と、分割加工時の割れなどの不良の目視観察とから、適用機器の製造歩留まりを評価した。評価は、実施例、比較例のいずれも1個について行い、不良品の個数を除いた割合(%)を製造歩留まりとした。これらの結果を表5に示す。
<Yield evaluation when piezoelectric single crystal elements are bonded and processed to applicable equipment components>
Each of the piezoelectric single crystal elements of Examples 3, 4, 8 and Comparative Example 1 was coated with a backing material for ultrasonic transmitting and receiving elements (EVA rubber based, Shore A hardness 70, acoustic impedance (4MRayls material), and slits were processed at a pitch of 1.2 mm using the above-mentioned dicing saw to divide the piezoelectric single crystal element into 50 parts. The capacitance of each divided channel was measured using an LCR meter, and the manufacturing yield of the applied equipment was evaluated based on the results and visual observation of defects such as cracks during the dividing process. The evaluation was performed on one product in both Examples and Comparative Examples, and the manufacturing yield was determined by excluding the number of defective products. These results are shown in Table 5.

Figure 0007369504000005
Figure 0007369504000005

表5に示す通り、適正な周波数定数N31を有する実施例3、4、8の圧電単結晶素子は、周波数定数N31が高い比較例1の素子に比べて、適用機器の製造歩留まりが高かった。 As shown in Table 5, the piezoelectric single crystal elements of Examples 3, 4, and 8 having appropriate frequency constants N31 had a higher manufacturing yield of applied equipment than the element of Comparative Example 1 having a high frequency constant N31 . Ta.

本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている特許請求の範囲の記載を優先して解釈され、特許請求の範囲と均等の範囲内での全ての変更は、特許請求の範囲に含まれる。 The present invention can be implemented in forms other than those described above without departing from the spirit thereof. The embodiments disclosed in this application are merely examples, and the present invention is not limited to these embodiments. The scope of the present invention shall be interpreted with priority given to the description of the appended claims rather than the description of the foregoing specification, and all changes within the scope of equivalency to the claims shall be interpreted as included in the range.

1 圧電単結晶素子
2 単結晶板
3 電極
1 piezoelectric single crystal element 2 single crystal plate 3 electrode

Claims (6)

酸化マグネシウム、酸化ニオブおよびチタン酸鉛を含む鉛複合ペロブスカイト組成物により構成された矩形の単結晶板の両主面に電極を有する圧電単結晶素子を製造する方法であって、
前記鉛複合ペロブスカイト組成物は、Pb(Mg 1/3 Nb 2/3 )O -PbTiO であり、
前記単結晶板は、(001)面を主面とし、かつ(100)面および(010)面を側面とし、(100)方位の長さLと(010)方位の幅Wとの比L/Wが4~20であり、
分極方向に直交する横方向振動モードの共振周波数frと、振動方向の長さlとの積で表される周波数定数N 31 が、25℃において、520~700Hz・mであり、
上記鉛複合ペロブスカイト組成物により構成された矩形の単結晶板の両主面に電極を形成する電極形成工程と、
上記電極形成工程後の単結晶板に、室温以上、疑似立方晶から温度範囲70℃以上110℃以下に見られる最大の静電容量を示す相転移温度Tf以下の温度下で、0.0001Hz以上0.08Hz以下の周波数での交流電界を3~50サイクル印加して分極処理を施す分極処理工程とを有することを特徴とする圧電単結晶素子の製造方法。
A method for manufacturing a piezoelectric single crystal element having electrodes on both main surfaces of a rectangular single crystal plate made of a lead composite perovskite composition containing magnesium oxide, niobium oxide, and lead titanate, the method comprising:
The lead composite perovskite composition is Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 ,
The single crystal plate has a (001) plane as its main surface, a (100) plane and a (010) plane as its side surfaces, and has a ratio L/of the length L in the (100) direction and the width W in the (010) direction. W is 4 to 20,
The frequency constant N 31 expressed as the product of the resonance frequency fr of the transverse vibration mode perpendicular to the polarization direction and the length l in the vibration direction is 520 to 700 Hz m at 25°C ,
an electrode forming step of forming electrodes on both main surfaces of a rectangular single crystal plate made of the lead composite perovskite composition;
After the above electrode forming step, the single crystal plate is heated at 0.0001 Hz or higher at a temperature higher than room temperature and lower than the phase transition temperature Tf which exhibits the maximum capacitance observed in the temperature range from 70°C to 110°C from pseudo cubic crystal. 0. A method for manufacturing a piezoelectric single crystal element, comprising a polarization treatment step of applying an alternating current electric field at a frequency of 0.08 Hz or less for 3 to 50 cycles to perform polarization treatment.
上記分極処理工程における交流電界をピークトゥピーク電界で0.3~4kV/mmとする請求項に記載の圧電単結晶素子の製造方法。 The method for manufacturing a piezoelectric single crystal element according to claim 1, wherein the alternating current electric field in the polarization treatment step is 0.3 to 4 kV/mm in peak-to-peak electric field. 前記分極処理工程において、交流電界および周波数を少なくとも1回変更し、
上記交流電界の変更において、より後のサイクルでの交流電界を、それより前のサイクルでの交流電界よりも強くする変更を少なくとも1回含み、
上記周波数の変更において、より後のサイクルでの周波数を、それより前のサイクルでの周波数よりも低くする変更を少なくとも1回含む請求項またはに記載の圧電単結晶素子の製造方法。
In the polarization treatment step, changing the alternating current electric field and frequency at least once,
The change in the alternating current electric field includes at least one change in which the alternating current electric field in a later cycle is made stronger than the alternating current electric field in an earlier cycle;
3. The method for manufacturing a piezoelectric single crystal element according to claim 1 , wherein the frequency change includes at least one change in which the frequency in a later cycle is lower than the frequency in an earlier cycle.
上記圧電単結晶素子は、キュリー温度が128~140℃であり、上記周波数定数NThe piezoelectric single crystal element has a Curie temperature of 128 to 140°C and a frequency constant of N 3131 が、25℃において、600~700Hz・mである請求項1~3のいずれかに記載の圧電単結晶素子の製造方法。is 600 to 700 Hz·m at 25°C, the method for manufacturing a piezoelectric single crystal element according to any one of claims 1 to 3. 請求項1~4のいずれかに記載の圧電単結晶素子の製造方法によって製造された圧電単結晶素子使用することを特徴とする超音波送受信素子の製造方法 A method for manufacturing an ultrasonic transceiver element, comprising using a piezoelectric single crystal element manufactured by the method for manufacturing a piezoelectric single crystal element according to any one of claims 1 to 4 . 請求項1~4のいずれかに記載の圧電単結晶素子の製造方法によって製造された圧電単結晶素子使用することを特徴とする超音波プローブの製造方法
A method for manufacturing an ultrasonic probe, comprising using a piezoelectric single crystal element manufactured by the method for manufacturing a piezoelectric single crystal element according to any one of claims 1 to 4 .
JP2019177059A 2019-09-27 2019-09-27 Method of manufacturing piezoelectric single crystal element, method of manufacturing ultrasonic transmitting/receiving element, and method of manufacturing ultrasonic probe Active JP7369504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019177059A JP7369504B2 (en) 2019-09-27 2019-09-27 Method of manufacturing piezoelectric single crystal element, method of manufacturing ultrasonic transmitting/receiving element, and method of manufacturing ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019177059A JP7369504B2 (en) 2019-09-27 2019-09-27 Method of manufacturing piezoelectric single crystal element, method of manufacturing ultrasonic transmitting/receiving element, and method of manufacturing ultrasonic probe

Publications (2)

Publication Number Publication Date
JP2021057388A JP2021057388A (en) 2021-04-08
JP7369504B2 true JP7369504B2 (en) 2023-10-26

Family

ID=75271263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019177059A Active JP7369504B2 (en) 2019-09-27 2019-09-27 Method of manufacturing piezoelectric single crystal element, method of manufacturing ultrasonic transmitting/receiving element, and method of manufacturing ultrasonic probe

Country Status (1)

Country Link
JP (1) JP7369504B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282986A (en) 2002-03-25 2003-10-03 Toshio Ogawa Domain control piezoelectric single crystal element and its manufacturing method
JP2004296784A (en) 2003-03-27 2004-10-21 Kyocera Corp Polarization method and polarization device for piezoelectric ceramic
JP2014045411A (en) 2012-08-28 2014-03-13 Toshiba Corp Ultrasonic probe, piezoelectric vibrator, manufacturing method of ultrasonic probe, and manufacturing method of piezoelectric vibrator
JP2014187285A (en) 2013-03-25 2014-10-02 Toshiba Corp Piezoelectric vibrator, ultrasound probe, method for manufacturing piezoelectric vibrator, and method for manufacturing ultrasound probe
JP2015176915A (en) 2014-03-13 2015-10-05 株式会社リコー Method for manufacturing electromechanical conversion element, electromechanical conversion element, droplet discharge head, droplet discharge device and imaging apparatus
JP2019031430A (en) 2017-08-04 2019-02-28 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic device
JP2019136699A (en) 2018-02-06 2019-08-22 キヤノン株式会社 Vibratory equipment for dust removal, and imaging device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3560998B2 (en) * 1993-01-27 2004-09-02 株式会社東芝 Piezoelectric materials and ultrasonic probes
JP3570099B2 (en) * 1996-07-25 2004-09-29 東レ株式会社 Piezoelectric polymer, piezoelectric element and pressure sensor
GB2570707B (en) * 2018-02-05 2021-09-08 Xaar Technology Ltd A method of poling piezoelectric elements of an actuator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282986A (en) 2002-03-25 2003-10-03 Toshio Ogawa Domain control piezoelectric single crystal element and its manufacturing method
JP2004296784A (en) 2003-03-27 2004-10-21 Kyocera Corp Polarization method and polarization device for piezoelectric ceramic
JP2014045411A (en) 2012-08-28 2014-03-13 Toshiba Corp Ultrasonic probe, piezoelectric vibrator, manufacturing method of ultrasonic probe, and manufacturing method of piezoelectric vibrator
JP2014187285A (en) 2013-03-25 2014-10-02 Toshiba Corp Piezoelectric vibrator, ultrasound probe, method for manufacturing piezoelectric vibrator, and method for manufacturing ultrasound probe
JP2015176915A (en) 2014-03-13 2015-10-05 株式会社リコー Method for manufacturing electromechanical conversion element, electromechanical conversion element, droplet discharge head, droplet discharge device and imaging apparatus
JP2019031430A (en) 2017-08-04 2019-02-28 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic device
JP2019136699A (en) 2018-02-06 2019-08-22 キヤノン株式会社 Vibratory equipment for dust removal, and imaging device

Also Published As

Publication number Publication date
JP2021057388A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP6091951B2 (en) Piezoelectric vibrator, ultrasonic probe, piezoelectric vibrator manufacturing method and ultrasonic probe manufacturing method
US9966524B2 (en) Ultrasonic probe, piezoelectric transducer, method of manufacturing ultrasonic probe, and method of manufacturing piezoelectric transducer
KR20130120504A (en) Piezoelectric element, liquid discharge head, ultrasonic motor, and dust removing device
Ma et al. High frequency transducer for vessel imaging based on lead-free Mn-doped (K0. 44Na0. 56) NbO3 single crystal
JP3717034B2 (en) Surface acoustic wave device
Chen et al. High-frequency ultrasonic transducer fabricated with lead-free piezoelectric single crystal
JP5013269B2 (en) Resonant actuator
JP7369504B2 (en) Method of manufacturing piezoelectric single crystal element, method of manufacturing ultrasonic transmitting/receiving element, and method of manufacturing ultrasonic probe
JP4568529B2 (en) Piezoelectric single crystal element
Qin et al. Fabrication and characterization of thick-film piezoelectric lead zirconate titanate ceramic resonators by tape-casting
JP2022132883A (en) Piezoelectric vibrator and manufacturing method thereof
Hosono et al. Piezoelectric ceramics and single crystals for ultrasonic medical transducers
RU2498959C2 (en) Piezoelectric ceramic material
Liu et al. Complete Sets of Material Constants of [001]-Poled 0.72 Pb (Mg 1/3 Nb 2/3) O 3-0.28 PbTiO 3 Single Crystals Using Alternating Current Poling
JP5019274B2 (en) Resonant actuator
Tian et al. Piezoelectric crystal composite for high frequency ultrasound application
Rhim et al. A 2.6 MHz phased array ultrasonic probe using 0.67 Pb (Mg/sub 1/3/Nb/sub 2/3/) O/sub 3/-0.33 PbTiO/sub 3/single crystal grown by the Bridgman method
Hosono et al. Piezoelectric ceramics with high dielectric constants for ultrasonic medical transducers
JP5309356B2 (en) Manufacturing method of ceramics
JP2013026682A (en) Medical composite single-crystal piezoelectric vibrator, medical ultrasonic probe, method of manufacturing medical composite single-crystal piezoelectric vibrator, and method of manufacturing medical ultrasonic probe
Hackenberger et al. Advanced piezoelectric materials for medical ultrasound transducers
Uršič et al. 0.65 Pb (Mg1/3Nb2/3) O3–0.35 PbTiO3 thick films for high-frequency piezoelectric transducer applications
JP6511871B2 (en) Piezoelectric composition, piezoelectric element and method of manufacturing the same, and ultrasonic probe
JP4605879B2 (en) Piezoelectric vibrator
JP2000327418A (en) Piezoelectric porcelain composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231013

R150 Certificate of patent or registration of utility model

Ref document number: 7369504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150