JP2021057388A - Piezoelectric single crystal element, manufacturing method thereof, and application thereof - Google Patents

Piezoelectric single crystal element, manufacturing method thereof, and application thereof Download PDF

Info

Publication number
JP2021057388A
JP2021057388A JP2019177059A JP2019177059A JP2021057388A JP 2021057388 A JP2021057388 A JP 2021057388A JP 2019177059 A JP2019177059 A JP 2019177059A JP 2019177059 A JP2019177059 A JP 2019177059A JP 2021057388 A JP2021057388 A JP 2021057388A
Authority
JP
Japan
Prior art keywords
single crystal
piezoelectric
electric field
frequency
piezoelectric single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019177059A
Other languages
Japanese (ja)
Other versions
JP7369504B2 (en
Inventor
祐 坂野
Yu Sakano
祐 坂野
翼 佐藤
Tasuku Sato
翼 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2019177059A priority Critical patent/JP7369504B2/en
Publication of JP2021057388A publication Critical patent/JP2021057388A/en
Application granted granted Critical
Publication of JP7369504B2 publication Critical patent/JP7369504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

To provide a piezoelectric single crystal element capable of increasing the manufacturing yield of an applicable device and capable of improving the dielectric property and the piezoelectric property, a manufacturing method thereof, and an application thereof.SOLUTION: A piezoelectric single crystal element 1 includes electrodes on both main surfaces of a rectangular single crystal plate composed of a lead composite perovskite composition containing magnesium oxide, niobium oxide, and lead titanate, in the single crystal plate 2, the (001) plane is the main plane, and the (100) plane and the (010) plane are the side surfaces, and the ratio L/W of the length L of the (100) orientation to the width W of the (010) orientation is 4 to 20. The frequency constant N31 represented by the product of the resonance frequency fr in the lateral vibration mode orthogonal to the polarization direction and the length l in the vibration direction is 520 to 700 Hz m at 25°C.SELECTED DRAWING: Figure 1

Description

本発明は、適用機器の製造歩留まりを高めることができ、かつ誘電特性および圧電特性を向上させ得る圧電単結晶素子、その製造方法、並びに前記圧電単結晶素子の用途に関するものである。 The present invention relates to a piezoelectric single crystal device capable of increasing the manufacturing yield of the applicable device and also improving the dielectric property and the piezoelectric property, a method for manufacturing the same, and an application of the piezoelectric single crystal device.

各種の超音波診断装置や超音波画像検査装置には、圧電素子を有する超音波送受信素子を備えた超音波送受信機能を有する電子操作式のアレイ式超音波プローブが主に用いられている。 In various ultrasonic diagnostic devices and ultrasonic image inspection devices, an electronically operated array type ultrasonic probe having an ultrasonic transmission / reception function equipped with an ultrasonic transmission / reception element having a piezoelectric element is mainly used.

一般的な超音波プローブは、特許文献1に記載されているように、圧電体の両面に電極を形成してなる圧電素子がバッキング材上に接合され、圧電素子上に音響整合層が接合された上で、アレイ加工されて複数のチャンネルが形成され、さらに音響整合層上に音響レンズが形成されて構成されている。このような形態の超音波プローブは、圧電素子のそれぞれの電極が、制御信号基板(フレキシブル印刷配線板、FPC)とケーブルとを介して、医療用超音波診断装置および超音波画像検査装置の装置本体に接続される。 In a general ultrasonic probe, as described in Patent Document 1, a piezoelectric element formed by forming electrodes on both sides of a piezoelectric body is bonded onto a backing material, and an acoustic matching layer is bonded onto the piezoelectric element. After that, a plurality of channels are formed by array processing, and an acoustic lens is further formed on the acoustic matching layer. In such an ultrasonic probe, each electrode of the piezoelectric element is a device of a medical ultrasonic diagnostic apparatus and an ultrasonic image inspection apparatus via a control signal board (flexible printed wiring board, FPC) and a cable. It is connected to the main body.

超音波プローブに用いられる圧電素子は、比誘電率および圧電定数が大きいことと、誘電損失が小さいこととが要求される。加えて、圧電素子の内部および複数の圧電素子間において、誘電率、誘電損失などの誘電特性と、圧電定数などの圧電特性とが均一であることが要求され、以前は、ジルコンチタン酸鉛系圧電セラミックスや、前記圧電セラミックス/樹脂複合体からなるコンポジット圧電体を使用したものが主流であったが、これらの素子では上記のような要請に応えることは容易ではなく、近年では、単結晶板を採用することで、圧電素子の性能を高める検討がなされている。 The piezoelectric element used in the ultrasonic probe is required to have a large relative permittivity and a piezoelectric constant and a small dielectric loss. In addition, it is required that the piezoelectric characteristics such as the dielectric constant and the dielectric loss and the piezoelectric characteristics such as the piezoelectric constant are uniform inside the piezoelectric element and between the plurality of piezoelectric elements. Piezoelectric ceramics and those using a composite piezoelectric material composed of the piezoelectric ceramics / resin composite have been the mainstream, but it is not easy to meet the above demands with these elements, and in recent years, a single crystal plate. It has been studied to improve the performance of the piezoelectric element by adopting.

このような単結晶板としては、例えば、チタン酸鉛(PbTiO)と、Pb(BNb)O(Bは、Mg、Zn、In、Sc、Ybなどのうち少なくとも一つ)とから構成されるリラクサ系鉛複合ペロブスカイト組成物で構成されたものや、前記組成物に少量の酸化マンガンや酸化ジルコニウムなどを添加した材料で構成されたものが用いられている。 Examples of such a single crystal plate include lead titanate (PbTiO 3 ) and Pb (B 1 Nb) O 3 (B 1 is at least one of Mg, Zn, In, Sc, Yb, etc.). Those composed of a relaxa-based lead composite perovskite composition composed of, and those composed of a material obtained by adding a small amount of manganese oxide, zirconium oxide, or the like to the composition are used.

上記のような単結晶板を用いた圧電素子は、通常、単結晶板を所定サイズに切断し、必要に応じて所定厚みとなるように研磨した後に、両主面(平板面)のそれぞれに電極を形成してから、直流電界の印加による分極処理を施す工程を得て製造される。 In a piezoelectric element using a single crystal plate as described above, usually, the single crystal plate is cut to a predetermined size, polished to a predetermined thickness as necessary, and then formed on both main surfaces (flat plate surfaces). It is manufactured by obtaining a step of forming an electrode and then performing a polarization treatment by applying a DC electric field.

また、圧電素子の分極処理の改善も試みられている。例えば特許文献2には、種々の条件での加熱冷却処理を施した後に特定条件での分極処理を行うことで、圧電素子の電気機械結合係数や周波数定数を改善できることが示されている。 Attempts have also been made to improve the polarization treatment of the piezoelectric element. For example, Patent Document 2 shows that the electromechanical coupling coefficient and frequency constant of a piezoelectric element can be improved by performing a heating / cooling treatment under various conditions and then a polarization treatment under specific conditions.

他方、特許文献3、4には、直流電界ではなく交流電界を印加する分極処理を経て圧電素子を製造することで、素子の誘電率や圧電定数を向上させ得ることが示されている。 On the other hand, Patent Documents 3 and 4 show that the dielectric constant and the piezoelectric constant of the device can be improved by manufacturing the piezoelectric element through a polarization process in which an AC electric field is applied instead of a DC electric field.

特開7−50898号公報Japanese Unexamined Patent Publication No. 7-50898 特開2003−282986号公報Japanese Unexamined Patent Publication No. 2003-282986 特開2014−045411号公報Japanese Unexamined Patent Publication No. 2014-045411 特開2014−187285号公報Japanese Unexamined Patent Publication No. 2014-187285

例えば特許文献3、4に記載の技術であれば、一定の効果は見込めるものの、単結晶板の性能不足や高い交流周波数による分極反転速度の速さから、分極時の応力によって加工面からマイクロクラックが発生する虞がある。このようなマイクロクラックが生じた単結晶板を有する圧電素子を使用して、例えば超音波プローブを製造しようとすると、FPCやバッキング材、音響整合層と接合し加工した際に、圧電素子が破損するなどしてしまい、超音波プローブの製造歩留まりを低下させてしまう。圧電素子製造時の分極処理の際に発生するマイクロクラックによる適用機器の製造歩留まりの低下は、電極面積が2cmを超えるような大型の圧電素子において特に問題となる。 For example, with the techniques described in Patent Documents 3 and 4, although a certain effect can be expected, microcracks from the machined surface due to stress during polarization due to insufficient performance of the single crystal plate and high polarization reversal speed due to high AC frequency. May occur. When, for example, an ultrasonic probe is manufactured using a piezoelectric element having a single crystal plate in which such microcracks are generated, the piezoelectric element is damaged when it is bonded to an FPC, a backing material, or an acoustic matching layer. This will reduce the manufacturing yield of the ultrasonic probe. The decrease in the manufacturing yield of the applicable equipment due to the microcracks generated during the polarization treatment during the production of the piezoelectric element becomes a particular problem in a large piezoelectric element having an electrode area of more than 2 cm 2.

本発明は、上記事情に鑑みてなされたものであり、その目的は、適用機器の製造歩留まりを高めることができ、かつ誘電特性および圧電特性を向上させ得る圧電単結晶素子、その製造方法、並びに前記圧電単結晶素子の用途を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is a piezoelectric single crystal device capable of increasing the manufacturing yield of the applicable device and improving the dielectric property and the piezoelectric property, a method for manufacturing the piezoelectric single crystal device, and a method thereof. It is an object of the present invention to provide the use of the piezoelectric single crystal element.

本発明の圧電単結晶素子は、酸化マグネシウム、酸化ニオブおよびチタン酸鉛を含む鉛複合ペロブスカイト組成物により構成された矩形の単結晶板の両主面に電極を有してなり、 前記単結晶板は、(001)面を主面とし、かつ(100)面および(010)面を側面とし、(100)方位の長さLと(010)方位の幅Wとの比L/Wが4〜20であり、分極方向に直交する横方向振動モードの共振周波数frと、振動方向の長さlとの積で表される周波数定数N31が、25℃において、520〜700Hz・mであることを特徴とするものである。 The piezoelectric single crystal element of the present invention comprises electrodes on both main surfaces of a rectangular single crystal plate composed of a lead composite perovskite composition containing magnesium oxide, niobium oxide and lead titanate. With the (001) plane as the main plane and the (100) plane and the (010) plane as the side surfaces, the ratio L / W of the length L of the (100) orientation to the width W of the (010) orientation is 4 to 4. 20 and the frequency constant N 31 represented by the product of the resonance frequency fr in the lateral vibration mode orthogonal to the polarization direction and the length l in the vibration direction is 520 to 700 Hz · m at 25 ° C. It is characterized by.

本発明の圧電単結晶素子は、酸化マグネシウム、酸化ニオブおよびチタン酸鉛を含む鉛複合ペロブスカイト組成物により構成された矩形の単結晶板の両主面に電極を形成する電極形成工程と、上記電極形成工程後の単結晶板に、室温以上、疑似立方晶から相転移する相転移温度Tfの温度下で、0.0001Hz以上0.1Hz未満の周波数での交流電界を3〜50サイクル印加して分極処理を施す分極処理工程とを有する本発明の製造方法によって製造することができる。 The piezoelectric single crystal element of the present invention comprises an electrode forming step of forming electrodes on both main surfaces of a rectangular single crystal plate composed of a lead composite perovskite composition containing magnesium oxide, niobium oxide and lead titanate, and the above-mentioned electrodes. An AC electric field at a frequency of 0.0001 Hz or more and less than 0.1 Hz is applied to the single crystal plate after the forming step for 3 to 50 cycles at room temperature or higher and at a phase transition temperature Tf that causes a phase transition from pseudo-cubic crystals. It can be produced by the production method of the present invention having a polarization treatment step of performing a polarization treatment.

上記鉛複合ペロブスカイト組成物は、チタン酸鉛の含有量により2種の相転移の形態を有する。第1の形態として疑似立方晶から正方晶へ相転移する相転移温度Trtと、第2の形態として疑似立晶から単斜晶へ相転移する相転移温度Trmとを有する場合があり、これらの相転移温度は70℃以上110℃以下の範囲内に存在する。本明細書では、上記の疑似立晶からの相転移温度を総称して相転移温度Tfとする。 The lead composite perovskite composition has two types of phase transitions depending on the content of lead titanate. As the first form, it may have a phase transition temperature Trt that undergoes a phase transition from pseudo-cubic to tetragonal, and as a second form, it may have a phase transition temperature Trm that undergoes a phase transition from pseudo-cubic to monooblique. The phase transition temperature is in the range of 70 ° C. or higher and 110 ° C. or lower. In the present specification, the phase transition temperature from the above-mentioned pseudo-standing crystal is generically referred to as the phase transition temperature Tf.

また、本発明の圧電単結晶素子を有する超音波送受信素子や超音波プローブも、本発明に含まれる。 The present invention also includes an ultrasonic transmission / reception element and an ultrasonic probe having the piezoelectric single crystal element of the present invention.

本発明によれば、適用機器の歩留まりを高めることができ、かつ誘電特性および圧電特性を向上させ得る圧電単結晶素子、その製造方法、並びに前記圧電単結晶素子の用途を提供することができる。 According to the present invention, it is possible to provide a piezoelectric single crystal element capable of increasing the yield of the applicable device and improving the dielectric property and the piezoelectric property, a method for producing the same, and an application of the piezoelectric single crystal element.

本発明の圧電単結晶素子の一例を模式的に表す斜視図である。It is a perspective view which shows an example of the piezoelectric single crystal element of this invention schematically. 電極形成後の単結晶板に分極処理を施す際の処理条件の一例を表すグラフである。It is a graph which shows an example of the processing conditions at the time of performing the polarization processing on the single crystal plate after electrode formation.

上記の通り、圧電素子は、通常、直流電界による分極処理を経て製造されるが、このようにして得られる圧電素子では、その性能を十分に高めることが困難である。他方、上記の通り、交流電界による分極処理を経て圧電素子を製造することの提案もあるが、この場合、素子を構成する単結晶板にマイクロクラックが入ってしまう。 As described above, the piezoelectric element is usually manufactured through a polarization treatment by a DC electric field, but it is difficult to sufficiently improve the performance of the piezoelectric element obtained in this way. On the other hand, as described above, there is also a proposal to manufacture a piezoelectric element through polarization treatment with an AC electric field, but in this case, microcracks are formed in the single crystal plate constituting the element.

圧電単結晶素子や圧電単結晶素子を用いた超音波プローブの製造においては、精密な加工が必要となるため、こうしたマイクロクラックが適用機器の製造歩留まりの低下を引き起こす虞がある。 Since precision processing is required in the manufacture of a piezoelectric single crystal element or an ultrasonic probe using a piezoelectric single crystal element, such microcracks may cause a decrease in the manufacturing yield of the applicable equipment.

本発明者らは、特定の周波数条件で交流電界を印加して分極処理を施すことで、単結晶板のマイクロクラックの発生を抑制でき、かつ柔軟性が高い圧電単結晶素子が得られること、および、このようにして得られた圧電単結晶素子は、誘電特性および圧電特性が向上することに加えて、素子の適用機器(超音波プローブなど)を製造するために他の部材(バッキング材やFPC、音響整合層など)と接合し加工した際に、破損などが生じ難く、適用機器の製造歩留まりを高め得ることを見出し、本発明を完成するに至った。 The present inventors can obtain a piezoelectric single crystal device that can suppress the occurrence of microcracks in a single crystal plate and has high flexibility by applying an AC electric field under a specific frequency condition to perform a polarization treatment. In addition to improving the dielectric properties and piezoelectric properties of the piezoelectric single crystal device thus obtained, other members (backing material, backing material, etc.) for manufacturing the device to which the device is applied (ultrasonic probe, etc.) It has been found that when it is bonded to and processed with (FPC, acoustic matching layer, etc.), it is unlikely to be damaged and the manufacturing yield of the applicable device can be increased, and the present invention has been completed.

本発明の圧電単結晶素子は、酸化マグネシウム、酸化ニオブおよびチタン酸鉛を含む鉛複合ペロブスカイト組成物により構成された矩形の単結晶板の両主面に電極を有している。 The piezoelectric single crystal element of the present invention has electrodes on both main surfaces of a rectangular single crystal plate composed of a lead composite perovskite composition containing magnesium oxide, niobium oxide and lead titanate.

図1に、本発明の圧電単結晶素子の一例を模式的に表す斜視図を示す。ただし、図1は、圧電単結晶素子の構造の理解を容易にするためのものであり、各要素のサイズは必ずしも正確ではない。圧電単結晶素子1は、単結晶板2の両主面〔(001)面。図中の上下面。〕に電極3、3を有している。図中横方向の矢印は、周波数定数N31を求める際に測定する横方向振動モード31の方向を意味しており、図中上から下への矢印は、分極処理の際に印加する交流電界Eの方向を意味している。また、図中に左側には、結晶方位を示している。 FIG. 1 shows a perspective view schematically showing an example of the piezoelectric single crystal element of the present invention. However, FIG. 1 is for facilitating the understanding of the structure of the piezoelectric single crystal element, and the size of each element is not always accurate. The piezoelectric single crystal element 1 has both main surfaces [(001) surfaces of the single crystal plate 2. Upper and lower surfaces in the figure. ] Has electrodes 3 and 3. The horizontal arrows in the figure mean the direction of the horizontal vibration mode 31 to be measured when the frequency constant N 31 is obtained, and the arrows from top to bottom in the figure are AC electric fields applied during the polarization process. It means the direction of E. The crystal orientation is shown on the left side of the figure.

単結晶板を構成する鉛複合ペロブスカイト組成物としては、酸化マグネシウム、酸化ニオブおよびチタン酸鉛を含むもの、例えば、Pb(Mg1/3Nb2/3)O−PbTiO〕(PMN−PT)が挙げられる。上記鉛複合ペロブスカイト組成物は、本発明の効果を損なわない範囲で、少量の酸化マンガンや酸化ジルコニウムを含んでいてもよい。 The lead composite perovskite composition constituting the single crystal plate includes magnesium oxide, niobium oxide and lead titanate, for example, Pb (Mg 1/3 Nb 2/3 ) O 3- PbTiO 3 ] (PMN-PT). ). The lead composite perovskite composition may contain a small amount of manganese oxide or zirconium oxide as long as the effects of the present invention are not impaired.

単結晶板は、キュリー温度が、128℃以上であることが好ましく、130℃以上であることがより好ましく、また、140℃以下であることが好ましく、136℃以下であることがさらに好ましい。このようなキュリー温度を有する単結晶板を用いることで、素子の誘電特性や圧電特性がより良好となり、また、より広い温度域で使用できるようになる。なお、単結晶板を構成する鉛複合ペロブスカイト組成物の成分組成(特にチタン酸鉛の割合)を調整することで、そのキュリー温度を調節することができる。具体的には、単結晶板を構成する鉛複合ペロブスカイト組成物におけるチタン酸鉛の割合を、27〜30mol%とすることで、キュリー温度を上記の範囲に調節することができる。 The Curie temperature of the single crystal plate is preferably 128 ° C. or higher, more preferably 130 ° C. or higher, more preferably 140 ° C. or lower, and further preferably 136 ° C. or lower. By using a single crystal plate having such a Curie temperature, the dielectric property and the piezoelectric property of the device become better, and the device can be used in a wider temperature range. The Curie temperature can be adjusted by adjusting the component composition (particularly the ratio of lead titanate) of the lead composite perovskite composition constituting the single crystal plate. Specifically, the Curie temperature can be adjusted to the above range by setting the ratio of lead titanate in the lead composite perovskite composition constituting the single crystal plate to 27 to 30 mol%.

本明細書でいう単結晶板のキュリー温度は、恒温槽の中に試料を配置し、周波数1kHz、1℃/minで温度上昇させ、LCRメーターを用いて測定される静電容量の最大値から求められる値である。 The Curie temperature of the single crystal plate referred to in the present specification is obtained from the maximum value of the capacitance measured by placing the sample in a constant temperature bath, raising the temperature at a frequency of 1 kHz and 1 ° C./min, and using an LCR meter. This is the required value.

単結晶板は、矩形である。そして、単結晶板は、圧電単結晶素子の特性を良好にする観点から、主面(平板面)が(001)面であり、側面が(100)面および(010)面である。 The single crystal plate is rectangular. The main surface (flat plate surface) of the single crystal plate is the (001) surface, and the side surfaces are the (100) surface and the (010) surface from the viewpoint of improving the characteristics of the piezoelectric single crystal element.

単結晶板は、(100)方位の長さLと(010)方位の幅Wとの比L/Wが大きすぎると、圧電単結晶素子の適用機器における他の部材との接合などの際に、素子がより破損しやすくなる。よって、上記の破損を抑制する観点から、単結晶板における比L/Wは、20以下とする。他方、本発明の圧電単結晶素子は、特定の周波数定数を有するものであるが、比L/Wが小さすぎると正確な周波数定数が得られないため、単結晶板におけるL/Wは、4以上とする。 If the ratio L / W of the length L of the (100) orientation and the width W of the (010) orientation is too large, the single crystal plate may be used for joining with other members in the equipment to which the piezoelectric single crystal element is applied. , The element is more easily damaged. Therefore, from the viewpoint of suppressing the above-mentioned damage, the ratio L / W in the single crystal plate is set to 20 or less. On the other hand, the piezoelectric single crystal element of the present invention has a specific frequency constant, but if the ratio L / W is too small, an accurate frequency constant cannot be obtained. Therefore, the L / W in the single crystal plate is 4 That's all.

圧電単結晶素子に係る単結晶板は、例えば、市販の原料単結晶板を使用し、これを所定サイズに切断した後、必要に応じて表面を研磨して厚みを調整して得ることができる。 The single crystal plate related to the piezoelectric single crystal element can be obtained, for example, by using a commercially available raw material single crystal plate, cutting the single crystal plate to a predetermined size, and then polishing the surface as necessary to adjust the thickness. ..

原料単結晶板として使用し得る市販品の具体例としては、ティーアールエス・テクノロジーズ・インコーポレーテッド社製の「X2B(商品名)」(PMN−PT)、シーティーエスコーポレーション社製のPMN−28PT(Type A)やPMN−32PT(Type B)などが挙げられる。 Specific examples of commercially available products that can be used as raw material single crystal plates include "X2B (trade name)" (PMN-PT) manufactured by TS Technologies, Inc. and PMN-28PT (Type) manufactured by CTS Corporation. A), PMN-32PT (Type B) and the like can be mentioned.

原料単結晶板の切断方法については特に制限はなく、ダイシングソーなどの精密切断装置を用いて切断すればよい。なお、上記市販の単結晶板は、主面(平板面)が(001)面であるため、切断面が(100)面および(010)面となるように切断する。 The method for cutting the raw material single crystal plate is not particularly limited, and it may be cut using a precision cutting device such as a dicing saw. Since the main surface (flat plate surface) of the commercially available single crystal plate is the (001) surface, the single crystal plate is cut so that the cut surface is the (100) surface and the (010) surface.

単結晶板の厚みは、0.1mm以上であることが好ましく、また、0.5mm以下であることが好ましく、0.45mm以下であることがより好ましい。原料単結晶板が、これより厚い場合には、グラインダーなどを用いて表面を研磨して、厚みを上記の値に調整すればよい。 The thickness of the single crystal plate is preferably 0.1 mm or more, preferably 0.5 mm or less, and more preferably 0.45 mm or less. When the raw material single crystal plate is thicker than this, the surface may be polished with a grinder or the like to adjust the thickness to the above value.

上記の切断や研磨を経て得られた単結晶板には、大気中で熱処理を施すことが好ましい。この熱処理によって切断や研磨の際に単結晶板に付加された応力を緩和して、単結晶板の機械的強度を高めることが可能となる。 It is preferable to heat-treat the single crystal plate obtained by the above-mentioned cutting and polishing in the air. By this heat treatment, the stress applied to the single crystal plate during cutting and polishing can be relaxed, and the mechanical strength of the single crystal plate can be increased.

単結晶板の熱処理方法については特に制限はなく、例えば、アルミナ製やマグネシア製匣鉢などの焼成容器に単結晶板を封入し、小型電気炉で熱処理を行うことができる。 The heat treatment method for the single crystal plate is not particularly limited. For example, the single crystal plate can be enclosed in a firing container such as an alumina or magnesia saggar, and the heat treatment can be performed in a small electric furnace.

熱処理温度は、200℃以上であることが好ましく、800℃以下であることが好ましく、600℃以下であることがより好ましい。また、熱処理時間は、30分以上であることが好ましく、24時間以下であることが好ましい。 The heat treatment temperature is preferably 200 ° C. or higher, preferably 800 ° C. or lower, and more preferably 600 ° C. or lower. The heat treatment time is preferably 30 minutes or more, and preferably 24 hours or less.

前記のような単結晶板の両主面(平板面)に、電極形成工程において電極を形成し、その後に分極処理工程において分極処理を施して、圧電単結晶素子を得ることができる。 A piezoelectric single crystal device can be obtained by forming electrodes on both main surfaces (flat plate surfaces) of the single crystal plate as described above in the electrode forming step and then subjecting the polarization treatment in the polarization treatment step.

電極は、例えば、Ni、Cr、Ti、Au、Pt、Pd、Ag、Cu、Alなどの金属を用いて、スパッタ法、メッキ法、蒸着法などによって、単結晶板の両主面に形成することができる。電極の厚みは、100〜2000nmであることが好ましい。 The electrodes are formed on both main surfaces of the single crystal plate by, for example, a metal such as Ni, Cr, Ti, Au, Pt, Pd, Ag, Cu, and Al by a sputtering method, a plating method, a vapor deposition method, or the like. be able to. The thickness of the electrode is preferably 100 to 2000 nm.

単結晶板の両主面に電極を形成した後に、分極処理工程で分極処理を施す。 After forming electrodes on both main surfaces of the single crystal plate, polarization treatment is performed in the polarization treatment step.

分極処理は、室温以上、疑似立方晶から相転移する相転移温度Tf以下の温度下で実施する。本明細書でいう「室温」とは、25℃を意味している。なお、分極処理時の温度は、高すぎると圧電単結晶素子の誘電特性や圧電特性を十分に確保できないことから、
Tf以下の温度とする。
The polarization treatment is carried out at room temperature or higher and at a temperature equal to or lower than the phase transition temperature Tf at which the phase transitions from the pseudo-cubic crystal. As used herein, "room temperature" means 25 ° C. If the temperature during the polarization treatment is too high, the dielectric characteristics and piezoelectric characteristics of the piezoelectric single crystal element cannot be sufficiently secured.
The temperature is Tf or less.

本明細書でいう単結晶板の、疑似立方晶から相転移する相転移温度Tf(「実用限界温度」ともいう)は、恒温槽の中に試料を配置し、周波数1kHz、1℃/minで温度上昇させ、LCRメーターを用いて測定される、70℃以上110℃以下の温度範囲内における静電容量の最大値を示すときの温度として求められる値である。 The phase transition temperature Tf (also referred to as "practical limit temperature") of the single crystal plate referred to in the present specification for the phase transition from the pseudo-cubic is such that the sample is placed in a constant temperature bath and the frequency is 1 kHz and 1 ° C./min. It is a value obtained as a temperature when the temperature is raised and the maximum value of the capacitance in the temperature range of 70 ° C. or higher and 110 ° C. or lower is shown, which is measured using an LCR meter.

図2に、電極形成後の単結晶板に分極処理を施す際の処理条件の一例を表すグラフを示している。図2のグラフでは、縦軸に電界強度を表し、横軸に時間(処理時間)を表しており、最初の数サイクルを同一の周波数および交流電界を印加した後、周波数および電界を変更して交流電界を印加する条件を示している。図2に示すように、電界強度が0からプラス方向の最高値に達した後にマイナス方向の最低値に達し、その後に0に戻るまでが、交流電界の1サイクルにあたり、この1サイクルにかかる時間が長いほど、交流電界の周波数が低いことを意味している。そして、図2中、V1やVnは印加した電界の強度を示している。 FIG. 2 shows a graph showing an example of processing conditions when the single crystal plate after electrode formation is subjected to the polarization treatment. In the graph of FIG. 2, the vertical axis represents the electric field strength and the horizontal axis represents the time (processing time). After applying the same frequency and AC electric field for the first few cycles, the frequency and electric field are changed. The conditions for applying an AC electric field are shown. As shown in FIG. 2, it is one cycle of the AC electric field that the electric field strength reaches the maximum value in the positive direction from 0, reaches the minimum value in the negative direction, and then returns to 0, and the time required for this one cycle. The longer the value, the lower the frequency of the AC electric field. Then, in FIG. 2, V1 and Vn indicate the strength of the applied electric field.

分極処理時に印加する交流電界の周波数は、高すぎると単結晶板にマイクロクラックが発生するため、これを抑制する観点から、0.1Hz未満であり、0.05Hz以下であることが好ましい。ただし、分極処理時に印加する交流電界の周波数が低すぎると、非常に長時間の分極処理が必要になって、素子の生産性が低下する。よって、圧電単結晶素子を良好な生産性で生産できるようにする観点から、分極処理時に印加する交流電界の周波数は、0.0001Hz以上であり、0.002Hz以上であることが好ましい。 If the frequency of the AC electric field applied during the polarization treatment is too high, microcracks will occur in the single crystal plate. Therefore, from the viewpoint of suppressing this, it is preferably less than 0.1 Hz and preferably 0.05 Hz or less. However, if the frequency of the AC electric field applied during the polarization treatment is too low, the polarization treatment for a very long time is required, and the productivity of the device is lowered. Therefore, from the viewpoint of enabling the piezoelectric single crystal element to be produced with good productivity, the frequency of the AC electric field applied during the polarization treatment is 0.0001 Hz or higher, preferably 0.002 Hz or higher.

分極処理時における交流電界のサイクルは、分極処理の効果を十分に確保して、素子の誘電特性および圧電特性を良好に高める観点から、3サイクル以上であり、分極処理時の放電破壊の発生を抑える観点から、50サイクル以下である。 The cycle of the AC electric field during the polarization treatment is 3 cycles or more from the viewpoint of sufficiently ensuring the effect of the polarization treatment and satisfactorily enhancing the dielectric characteristics and the piezoelectric characteristics of the device, and the occurrence of discharge failure during the polarization treatment is caused. From the viewpoint of suppressing, the number of cycles is 50 or less.

交流電界を印加する際は、分極処理の効果を十分に確保して、素子の誘電特性および圧電特性を良好に高める観点から、ピークトゥピーク電界で、0.3kV/mm以上であることが好ましく、分極処理時の放電破壊の発生を抑える観点から、ピークトゥピーク電界で、4kV/mm以下であることが好ましい。 When applying an AC electric field, the peak-to-peak electric field is preferably 0.3 kV / mm or more from the viewpoint of sufficiently ensuring the effect of the polarization treatment and satisfactorily enhancing the dielectric characteristics and piezoelectric characteristics of the device. From the viewpoint of suppressing the occurrence of discharge breakdown during the polarization treatment, the peak-to-peak electric field is preferably 4 kV / mm or less.

分極処理工程においては、交流電界および周波数を少なくとも1回変更することが望ましい。そして、交流電界の変更に関しては、より後のサイクルでの交流電界を、それより前のサイクルでの交流電界よりも強くする変更を少なくとも1回含むことが好ましい。また、周波数の変更に関しては、より後のサイクルでの周波数を、それより前のサイクルでの周波数よりも低くする変更を少なくとも1回含むことが好ましい。 In the polarization treatment step, it is desirable to change the AC electric field and frequency at least once. As for the change of the AC electric field, it is preferable to include at least one change in which the AC electric field in the later cycle is made stronger than the AC electric field in the earlier cycle. Further, regarding the frequency change, it is preferable to include at least one change in which the frequency in the later cycle is lower than the frequency in the earlier cycle.

分極処理における交流電界の周波数は、上記の通り、低いことが好ましい一方で、良好な誘電特性や圧電特性を有する素子とするには、分極処理時間が長くなる。よって、分極処理中のいずれかの段階での周波数を、上記の範囲の中でも比較的高い値に設定して数サイクル(例えば3サイクル以上)の交流電界を印加し、それに続いて低い周波数に変更して数サイクル(例えば3サイクル以上)の交流電界を印加することで、圧電単結晶素子におけるマイクロクラックの発生を良好に抑制しつつ、分極処理時間を可及的に短くして、その生産性も高めることができる。 As described above, the frequency of the AC electric field in the polarization treatment is preferably low, but the polarization treatment time is long in order to obtain an element having good dielectric properties and piezoelectric characteristics. Therefore, the frequency at any stage during the polarization process is set to a relatively high value within the above range, an AC electric field of several cycles (for example, 3 cycles or more) is applied, and then the frequency is changed to a low frequency. By applying an AC electric field for several cycles (for example, 3 cycles or more), the polarization processing time can be shortened as much as possible while suppressing the occurrence of microcracks in the piezoelectric single crystal element, and its productivity. Can also be increased.

また、分極処理における交流電界は、分極処理中のいずれかの段階での交流電界を、上記の範囲の中でもより低く設定して数サイクル(例えば3サイクル以上)印加し、それに続いて強い交流電界に変更して数サイクル(例えば3サイクル以上)印加することで、得られる圧電単結晶素子の誘電特性や圧電特性を、より向上させることができる。 As for the AC electric field in the polarization treatment, the AC electric field at any stage during the polarization treatment is set lower than the above range and applied for several cycles (for example, 3 cycles or more), followed by a strong AC electric field. By changing to and applying several cycles (for example, 3 cycles or more), the dielectric characteristics and the piezoelectric characteristics of the obtained piezoelectric single crystal element can be further improved.

分極処理工程において、交流電界および周波数を変更する回数は、特に制限はなく、1回、2回、3回、それ以上とすることが可能であるが、変更回数を2回まで(すなわち、一度の分極処理で採用する電界および周波数の条件は、いずれも3条件以下)とすることが通常である。電界および周波数の変更回数が2回以上の場合、各電界は、変更する1つ前の電界よりも強いことが好ましく、各周波数は、変更する1つ前の周波数よりも低いことが好ましい。また、各条件での交流電界は、いずれも3サイクル以上印加することが好ましいが、各条件でのサイクルの合計数は50サイクル以下となるようにする。 In the polarization processing step, the number of times the AC electric field and frequency are changed is not particularly limited and may be 1, 2, 3, or more, but the number of changes can be up to 2 times (that is, once). The electric field and frequency conditions used in the polarization treatment of the above are usually 3 or less). When the number of changes of the electric field and the frequency is two or more, each electric field is preferably stronger than the electric field immediately before the change, and each frequency is preferably lower than the frequency immediately before the change. Further, the AC electric field under each condition is preferably applied for 3 cycles or more, but the total number of cycles under each condition should be 50 cycles or less.

また、電界および周波数の条件を変更する場合、両者を同時に(同じサイクルのときに)変更してもよく、それぞれ別のサイクルのときで変更してもよいが、通常は同時に変更する。 Further, when changing the electric field and frequency conditions, both may be changed at the same time (in the same cycle), or they may be changed in different cycles, but usually they are changed at the same time.

また、交流電界の波形には、三角波のみならず正弦波、台形波などを用いてもよい。 Further, as the waveform of the AC electric field, not only a triangular wave but also a sine wave, a trapezoidal wave, or the like may be used.

交流電界を印加した後には、ピークトゥピーク電界の50%以上の直流電界を印加してもよい。交流電界後に直流電界を印加して分極処理を行うと最適な誘電特性や圧電特性を確保することができるためである。 After applying the AC electric field, a DC electric field of 50% or more of the peak-to-peak electric field may be applied. This is because the optimum dielectric characteristics and piezoelectric characteristics can be secured by applying a DC electric field after the AC electric field to perform the polarization treatment.

このようにして得られる圧電単結晶素子は、分極方向に直交する横方向振動モードの共振周波数frと、振動方向の長さlとの積で表される周波数定数N31が、25℃において、700Hz・m以下となる。このような低い周波数定数N31を有する圧電単結晶素子は、直流電界を印加する分極処理を経て得られた圧電単結晶素子や、公知の条件で交流電界を印加する分極処理を経て得られた圧電単結晶素子に比べて、ドメイン壁密度が変わっていることで、柔軟性が向上していると考えられる。そのため、適用機器(超音波プローブなど)を製造するために他の部材(バッキング材やFPC、音響整合層など)と接合し加工した際に、破損などが生じ難く、適用機器の歩留まりを高めることができ、また、誘電特性および圧電特性も優れている。 The piezoelectric single crystal element thus obtained has a frequency constant N 31 represented by the product of the resonance frequency fr in the lateral vibration mode orthogonal to the polarization direction and the length l in the vibration direction at 25 ° C. It will be 700 Hz / m or less. The piezoelectric single crystal element having such a low frequency constant N 31 was obtained through a polarization treatment in which a DC electric field is applied, or a polarization treatment in which an AC electric field is applied under known conditions. It is considered that the flexibility is improved by changing the domain wall density as compared with the piezoelectric single crystal element. Therefore, when it is bonded and processed with other members (backing material, FPC, acoustic matching layer, etc.) in order to manufacture the applicable equipment (ultrasonic probe, etc.), it is less likely to be damaged and the yield of the applicable equipment is increased. Also, it has excellent dielectric properties and piezoelectric properties.

ただし、圧電単結晶素子の上記周波数定数N31が低すぎると、誘電特性や圧電特性の再現性が低下する虞があり、また、使用温度範囲が70℃以下に限定されるようになるため、上記周波数定数N31は、520Hz・m以上であり、600Hz・m以上であることが好ましい。先に説明した製造方法・条件を採用することで周波数定数N31が上記上限値以下であり、かつ上記下限値以上である圧電単結晶素子を得ることができる。 However, if the frequency constant N 31 of the piezoelectric single crystal element is too low, the reproducibility of the dielectric characteristics and the piezoelectric characteristics may deteriorate, and the operating temperature range is limited to 70 ° C. or lower. The frequency constant N 31 is 520 Hz · m or more, and preferably 600 Hz · m or more. By adopting the manufacturing method and conditions described above, a piezoelectric single crystal device having a frequency constant N 31 of not more than the above upper limit value and not more than the above lower limit value can be obtained.

本発明の圧電単結晶素子は、従来から圧電単結晶素子が適用されている医療用超音波診断装置や超音波画像検査装置の超音波プローブなどの機器の超音波送受信素子に好適であり、また、従来の圧電素子が適用されている他の用途にも適用することができる。 The piezoelectric single crystal element of the present invention is suitable for an ultrasonic transmission / reception element of a device such as a medical ultrasonic diagnostic apparatus or an ultrasonic probe of an ultrasonic image inspection apparatus to which a piezoelectric single crystal element has been conventionally applied. , It can be applied to other applications to which the conventional piezoelectric element is applied.

また、本発明の製造方法によれば、マイクロクラックの発生や電極剥離が抑制された圧電単結晶素子が得られるため、マッチング層を貼り付ける際の素子折れやチッピングが減少し、適用機器の製造歩留まりを高め得る圧電単結晶素子を製造することができる。しかも、本発明の製造方法によれば、低コストで素子の誘電特性や圧電特性を大幅に向上させ得るため、その工業的な重要性も極めて高い。 Further, according to the manufacturing method of the present invention, since a piezoelectric single crystal device in which the generation of microcracks and electrode peeling are suppressed can be obtained, element breakage and chipping when attaching the matching layer are reduced, and the applicable device is manufactured. A piezoelectric single crystal device capable of increasing the yield can be manufactured. Moreover, according to the manufacturing method of the present invention, the dielectric property and the piezoelectric property of the device can be significantly improved at low cost, and therefore the industrial importance thereof is extremely high.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。 Hereinafter, the present invention will be described in detail based on Examples. However, the following examples do not limit the present invention.

実施例1
Pb(Mg1/3Nb2/3)O−PbTiO(PMN−PT)の原料単結晶板の両主面〔(001面)〕を、グラインダー(株式会社ディスコ製)で研磨して、厚みを0.30mmとした。この単結晶板を、ダイシングソー(株式会社ディスコ製)を用いて、切断面が(100)面および(010)面となるように切断して、(100)方位の長さLが20mm、(010)方位の幅Wが5mmの単結晶板を得た。原料単結晶板のキュリー温度Tc、実用限界温度Tfおよび単結晶板のサイズを表1に示す。
Example 1
Both main surfaces [(001 surface)] of the raw material single crystal plate of Pb (Mg 1/3 Nb 2/3 ) O 3- PbTiO 3 (PMN-PT) were polished with a grinder (manufactured by DISCO Corporation). The thickness was set to 0.30 mm. This single crystal plate is cut using a dicing saw (manufactured by Disco Corporation) so that the cut surfaces are the (100) plane and the (010) plane, and the length L in the (100) orientation is 20 mm. 010) A single crystal plate having an orientation width W of 5 mm was obtained. Table 1 shows the Curie temperature Tc, the practical limit temperature Tf, and the size of the single crystal plate of the raw material single crystal plate.

得られた単結晶板をマグネシア製匣鉢に封入し、小型電気炉を用いて、大気中、300℃で5時間熱処理した。熱処理後の単結晶板の両主面〔(001面)〕に、スパッタ装置を用いて、厚みが50nmのクロムからなる下地層と、厚みが200nmの金からなる上地層とを有する電極を形成した。そして、電極を形成した単結晶板に、25℃で、表2に示す条件で交流電界を印加して分極処理を施し、図1に示す外観の圧電単結晶素子を得た。 The obtained single crystal plate was sealed in a magnesia saggar and heat-treated in the air at 300 ° C. for 5 hours using a small electric furnace. An electrode having a base layer made of chromium having a thickness of 50 nm and an upper layer made of gold having a thickness of 200 nm is formed on both main surfaces [(001 surface)] of the single crystal plate after the heat treatment by using a sputtering device. did. Then, the single crystal plate on which the electrodes were formed was subjected to polarization treatment by applying an AC electric field at 25 ° C. under the conditions shown in Table 2 to obtain a piezoelectric single crystal element having the appearance shown in FIG.

実施例2〜12、比較例1〜5
表1に示すキュリー温度の原料単結晶板を使用し、単結晶板を表1に示すサイズとし、交流電界を表2に示す条件で印加した以外は、実施例1と同様にして圧電単結晶素子を得た。
Examples 2-12, Comparative Examples 1-5
Piezoelectric single crystals were used in the same manner as in Example 1 except that the raw material single crystal plates at the Curie temperature shown in Table 1 were used, the single crystal plates had the sizes shown in Table 1, and an AC electric field was applied under the conditions shown in Table 2. Obtained an element.

Figure 2021057388
Figure 2021057388

Figure 2021057388
Figure 2021057388

なお、表2に記載の「ステップ」の数は、分極処理時に採用した交流電界および周波数の条件の数を意味し、「ステップ1」は最初に採用した条件を、「ステップ2」は2番目に採用した条件を、「ステップ3」は3番目に採用した条件を、それぞれ示している。また、表2の「電界」は、ピークトゥピーク電界を意味している。 The number of "steps" shown in Table 2 means the number of AC electric field and frequency conditions adopted during the polarization treatment, "Step 1" is the condition adopted first, and "Step 2" is the second. "Step 3" shows the conditions adopted in the third, respectively. Further, the “electric field” in Table 2 means a peak-to-peak electric field.

実施例および比較例の各圧電単結晶素子について、分極処理から24時間以上経過した後に、下記の各測定を行った。各測定は、室温にて下記の方法で行った。ただし、最初の周波数を10Hzとし、変更後の周波数を100Hzとして分極処理を行った比較例5においては、処理の途中で絶縁破壊を起こしたため、下記の各測定は実施しなかった。 For each of the piezoelectric single crystal elements of Examples and Comparative Examples, the following measurements were performed after 24 hours or more had passed from the polarization treatment. Each measurement was carried out at room temperature by the following method. However, in Comparative Example 5 in which the polarization treatment was performed with the initial frequency set to 10 Hz and the changed frequency set to 100 Hz, the following measurements were not performed because dielectric breakdown occurred during the treatment.

<周波数定数N31
実施例および比較例の各圧電単結晶素子の周波数定数N31は、キーサイト・テクノロジー社製の「インピーダンスアナライザー 4294A(商品名)」を用いて求めた横方向振動モード31(図1中横の矢印)の共振周波数frと、圧電単結晶素子の振動方向の長さl(すなわち、単結晶板の長さL)とから、下記式によって算出した。
<Frequency constant N 31 >
The frequency constant N 31 of each of the piezoelectric single crystal elements of the examples and the comparative examples is the lateral vibration mode 31 (horizontal in FIG. 1) obtained by using the “impedance analyzer 4294A (trade name)” manufactured by KeySight Technology Co., Ltd. It was calculated by the following formula from the resonance frequency fr of (arrow) and the length l of the piezoelectric single crystal element in the vibration direction (that is, the length L of the single crystal plate).

31 = fr × l N 31 = fr x l

<比誘電率>
実施例および比較例の各圧電単結晶素子の比誘電率は、キーサイト・テクノロジー社製の「インピーダンスアナライザー 4294A(商品名)」を用いて測定した静電容量から、下記式によって算出した。
<Relative permittivity>
The relative permittivity of each of the piezoelectric single crystal elements of Examples and Comparative Examples was calculated by the following formula from the capacitance measured using "Impedance Analyzer 4294A (trade name)" manufactured by KeySight Technology Co., Ltd.

比誘電率 = 静電容量×単結晶板の厚み
÷ (真空の誘電率×単結晶板の長さL×単結晶板の幅W)
Relative permittivity = Capacitance x Single crystal plate thickness
÷ (Vacuum permittivity x length of single crystal plate L x width of single crystal plate W)

<圧電定数>
実施例および比較例の各圧電単結晶素子の圧電定数は、中国科学院声楽研究所製「ピエゾd33メーター(商品名)」を用いて測定した。測定は、実施例および比較例のいずれも、3つの試料について実施し、これらの平均値を各圧電単結晶素子の圧電定数とした。
<Piezoelectric constant>
The piezoelectric constants of each of the piezoelectric single crystal elements of Examples and Comparative Examples were measured using "Piezo d 33 meter (trade name)" manufactured by the Vocal Research Institute of the Chinese Academy of Sciences. The measurement was carried out for all three samples in both Examples and Comparative Examples, and the average value thereof was taken as the piezoelectric constant of each piezoelectric single crystal element.

キュリー温度が128℃の単結晶板を使用した実施例1〜3および比較例1、2の圧電単結晶素子における上記の評価結果を表3に示す。 Table 3 shows the above evaluation results of the piezoelectric single crystal elements of Examples 1 to 3 and Comparative Examples 1 and 2 using a single crystal plate having a Curie temperature of 128 ° C.

Figure 2021057388
Figure 2021057388

表3に示す通り、適正な周波数条件で交流電界を印加する分極処理工程を経て製造して得られ、適正な周波数定数N31を有する実施例1〜3の圧電単結晶素子は、比誘電率、圧電定数d33のいずれもが高く、誘電特性および圧電特性が優れていた。また、交流電界を印加している途中で電界および周波数の条件を1回変更して分極処理を行った実施例2の素子は、電界および周波数の条件を変えずに交流電界を印加して分極処理を行った実施例1の素子よりも誘電特性および圧電特性が優れており、交流電界を印加している途中で電界および周波数の条件を2回変更して分極処理を行った実施例3の素子は、実施例2の素子よりもさらに誘電特性および圧電特性が優れていた。 As shown in Table 3, the piezoelectric single crystal elements of Examples 1 to 3 obtained by being manufactured through a polarization treatment step of applying an AC electric field under appropriate frequency conditions and having an appropriate frequency constant N 31 have a relative permittivity. , The piezoelectric constant d 33 was high, and the dielectric property and the piezoelectric property were excellent. Further, in the element of Example 2 in which the electric field and frequency conditions are changed once while the AC electric field is being applied and the polarization treatment is performed, the AC electric field is applied and polarized without changing the electric field and frequency conditions. The element of Example 3 which was treated is superior in dielectric property and piezoelectric property to the element of Example 1, and the polarization treatment was performed by changing the electric field and frequency conditions twice while applying the AC electric field. The element was more excellent in dielectric property and piezoelectric property than the element of Example 2.

これに対し、直流電界のみを印加して分極処理を行って製造した比較例1の圧電単結晶素子、および高い周波数で交流電界を印加する分極処理を行って製造した比較例2の素子は、周波数定数N31を低くすることができず、比誘電率、圧電定数d33のいずれもが低く、誘電特性および圧電特性が劣っていた。 On the other hand, the piezoelectric single crystal element of Comparative Example 1 manufactured by applying only a DC electric field and performing a polarization treatment, and the element of Comparative Example 2 manufactured by performing a polarization treatment in which an AC electric field is applied at a high frequency are used. The frequency constant N 31 could not be lowered, both the relative permittivity and the piezoelectric constant d 33 were low, and the dielectric characteristics and the piezoelectric characteristics were inferior.

また、キュリー温度が128℃の以外の単結晶板を使用した実施例4〜12および比較例3、4の圧電単結晶素子における上記の評価結果を表4に示す。 Table 4 shows the above evaluation results of the piezoelectric single crystal elements of Examples 4 to 12 and Comparative Examples 3 and 4 using a single crystal plate having a Curie temperature other than 128 ° C.

Figure 2021057388
Figure 2021057388

表4に示す通り、適正な周波数条件で交流電界を印加する分極処理工程を経て製造して得られ、適正な周波数定数N31を有する実施例4〜12の圧電単結晶素子は、実施例1〜3の素子と同様に、比誘電率、圧電定数d33のいずれもが高く、誘電特性および圧電特性が優れていた。また、同じキュリー温度の単結晶板を使用した実施例4〜6の素子同士、実施例7〜9の素子同士、および実施例10〜12の素子同士を比較すると、一部の例外を除き、実施例1〜3の場合と同様に、交流電界の印加の途中で周波数および電界の条件の変更回数が多いほど、誘電特性および圧電特性が優れていることが確認できた。 As shown in Table 4, the piezoelectric single crystal devices of Examples 4 to 12 obtained by manufacturing through a polarization treatment step of applying an AC electric field under appropriate frequency conditions and having an appropriate frequency constant N 31 are described in Example 1. Similar to the elements of ~ 3, both the relative permittivity and the piezoelectric constant d 33 were high, and the dielectric characteristics and the piezoelectric characteristics were excellent. Further, when comparing the elements of Examples 4 to 6, the elements of Examples 7 to 9, and the elements of Examples 10 to 12 using single crystal plates having the same Curie temperature, with some exceptions, As in the cases of Examples 1 to 3, it was confirmed that the more the frequency and the electric field conditions were changed during the application of the AC electric field, the better the dielectric characteristics and the piezoelectric characteristics.

これに対し、高い周波数で交流電界を印加する分極処理を行って製造した比較例3、42の素子は、比較例2の素子と同様に、周波数定数N31を低くすることができず、比誘電率、圧電定数d33のいずれもが低く、誘電特性および圧電特性が劣っていた。 On the other hand, the elements of Comparative Examples 3 and 42 manufactured by performing the polarization treatment of applying an AC electric field at a high frequency cannot lower the frequency constant N 31 like the elements of Comparative Example 2, and have a relative ratio. Both the dielectric constant and the piezoelectric constant d 33 were low, and the dielectric characteristics and the piezoelectric characteristics were inferior.

<圧電単結晶素子を適用機器用部材に接合し加工した際の歩留まり評価>
実施例3、4、8および比較例1の圧電単結晶素子のそれぞれを、導電性を有するエポキシ樹脂を用いて超音波送受信素子用のバッキング材(EVAゴム系でショアA硬度が70、音響インピーダンスが4MRaylsの材料)に接着し、上記のダイシングソーを用いてピッチ:1.2mmでスリット加工を行って圧電単結晶素子の部分を50分割した。これを、LCRメーターを用いて分割したチャンネルごとの静電容量を測定し、その結果と、分割加工時の割れなどの不良の目視観察とから、適用機器の製造歩留まりを評価した。評価は、実施例、比較例のいずれも1個について行い、不良品の個数を除いた割合(%)を製造歩留まりとした。これらの結果を表5に示す。
<Yield evaluation when a piezoelectric single crystal element is bonded to a member for applicable equipment and processed>
For each of the piezoelectric single crystal elements of Examples 3, 4, 8 and Comparative Example 1, a backing material for an ultrasonic transmission / reception element using a conductive epoxy resin (EVA rubber-based shore A hardness of 70, acoustic impedance). Was adhered to the material of 4M Rayls) and slitted with the above dicing saw at a pitch of 1.2 mm to divide the piezoelectric single crystal element portion into 50 parts. The capacitance of each divided channel was measured using an LCR meter, and the manufacturing yield of the applicable equipment was evaluated from the result and the visual observation of defects such as cracks during the division process. The evaluation was performed on one of each of Examples and Comparative Examples, and the ratio (%) excluding the number of defective products was taken as the manufacturing yield. These results are shown in Table 5.

Figure 2021057388
Figure 2021057388

表5に示す通り、適正な周波数定数N31を有する実施例3、4、8の圧電単結晶素子は、周波数定数N31が高い比較例1の素子に比べて、適用機器の製造歩留まりが高かった。 As shown in Table 5, the piezoelectric single crystal device of Example 3, 4, and 8 having the proper frequency constant N 31, as compared to a device having a frequency constant N 31 is high Comparative Example 1, high manufacturing yield of applied equipment It was.

本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている特許請求の範囲の記載を優先して解釈され、特許請求の範囲と均等の範囲内での全ての変更は、特許請求の範囲に含まれる。 The present invention can be implemented in forms other than the above, as long as the gist of the present invention is not deviated. The embodiments disclosed in the present application are examples, and the present invention is not limited to these embodiments. The scope of the present invention is construed in preference to the description of the attached claims over the description of the above specification, and all changes within the scope of the claims are patent claims. Is included in the range of.

1 圧電単結晶素子
2 単結晶板
3 電極
1 Piezoelectric single crystal element 2 Single crystal plate 3 Electrode

Claims (7)

酸化マグネシウム、酸化ニオブおよびチタン酸鉛を含む鉛複合ペロブスカイト組成物により構成された矩形の単結晶板の両主面に電極を有する圧電単結晶素子であって、
前記単結晶板は、(001)面を主面とし、かつ(100)面および(010)面を側面とし、(100)方位の長さLと(010)方位の幅Wとの比L/Wが4〜20であり、
分極方向に直交する横方向振動モードの共振周波数frと、振動方向の長さlとの積で表される周波数定数N31が、25℃において、520〜700Hz・mであることを特徴とする圧電単結晶素子。
A piezoelectric single crystal device having electrodes on both main surfaces of a rectangular single crystal plate composed of a lead composite perovskite composition containing magnesium oxide, niobium oxide and lead titanate.
The single crystal plate has the (001) plane as the main surface and the (100) plane and the (010) plane as the side surfaces, and the ratio L / of the length L in the (100) orientation to the width W in the (010) orientation. W is 4 to 20
The frequency constant N 31 represented by the product of the resonance frequency fr in the lateral vibration mode orthogonal to the polarization direction and the length l in the vibration direction is 520 to 700 Hz · m at 25 ° C. Piezoelectric single crystal element.
キュリー温度が128〜140℃であり、上記周波数定数N31が、25℃において、600〜700Hz・mである請求項1に記載の圧電単結晶素子。 The piezoelectric single crystal element according to claim 1, wherein the Curie temperature is 128 to 140 ° C., and the frequency constant N 31 is 600 to 700 Hz · m at 25 ° C. 請求項1または2に記載の圧電単結晶素子を製造する方法であって、
酸化マグネシウム、酸化ニオブおよびチタン酸鉛を含む鉛複合ペロブスカイト組成物により構成された矩形の単結晶板の両主面に電極を形成する電極形成工程と、
上記電極形成工程後の単結晶板に、室温以上、疑似立方晶から温度範囲70℃以上110℃以下に見られる最大の静電容量を示す相転移温度Tf以下の温度下で、0.0001Hz以上0.1Hz未満の周波数での交流電界を3〜50サイクル印加して分極処理を施す分極処理工程とを有することを特徴とする圧電単結晶素子の製造方法。
The method for manufacturing a piezoelectric single crystal element according to claim 1 or 2.
An electrode forming step of forming electrodes on both main surfaces of a rectangular single crystal plate composed of a lead composite perovskite composition containing magnesium oxide, niobium oxide and lead titanate.
0.0001 Hz or higher at room temperature or higher, at a temperature of 0.0001 Hz or higher, which is the phase transition temperature Tf or lower, which indicates the maximum capacitance observed in the temperature range of 70 ° C. or higher and 110 ° C. or lower from the pseudo-cubic crystal on the single crystal plate after the electrode forming step A method for manufacturing a piezoelectric single crystal element, which comprises a polarization treatment step of applying an AC electric field at a frequency of less than 0.1 Hz for 3 to 50 cycles to perform a polarization treatment.
上記分極処理工程における交流電界をピークトゥピーク電界で0.3〜4kV/mmとする請求項3に記載の圧電単結晶素子の製造方法。 The method for manufacturing a piezoelectric single crystal element according to claim 3, wherein the AC electric field in the polarization treatment step is a peak-to-peak electric field of 0.3 to 4 kV / mm. 前記分極処理工程において、交流電界および周波数を少なくとも1回変更し、
上記交流電界の変更において、より後のサイクルでの交流電界を、それより前のサイクルでの交流電界よりも強くする変更を少なくとも1回含み、
上記周波数の変更において、より後のサイクルでの周波数を、それより前のサイクルでの周波数よりも低くする変更を少なくとも1回含む請求項3または4に記載の圧電単結晶素子の製造方法。
In the polarization treatment step, the AC electric field and frequency are changed at least once.
The change in the AC electric field includes at least one change to make the AC electric field in the later cycle stronger than the AC electric field in the earlier cycle.
The method for manufacturing a piezoelectric single crystal device according to claim 3 or 4, wherein in the frequency change, the frequency in the later cycle is changed to be lower than the frequency in the earlier cycle at least once.
請求項1または2に記載の圧電単結晶素子を有することを特徴とする超音波送受信素子。 An ultrasonic transmission / reception element comprising the piezoelectric single crystal element according to claim 1 or 2. 請求項1または2に記載の圧電単結晶素子を有することを特徴とする超音波プローブ。 An ultrasonic probe comprising the piezoelectric single crystal element according to claim 1 or 2.
JP2019177059A 2019-09-27 2019-09-27 Method of manufacturing piezoelectric single crystal element, method of manufacturing ultrasonic transmitting/receiving element, and method of manufacturing ultrasonic probe Active JP7369504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019177059A JP7369504B2 (en) 2019-09-27 2019-09-27 Method of manufacturing piezoelectric single crystal element, method of manufacturing ultrasonic transmitting/receiving element, and method of manufacturing ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019177059A JP7369504B2 (en) 2019-09-27 2019-09-27 Method of manufacturing piezoelectric single crystal element, method of manufacturing ultrasonic transmitting/receiving element, and method of manufacturing ultrasonic probe

Publications (2)

Publication Number Publication Date
JP2021057388A true JP2021057388A (en) 2021-04-08
JP7369504B2 JP7369504B2 (en) 2023-10-26

Family

ID=75271263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019177059A Active JP7369504B2 (en) 2019-09-27 2019-09-27 Method of manufacturing piezoelectric single crystal element, method of manufacturing ultrasonic transmitting/receiving element, and method of manufacturing ultrasonic probe

Country Status (1)

Country Link
JP (1) JP7369504B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06305830A (en) * 1993-01-27 1994-11-01 Toshiba Corp Piezoelectric material and ultrasonic probe
JPH1038736A (en) * 1996-07-25 1998-02-13 Toray Ind Inc Macromolecular piezoelectric, macromolecular piezoelectric element and pressure sensor
JP2003282986A (en) * 2002-03-25 2003-10-03 Toshio Ogawa Domain control piezoelectric single crystal element and its manufacturing method
JP2004296784A (en) * 2003-03-27 2004-10-21 Kyocera Corp Polarization method and polarization device for piezoelectric ceramic
JP2014045411A (en) * 2012-08-28 2014-03-13 Toshiba Corp Ultrasonic probe, piezoelectric vibrator, manufacturing method of ultrasonic probe, and manufacturing method of piezoelectric vibrator
JP2014187285A (en) * 2013-03-25 2014-10-02 Toshiba Corp Piezoelectric vibrator, ultrasound probe, method for manufacturing piezoelectric vibrator, and method for manufacturing ultrasound probe
JP2015176915A (en) * 2014-03-13 2015-10-05 株式会社リコー Method for manufacturing electromechanical conversion element, electromechanical conversion element, droplet discharge head, droplet discharge device and imaging apparatus
JP2019031430A (en) * 2017-08-04 2019-02-28 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic device
GB2570707A (en) * 2018-02-05 2019-08-07 Xaar Technology Ltd A method of poling piezoelectric elements of an actuator
JP2019136699A (en) * 2018-02-06 2019-08-22 キヤノン株式会社 Vibratory equipment for dust removal, and imaging device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06305830A (en) * 1993-01-27 1994-11-01 Toshiba Corp Piezoelectric material and ultrasonic probe
JPH1038736A (en) * 1996-07-25 1998-02-13 Toray Ind Inc Macromolecular piezoelectric, macromolecular piezoelectric element and pressure sensor
JP2003282986A (en) * 2002-03-25 2003-10-03 Toshio Ogawa Domain control piezoelectric single crystal element and its manufacturing method
JP2004296784A (en) * 2003-03-27 2004-10-21 Kyocera Corp Polarization method and polarization device for piezoelectric ceramic
JP2014045411A (en) * 2012-08-28 2014-03-13 Toshiba Corp Ultrasonic probe, piezoelectric vibrator, manufacturing method of ultrasonic probe, and manufacturing method of piezoelectric vibrator
JP2014187285A (en) * 2013-03-25 2014-10-02 Toshiba Corp Piezoelectric vibrator, ultrasound probe, method for manufacturing piezoelectric vibrator, and method for manufacturing ultrasound probe
JP2015176915A (en) * 2014-03-13 2015-10-05 株式会社リコー Method for manufacturing electromechanical conversion element, electromechanical conversion element, droplet discharge head, droplet discharge device and imaging apparatus
JP2019031430A (en) * 2017-08-04 2019-02-28 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic device
GB2570707A (en) * 2018-02-05 2019-08-07 Xaar Technology Ltd A method of poling piezoelectric elements of an actuator
JP2019136699A (en) * 2018-02-06 2019-08-22 キヤノン株式会社 Vibratory equipment for dust removal, and imaging device

Also Published As

Publication number Publication date
JP7369504B2 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
JP6073600B2 (en) Ultrasonic probe and piezoelectric vibrator
JP6091951B2 (en) Piezoelectric vibrator, ultrasonic probe, piezoelectric vibrator manufacturing method and ultrasonic probe manufacturing method
US10536097B2 (en) Ultrasonic motor, drive control system, optical apparatus, and vibrator
Ma et al. High frequency transducer for vessel imaging based on lead-free Mn-doped (K0. 44Na0. 56) NbO3 single crystal
Chen et al. Water-induced degradation in lead zirconate titanate piezoelectric ceramics
JP5013269B2 (en) Resonant actuator
JP7369504B2 (en) Method of manufacturing piezoelectric single crystal element, method of manufacturing ultrasonic transmitting/receiving element, and method of manufacturing ultrasonic probe
JP3932458B2 (en) Thin film manufacturing method
JP5019274B2 (en) Resonant actuator
JP2022132883A (en) Piezoelectric vibrator and manufacturing method thereof
TWI683461B (en) Piezo film element
JP2001316181A (en) Piezoelectric ceramic composition, and high power piezoelectric transformer
TW201918565A (en) Piezoelectric thin film element
JP2009058378A (en) Magnetometric sensor
JP2013026682A (en) Medical composite single-crystal piezoelectric vibrator, medical ultrasonic probe, method of manufacturing medical composite single-crystal piezoelectric vibrator, and method of manufacturing medical ultrasonic probe
Zhou et al. Dielectric and transverse piezoelectric properties of sol-gel-derived (001) Pb [Yb 1/2 Nb 1/2] O 3–PbTiO 3 epitaxial thin films
JP2007242788A (en) Piezoelectric thin film element
Hackenberger et al. Advanced piezoelectric materials for medical ultrasound transducers
JPH08125245A (en) Piezo-electric element
US9728710B2 (en) Method for manufacturing ultrasound probe using depoled piezoelectric body
JP2014135632A (en) Junction type piezoelectric vibrator, method of manufacturing junction type piezoelectric vibrator, ultrasonic probe and method of manufacturing ultrasonic probe
JP2001102650A (en) Laminated piezoelectric single-crystal element, its manufacturing method, and ultrasonic probe using it
JP4736315B2 (en) Piezoelectric element and manufacturing method thereof
JP2006013304A (en) Manufacturing method of piezo-electric element
KR101451152B1 (en) Piezoelectric ceramic composition for sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231013

R150 Certificate of patent or registration of utility model

Ref document number: 7369504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150