JP7368987B2 - Self-propelled multilevel parking lot - Google Patents

Self-propelled multilevel parking lot Download PDF

Info

Publication number
JP7368987B2
JP7368987B2 JP2019165996A JP2019165996A JP7368987B2 JP 7368987 B2 JP7368987 B2 JP 7368987B2 JP 2019165996 A JP2019165996 A JP 2019165996A JP 2019165996 A JP2019165996 A JP 2019165996A JP 7368987 B2 JP7368987 B2 JP 7368987B2
Authority
JP
Japan
Prior art keywords
self
parking lot
column
propelled multi
propelled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019165996A
Other languages
Japanese (ja)
Other versions
JP2021042596A (en
Inventor
輝昌 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Iron Works Co Ltd
Original Assignee
Kitagawa Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Iron Works Co Ltd filed Critical Kitagawa Iron Works Co Ltd
Priority to JP2019165996A priority Critical patent/JP7368987B2/en
Publication of JP2021042596A publication Critical patent/JP2021042596A/en
Application granted granted Critical
Publication of JP7368987B2 publication Critical patent/JP7368987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、大空間を有する自走式立体駐車場に関する。 The present invention relates to a self-propelled multi-level parking lot having a large space.

自走式立体駐車場において、使い勝手の高い空間を提供できること、また靭性が高く、エネルギー吸収能力も高いため耐震性に優れていること等から一般的にラーメン構造が採用されている(特許文献1参照)。 In self-propelled multi-story parking garages, rigid frame structures are generally adopted because they can provide a highly user-friendly space and have excellent earthquake resistance due to their high toughness and energy absorption capacity (Patent Document 1) reference).

また、近年では大空間を有する自走式立体駐車場の要求が増えてきており、例えば、図5に示すようなラーメン構造によって大空間を有する自走式立体駐車場も採用されてきている。このような大空間を有するためには、例えば、5層6段のフラット式の自走式立体駐車場における柱の断面サイズは、一般的に500mm×500mmや550mm×550mmなどの角形鋼管が採用され、それによって所定の耐力を満たしている。 Furthermore, in recent years, there has been an increasing demand for self-propelled multi-level parking lots with large spaces, and, for example, self-propelled multi-level parking structures with large spaces based on rigid frame structures as shown in FIG. 5 have also been adopted. In order to have such a large space, for example, the cross-sectional size of the pillars in a flat self-propelled multi-level parking lot with 5 layers and 6 tiers is generally square steel pipes such as 500 mm x 500 mm or 550 mm x 550 mm. This satisfies the specified yield strength.

特開昭59-170365号公報Japanese Unexamined Patent Publication No. 59-170365

しかしながら、大空間を有するラーメン構造にする場合、自走式立体駐車場の内部の柱本数を極力減らせば実現可能となるが、その場合、鉛直方向の積載荷重と地震時における水平力をラーメン構造で負担させる必要がある。そのためには、ラーメン構造を構成する部材(柱及び梁)のサイズを大きくする必要があり、それによってコスト高となり不経済な自走式立体駐車場となってしまう。また、ラーメン構造の場合、柱・梁間の接合は剛接合となり、その接合は、ブレース構造と比べ、し難く、また、それによる加工工数が増える問題もある。 However, if you want to create a rigid frame structure with a large space, this can be achieved by reducing the number of pillars inside the self-propelled multi-level parking lot as much as possible. It is necessary to bear the burden. For this purpose, it is necessary to increase the size of the members (pillars and beams) that make up the rigid frame structure, which increases costs and results in an uneconomical self-propelled multi-level parking lot. In addition, in the case of a rigid frame structure, the connection between columns and beams is a rigid connection, which is difficult to make compared to a brace structure, and there is also the problem that this increases the number of processing steps.

本発明は、かかる事情を鑑みてなされたものであり、その主な目的は、加工工数を低減するとともに安価に大空間を有する自走式立体駐車場を提供することを目的とする。 The present invention has been made in view of the above circumstances, and its main purpose is to provide a self-propelled multi-level parking lot with a large space at a low cost while reducing the number of processing steps.

本発明によれば、自走式立体駐車場において、その中央部は、角形鋼管からなる中柱を備えるラーメン構造を有し、その外周部は、H形鋼からなる外柱を備えるブレース構造を有し、桁行方向に配置される前記外柱は、当該外柱の強軸方向が梁間方向に沿った状態で配置され、梁間方向に配置される前記外柱は、当該外柱の強軸方向が桁行方向に沿った状態で配置される、自走式立体駐車場が提供される。 According to the present invention, in a self-propelled multi-level parking lot, the central part thereof has a rigid frame structure with a central pillar made of a square steel pipe, and the outer peripheral part has a brace structure with an outer pillar made of H-beam steel. The outer columns arranged in the girder row direction are arranged with the strong axis direction of the outer columns along the inter-beam direction, and the outer columns arranged in the inter-beam direction are arranged with the strong axis direction of the outer columns A self-propelled multi-story parking lot is provided in which parking spaces are arranged along the row direction.

本発明に係る自走式立体駐車場では、中央部を角形鋼管からなる中柱を備えるラーメン構造とし、外周部をH形鋼からなる外柱を備えるブレース構造とするハイブリット自走式立体駐車場とすることで、従来の角形鋼管からなる柱を備えるラーメン構造による大空間を有する自走式立体駐車場に比べて、部材サイズを小さくすることができる。また、外周部をブレース構造とすることで、外柱と外周部の梁との接合はピン接合となり、剛接合に比べ接合しやすく、加工工数を低減することができる。 The self-propelled multi-story parking lot according to the present invention is a hybrid self-propelled multi-story parking garage in which the central part has a rigid frame structure with a central pillar made of square steel pipes, and the outer peripheral part has a brace structure with external pillars made of H-beam steel. By doing so, the size of the members can be reduced compared to a self-propelled multi-level parking lot that has a large space due to a rigid frame structure with columns made of conventional rectangular steel pipes. In addition, by forming the outer peripheral part into a brace structure, the outer column and the outer peripheral beam are joined by a pin joint, which is easier to join than a rigid joint, and the number of processing steps can be reduced.

好ましくは、前記自走式立体駐車場において、前記中柱は梁と剛接合である、自走式立体駐車場が提供される。 Preferably, in the self-propelled multi-story parking lot, the middle pillar is rigidly connected to a beam.

好ましくは、前記自走式立体駐車場において、前記外柱の強軸方向における接合は剛接合である、自走式立体駐車場が提供される。 Preferably, in the self-propelled multi-level parking lot, the connection of the outer columns in the strong axis direction is a rigid connection.

好ましくは、前記自走式立体駐車場において、前記外柱の弱軸方向における接合はピン接合である、自走式立体駐車場が提供される。 Preferably, in the self-propelled multi-level parking lot, the connection in the weak axis direction of the outer column is a pin connection.

好ましくは、自走式立体駐車場において、前記ブレース構造は、柱梁間を接合するブレースを備え、該ブレースの水平耐力の和を保有水平耐力の数値で除した値が0.7以下である、自走式立体駐車場が提供される。 Preferably, in the self-propelled multi-story parking lot, the brace structure includes braces that connect the columns and beams, and a value obtained by dividing the sum of the horizontal bearing strengths of the braces by the numerical value of the horizontal bearing capacity possessed is 0.7 or less. A self-propelled multi-level parking lot will be provided.

好ましくは、自走式立体駐車場において、基礎構造にスラブを有する、自走式立体駐車場が提供される。 Preferably, a self-propelled multi-level parking lot is provided that has a slab in its foundation structure.

本発明によれば、加工工数を低減するとともに安価に大空間を有する自走式立体駐車場を提供することができる。 According to the present invention, it is possible to reduce the number of processing steps and to provide a self-propelled multi-level parking lot having a large space at low cost.

スキップ式の自走式立体駐車場の基準階の平面図。A plan view of the standard floor of a skip-type self-propelled multi-level parking lot. 正面視におけるスキップ式の自走式立体駐車場の主架構組図。Main frame structure diagram of a skip-type self-propelled multi-level parking lot as seen from the front. 側面視におけるスキップ式の自走式立体駐車場の主架構組図。The main frame structure diagram of the skip-type self-propelled multi-level parking lot as seen from the side. スキップ式の自走式立体駐車場の柱・梁の接合構造の詳細を示す梁伏図。A beam layout diagram showing details of the column-beam joint structure of a skip-type self-propelled multi-level parking lot. 従来の一般的な大空間を有するフラット式の自走式立体駐車場の梁伏図。A floor plan of a conventional flat-type self-propelled multi-level parking lot with a large space. 基礎構造の断面図。Cross-sectional view of the basic structure.

自走式立体駐車場の好適な実施形態について、図面を用いて具体的に説明する。以下においては、便宜上、スキップ式(フラット段差式)の自走式立体駐車場を例に挙げて説明するが、それ以外のフラット式、連続傾床式にも好適に組み込むことができる。また、本発明は、以下の実施形態に限定されるものではないし、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。 A preferred embodiment of the self-propelled multilevel parking lot will be specifically described using drawings. In the following, for convenience, a skip-type (flat step-type) self-propelled multi-level parking lot will be described as an example, but it can also be suitably incorporated into other flat types and continuous tilt types. Further, the present invention is not limited to the following embodiments, and changes can be made as appropriate without departing from the scope of achieving the effects of the present invention.

本発明は、自走式立体駐車場における駐車場運用方法(自動バレーパーキング等)の将来的な変化に対応すべく、従来より柱本数を削減した大空間を有する自走式立体駐車場を開発すれば、将来的な変化にも柔軟に対応できることに着目して、これを発展させたものである。 The present invention has developed a self-propelled multi-level parking lot with a large space with fewer pillars compared to conventional parking lots in order to respond to future changes in parking lot operation methods (automated valet parking, etc.) in self-propelled multi-level parking structures. This was developed with the focus on the ability to flexibly respond to future changes.

1.自走式立体駐車場の概略構成
第1節では、自走式立体駐車場1の概略構成を説明する。図1は、スキップ式の自走式立体駐車場の基準階の平面図、図2は、正面視におけるスキップ式の自走式立体駐車場の主架構組図、図3は、側面視におけるスキップ式の自走式立体駐車場の主架構組図を各々示している。
1. Schematic configuration of self-propelled multi-level parking lot In Section 1, the schematic configuration of the self-propelled multi-level parking lot 1 will be described. Figure 1 is a plan view of the standard floor of a self-propelled, self-propelled, skip-type parking lot, Figure 2 is a main frame structure diagram of the self-propelled, self-propelled, skip-type parking lot as seen from the front, and Figure 3 is a skip-type self-propelled multi-level parking lot as seen from the side. The main frame structure diagrams of the self-propelled multi-level parking lot are shown in each figure.

図1~図3に示すように、自走式立体駐車場1(以下、建物1という場合がある)は、GLに固定された鉄筋コンクリート造の基礎構造100と、柱や梁などの軸組部材で構成された軸組架構を有するとともに、基礎構造100に固定された上部構造体101とで構成されている。 As shown in FIGS. 1 to 3, a self-propelled multi-level parking lot 1 (hereinafter sometimes referred to as the building 1) consists of a reinforced concrete foundation structure 100 fixed to the GL, and frame members such as columns and beams. It has a frame structure composed of , and an upper structure 101 fixed to a foundation structure 100 .

建物1は、鉄骨造の軸組みを有する少なくとも1層2段(1階建て)以上からなり、その各層には上下の層を車が自走で昇降可能に連結するスロープ3が設けられている。また、各層には周回式の一連の車路2が設けられ、車路2の両側には列状に複数の駐車スペース4が設けられている。なお、以下、建物1において、長手方向を桁行方向、短手方向を梁間方向という。 The building 1 consists of at least one layer and two levels (one story) with a steel frame, and each level is provided with a slope 3 that connects the upper and lower floors so that cars can move up and down them on their own. . Furthermore, each layer is provided with a series of circular roadways 2, and a plurality of parking spaces 4 are provided in rows on both sides of the roadways 2. In addition, in the building 1, the longitudinal direction is hereinafter referred to as the column direction, and the transversal direction is referred to as the inter-beam direction.

2.建物1の柱・梁の接合構造
第2節では、建物1の柱・梁の接合構造を説明する。図4は、スキップ式の自走式立体駐車場の柱・梁の接合構造の詳細を示す梁伏図である。
2. Column/Beam Connection Structure of Building 1 In Section 2, the column/beam connection structure of Building 1 will be explained. FIG. 4 is a beam layout diagram showing details of the column-beam joint structure of a skip-type self-propelled multi-level parking lot.

図4に示すように、建物1の中央部は、角形鋼管からなる中柱10を備えるラーメン構造とし、一方、外周部は、H形鋼からなる外柱20,21を備えるブレース構造としている。なお、図4では、各梁の両端における接合を視覚的に理解していただくために、黒ベタを剛接合によるラーメン構造、クロスのハッチングをピン接合によるブレース構造と表現している。すなわち、中柱10は梁30,34と剛接合であり、外柱20の強軸方向における接合は剛接合となっている。 As shown in FIG. 4, the central part of the building 1 has a rigid frame structure including a central column 10 made of square steel pipes, while the outer peripheral part has a brace structure including outer columns 20 and 21 made of H-beam steel. In addition, in FIG. 4, in order to visually understand the connections at both ends of each beam, the solid black area represents a rigid joint structure, and the cross hatching represents a brace structure using pin connections. That is, the middle column 10 is rigidly connected to the beams 30 and 34, and the outer column 20 is rigidly connected in the strong axis direction.

また、外柱20及び梁31間、外柱21及び梁32,33間、又は、梁33,30間に設けられている隙間は、ピン接合箇所であることを示している。すなわち、外柱20,21の弱軸方向における接合はピン接合である。 Further, the gaps provided between the outer column 20 and the beam 31, between the outer column 21 and the beams 32 and 33, or between the beams 33 and 30 indicate pin joint locations. That is, the connection between the outer columns 20 and 21 in the weak axis direction is a pin connection.

図1~図3にもどり、外周部の桁行方向における外柱20,20間には4つの角形鋼管のブレース60が設けられている。同様に外周部の梁間方向における外柱21,21間には1つの角形鋼管のブレース61が設けられている。なお、ブレース60,61は駐車場のサイズ等により適宜、適当な本数にすれば良く、少なくとも1つ以上であれば良い。 Returning to FIGS. 1 to 3, four square steel pipe braces 60 are provided between the outer columns 20, 20 in the column direction at the outer periphery. Similarly, one brace 61 made of a square steel pipe is provided between the outer columns 21 and 21 in the direction between the beams at the outer periphery. Note that the number of braces 60, 61 may be determined as appropriate depending on the size of the parking lot, etc., and it is sufficient that the number of braces is at least one.

また、桁行方向に配置される複数の外柱20は各々強軸方向が梁間方向に沿った状態で配置されている。換言すると、H形鋼は、ウェブとフランジで構成され、フランジの面側が建物1の中央部に対向するように配置されている。 Further, the plurality of outer columns 20 arranged in the column direction are arranged with their respective strong axes along the inter-beam direction. In other words, the H-section steel is composed of a web and a flange, and is arranged so that the surface side of the flange faces the center of the building 1.

同様に、梁間方向に配置される複数の外柱21は各々強軸方向が桁行方向に沿った状態で配置されている。換言すると、上記同様にフランジの面側が建物1の中央部に対向するように配置されている。 Similarly, the plurality of outer columns 21 arranged in the inter-beam direction are arranged with their respective strong axes along the column direction. In other words, the surface side of the flange is arranged to face the center of the building 1, as described above.

このように、建物1の中央部を角形鋼管からなる中柱10を備えるラーメン構造とし、外周部をH形鋼からなる外柱20,21を備えるブレース構造とするハイブリットの建物1とすることで、建物1の内部空間を有効活用することができ、さらに、建物1への水平力を効率的に負担できる構造とすることができる。 In this way, by making the building 1 a hybrid building 1 in which the central part of the building 1 has a rigid frame structure with the middle pillar 10 made of square steel pipes, and the outer peripheral part has a brace structure with the outer pillars 20 and 21 made of H-beam steel. , it is possible to effectively utilize the internal space of the building 1, and furthermore, it is possible to have a structure that can efficiently bear the horizontal force on the building 1.

したがって、従来の角形鋼管からなる柱で構成されるラーメン構造によって大空間を有する自走式立体駐車場に比べて、構成する部材(柱や梁)のサイズを小さくすることができるため、経済的な自走式立体駐車場とすることができる。
また、外周部をブレース構造とすることで、梁と外柱20,21との接合はピン接合となり、剛接合に比べ接合しやすく、トータル的にも加工工数を低減することができる。
Therefore, compared to a self-propelled multi-level parking lot that has a large space due to the rigid frame structure consisting of pillars made of square steel pipes, the size of the constituent members (columns and beams) can be made smaller, making it more economical. It can be turned into a self-propelled multi-storey parking lot.
Furthermore, by forming the outer peripheral portion into a brace structure, the beams and the outer pillars 20, 21 are joined by a pin joint, which is easier to join than a rigid joint, and the total number of processing steps can be reduced.

3.水平耐力構造
第3節では、水平耐力構造を説明する。
本発明の建物1は、如何に水平耐力を有する構造にするかを鋭意工夫している。換言すると、本発明の建物1は、ブレース60,61の水平耐力の和を保有水平耐力の数値で除した値が0.7以下となるようにしている。
3. Horizontal load-bearing structure Section 3 explains horizontal load-bearing structure.
The building 1 of the present invention has been carefully designed to have a structure that has horizontal strength. In other words, in the building 1 of the present invention, the value obtained by dividing the sum of the horizontal strength of the braces 60 and 61 by the numerical value of the possessing horizontal strength is 0.7 or less.

ここで、ブレース60,61の“水平耐力の和”とは、各層に属するブレース60,61の水平方向の耐力の和のことを言い、“保有水平耐力”とは、各層に属する柱、梁、ブレース等で構成された架構が崩壊に至る際に、柱、梁、ブレース等の構造耐力上主要な部分に生じる水平力の和のことを言う。 Here, the "sum of horizontal strength" of the braces 60, 61 refers to the sum of the horizontal strength of the braces 60, 61 belonging to each layer, and "horizontal strength" means the sum of the horizontal strength of the columns and beams belonging to each layer. It refers to the sum of horizontal forces that occur in the main parts of the structure, such as columns, beams, and braces, when a frame consisting of braces, etc. collapses.

建物1は、地震時の減衰性や靭性等を考慮したエネルギー吸収能力を地震入力エネルギーより大きくすることで大地震に対する安全性を確保している。
一般的にラーメン構造は靭性が高く、またエネルギー吸収能力も高いため耐震性に優れているが、一方、ブレース構造は変形によるエネルギー吸収能力は小さい。
Building 1 ensures safety against large earthquakes by making the energy absorption capacity larger than the seismic input energy, taking into account damping properties, toughness, etc. during an earthquake.
In general, a rigid frame structure has high toughness and high energy absorption capacity, so it has excellent earthquake resistance, but on the other hand, a brace structure has a low energy absorption capacity due to deformation.

また、地震入力エネルギーを算出する際に用いるエネルギー吸収能力を評価した構造特性係数は、ラーメン構造とブレース構造とのハイブリット構造とした場合、ブレース構造における水平耐力の和が保有水平耐力の概ね70%以上になると純粋ブレース構造に近い挙動となる。 In addition, the structural characteristic coefficient used to evaluate the energy absorption capacity used when calculating seismic input energy is that when a hybrid structure of a rigid frame structure and a brace structure is used, the sum of the horizontal bearing capacity of the brace structure is approximately 70% of the horizontal bearing capacity. Above this, the behavior becomes close to that of a pure brace structure.

そのため、構造特性係数の値を大きく設定する必要があるが、その比率を概ね70%以下とすることで、構造特性係数の値を小さく設定することができる。そうすることで、地震入力エネルギーを小さくすることができ、それに合わせて建物1のエネルギー吸収能力を小さくすることができる。 Therefore, it is necessary to set the value of the structural characteristic coefficient large, but by setting the ratio to approximately 70% or less, the value of the structural characteristic coefficient can be set small. By doing so, the earthquake input energy can be reduced, and the energy absorption capacity of the building 1 can be reduced accordingly.

したがって、自走式立体駐車場を構成する部材サイズを小さくすることができ、経済的、且つ、振動減衰性や靭性を高めた自走式立体駐車場とすることができる。 Therefore, the size of the members constituting the self-propelled multi-level parking lot can be reduced, and the self-propelled multi-level parking lot can be made economical and has improved vibration damping properties and toughness.

4.基礎構造
第4節では、基礎構造を説明する。図6は、基礎構造の断面図であり、一例として、梁間方向における外柱21の一つを挙げている。
図6に示すように、基礎構造100は、上部構造体101(軸組架構)の下方に位置し、軸組架構を支持している。
4. Basic Structure Section 4 explains the basic structure. FIG. 6 is a sectional view of the foundation structure, and shows one of the outer columns 21 in the inter-beam direction as an example.
As shown in FIG. 6, the foundation structure 100 is located below the upper structure 101 (frame frame) and supports the frame frame.

具体的には、基礎構造100は、杭体50と、フーチング51と、地中梁52と、スラブ53とで構成されており、外柱21は、下部がフーチング51によってそれぞれ支持されている。なお、フーチング51と、地中梁52と、スラブ53とは、それぞれ鉄筋コンクリートで構成されている。 Specifically, the foundation structure 100 includes a pile body 50, a footing 51, an underground beam 52, and a slab 53, and the outer column 21 is supported by the footing 51 at its lower part. Note that the footing 51, the underground beam 52, and the slab 53 are each made of reinforced concrete.

杭体50は、円柱形状をしており、杭打ち機などによって地盤56に埋設され、その下部は支持層55に定着している。一方、上部はフーチング51に固定されている。
すなわち、外柱21は、フーチング51を介して杭体50に支持されている。
The pile body 50 has a cylindrical shape and is buried in the ground 56 using a pile driver or the like, and its lower part is fixed to a support layer 55. On the other hand, the upper part is fixed to a footing 51.
That is, the outer pillar 21 is supported by the pile body 50 via the footing 51.

また、フーチング51の上部には、複数のアンカーボルト54が突出しており、それらを外柱21の下端部に接合されたベースプレート57の複数の孔57aにそれぞれ挿入し、各アンカーボルト54にナット54aを螺号している。それによって、建物1の外柱21は、基礎構造100のフーチング51と固定されている。 Further, a plurality of anchor bolts 54 protrude from the upper part of the footing 51, and these are respectively inserted into a plurality of holes 57a of a base plate 57 joined to the lower end of the outer column 21, and a nut 54a is attached to each anchor bolt 54. It has a screw number. Thereby, the outer pillar 21 of the building 1 is fixed to the footing 51 of the foundation structure 100.

また、建物1のGL直下には全面にスラブ53を形成している。換言すると、建物1のGL直下、且つ、フーチング51、地中梁52、及び地盤56の上面との間に外柱20,21及び中柱10をさらに固定するように、全面にスラブ53を形成している。
それによって、外周部の外柱への水平力に関して、建物1の基礎構造にスラブ53を全面に設けることで、杭体50等の下部構造に作用する水平力を分散することができる。
Further, a slab 53 is formed on the entire surface of the building 1 directly below the GL. In other words, the slab 53 is formed on the entire surface directly below the GL of the building 1 and between the footing 51, the underground beam 52, and the upper surface of the ground 56 so as to further fix the outer columns 20, 21 and the middle column 10. are doing.
As a result, by providing the slab 53 on the entire surface of the foundation structure of the building 1, the horizontal force acting on the lower structure such as the pile body 50 can be dispersed with respect to the horizontal force applied to the outer column at the outer periphery.

(施工方法)
建物1を基礎構造100で支持する場合、まず、杭打ち機によって、地盤56から杭体50を支持層55へ到達させる。次にフーチング51用及び地中梁52用に鉄筋(図示省略)を配筋し、コンクリートを打設する。その際、複数のアンカーボルト54を上部が突出した状態でフーチング51に固定する。次に各アンカーボルト54を外柱21の下部に接合されたベースプレート57と固定する。次に建物1のGL直下に配筋をして、全面にコンクリートを打設することで、GL直下に建物1の床面全面にスラブ53を形成する。
(Construction method)
When supporting the building 1 with the foundation structure 100, first, the pile body 50 is driven from the ground 56 to the support layer 55 using a pile driver. Next, reinforcing bars (not shown) are arranged for the footing 51 and the underground beam 52, and concrete is poured. At that time, a plurality of anchor bolts 54 are fixed to the footing 51 with their upper portions protruding. Next, each anchor bolt 54 is fixed to a base plate 57 joined to the lower part of the outer column 21. Next, a slab 53 is formed on the entire floor surface of the building 1 directly under the GL by arranging reinforcement immediately below the GL and pouring concrete over the entire surface.

5.水平力及び引抜力
第5節では、本発明の建物1における水平力及び引抜力について説明する。
本発明は、建物1において、上述のように外周部をブレース構造としている。それ故、建物1の重心から最も離れている外周部へブレース60,61を配置することで、ブレース構造の水平力負担効率は非常に高くできる一方、外周部の外柱脚への水平力または引抜力が大きくなり、杭基礎等の下部構造へ大きな影響を与える虞がある。
5. Horizontal force and pulling force In Section 5, the horizontal force and pulling force in the building 1 of the present invention will be explained.
In the present invention, the outer peripheral portion of the building 1 has a brace structure as described above. Therefore, by arranging the braces 60 and 61 on the outer periphery that is farthest from the center of gravity of the building 1, the horizontal force bearing efficiency of the brace structure can be made very high. The pulling force will increase, and there is a risk that it will have a large impact on the substructures such as pile foundations.

その点、図6に示すように、外周部の外柱への水平力に関しては、建物1の基礎構造にスラブ(鉄筋コンクリート)を設けることで、杭体50等の下部構造に作用する水平力を分散させている。このように、従来は、1階の床構造にアスファルトを設けるところ、本発明では、地盤面GL直下にスラブを設けることで、杭体50等の下部構造に作用する水平力を分散させることに着目した。 In this regard, as shown in Fig. 6, by providing a slab (reinforced concrete) in the foundation structure of the building 1, the horizontal force acting on the lower structure such as the pile body 50 can be reduced. It is dispersed. In this way, conventionally, asphalt is provided on the floor structure of the first floor, but in the present invention, by providing a slab directly below the ground surface GL, the horizontal force acting on the lower structure such as the pile bodies 50 can be dispersed. I paid attention.

また、梁間方向における外周部の外柱21への引抜力に関しては、大きな引抜力が発生する構面の外柱本数をできる限り少なくし、その構面の外柱21に作用する鉛直方向の軸力を大きくすることで、外柱に作用する引抜力を可能な限り抑制させている。
また、梁間方向における外周部の梁32及び外柱21との接合をピン接合とすることで、梁曲げ応力による引抜力を抑制させている。
In addition, regarding the pull-out force on the outer column 21 at the outer periphery in the beam-to-beam direction, the number of outer columns on the structural surface where a large pull-out force occurs is minimized, and the vertical axis acting on the outer column 21 on the structural surface is reduced as much as possible. By increasing the force, the pulling force acting on the outer column is suppressed as much as possible.
Further, by connecting the outer peripheral portion of the beam 32 and the outer column 21 in the inter-beam direction with a pin connection, the pull-out force due to beam bending stress is suppressed.

5.結言
以上のように、本実施形態によれば、自走式立体駐車場内部に駐車の妨げになるような柱を可能な限り減らし、さらに、水平力を負担するためのブレースを自走式立体駐車場内部に配置しないことで、自走式立体駐車場内部に大空間を有する自走式立体駐車場を提供することができる。
5. Conclusion As described above, according to this embodiment, the number of pillars that obstruct parking inside the self-propelled multi-story parking lot is reduced as much as possible, and braces to bear the horizontal force are added to the self-propelled multi-story parking lot. By not disposing it inside the parking lot, it is possible to provide a self-propelled multi-level parking lot having a large space inside the self-propelled multi-level parking lot.

かかる自走式立体駐車場は、自走式立体駐車場において、その中央部は、角形鋼管からなる中柱を備えるラーメン構造を有し、その外周部は、H形鋼からなる外柱を備えるブレース構造を有し、桁行方向に配置される前記外柱は、当該外柱の強軸方向が梁間方向に沿った状態で配置され、梁間方向に配置される前記外柱は、当該外柱の強軸方向が桁行方向に沿った状態で配置される。 Such a self-propelled multi-story parking lot has a rigid frame structure in which the central part thereof has a central pillar made of a square steel pipe, and the outer peripheral part thereof has an outer pillar made of H-beam steel. The outer columns that have a brace structure and are arranged in the girder direction are arranged with the strong axis direction of the outer columns along the inter-beam direction, and the outer columns that are arranged in the inter-beam direction are The strong axis direction is arranged along the column direction.

1 自走式立体駐車場(建物)
2 車路
3 スローブ
4 駐車スペース
10 中柱
20,21 外柱
30~34 梁
53 スラブ
60,61 ブレース
1 Self-propelled multi-level parking lot (building)
2 Roadway 3 Slobe 4 Parking space 10 Middle pillar 20, 21 Outer pillar 30-34 Beam 53 Slab 60, 61 Brace

Claims (4)

自走式立体駐車場において、
その中央部は、
角形鋼管からなる中柱と、
前記中柱に対して梁間方向に剛接合された梁と、
前記中柱に対して桁行方向に剛接合された梁と、
で構成されるラーメン構造を有し、
その外周部は、
H形鋼からなる外柱と、
梁間方向に隣り合う外柱とそれぞれピン接合された梁と、
桁行方向に隣り合う外柱とそれぞれピン接合された梁と、
梁間方向に隣り合う少なくとも1組の外柱間、及び、桁行方向に隣り合う少なくとも1組の外柱間に設けられたブレースと、
で構成されるブレース構造を有し、
桁行方向に配置される前記外柱は、当該外柱の強軸方向が梁間方向に沿った状態で配置され、
梁間方向に配置される前記外柱は、当該外柱の強軸方向が桁行方向に沿った状態で配置される、
自走式立体駐車場。
In the self-propelled multi-storey parking lot,
Its central part is
A central column made of square steel pipe ,
a beam rigidly connected to the center column in the beam-to-beam direction;
a beam rigidly connected to the center column in the girder direction;
It has a Ramen structure consisting of
Its outer periphery is
An outer column made of H-beam steel ,
Beams that are pin-connected to adjacent external columns in the beam-to-beam direction,
Beams that are pin-connected to adjacent external columns in the girder row direction,
A brace provided between at least one set of outer columns adjacent in the beam direction and between at least one set of outer columns adjacent in the column direction;
It has a brace structure consisting of
The outer column arranged in the column direction is arranged with the strong axis direction of the outer column along the inter-beam direction,
The outer column arranged in the inter-beam direction is arranged with the strong axis direction of the outer column along the column direction.
Self-propelled multilevel parking lot.
請求項に記載の自走式立体駐車場において、
前記外柱の強軸方向且つ梁間方向における前記中柱と接続する前記梁との接合は剛接合である、自走式立体駐車場。
In the self-propelled multi-level parking lot according to claim 1 ,
A self-propelled multi-level parking lot , wherein the outer column is rigidly connected to the beam connected to the middle column in the direction of the strong axis and in the direction between the beams.
請求項1又は請求項2に記載の自走式立体駐車場において、
前記ブレースの水平耐力の和を保有水平耐力の数値で除した値が0.7以下である、自走式立体駐車場。
In the self-propelled multi-level parking lot according to claim 1 or claim 2 ,
A self-propelled multi- level parking lot, wherein a value obtained by dividing the sum of the horizontal strength of the braces by the numerical value of the possessed horizontal strength is 0.7 or less.
請求項1~3のいずれか1項に記載の自走式立体駐車場において、
基礎構造にスラブを有する、自走式立体駐車場。
In the self-propelled multi-level parking lot according to any one of claims 1 to 3 ,
A self-propelled multi-level parking lot with a slab foundation.
JP2019165996A 2019-09-12 2019-09-12 Self-propelled multilevel parking lot Active JP7368987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019165996A JP7368987B2 (en) 2019-09-12 2019-09-12 Self-propelled multilevel parking lot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019165996A JP7368987B2 (en) 2019-09-12 2019-09-12 Self-propelled multilevel parking lot

Publications (2)

Publication Number Publication Date
JP2021042596A JP2021042596A (en) 2021-03-18
JP7368987B2 true JP7368987B2 (en) 2023-10-25

Family

ID=74863801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019165996A Active JP7368987B2 (en) 2019-09-12 2019-09-12 Self-propelled multilevel parking lot

Country Status (1)

Country Link
JP (1) JP7368987B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253901A (en) 2002-03-04 2003-09-10 Jun Kobayashi Structure of parking space
JP2007170085A (en) 2005-12-22 2007-07-05 Sekisui Chem Co Ltd Omitted column unit garage
JP2019073871A (en) 2017-10-13 2019-05-16 株式会社竹中工務店 Brace arrangement structure inside building

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170365A (en) * 1983-03-17 1984-09-26 新日本製鐵株式会社 Three-dimensional parking area of which intermediate pillarsarranged in zigzag pattern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253901A (en) 2002-03-04 2003-09-10 Jun Kobayashi Structure of parking space
JP2007170085A (en) 2005-12-22 2007-07-05 Sekisui Chem Co Ltd Omitted column unit garage
JP2019073871A (en) 2017-10-13 2019-05-16 株式会社竹中工務店 Brace arrangement structure inside building

Also Published As

Publication number Publication date
JP2021042596A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
KR101767677B1 (en) Compisite column structure for steel and concrete
CN106703197A (en) Longspan multilayer anti-seismic frame structure system and construction method thereof
CN102418381B (en) Building structure system combined with steel beam and pre-tensioned prestressing superposed beam and construction method for building structure system
JP5041758B2 (en) Seismic isolation structure with artificial ground
JP2020037775A (en) Non-brace steel frame building construction method and column base unit
JP2001262774A (en) Steel concrete composite structural member
JP6339923B2 (en) How to build a building frame
JP2007077698A (en) Structure having base isolation/seismic response control function
JP4873981B2 (en) Seismic reinforcement structure for existing buildings
JP7368987B2 (en) Self-propelled multilevel parking lot
CN106639054A (en) Assembled type steel plate net outer wrapped concrete shear wall structure based on prefabricated steel structure
JP4550534B2 (en) Building basic structure
JP4996370B2 (en) Frame assembly method and building frame
CN105155866A (en) Separable sheath floor-adding structure of masonry buildings and floor-adding method thereof
CN215165648U (en) Vertical bearing device of reverse construction area structure that can retrieve
JP3791478B2 (en) Pile head joint structure
Tait et al. A low damage design solution for a 15 storey steel framed building
JP5886996B1 (en) Concrete lampway building with friction connection structure
CN210032222U (en) Steel-concrete combined shear wall
JP7169765B2 (en) How to build structures
JP6985037B2 (en) Pier foundation structure
JP5096979B2 (en) Reinforcement structure of ramen structure
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel
JP4354381B2 (en) Extension method
KR102658475B1 (en) Precast pannel and structure construction method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231013

R150 Certificate of patent or registration of utility model

Ref document number: 7368987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150