JP2021042596A - Self-traveling multistory parking space - Google Patents

Self-traveling multistory parking space Download PDF

Info

Publication number
JP2021042596A
JP2021042596A JP2019165996A JP2019165996A JP2021042596A JP 2021042596 A JP2021042596 A JP 2021042596A JP 2019165996 A JP2019165996 A JP 2019165996A JP 2019165996 A JP2019165996 A JP 2019165996A JP 2021042596 A JP2021042596 A JP 2021042596A
Authority
JP
Japan
Prior art keywords
self
propelled
car park
column
storey car
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019165996A
Other languages
Japanese (ja)
Inventor
輝昌 和田
Terumasa Wada
輝昌 和田
Original Assignee
株式会社北川鉄工所
Kitagawa Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社北川鉄工所, Kitagawa Iron Works Co Ltd filed Critical 株式会社北川鉄工所
Priority to JP2019165996A priority Critical patent/JP2021042596A/en
Publication of JP2021042596A publication Critical patent/JP2021042596A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a self-traveling multistory parking space which reduces working man-hours and has a large space at a low cost.SOLUTION: In a self-traveling multistory parking space: a center portion has a rigid-frame structure comprising a center column made of a rectangular steel tube; an outer peripheral portion has a brace structure comprising an outer column made of an H-shaped steel; the outer column disposed in a ridge direction is disposed in a state where a strong axis direction of the outer column is along a span direction; and the outer column disposed in the span direction is disposed in a state where the strong axis direction of the outer column is along the ridge direction.SELECTED DRAWING: Figure 1

Description

本発明は、大空間を有する自走式立体駐車場に関する。 The present invention relates to a self-propelled multi-storey car park having a large space.
自走式立体駐車場において、使い勝手の高い空間を提供できること、また靭性が高く、エネルギー吸収能力も高いため耐震性に優れていること等から一般的にラーメン構造が採用されている(特許文献1参照)。 In a self-propelled multi-storey car park, a rigid frame structure is generally adopted because it can provide a highly convenient space, has high toughness, and has high energy absorption capacity and therefore has excellent earthquake resistance (Patent Document 1). reference).
また、近年では大空間を有する自走式立体駐車場の要求が増えてきており、例えば、図5に示すようなラーメン構造によって大空間を有する自走式立体駐車場も採用されてきている。このような大空間を有するためには、例えば、5層6段のフラット式の自走式立体駐車場における柱の断面サイズは、一般的に500mm×500mmや550mm×550mmなどの角形鋼管が採用され、それによって所定の耐力を満たしている。 Further, in recent years, there has been an increasing demand for a self-propelled multi-story parking lot having a large space. For example, a self-propelled multi-story parking lot having a large space due to a rigid frame structure as shown in FIG. 5 has been adopted. In order to have such a large space, for example, a square steel pipe having a cross-sectional size of 500 mm × 500 mm or 550 mm × 550 mm is generally adopted for the cross-sectional size of a pillar in a flat type self-propelled multi-storey car park with 5 layers and 6 stages. And thereby meet the prescribed yield strength.
特開昭59−170365号公報JP-A-59-170365
しかしながら、大空間を有するラーメン構造にする場合、自走式立体駐車場の内部の柱本数を極力減らせば実現可能となるが、その場合、鉛直方向の積載荷重と地震時における水平力をラーメン構造で負担させる必要がある。そのためには、ラーメン構造を構成する部材(柱及び梁)のサイズを大きくする必要があり、それによってコスト高となり不経済な自走式立体駐車場となってしまう。また、ラーメン構造の場合、柱・梁間の接合は剛接合となり、その接合は、ブレース構造と比べ、し難く、また、それによる加工工数が増える問題もある。 However, in the case of a rigid frame structure with a large space, it can be realized by reducing the number of pillars inside the self-propelled multi-storey car park as much as possible. It is necessary to bear the burden. For that purpose, it is necessary to increase the size of the members (pillars and beams) constituting the rigid frame structure, which increases the cost and results in an uneconomical self-propelled multi-storey car park. Further, in the case of a rigid frame structure, the joint between columns and beams is a rigid joint, which is more difficult than the brace structure, and there is also a problem that the processing man-hours due to the joint increase.
本発明は、かかる事情を鑑みてなされたものであり、その主な目的は、加工工数を低減するとともに安価に大空間を有する自走式立体駐車場を提供することを目的とする。 The present invention has been made in view of such circumstances, and a main object thereof is to provide a self-propelled multi-story parking lot having a large space at low cost while reducing processing man-hours.
本発明によれば、自走式立体駐車場において、その中央部は、角形鋼管からなる中柱を備えるラーメン構造を有し、その外周部は、H形鋼からなる外柱を備えるブレース構造を有し、桁行方向に配置される前記外柱は、当該外柱の強軸方向が梁間方向に沿った状態で配置され、梁間方向に配置される前記外柱は、当該外柱の強軸方向が桁行方向に沿った状態で配置される、自走式立体駐車場が提供される。 According to the present invention, in a self-propelled multi-story parking lot, the central portion thereof has a rigid frame structure having a central pillar made of a square steel pipe, and the outer peripheral portion thereof has a brace structure having an outer pillar made of H-shaped steel. The outer column having and arranged in the girder direction is arranged in a state where the strong axis direction of the outer column is along the beam-to-beam direction, and the outer column arranged in the beam-to-beam direction is the strong axis direction of the outer column. A self-propelled multi-story parking lot is provided in which the columns are arranged along the column direction.
本発明に係る自走式立体駐車場では、中央部を角形鋼管からなる中柱を備えるラーメン構造とし、外周部をH形鋼からなる外柱を備えるブレース構造とするハイブリット自走式立体駐車場とすることで、従来の角形鋼管からなる柱を備えるラーメン構造による大空間を有する自走式立体駐車場に比べて、部材サイズを小さくすることができる。また、外周部をブレース構造とすることで、外柱と外周部の梁との接合はピン接合となり、剛接合に比べ接合しやすく、加工工数を低減することができる。 The self-propelled multi-level parking lot according to the present invention is a hybrid self-propelled multi-level parking lot having a rigid frame structure having a central pillar made of square steel pipe in the central portion and a brace structure having an outer pillar made of H-shaped steel at the outer peripheral portion. Therefore, the member size can be reduced as compared with the conventional self-propelled multi-story parking lot having a large space with a rigid frame structure having columns made of square steel pipes. Further, by forming the outer peripheral portion with a brace structure, the joint between the outer column and the beam on the outer peripheral portion becomes a pin joint, which is easier to join than the rigid joint, and the processing man-hours can be reduced.
好ましくは、前記自走式立体駐車場において、前記中柱は梁と剛接合である、自走式立体駐車場が提供される。 Preferably, in the self-propelled multi-storey car park, the self-propelled multi-storey car park is provided in which the central pillar is rigidly joined to the beam.
好ましくは、前記自走式立体駐車場において、前記外柱の強軸方向における接合は剛接合である、自走式立体駐車場が提供される。 Preferably, in the self-propelled multi-story parking lot, a self-propelled multi-story parking lot is provided in which the joint of the outer pillars in the strong axis direction is a rigid joint.
好ましくは、前記自走式立体駐車場において、前記外柱の弱軸方向における接合はピン接合である、自走式立体駐車場が提供される。 Preferably, in the self-propelled multi-story parking lot, the self-propelled multi-story parking lot is provided in which the joint of the outer pillars in the weak axis direction is a pin joint.
好ましくは、自走式立体駐車場において、前記ブレース構造は、柱梁間を接合するブレースを備え、該ブレースの水平耐力の和を保有水平耐力の数値で除した値が0.7以下である、自走式立体駐車場が提供される。 Preferably, in a self-propelled multi-storey car park, the brace structure includes a brace that joins columns and beams, and the sum of the horizontal strengths of the braces divided by the numerical value of the possessed horizontal strength is 0.7 or less. A self-propelled multi-storey car park will be provided.
好ましくは、自走式立体駐車場において、基礎構造にスラブを有する、自走式立体駐車場が提供される。 Preferably, in the self-propelled multi-story parking lot, a self-propelled multi-story parking lot having a slab in the basic structure is provided.
本発明によれば、加工工数を低減するとともに安価に大空間を有する自走式立体駐車場を提供することができる。 According to the present invention, it is possible to provide a self-propelled multi-story parking lot having a large space at low cost while reducing the processing man-hours.
スキップ式の自走式立体駐車場の基準階の平面図。Top view of the standard floor of a skip-type self-propelled multi-storey car park. 正面視におけるスキップ式の自走式立体駐車場の主架構組図。Main frame structure of a skip-type self-propelled multi-storey car park in front view. 側面視におけるスキップ式の自走式立体駐車場の主架構組図。The main frame structure of the skip-type self-propelled multi-storey car park in the side view. スキップ式の自走式立体駐車場の柱・梁の接合構造の詳細を示す梁伏図。A beam plan showing the details of the column-beam joint structure of a skip-type self-propelled multi-storey car park. 従来の一般的な大空間を有するフラット式の自走式立体駐車場の梁伏図。A beam plan of a flat self-propelled multi-storey car park with a conventional general large space. 基礎構造の断面図。Sectional view of the foundation structure.
自走式立体駐車場の好適な実施形態について、図面を用いて具体的に説明する。以下においては、便宜上、スキップ式(フラット段差式)の自走式立体駐車場を例に挙げて説明するが、それ以外のフラット式、連続傾床式にも好適に組み込むことができる。また、本発明は、以下の実施形態に限定されるものではないし、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。 A preferred embodiment of the self-propelled multi-storey car park will be specifically described with reference to the drawings. In the following, for convenience, a skip-type (flat step-type) self-propelled multi-storey car park will be described as an example, but other flat-type and continuous-floor-type parking lots can also be suitably incorporated. Further, the present invention is not limited to the following embodiments, and changes can be made as appropriate without departing from the range in which the effects of the present invention are exhibited.
本発明は、自走式立体駐車場における駐車場運用方法(自動バレーパーキング等)の将来的な変化に対応すべく、従来より柱本数を削減した大空間を有する自走式立体駐車場を開発すれば、将来的な変化にも柔軟に対応できることに着目して、これを発展させたものである。 The present invention has developed a self-propelled multi-story parking lot having a large space with a smaller number of pillars than before in order to respond to future changes in the parking lot operation method (automatic valet parking, etc.) in the self-propelled multi-story parking lot. This was developed by focusing on the fact that it can flexibly respond to future changes.
1.自走式立体駐車場の概略構成
第1節では、自走式立体駐車場1の概略構成を説明する。図1は、スキップ式の自走式立体駐車場の基準階の平面図、図2は、正面視におけるスキップ式の自走式立体駐車場の主架構組図、図3は、側面視におけるスキップ式の自走式立体駐車場の主架構組図を各々示している。
1. 1. Schematic configuration of the self-propelled multi-story parking lot Section 1 describes the schematic configuration of the self-propelled multi-story parking lot 1. FIG. 1 is a plan view of the reference floor of a skip-type self-propelled multi-storey car park, FIG. 2 is a main frame structure diagram of a skip-type self-propelled multi-storey car park in front view, and FIG. 3 is skip in side view. The main frame structure of the self-propelled multi-storey car park is shown.
図1〜図3に示すように、自走式立体駐車場1(以下、建物1という場合がある)は、GLに固定された鉄筋コンクリート造の基礎構造100と、柱や梁などの軸組部材で構成された軸組架構を有するとともに、基礎構造100に固定された上部構造体101とで構成されている。 As shown in FIGS. 1 to 3, the self-propelled multi-storey car park 1 (hereinafter, may be referred to as a building 1) has a reinforced concrete foundation structure 100 fixed to a GL and a frame member such as a column or a beam. It has a frame structure composed of, and is composed of an upper structure 101 fixed to the foundation structure 100.
建物1は、鉄骨造の軸組みを有する少なくとも1層2段(1階建て)以上からなり、その各層には上下の層を車が自走で昇降可能に連結するスロープ3が設けられている。また、各層には周回式の一連の車路2が設けられ、車路2の両側には列状に複数の駐車スペース4が設けられている。なお、以下、建物1において、長手方向を桁行方向、短手方向を梁間方向という。 The building 1 is composed of at least one layer and two steps (one story) or more having a steel frame, and each layer is provided with a slope 3 for connecting the upper and lower layers so that the vehicle can move up and down by itself. .. Further, each layer is provided with a series of circuit-type lanes 2, and a plurality of parking spaces 4 are provided in rows on both sides of the lane 2. Hereinafter, in the building 1, the longitudinal direction is referred to as a girder direction and the lateral direction is referred to as an inter-beam direction.
2.建物1の柱・梁の接合構造
第2節では、建物1の柱・梁の接合構造を説明する。図4は、スキップ式の自走式立体駐車場の柱・梁の接合構造の詳細を示す梁伏図である。
2. Joining structure of columns and beams of building 1 Section 2 describes the joining structure of columns and beams of building 1. FIG. 4 is a beam plan showing the details of the joint structure of columns and beams in a skip-type self-propelled multi-storey car park.
図4に示すように、建物1の中央部は、角形鋼管からなる中柱10を備えるラーメン構造とし、一方、外周部は、H形鋼からなる外柱20,21を備えるブレース構造としている。なお、図4では、各梁の両端における接合を視覚的に理解していただくために、黒ベタを剛接合によるラーメン構造、クロスのハッチングをピン接合によるブレース構造と表現している。すなわち、中柱10は梁30,34と剛接合であり、外柱20の強軸方向における接合は剛接合となっている。 As shown in FIG. 4, the central portion of the building 1 has a rigid frame structure having a middle column 10 made of square steel pipe, while the outer peripheral portion has a brace structure having outer columns 20 and 21 made of H-shaped steel. In FIG. 4, in order to visually understand the joints at both ends of each beam, the solid black is expressed as a rigid frame structure by rigid joints, and the hatching of the cloth is expressed as a brace structure by pin joints. That is, the middle column 10 is rigidly joined to the beams 30 and 34, and the outer column 20 is rigidly joined in the strong axis direction.
また、外柱20及び梁31間、外柱21及び梁32,33間、又は、梁33,30間に設けられている隙間は、ピン接合箇所であることを示している。すなわち、外柱20,21の弱軸方向における接合はピン接合である。 Further, the gaps provided between the outer columns 20 and the beams 31, between the outer columns 21 and the beams 32 and 33, or between the beams 33 and 30 indicate that they are pin joints. That is, the joining of the outer columns 20 and 21 in the weak axis direction is a pin joining.
図1〜図3にもどり、外周部の桁行方向における外柱20,20間には4つの角形鋼管のブレース60が設けられている。同様に外周部の梁間方向における外柱21,21間には1つの角形鋼管のブレース61が設けられている。なお、ブレース60,61は駐車場のサイズ等により適宜、適当な本数にすれば良く、少なくとも1つ以上であれば良い。 Returning to FIGS. 1 to 3, four brace 60s of square steel pipes are provided between the outer columns 20 and 20 in the girder direction of the outer peripheral portion. Similarly, one square steel pipe brace 61 is provided between the outer columns 21 and 21 in the direction between the beams on the outer peripheral portion. The number of braces 60 and 61 may be appropriately increased depending on the size of the parking lot and the like, and at least one or more may be used.
また、桁行方向に配置される複数の外柱20は各々強軸方向が梁間方向に沿った状態で配置されている。換言すると、H形鋼は、ウェブとフランジで構成され、フランジの面側が建物1の中央部に対向するように配置されている。 Further, the plurality of outer columns 20 arranged in the girder direction are arranged in a state in which the strong axis direction is along the beam-to-beam direction. In other words, the H-section steel is composed of a web and a flange, and is arranged so that the surface side of the flange faces the central portion of the building 1.
同様に、梁間方向に配置される複数の外柱21は各々強軸方向が桁行方向に沿った状態で配置されている。換言すると、上記同様にフランジの面側が建物1の中央部に対向するように配置されている。 Similarly, the plurality of outer columns 21 arranged in the inter-beam direction are arranged in a state in which the strong axis direction is along the girder direction. In other words, similarly to the above, the surface side of the flange is arranged so as to face the central portion of the building 1.
このように、建物1の中央部を角形鋼管からなる中柱10を備えるラーメン構造とし、外周部をH形鋼からなる外柱20,21を備えるブレース構造とするハイブリットの建物1とすることで、建物1の内部空間を有効活用することができ、さらに、建物1への水平力を効率的に負担できる構造とすることができる。 In this way, the central part of the building 1 is a rigid frame structure having a middle column 10 made of square steel pipes, and the outer peripheral part is a hybrid building 1 having a brace structure having outer columns 20 and 21 made of H-shaped steel. The internal space of the building 1 can be effectively utilized, and the structure can efficiently bear the horizontal force on the building 1.
したがって、従来の角形鋼管からなる柱で構成されるラーメン構造によって大空間を有する自走式立体駐車場に比べて、構成する部材(柱や梁)のサイズを小さくすることができるため、経済的な自走式立体駐車場とすることができる。
また、外周部をブレース構造とすることで、梁と外柱20,21との接合はピン接合となり、剛接合に比べ接合しやすく、トータル的にも加工工数を低減することができる。
Therefore, it is economical because the size of the constituent members (columns and beams) can be reduced as compared with the self-propelled multi-storey car park having a large space due to the conventional rigid frame structure composed of columns made of square steel pipes. It can be a self-propelled multi-storey car park.
Further, by forming the outer peripheral portion with a brace structure, the beam and the outer columns 20 and 21 are joined by a pin joint, which is easier to join than a rigid joint, and the total processing man-hours can be reduced.
3.水平耐力構造
第3節では、水平耐力構造を説明する。
本発明の建物1は、如何に水平耐力を有する構造にするかを鋭意工夫している。換言すると、本発明の建物1は、ブレース60,61の水平耐力の和を保有水平耐力の数値で除した値が0.7以下となるようにしている。
3. 3. Horizontal bearing structure Section 3 describes the horizontal bearing structure.
The building 1 of the present invention is enthusiastically devised as to how to make it a structure having horizontal strength. In other words, in the building 1 of the present invention, the value obtained by dividing the sum of the horizontal strengths of the braces 60 and 61 by the numerical value of the possessed horizontal strength is 0.7 or less.
ここで、ブレース60,61の“水平耐力の和”とは、各層に属するブレース60,61の水平方向の耐力の和のことを言い、“保有水平耐力”とは、各層に属する柱、梁、ブレース等で構成された架構が崩壊に至る際に、柱、梁、ブレース等の構造耐力上主要な部分に生じる水平力の和のことを言う。 Here, the "sum of horizontal proof stresses" of the braces 60 and 61 means the sum of the horizontal proof stresses of the braces 60 and 61 belonging to each layer, and the "possessed horizontal proof stress" means the columns and beams belonging to each layer. , The sum of the horizontal forces generated in the main parts of the structural strength of columns, beams, braces, etc. when the frame composed of braces, etc. collapses.
建物1は、地震時の減衰性や靭性等を考慮したエネルギー吸収能力を地震入力エネルギーより大きくすることで大地震に対する安全性を確保している。
一般的にラーメン構造は靭性が高く、またエネルギー吸収能力も高いため耐震性に優れているが、一方、ブレース構造は変形によるエネルギー吸収能力は小さい。
Building 1 ensures safety against a large earthquake by making the energy absorption capacity in consideration of damping and toughness at the time of an earthquake larger than the seismic input energy.
In general, rigid frame structures have high toughness and high energy absorption capacity, so they are excellent in earthquake resistance, while brace structures have low energy absorption capacity due to deformation.
また、地震入力エネルギーを算出する際に用いるエネルギー吸収能力を評価した構造特性係数は、ラーメン構造とブレース構造とのハイブリット構造とした場合、ブレース構造における水平耐力の和が保有水平耐力の概ね70%以上になると純粋ブレース構造に近い挙動となる。 In addition, the structural characteristic coefficient that evaluates the energy absorption capacity used when calculating the seismic input energy is approximately 70% of the possessed horizontal strength when the hybrid structure of the rigid frame structure and the brace structure is used. When the above is achieved, the behavior is close to that of a pure brace structure.
そのため、構造特性係数の値を大きく設定する必要があるが、その比率を概ね70%以下とすることで、構造特性係数の値を小さく設定することができる。そうすることで、地震入力エネルギーを小さくすることができ、それに合わせて建物1のエネルギー吸収能力を小さくすることができる。 Therefore, it is necessary to set a large value of the structural characteristic coefficient, but by setting the ratio to about 70% or less, the value of the structural characteristic coefficient can be set small. By doing so, the seismic input energy can be reduced, and the energy absorption capacity of the building 1 can be reduced accordingly.
したがって、自走式立体駐車場を構成する部材サイズを小さくすることができ、経済的、且つ、振動減衰性や靭性を高めた自走式立体駐車場とすることができる。 Therefore, the size of the member constituting the self-propelled multi-story parking lot can be reduced, and the self-propelled multi-story parking lot can be economically and has improved vibration damping and toughness.
4.基礎構造
第4節では、基礎構造を説明する。図6は、基礎構造の断面図であり、一例として、梁間方向における外柱21の一つを挙げている。
図6に示すように、基礎構造100は、上部構造体101(軸組架構)の下方に位置し、軸組架構を支持している。
4. Foundation structure Section 4 describes the foundation structure. FIG. 6 is a cross-sectional view of the foundation structure, and one of the outer columns 21 in the inter-beam direction is given as an example.
As shown in FIG. 6, the foundation structure 100 is located below the upper structure 101 (framework frame) and supports the frame frame structure.
具体的には、基礎構造100は、杭体50と、フーチング51と、地中梁52と、スラブ53とで構成されており、外柱21は、下部がフーチング51によってそれぞれ支持されている。なお、フーチング51と、地中梁52と、スラブ53とは、それぞれ鉄筋コンクリートで構成されている。 Specifically, the foundation structure 100 is composed of a pile body 50, a footing 51, an underground beam 52, and a slab 53, and the lower portion of the outer column 21 is supported by the footing 51, respectively. The footing 51, the underground beam 52, and the slab 53 are each made of reinforced concrete.
杭体50は、円柱形状をしており、杭打ち機などによって地盤56に埋設され、その下部は支持層55に定着している。一方、上部はフーチング51に固定されている。
すなわち、外柱21は、フーチング51を介して杭体50に支持されている。
The pile body 50 has a cylindrical shape and is buried in the ground 56 by a pile driver or the like, and the lower portion thereof is fixed to the support layer 55. On the other hand, the upper part is fixed to the footing 51.
That is, the outer pillar 21 is supported by the pile body 50 via the footing 51.
また、フーチング51の上部には、複数のアンカーボルト54が突出しており、それらを外柱21の下端部に接合されたベースプレート57の複数の孔57aにそれぞれ挿入し、各アンカーボルト54にナット54aを螺号している。それによって、建物1の外柱21は、基礎構造100のフーチング51と固定されている。 Further, a plurality of anchor bolts 54 project from the upper part of the footing 51, and they are inserted into the plurality of holes 57a of the base plate 57 joined to the lower end portion of the outer pillar 21, and the nuts 54a are inserted into the respective anchor bolts 54. Is screwed. As a result, the outer pillar 21 of the building 1 is fixed to the footing 51 of the foundation structure 100.
また、建物1のGL直下には全面にスラブ53を形成している。換言すると、建物1のGL直下、且つ、フーチング51、地中梁52、及び地盤56の上面との間に外柱20,21及び中柱10をさらに固定するように、全面にスラブ53を形成している。
それによって、外周部の外柱への水平力に関して、建物1の基礎構造にスラブ53を全面に設けることで、杭体50等の下部構造に作用する水平力を分散することができる。
Further, a slab 53 is formed on the entire surface directly under the GL of the building 1. In other words, a slab 53 is formed on the entire surface of the building 1 directly under the GL and between the footing 51, the underground beam 52, and the upper surface of the ground 56 so as to further fix the outer columns 20, 21 and the inner column 10. doing.
As a result, with respect to the horizontal force on the outer column of the outer peripheral portion, by providing the slab 53 on the entire surface of the foundation structure of the building 1, the horizontal force acting on the lower structure such as the pile body 50 can be dispersed.
(施工方法)
建物1を基礎構造100で支持する場合、まず、杭打ち機によって、地盤56から杭体50を支持層55へ到達させる。次にフーチング51用及び地中梁52用に鉄筋(図示省略)を配筋し、コンクリートを打設する。その際、複数のアンカーボルト54を上部が突出した状態でフーチング51に固定する。次に各アンカーボルト54を外柱21の下部に接合されたベースプレート57と固定する。次に建物1のGL直下に配筋をして、全面にコンクリートを打設することで、GL直下に建物1の床面全面にスラブ53を形成する。
(Construction method)
When the building 1 is supported by the foundation structure 100, first, the pile driver reaches the pile body 50 from the ground 56 to the support layer 55 by a pile driver. Next, reinforcing bars (not shown) are arranged for the footing 51 and the underground beam 52, and concrete is placed. At that time, the plurality of anchor bolts 54 are fixed to the footing 51 with the upper portion protruding. Next, each anchor bolt 54 is fixed to the base plate 57 joined to the lower part of the outer pillar 21. Next, by arranging reinforcements directly under the GL of the building 1 and placing concrete on the entire surface, a slab 53 is formed on the entire floor surface of the building 1 directly under the GL.
5.水平力及び引抜力
第5節では、本発明の建物1における水平力及び引抜力について説明する。
本発明は、建物1において、上述のように外周部をブレース構造としている。それ故、建物1の重心から最も離れている外周部へブレース60,61を配置することで、ブレース構造の水平力負担効率は非常に高くできる一方、外周部の外柱脚への水平力または引抜力が大きくなり、杭基礎等の下部構造へ大きな影響を与える虞がある。
5. Horizontal force and pull-out force Section 5 describes the horizontal force and pull-out force in the building 1 of the present invention.
In the present invention, the outer peripheral portion of the building 1 has a brace structure as described above. Therefore, by arranging the braces 60 and 61 on the outer peripheral portion farthest from the center of gravity of the building 1, the horizontal force bearing efficiency of the brace structure can be made very high, while the horizontal force on the outer column base of the outer peripheral portion or The pulling force becomes large, which may have a great influence on the substructure such as pile foundation.
その点、図6に示すように、外周部の外柱への水平力に関しては、建物1の基礎構造にスラブ(鉄筋コンクリート)を設けることで、杭体50等の下部構造に作用する水平力を分散させている。このように、従来は、1階の床構造にアスファルトを設けるところ、本発明では、地盤面GL直下にスラブを設けることで、杭体50等の下部構造に作用する水平力を分散させることに着目した。 In that respect, as shown in FIG. 6, regarding the horizontal force on the outer column of the outer peripheral portion, by providing a slab (reinforced concrete) in the foundation structure of the building 1, the horizontal force acting on the lower structure such as the pile body 50 is applied. It is dispersed. As described above, conventionally, asphalt is provided on the floor structure of the first floor, but in the present invention, by providing a slab directly under the ground surface GL, the horizontal force acting on the lower structure such as the pile body 50 is dispersed. I paid attention to it.
また、梁間方向における外周部の外柱21への引抜力に関しては、大きな引抜力が発生する構面の外柱本数をできる限り少なくし、その構面の外柱21に作用する鉛直方向の軸力を大きくすることで、外柱に作用する引抜力を可能な限り抑制させている。
また、梁間方向における外周部の梁32及び外柱21との接合をピン接合とすることで、梁曲げ応力による引抜力を抑制させている。
Further, regarding the pulling force of the outer peripheral portion to the outer column 21 in the beam-to-beam direction, the number of outer columns of the structure on which a large pulling force is generated is reduced as much as possible, and the vertical axis acting on the outer column 21 of the structure surface. By increasing the force, the pulling force acting on the outer pillar is suppressed as much as possible.
Further, by forming the joint between the outer peripheral beam 32 and the outer column 21 in the beam-to-beam direction as a pin joint, the pulling force due to the beam bending stress is suppressed.
5.結言
以上のように、本実施形態によれば、自走式立体駐車場内部に駐車の妨げになるような柱を可能な限り減らし、さらに、水平力を負担するためのブレースを自走式立体駐車場内部に配置しないことで、自走式立体駐車場内部に大空間を有する自走式立体駐車場を提供することができる。
5. Conclusion As described above, according to the present embodiment, the number of pillars that hinder parking is reduced as much as possible inside the self-propelled multi-storey car park, and the brace for bearing the horizontal force is self-propelled. By not arranging it inside the parking lot, it is possible to provide a self-propelled multi-story parking lot having a large space inside the self-propelled multi-story parking lot.
かかる自走式立体駐車場は、自走式立体駐車場において、その中央部は、角形鋼管からなる中柱を備えるラーメン構造を有し、その外周部は、H形鋼からなる外柱を備えるブレース構造を有し、桁行方向に配置される前記外柱は、当該外柱の強軸方向が梁間方向に沿った状態で配置され、梁間方向に配置される前記外柱は、当該外柱の強軸方向が桁行方向に沿った状態で配置される。 Such a self-propelled multi-story parking lot is a self-propelled multi-story parking lot, the central portion thereof has a rigid frame structure including a central pillar made of a square steel pipe, and the outer peripheral portion thereof has an outer pillar made of H-shaped steel. The outer column having a brace structure and arranged in the girder direction is arranged in a state where the strong axis direction of the outer column is along the inter-beam direction, and the outer column arranged in the inter-beam direction is the outer column of the outer column. It is arranged so that the strong axis direction is along the column direction.
1 自走式立体駐車場(建物)
2 車路
3 スローブ
4 駐車スペース
10 中柱
20,21 外柱
30〜34 梁
53 スラブ
60,61 ブレース
1 Self-propelled multi-storey car park (building)
2 lanes 3 slobes 4 parking spaces 10 middle pillars 20,21 outer pillars 30-34 beams 53 slabs 60,61 braces

Claims (6)

  1. 自走式立体駐車場において、
    その中央部は、角形鋼管からなる中柱を備えるラーメン構造を有し、
    その外周部は、H形鋼からなる外柱を備えるブレース構造を有し、
    桁行方向に配置される前記外柱は、当該外柱の強軸方向が梁間方向に沿った状態で配置され、
    梁間方向に配置される前記外柱は、当該外柱の強軸方向が桁行方向に沿った状態で配置される、
    自走式立体駐車場。
    In a self-propelled multi-storey car park
    Its central part has a rigid frame structure with a central column made of square steel pipes.
    The outer peripheral portion has a brace structure including an outer column made of H-shaped steel.
    The outer column arranged in the girder direction is arranged in a state where the strong axis direction of the outer column is along the beam-to-beam direction.
    The outer columns arranged in the inter-beam direction are arranged in a state where the strong axis direction of the outer columns is along the girder direction.
    Self-propelled multi-storey car park.
  2. 請求項1に記載の自走式立体駐車場において、
    前記中柱は梁と剛接合である、自走式立体駐車場。
    In the self-propelled multi-storey car park according to claim 1.
    The center pillar is a self-propelled multi-storey car park that is rigidly joined to the beam.
  3. 請求項1又は2に記載の自走式立体駐車場において、
    前記外柱の強軸方向における接合は剛接合である、自走式立体駐車場。
    In the self-propelled multi-storey car park according to claim 1 or 2.
    A self-propelled multi-storey car park in which the joint of the outer pillars in the strong axis direction is a rigid joint.
  4. 請求項1〜3のいずれか1項に記載の自走式立体駐車場において、
    前記外柱の弱軸方向における接合はピン接合である、自走式立体駐車場。
    In the self-propelled multi-storey car park according to any one of claims 1 to 3.
    A self-propelled multi-storey car park where the joint of the outer pillars in the weak axis direction is a pin joint.
  5. 請求項1〜4のいずれか1項に記載の自走式立体駐車場において、
    前記ブレース構造は、柱梁間を接合するブレースを備え、
    該ブレースの水平耐力の和を保有水平耐力の数値で除した値が0.7以下である、自走式立体駐車場。
    In the self-propelled multi-storey car park according to any one of claims 1 to 4.
    The brace structure includes a brace that joins columns and beams.
    A self-propelled multi-storey car park in which the sum of the horizontal strengths of the braces divided by the numerical value of the possessed horizontal strengths is 0.7 or less.
  6. 請求項1〜5のいずれか1項に記載の自走式立体駐車場において、
    基礎構造にスラブを有する、自走式立体駐車場。
    In the self-propelled multi-storey car park according to any one of claims 1 to 5.
    A self-propelled multi-storey car park with a slab in the foundation structure.
JP2019165996A 2019-09-12 2019-09-12 Self-traveling multistory parking space Pending JP2021042596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019165996A JP2021042596A (en) 2019-09-12 2019-09-12 Self-traveling multistory parking space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019165996A JP2021042596A (en) 2019-09-12 2019-09-12 Self-traveling multistory parking space

Publications (1)

Publication Number Publication Date
JP2021042596A true JP2021042596A (en) 2021-03-18

Family

ID=74863801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019165996A Pending JP2021042596A (en) 2019-09-12 2019-09-12 Self-traveling multistory parking space

Country Status (1)

Country Link
JP (1) JP2021042596A (en)

Similar Documents

Publication Publication Date Title
KR101767677B1 (en) Compisite column structure for steel and concrete
JP4550534B2 (en) Building basic structure
JP2007077698A (en) Structure having base isolation/seismic response control function
JP2013032696A (en) Reinforcement structure of rigid frame structure
CN106703197B (en) A kind of large span multilayer anti-seismic frame structure system and its construction method
CN102418381B (en) Building structure system combined with steel beam and pre-tensioned prestressing superposed beam and construction method for building structure system
JP2020037775A (en) Non-brace steel frame building construction method and column base unit
JP2021042596A (en) Self-traveling multistory parking space
JP4996370B2 (en) Frame assembly method and building frame
JP5886996B1 (en) Concrete lampway building with friction connection structure
KR100578641B1 (en) Steel-Concrete Hybrid Column, Hybrid Structure System Using the Same, and Construction Method Thereof
JP6339923B2 (en) How to build a building frame
JP2008038420A (en) Base-isolation structure having artificial ground
JP4354381B2 (en) Extension method
CN105155866A (en) Separable sheath floor-adding structure of masonry buildings and floor-adding method thereof
JP2016148144A (en) Pc rampway building structure
JP5096979B2 (en) Reinforcement structure of ramen structure
KR20140137665A (en) Enlarged capital of steel framed reinforced concrete column and method for construction of the enlarged capital
Reddy et al. Study of Lateral Structural Systems in Tall Buildings
JP5437009B2 (en) Reinforcement structure of frame
CN106639054A (en) Assembled type steel plate net outer wrapped concrete shear wall structure based on prefabricated steel structure
CN213061736U (en) Cast-in-place construction fabricated combined support frame for concrete box girder
CN212642283U (en) Quickly mounted fabricated steel structural system
CN210482632U (en) Seismic strengthening substructure externally attached with frame steel support weak connection
JP2003293597A (en) Seismically reinforcing structure for building