JP7366362B2 - 木材検査装置 - Google Patents

木材検査装置 Download PDF

Info

Publication number
JP7366362B2
JP7366362B2 JP2019190802A JP2019190802A JP7366362B2 JP 7366362 B2 JP7366362 B2 JP 7366362B2 JP 2019190802 A JP2019190802 A JP 2019190802A JP 2019190802 A JP2019190802 A JP 2019190802A JP 7366362 B2 JP7366362 B2 JP 7366362B2
Authority
JP
Japan
Prior art keywords
wood
microwave
dielectric constant
amount
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019190802A
Other languages
English (en)
Other versions
JP2021067481A (ja
Inventor
雄一 是枝
直樹 石田
浩暉 森田
清隆 内倉
矩行 原田
博幸 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAKKO AUTOMATION CO., LTD.
Fukuoka Prefectural Government
Original Assignee
HAKKO AUTOMATION CO., LTD.
Fukuoka Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAKKO AUTOMATION CO., LTD., Fukuoka Prefectural Government filed Critical HAKKO AUTOMATION CO., LTD.
Priority to JP2019190802A priority Critical patent/JP7366362B2/ja
Publication of JP2021067481A publication Critical patent/JP2021067481A/ja
Application granted granted Critical
Publication of JP7366362B2 publication Critical patent/JP7366362B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、薬剤を含浸させた木材の検査装置であって、木材への薬剤の含浸量を検査する木材検査装置に関する。
公共建築物等の特殊建築物では、建築基準法に定める防火材料を使用する必要がある。特殊建築物で木材を使用する場合、上記の防火材料としての基準を満たすため、木材に難燃性の薬剤(以下、不燃剤という)を含浸処理し、難燃性を付与している。このような不燃木材の製造方法の例が特許文献1及び2に記載されている。従来、木材中の不燃剤の含有量は、特許文献1及び2にも記載のように含浸前後の木材の重量差で把握され、管理されている。
特開2003-211412号公報 特開2018-188552号公報
通常、製造された不燃木材においては、1つの木材内で不燃剤の含浸量にばらつきが生ずる場合が多々あり、含浸量が少ない部位では、上記の防火材料としての基準を満たせない場合がある。しかし、従来の含浸前後の重量差で含浸量を検査する方法では、対象とする1つの木材全体の含浸前後の重量差を測定して検査するため、1つの不燃木材中における不燃剤の含浸量のばらつき、すなわち含浸量の分布を検査することはできなかった。また、様々な用途の木材においては、不燃剤以外にも防腐剤等の薬物を含浸させて耐環境性能などの改善を図る場合がある。このような場合にも木材中の性能のばらつきを抑えるため、薬剤の含浸量分布の検査が必要とされている。
そこで、本発明は、係る問題を解決するためになされたものであり、1つの木材中の薬剤の含浸量の分布を検査することを可能とする木材検査装置を提供することを目的とする。
第1の観点では、本発明の木材検査装置は、薬剤を含浸させた木材の検査装置であって、前記木材を挟んで互いに対向設置されたマイクロ波の送信アンテナ及び受信アンテナと、前記送信アンテナに接続されたマイクロ波送信回路と、前記受信アンテナに接続されたマイクロ波受信回路とを有し、前記送信アンテナより送出され、前記木材を透過し前記受信アンテナに入力されるマイクロ波の振幅と位相とを検出し、前記検出されたマイクロ波の振幅と位相とにより前記木材の比誘電率を算出し、前記比誘電率と、あらかじめ求めた前記薬剤の含浸量と前記比誘電率との関係と、を用いて、前記木材の前記薬剤の含浸量を検査することを特徴とする。
本発明においては、上記のように、被測定物である木材を挟んでマイクロ波の送信アンテナと受信アンテナを設置し、送信アンテナより送出され、木材を透過し受信アンテナに入力されるマイクロ波の振幅と位相とを検出する。これにより、その木材のマイクロ波が通過する領域の比誘電率を算出する。本発明が対象とする木材は、通常、ほぼ平行な2つの面、すなわち、表面と裏面とを有するので、入射したマイクロ波はその表面と裏面との間で多重反射して出力する。この場合、木材の比誘電率が1に近いことに留意すれば、多重反射を無視した近似的な計算により木材の比誘電率を算出することができる。一方、多重反射を考慮した計算式を用いることにより、より正確にマイクロ波が通過する領域の木材の比誘電率を求めることができる。
本発明では、木材への薬剤の含浸量とその木材の比誘電率との関係をあらかじめ求めておき、その関係を用いて、測定された比誘電率に基づいて木材への薬剤の含浸量を検査するものである。この場合、例えば、薬剤の含浸量を変えた小さな面積の被測定対象の木材サンプルを多数作製し、これらの木材サンプルの薬剤の含浸量を、従来の含浸前後の重量差で測定する方法やX線の透過量の変化から測定する方法等を用いて把握し、それらの木材サンプルの比誘電率を上記の本発明のマイクロ波を用いた方法により測定して、木材への薬剤の含浸量と比誘電率との関係を求めることができる。このように求めた薬剤の含浸量と比誘電率との関係を用い、木材の測定部分の比誘電率の値が必要とされる薬剤の含浸量に対応する値以上であるか否か等を検査することができる。
以上のように、本発明においては、被測定対象の木材のマイクロ波が透過する部分の薬剤の含浸量が検査できるので、その木材を移動させながら測定することにより、1つの木材中の薬剤の含浸量の分布を検査することが可能となる。例えば、被測定木材が細長い場合にはその長さ方向に木材を移動させることにより、長さ方向の薬剤の含浸量の分布を検査することができる。また、被測定木材の面積が大きい場合には、木材を二次元的に移動させることにより薬剤の含浸量の二次元分布を検査することができる。
第2の観点では、本発明は、前記第1の観点の木材検査装置において、複数個の前記送信アンテナと、前記木材を挟んで前記複数個の送信アンテナとそれぞれ対向配置された複数個の前記受信アンテナとを有し、前記木材を一方向に移動させて前記検出を行うことにより、前記木材の比誘電率の二次元分布を測定し、該二次元分布を表示する表示装置を有することを特徴とする。
本観点の発明においては、測定目的の分布の分解能を達成できるような間隔で複数個の送信アンテナと複数個の受信アンテナとを木材を挟んでそれぞれ対向配置することにより、木材を一方向に移動させた場合であっても薬剤の含浸量の二次元分布を検査することができる。また、測定された比誘電率の二次元分布を表示する表示装置を備えることにより、視覚によりその二次元分布を容易に把握することができる。
第3の観点では、本発明は、前記第2の観点の木材検査装置において、前記複数個の送信アンテナ及び前記複数個の受信アンテナは、前記木材の移動方向に直交する方向に対して互いに異なる位置に配置され、前記複数個の送信アンテナと前記マイクロ波送信回路との間にスイッチを有し、該スイッチにより前記複数個の送信アンテナを順次切り替えながら前記検出を行うことを特徴とする。
本観点の発明においては、例えば、被測定木材の幅方向に複数の送信アンテナと受信アンテナの対を並べて配置し、被測定木材の長さ方向に被測定木材を移動させることにより、木材全体の比誘電率の二次元分布を測定することができる。さらに、送信アンテナとマイクロ波送信回路との間にスイッチを配置し、そのスイッチにより測定部位に対応する送信アンテナをマイクロ波送信回路に接続して検出し、スイッチによりその測定部位を幅方向に順次切り替えながら検出を行うことにより、1つのマイクロ波送信回路を用いて検出が可能となる。なお、この場合、受信アンテナとマイクロ波受信回路との間にスイッチ又は分配器を配置してもよい。これにより、1つのマイクロ波受信回路を用いて検出が可能となる。さらに、本発明においては、送信アンテナとマイクロ波送信回路との間に分配器を配置し、受信アンテナとマイクロ波受信回路との間にスイッチを配置してもよい。
第4の観点では、本発明は、前記第1乃至第3の観点の木材検査装置において、複数の周波数のマイクロ波を用いて前記検出を行い、該検出により得られた複数のデータにより前記比誘電率の算出を行うことを特徴とする。
本発明において、木材の比誘電率を算出する際に、単一のマイクロ波周波数を用いても比誘電率を算出することは可能であるが、ノイズ等の影響により測定誤差が大きくなる場合がある。本観点の発明は、そのようなノイズ等による測定誤差を低減するため、周波数を掃引して複数のマイクロ波の周波数を用いて検出を行い、それらの複数のデータを用いて木材の比誘電率を算出するものである。複数の周波数による検出データからフィッティング解析によって最適値を算出することにより、より正確な比誘電率を算出することが可能となる。
第5の観点では、本発明は、前記第1乃至第4の観点の木材検査装置において、前記木材の薬剤を含浸する前の比誘電率、又は比誘電率の二次元分布、すなわち初期比誘電率、又は初期比誘電率分布をあらかじめ測定し、前記初期比誘電率又は前記初期比誘電率分布と薬剤を含浸させた前記木材の比誘電率又は比誘電率の二次元分布との間の差分を求め、前記差分により前記薬剤の含浸量を検査する手段を有することを特徴とする。
被測定木材は、その比誘電率に若干の個体差を有する場合があり、木材サンプルによりあらかじめ求めた薬剤の含浸量と木材の比誘電率との関係だけを用いては十分な測定精度が得られない場合がある。本観点の発明では、薬剤の含浸前後の比誘電率の差分を算出する手段を備えることにより、上記のような木材の比誘電率の個体差がある場合でも、より正確に含浸量分布を検査することができる。
第6の観点では、本発明は、前記第1乃至第5の観点の木材検査装置において、前記送信アンテナ及び受信アンテナはホーンアンテナであることを特徴とする。発明者らのいくつかのマイクロ波用アンテナを用いた実験及び検討において、ホーンアンテナは本発明の目的に適していることが確認された。
以上のように、本発明の木材検査装置によれば、1つの木材中の薬剤の含浸量の分布を検査することが可能となる。
実施例1に係る木材検査装置の模式的な構成図。 木材を多重反射して通過するマイクロ波の様子を模式的に示す図。 実施例1における送信アンテナと受信アンテナの配置の一例を示す斜視図。 木材を透過するマイクロ波の位相と周波数の関係の一例を示す図。 実施例2において木材の不燃剤の含浸量と比誘電率の変化量との関係を測定した結果の一例を示す図。 木材の比誘電率の変化量の二次元分布の測定結果の一例を示す図。 木材の比誘電率の変化量の二次元分布の測定結果の一例を示す図。
以下、図面を参照して本発明の木材検査装置を実施例により詳細に説明する。なお、図面の説明において同一の要素には同一符号を付し、その重複した説明を省略する。
図1は、実施例1に係る木材検査装置20の模式的な構成図である。図1において、本実施例の木材検査装置20は、不燃剤を含浸させた木材1の検査装置であり、5つのマイクロ波の送信アンテナ2a,2b,2c,2d,2eと、それらに対して木材1を挟んでそれぞれ対向設置された5つのマイクロ波の受信アンテナ3a,3b,3c,3d,3eとを有している。本実施例においては、送信アンテナ2a,2b,2c,2d,2eと受信アンテナ3a,3b,3c,3d,3eは、ホーンアンテナを用いて構成している。図1においては、木材1は断面図を示しており、木材搬送装置4によってx軸方向に移動するように構成されている。5つの送信アンテナ及び受信アンテナは、木材1の移動方向であるx軸に直交するy軸方向に対して互いに異なる位置に配置されている。
本実施例の木材検査装置20は、送信アンテナ2a,2b,2c,2d,2eにマイクロ波を供給するマイクロ波送信回路路5と、それらの送信アンテナより送出され、木材1の表面及び裏面との間で多重反射されて木材1を透過し受信アンテナ3a,3b,3c,3d,3eに入力されるマイクロ波を検出するためのマイクロ波受信回路6とを備えている。マイクロ波送信回路路5は所定の周波数のマイクロ波信号を発生する発信器11とその信号の一部をマイクロ波受信回路6に分配するための分配器12とを備え、マイクロ波受信回路6は、マイクロ波の検出器13とその検出された信号を増幅して出力するアンプ14とを備えている。マイクロ波送信回路路5とマイクロ波受信回路6はマイクロ波ユニット7の中に一体として組み込まれている。なお、本実施例において用いるマイクロ波の周波数は、測定に最適な22GHz~28GHzとするが、その周波数範囲は8GHz~40GHz程度の範囲内で選択可能である。
また、本実施例においては、送信アンテナ2a,2b,2c,2d,2eとマイクロ波送信回路5との間にスイッチ8を有し、受信アンテナ3a,3b,3c,3d,3eとマイクロ波受信回路6との間に分配器9を有している。スイッチ8は、マイクロ波送信回路5の出力を送信アンテナ2a,2b,2c,2d,2eのいずれかに接続する。その接続された送信アンテナに対向する受信アンテナ3a,3b,3c,3d,3eのいずれかに木材1を透過したマイクロ波が入力されるとその信号は分配器9を介してマイクロ波受信回路6に入力する。本実施例においては送信アンテナ2a,2b,2c,2d,2eとスイッチ8により送信アンテナユニット16を構成し、受信アンテナ3a,3b,3c,3d,3eと分配器9により受信アンテナユニット17を構成している。
本実施例において、受信アンテナ3a,3b,3c,3d,3eに入力されるマイクロ波はマイクロ波受信回路6で検出され、増幅されて、そのマイクロ波信号はパーソナルコンピュータ10に入力する。パーソナルコンピュータ10においては、入力されたマイクロ波信号の振幅と位相が検出され、その振幅と位相とを用いて、木材1のマイクロ波が通過した部分の比誘電率が算出される。また、パーソナルコンピュータ10には木材搬送装置4からエンコーダパルスが入力され、そのエンコーダパルスに同期して、マイクロ波ユニット7に対してマイクロ波周波数の指令信号等を出力し、スイッチ8に対して切替信号を出力する。
スイッチ8を順次切り替えて、特定のx軸座標における木材1のy軸方向の比誘電率分布を算出し、木材搬送装置4により木材1をx軸方向に順次移動させることにより、xy方向の二次元の比誘電率分布を求めることができる。求めた比誘電率の二次元分布は、パーソナルコンピュータ10の表示部15に表示できるように構成されている。
また、パーソナルコンピュータ10には、木材1に対する不燃剤の含浸量と比誘電率の関係がメモリーに保存されている。この不燃剤の含浸量と比誘電率の関係は、不燃剤の含浸量を変えた小さな面積の木材1と同じ材質の木材サンプルを多数作製し、これらの木材サンプルの不燃剤の含浸量を、従来の含浸前後の重量差で測定する方法やX線の透過量の変化から測定する方法を用いて測定し、求めた値である。パーソナルコンピュータ10は、この関係を用いて、木材の測定部分の比誘電率が必要とされる不燃剤の含浸量に対応する値以上であるか否か等を表示部15に表示するように処理することができる。この場合、不燃性能の基準となる含浸量に対応する比誘電率の値をキーボードや外部入力により設定できるようにすることも可能である。表示部15に表示された二次元分布により、容易に不燃剤の含浸量の分布を検査することができる。
木材1の比誘電率の算出方法について以下に記載する。図2は木材1を多重反射して通過するマイクロ波の様子を模式的に示す図である。木材1の表面1aからの入射マイクロ波21は木材1を通過して裏面1bからそのまま出力するか、又は裏面1bと表面1aとの間で何回か反射して出力し、それらの合成波が透過マイクロ波22である。透過マイクロ波22の強度は、入射マイクロ波21の強度、その周波数、光の速度、空気から木材1に入射する場合の反射率と透過率、木材1から空気へ入射する場合の反射率と透過率、木材1の厚さ、その比誘電率、透磁率、誘電正接を用いて理論的に表すことが出来る。この多重反射波を考慮した理論式を用いて、透過マイクロ波22の強度を測定することにより、木材1の比誘電率εを求めることができる。
図2において、木材1の比誘電率εが小さく、マイクロ波の反射率が小さい場合、透過するマイクロ波22の強度Eは式(1)で近似される。ここで、入射マイクロ波21の強度をE、その周波数をf、光の速度をc、木材1の厚さをdとしている。また、iは虚数であり、それを含む項がマイクロ波の位相に関連する項である。
Figure 0007366362000001
式(1)を用いても、透過マイクロ波22の強度Eを測定することにより、木材1の比誘電率εを求めることができる。
図3は、本実施例における送信アンテナ2a,2b,2c,2d,2eと受信アンテナ3a,3b,3c,3d,3eの配置の一例を示す斜視図である。同じ1つのx座標でy軸方向にアンテナを並べた場合、y軸方向の測定分解能はホーンアンテナの開口の大きさで制限されてしまうため、図3においては、y軸方向の測定の分解能を高くするため、互いのホーンアンテナの開口部分がy軸方向に重なってもよいように、x座標もシフトさせてアンテナを配置している。送信アンテナをスイッチ8で順次切り替えることにより木材1の比誘電率の測定領域は、領域23、領域24、領域25、領域26、領域27へと順次移動し、さらに木材1をx軸方向に移動させることにより、二次元的な分布が求められる。
実施例2の木材検査装置の基本構成は実施例1と同様である。但し、本実施例の木材検査装置においては、複数の周波数のマイクロ波を用いて検出を行い、それらの検出により得られた複数のデータにより木材1の比誘電率の算出を行う構成となっていることと、木材が送信アンテナと受信アンテナの間に挿入される直前の入射マイクロ波21の位相と振幅のデータを取得し、その値を基準として木材1による位相変化を算出すること、木材1の不燃剤を含浸する前の比誘電率の二次元分布、すなわち初期比誘電率分布をあらかじめ測定し、その初期比誘電率分布と不燃剤を含浸させた後の木材1の比誘電率の二次元分布との間の差分を求め、その差分により不燃剤の含浸量を検査する手段を備えていることが異なっている。
図4は木材1を透過するマイクロ波の位相と周波数の関係の一例を示す図である。単一のマイクロ波周波数を用いても比誘電率を算出することは可能であるが、ノイズ等の影響により測定誤差が大きくなる場合がある。また、マイクロ波の位相を算出する場合、位相の変化量が2π以上となると位相の絶対値が不明となる場合がある。そこで、マイクロ波の周波数を掃引して、複数の周波数に対する位相を求めることにより、フィッティング解析によって最適値を算出し、より正確な比誘電率を算出することが可能となる。例えば、図4において、周波数fからfまで掃引したときに位相φからφまで変化する場合、位相の周波数に対する比例係数、すなわち図4の直線28の傾きから透過マイクロ波の位相の正確な値を特定し、正確な比誘電率εを求めることができる。
マイクロ波デバイスは、温度変化などにより位相や振幅がドリフトする場合がある。そのような場合、透過マイクロ波22の位相や振幅もドリフトしてしまい、基準となる値が変化してしまうので木材1の正確な比誘電率を測定することができない。そこで、本実施例では木材が送信アンテナと受信アンテナの間に挿入される直前の入射マイクロ波21の位相と振幅のデータを取得し、その値を基準として木材1による位相変化を算出し、比誘電率を算出している。
また、本実施例では、含浸量の検査精度をさらに高めるため、木材1に不燃剤を含浸させる前のその木材の比誘電率分布を測定し、それを基準として、含浸後の比誘電率分布を測定し、不燃剤の含浸前後の比誘電率の差分、すなわち比誘電率の変化量を求めている。これにより、木材1自体が元々有している比誘電率の部位によるばらつきの影響を除去することができ、より正確な含浸量の分布に対応する比誘電率変化量の分布を求めることができる。
図5は、本実施例において、木材の不燃剤の含浸量と比誘電率の関係を測定した結果の一例を示す図である。形態や部位が異なる5種類の木材について、それぞれ不燃剤の含浸量が異なるサンプルを作成し、不燃剤を含浸させる前のサンプルの比誘電率を基準として不燃剤を含浸後の比誘電率の変化量を測定した結果を示す。ここで、比誘電率の変化量は、各サンプルについて面内全体での測定データを平均化した値を示している。含浸量の値は木材のサンプル1枚当たりの不燃剤の含浸量である。図5より、不燃剤の含浸量に比例して比誘電率の変化量が増加していること、5種類の木材サンプルについては、その傾きはほぼ同じであることがわかる。なお、本実施例の上記木材サンプルの比誘電率εの測定値は、マイクロ波周波22~28GHzでは、1.5~2.3程度であった。
本実施例の木材検査装置により木材の不燃剤の含浸前後の比誘電率の変化量の二次元分布を測定した。図6及び図7は、それぞれ異なる条件で不燃剤を含浸させたた2種類の木材の比誘電率変化量の二次元分布の測定結果の一例を示す図であり、ディスプレイ上に表示された分布を示す。図6及び図7において、実際の画面では比誘電率変化量に応じて、赤色(R)、黄色(Y)、緑色(G)、青色(B)の順に色分けして示している。赤色(R)が比誘電率変化量0.8~1.0付近、黄色(Y)が比誘電率変化量0.7付近、緑色(G)が比誘電率変化量0.5付近、青色(B)が比誘電率変化量0.2~0.3付近の値をそれぞれ示す。図6の木材サンプルでは比誘電率変化量は0.2~0.5付近を中心に分布し、図7の木材サンプルでは比誘電率変化量は0.6~1.0付近を中心に分布している。この表示により、検査者は視覚的に木材中の比誘電率に対応する含浸量の二次元分布の様子を明確に認識することができる。例えば、不燃性能の基準となる含浸量に対応する比誘電率変化量の値が0.3付近であった場合、表示画面の青色部分の含浸量が基準値以下であると認識できる。
以上のように、本発明の木材検査装置により、1つの不燃木材中の不燃剤の含浸量の分布を検査できることが確認できた。上記実施例においては、木材に含浸させる薬剤が不燃剤である場合を示したが、防腐剤などの他の薬剤を含浸させた場合であっても、あらかじめその薬剤の含浸量と比誘電率との関係を求めておけば、上記実施例と同様に含浸量の分布の検査が可能である。
なお、本発明は上記の実施例に限定されるものではないことは言うまでもなく、目的や用途に応じて設計変更可能である。例えば、送信アンテナと受信アンテナはホーンアンテナ以外のマイクロ波アンテナ、例えばプローブアンテナ等を用いても構成可能である。送信アンテナと受信アンテナの設置数及びその配置は、測定を目的とする木材の形状等に合わせて最適な構成を選択すればよい。
1 木材
1a 表面
1b 裏面
2a,2b,2c,2d,2e 送信アンテナ
3a,3b,3c,3d,3e 受信アンテナ
4 木材搬送装置
5 マイクロ波送信回路
6 マイクロ波受信回路
7 マイクロ波ユニット
8 スイッチ
9,12 分配器
10 パーソナルコンピュータ
11 発信器
13 検出器
14 アンプ
15 表示部
16 送信アンテナユニット
17 受信アンテナユニット
20 木材検査装置
21 入射マイクロ波
22 透過マイクロ波
23,24,25,26,27 領域
28 直線

Claims (6)

  1. 薬剤を含浸させた木材を挟んで互いに対向設置されたマイクロ波の送信アンテナ及び受信アンテナと、前記送信アンテナに接続されたマイクロ波送信回路と、前記受信アンテナに接続されたマイクロ波受信回路とを有し、
    前記送信アンテナより送出され、前記木材を透過し前記受信アンテナに入力されるマイクロ波の振幅と位相とを検出し、
    前記検出されたマイクロ波の振幅と位相とにより前記木材の比誘電率を算出し、
    前記比誘電率と、あらかじめ求めた前記薬剤の含浸量と前記比誘電率との関係と、を用いて、前記木材の前記薬剤の含浸量を検査する木材検査装置であって、
    前記木材を一方向に移動させ、
    前記木材の移動方向に直交する方向に対して互いに異なる位置に配置された複数個の前記送信アンテナと、前記木材を挟んで前記複数個の送信アンテナとそれぞれ対向配置された複数個の前記受信アンテナとにより前記検出を行うことにより、前記木材の比誘電率の二次元分布を測定し、該二次元分布を表示する表示装置を有することを特徴とする木材検査装置。
  2. 前記複数個の送信アンテナと前記マイクロ波送信回路との間にスイッチを有し、該スイッチにより前記複数個の送信アンテナを順次切り替えながら前記検出を行うことを特徴とする請求項1に記載の木材検査装置。
  3. 複数の周波数のマイクロ波を用いて前記検出を行い、該検出により得られた複数のデータにより前記比誘電率の算出を行うことを特徴とする請求項1又は2のいずれか1項に記載の木材検査装置。
  4. 前記木材の薬剤を含浸する前の比誘電率の二次元分布、すなわち初期比誘電率分布をあらかじめ測定し、前記初期比誘電率分布と薬剤を含浸させた前記木材の比誘電率の二次元分布との間の差分を求め、前記差分により前記薬剤の含浸量を検査する手段を有することを特徴とする請求項1乃至3のいずれか1項に記載の木材検査装置。
  5. 薬剤を含浸させた木材を挟んで互いに対向設置されたマイクロ波の送信アンテナ及び受信アンテナと、前記送信アンテナに接続されたマイクロ波送信回路と、前記受信アンテナに接続されたマイクロ波受信回路とを有し、
    前記送信アンテナより送出され、前記木材を透過し前記受信アンテナに入力されるマイクロ波の振幅と位相とを検出し、
    前記検出されたマイクロ波の振幅と位相とにより前記木材の比誘電率を算出し、
    前記比誘電率と、あらかじめ求めた前記薬剤の含浸量と前記比誘電率との関係と、を用いて、前記木材の前記薬剤の含浸量を検査する木材検査装置であって、
    前記マイクロ波の周波数を掃引して、複数の周波数に対する位相を求めることにより位相の変化量を求め、前記比誘電率を算出することを特徴とする木材検査装置。
  6. 前記木材の薬剤を含浸する前の比誘電率、すなわち初期比誘電率をあらかじめ測定し、前記初期比誘電率と薬剤を含浸させた前記木材の比誘電率との間の差分を求め、前記差分により前記薬剤の含浸量を検査する手段を有することを特徴とする請求項5に記載の木材検査装置。
JP2019190802A 2019-10-18 2019-10-18 木材検査装置 Active JP7366362B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019190802A JP7366362B2 (ja) 2019-10-18 2019-10-18 木材検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019190802A JP7366362B2 (ja) 2019-10-18 2019-10-18 木材検査装置

Publications (2)

Publication Number Publication Date
JP2021067481A JP2021067481A (ja) 2021-04-30
JP7366362B2 true JP7366362B2 (ja) 2023-10-23

Family

ID=75637004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019190802A Active JP7366362B2 (ja) 2019-10-18 2019-10-18 木材検査装置

Country Status (1)

Country Link
JP (1) JP7366362B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030146767A1 (en) 2002-02-04 2003-08-07 Steele Philip H. Moisture and density detector (MDD)
JP2010237135A (ja) 2009-03-31 2010-10-21 Nippon Telegr & Teleph Corp <Ntt> 木材含水率同定装置および木材含水率同定方法
JP4829452B2 (ja) 1999-09-17 2011-12-07 フード ラダー システム イン スウェーデン アーベー 製品内の異物を検出する装置および方法
JP2019070535A (ja) 2017-10-06 2019-05-09 マイクロメジャー株式会社 含水率等の測定装置及び測定方法
JP2019132807A (ja) 2018-02-02 2019-08-08 株式会社サカワ 不燃木材品質検査方法及び品質検査システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2928487A1 (de) * 1979-07-14 1981-02-05 Philips Patentverwaltung Verfahren zur messung der relativen feuchte eines messgutes mit hilfe von mikrowellen im ghz-bereich
SE449139B (sv) * 1984-06-27 1987-04-06 Stiftelsen Inst Mikrovags Sett att meta fuktkvot i organiska material jemte anordning derfor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829452B2 (ja) 1999-09-17 2011-12-07 フード ラダー システム イン スウェーデン アーベー 製品内の異物を検出する装置および方法
US20030146767A1 (en) 2002-02-04 2003-08-07 Steele Philip H. Moisture and density detector (MDD)
JP2010237135A (ja) 2009-03-31 2010-10-21 Nippon Telegr & Teleph Corp <Ntt> 木材含水率同定装置および木材含水率同定方法
JP2019070535A (ja) 2017-10-06 2019-05-09 マイクロメジャー株式会社 含水率等の測定装置及び測定方法
JP2019132807A (ja) 2018-02-02 2019-08-08 株式会社サカワ 不燃木材品質検査方法及び品質検査システム

Also Published As

Publication number Publication date
JP2021067481A (ja) 2021-04-30

Similar Documents

Publication Publication Date Title
US4764718A (en) Microwave oil saturation scanner
CN105940282B (zh) 膜厚测量方法及膜厚测量装置
US5748003A (en) Microwaves used for determining fatigue and surface crack features on metal surfaces
US6691563B1 (en) Universal dielectric calibration method and apparatus for moisture content determination in particulate and granular materials
US7439749B2 (en) Non-destructive testing of physical characteristics of composite structures
CN108227009A (zh) 隐藏在鞋中的未经授权的物体或材料的检测器
US20120256777A1 (en) Method for Identifying Materials Using Dielectric Properties through Active Millimeter Wave Illumination
Hyde IV et al. Nondestructive determination of the permittivity tensor of a uniaxial material using a two-port clamped coaxial probe
JP6620098B2 (ja) 非破壊材料特性解析導波管プローブ
US11085874B2 (en) Characterization of multilayer structures
Degli-Esposti et al. A method for the electromagnetic characterization of construction materials based on Fabry–Pérot resonance
JP7366362B2 (ja) 木材検査装置
Dester et al. Two-iris method for the electromagnetic characterization of conductor-backed absorbing materials using an open-ended waveguide probe
Zhang et al. Broadband stepped-frequency modulated continuous terahertz wave tomography for non-destructive inspection of polymer materials
WO2018078403A1 (en) Microwave sensor
Sanchez et al. Swept frequency reflectometer for correlation studies in the TJ‐I tokamak
Tang et al. Electromagnetic evaluation of brick specimens using synthetic aperture radar imaging
US20180156728A1 (en) Characterization of multilayer structures
Andreas et al. Non-destructive evaluation of grain angle, moisture content and density of spruce with microwaves
Ahanian et al. An array waveguide probe for detection, location and sizing of surface cracks in metals
Liu et al. High-resolution imaging of damaged wooden structures for building inspection by polarimetric radar
Agarwal et al. Active millimeter wave radar system for non-destructive, non-invasive underline fault detection and multilayer material analysis
Hyde IV et al. Broadband, non‐destructive characterisation of PEC‐backed materials using a dual‐ridged‐waveguide probe
Vilovic et al. A non-destructive approach for extracting the complex dielectric constant of the walls in building
JP3799524B2 (ja) マイクロ波非破壊評価装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231002

R150 Certificate of patent or registration of utility model

Ref document number: 7366362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150