JP7364521B2 - Avoidance route search device, avoidance route search method, program - Google Patents

Avoidance route search device, avoidance route search method, program Download PDF

Info

Publication number
JP7364521B2
JP7364521B2 JP2020064054A JP2020064054A JP7364521B2 JP 7364521 B2 JP7364521 B2 JP 7364521B2 JP 2020064054 A JP2020064054 A JP 2020064054A JP 2020064054 A JP2020064054 A JP 2020064054A JP 7364521 B2 JP7364521 B2 JP 7364521B2
Authority
JP
Japan
Prior art keywords
ship
route
avoidance
predicted
route search
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020064054A
Other languages
Japanese (ja)
Other versions
JP2021160550A (en
Inventor
臣也 岩澤
尚吾 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020064054A priority Critical patent/JP7364521B2/en
Publication of JP2021160550A publication Critical patent/JP2021160550A/en
Application granted granted Critical
Publication of JP7364521B2 publication Critical patent/JP7364521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Description

特許法第30条第2項適用 (1) 発行日 令和元年11月30日 刊行物 株式会社光電製作所 光電技報 第35号Application of Article 30, Paragraph 2 of the Patent Act (1) Publication date November 30, 2019 Publication Koden Seisakusho Co., Ltd. Koden Technical Report No. 35

本発明は、船舶の航行において衝突を予防するための避航経路探索装置、避航経路探索支援装置、避航経路探索方法、避航経路探索支援方法、プログラムに関する。 The present invention relates to an avoidance route search device, an avoidance route search support device, an avoidance route search method, an avoidance route search support method, and a program for preventing collisions during navigation of ships.

一般的には、目的地に向かって航行していた自船が他船と交差する場合、海上衝突予防法にしたがって「衝突の恐れ」を感じたとき自船が避航船であれば大幅に右転して他船の船尾を十分な安全距離を保って通過後、十分に遠ざかってからもとの航路に戻る。 Generally speaking, if your own ship is navigating toward a destination and crosses another ship, if you feel a ``fear of collision'' according to the Maritime Collision Prevention Act, and if your own ship is a give-way vessel, you will be significantly affected. Turn around and pass the stern of another vessel at a safe distance, and then return to the original route after moving far enough away.

また、他船との関係で危険な領域を求める方法も提案されており、特許文献1の技術などが知られている。特許文献1に示された技術では、自船の周りにDCPA(Distance of Closest Point of Approach)円を描き、将来の自船の周りのDCPA円が将来の他船に接触しないようにする方法である。 Furthermore, methods for determining dangerous areas in relation to other ships have also been proposed, such as the technique disclosed in Patent Document 1. The technology shown in Patent Document 1 is a method that draws a DCPA (Distance of Closest Point of Approach) circle around the own ship and prevents the DCPA circle around the own ship from coming into contact with other ships in the future. be.

特開平07-246998号公報Japanese Patent Application Publication No. 07-246998

しかしながら、従来技術は、複数の他船を想定していないので、自船とそれぞれの他船との衝突の危険性は予測できても、1つの他船を避けた後の他の他船との衝突の危険性を予測することは難しかった。したがって、複数の他船がある海域で経路を決めることは難しかった。また、従来技術は、自船が他船の前を航行するときは、他船の正面を通過後もDCPA円に接触しないように経路を決定する。しかし、自船が、他船の正面をDCPA円に接触しないように通過した後であれば、DCPA円に他船が接触しても衝突する危険はない。また、自船が、航行方向が90度程度異なる他船の後ろを航行するときは、他船の後方を通過する前もDCPA円に接触しないように経路を選択する。しかし、他船と自船の航行方向が90度程度異なる場合、一時的にDCPA円に他船が接触しても、他船の真後ろを自船が通過するときにDCPA円に接触しないように航行すれば衝突の危険がない。つまり、従来技術によれば、余裕を持ちすぎて経路を決定していた。このように、複数の他船を想定していないことと余裕を持ちすぎて経路を決定していたことから、他船が複数存在する海域での経路探索が困難であった。これは、船舶の自動航行を実現するための支障にもなっていた。 However, the conventional technology does not assume multiple other ships, so even if the risk of collision between one's own ship and each other ship can be predicted, the risk of collision between one ship and another ship after avoiding one other ship is It was difficult to predict the risk of a collision. Therefore, it was difficult to decide on a route in an area where there were multiple other ships. Furthermore, in the prior art, when the own ship sails in front of another ship, the route is determined so as not to contact the DCPA circle even after passing in front of the other ship. However, if your own ship passes in front of another ship without touching the DCPA circle, there is no risk of collision even if the other ship touches the DCPA circle. Furthermore, when the own ship is sailing behind another ship whose sailing direction is different by about 90 degrees, the ship selects a route so as not to come into contact with the DCPA circle even before passing behind the other ship. However, if the sailing directions of another ship and your own ship differ by about 90 degrees, even if the other ship temporarily contacts the DCPA circle, the ship should not contact the DCPA circle when passing directly behind the other ship. There is no risk of collision if the ship sails. In other words, according to the prior art, the route was determined with too much leeway. In this way, it was difficult to search for a route in an area where there were multiple other ships because the route was determined with too much leeway and without considering multiple other ships. This was also a hindrance to realizing automatic navigation for ships.

そこで、本発明では他船が複数存在する海域での経路探索を容易にすることを目的とする。経路探索を容易にするための1つめの手段は、複数の他船が存在することを前提とした経路探索の方法を提供することである。また、2つめの手段は、避けるべき領域を適切に設定することである。いずれかの手段だけでも、他船が複数存在する海域での経路探索を容易にすることは達成できるし、両方の手段を組み合わせれば、さらに経路探索を容易にできる。 Therefore, an object of the present invention is to facilitate route searching in a sea area where a plurality of other ships exist. A first means for facilitating route searching is to provide a route searching method that assumes the presence of a plurality of other ships. The second method is to appropriately set areas to be avoided. By using either method alone, it is possible to facilitate route searching in areas where there are multiple other ships, and by combining both methods, route searching can be made even easier.

本発明の第1の発明では、複数の他船が存在する海域でも経路を探索できる技術を提供することを目的とする。第2の発明では、避けるべき領域を適切に設定する技術を提供することを目的とする。 A first aspect of the present invention aims to provide a technology that can search for a route even in a sea area where a plurality of other ships exist. The second invention aims to provide a technique for appropriately setting areas to be avoided.

第1の発明である避航経路探索装置は、情報収集部、条件設定部、予測避航領域計算部、経路探索部、繰り返し制御部を備える。情報収集部は、自船および周辺の他船の位置と速度の情報を収集する。条件設定部は、自船および他船の位置と速度の条件を設定する。予測避航領域計算部は、条件設定部が設定した自船および他船の位置と速度に基づいて、他船ごとに、あらかじめ定めた避航領域の条件を満たす領域である予測避航領域を計算する。経路探索部は、あらかじめ定めた目的地と条件設定部が設定した自船とを結ぶ直線上にいずれかの予測避航領域がある場合に、あらかじめ定めた経路探索の条件を満たす予測避航領域の境界線上の点から経路点候補を探索する。繰り返し制御部は、経路点候補ごとに、当該経路点候補が属する予測避航領域の境界線上の点の1つを、目的地方向に進む自船の位置に設定し、当該位置に自船が到達する時刻から他船の位置を設定するように条件設定部に指示し、条件設定部、予測避航領域計算部、経路探索部の処理の繰り返し処理を行わせる。 The avoidance route search device according to the first invention includes an information collection section, a condition setting section, a predicted avoidance area calculation section, a route search section, and a repetition control section. The information collection unit collects information on the position and speed of the own ship and other ships in the vicinity. The condition setting section sets conditions for the position and speed of the own ship and other ships. The predicted avoidance area calculation unit calculates a predicted avoidance area, which is an area that satisfies predetermined avoidance area conditions, for each other ship based on the positions and speeds of the own ship and other ships set by the condition setting unit. If there is any predicted avoidance area on a straight line connecting the predetermined destination and the own ship set by the condition setting unit, the route search unit determines the boundary of the predicted avoidance area that satisfies the predetermined route search conditions. Search for route point candidates from points on the line. For each route point candidate, the repeat control unit sets one of the points on the boundary line of the predicted avoidance area to which the route point candidate belongs as the position of the own ship proceeding in the direction of the destination, and determines whether the own ship will reach the position. The condition setting section is instructed to set the position of the other ship from the time when the condition setting section, the predicted avoidance area calculation section, and the route search section repeat the processing.

第2の発明である避航経路探索支援装置は、情報収集部と予測避航領域計算部を備える。他船の前方方向の避ける距離を前方安全距離、他船の側方方向の避ける距離を側方安全距離、他船の後方方向の避ける距離を後方安全距離とする。情報収集部は、自船および周辺の他船の位置と速度の情報を収集する。予測避航領域計算部は、自船が他船の正面に位置するときに前方安全距離を確保し、自船が他船の真横に位置するときに側方安全距離を確保し、自船が他船の真後ろに位置するときに後方安全距離を確保するように予測避航領域を計算する。 The avoidance route search support device, which is the second invention, includes an information gathering section and a predicted avoidance area calculation section. The distance to avoid another ship in the forward direction is the forward safety distance, the distance to avoid the other ship in the side direction is the side safety distance, and the distance to avoid the other ship in the rear direction is the rear safety distance. The information collection unit collects information on the position and speed of the own ship and other ships in the vicinity. The predicted avoidance area calculation unit secures a forward safe distance when the own ship is located in front of another ship, secures a side safety distance when the own ship is located directly beside the other ship, and secures a lateral safe distance when the own ship is located directly beside the other ship. Calculates the predicted avoidance area to ensure a safe rear distance when positioned directly behind the ship.

本発明の避航経路探索装置によれば、条件設定部、予測避航領域計算部、経路探索部の処理の繰り返し処理を行うので、複数の他船が存在する海域でも経路を探索できる。本発明の避航経路探索支援装置によれば、自船が他船の正面に位置するときに前方安全距離を確保し、自船が他船の真横に位置するときに側方安全距離を確保し、自船が他船の真後ろに位置するときに後方安全距離を確保するので、避けるべき領域を適切に設定できる。 According to the avoidance route search device of the present invention, since the processing of the condition setting section, the predicted avoidance area calculation section, and the route search section are repeated, a route can be searched even in an ocean area where a plurality of other ships exist. According to the avoidance route search support device of the present invention, a forward safe distance is secured when the own ship is located in front of another ship, and a lateral safe distance is secured when the own ship is located directly beside the other ship. , since a safe rear distance is ensured when the own ship is located directly behind another ship, areas to be avoided can be appropriately set.

避航経路探索装置の機能構成例を示す図。FIG. 2 is a diagram showing an example of a functional configuration of an avoidance route search device. 避航経路探索装置の処理フロー例を示す図。The figure which shows the example of a processing flow of an avoidance route search device. DCPA円を用いて求めた予測避航領域のイメージを示す図。The figure which shows the image of the predicted avoidance area calculated|required using the DCPA circle. 提案する安全距離の考え方を示す図。A diagram showing the concept of the proposed safety distance. 他船が自船よりも遅い場合と同じ速さの場合の予測避航領域のイメージを示す図。A diagram showing an image of a predicted avoidance area when the other ship is slower than the own ship and when the other ship is at the same speed. 他船が自船よりも速い場合の予測避航領域の第1のイメージを示す図。The figure which shows the 1st image of the predicted avoidance area when another ship is faster than own ship. 他船が自船よりも速い場合の予測避航領域の第2のイメージを示す図。The figure which shows the 2nd image of the predicted avoidance area when another ship is faster than own ship. 他船と自船の速さが同じ場合の特殊な例のときの予測避航領域のイメージを示す図。A diagram showing an image of a predicted avoidance area in a special case where the speed of the other ship and the own ship are the same. 現在の自船と目的地と予測避航領域の例を示す図。A diagram showing an example of the current own ship, destination, and predicted avoidance area. 図9のときの経路点候補の関係をグラフ理論の木で表現した図。10 is a diagram expressing the relationship between route point candidates in FIG. 9 using a graph theory tree; FIG. 自船200が点311-2の位置に到達した時刻の他船302,303の位置を設定し、そのときの予測避航領域を計算した結果を示す図。The figure which shows the result of setting the position of other ships 302, 303 at the time when own ship 200 reached the position of point 311-2, and calculating the predicted avoidance area at that time. 図11のときの経路点候補の関係をグラフ理論の木で表現した図。FIG. 12 is a diagram expressing the relationship between route point candidates in FIG. 11 using a graph theory tree. 自船200が点313-2の位置、もしくは点313-3の位置に到達した時刻の様子を示す図。A diagram showing the time when own ship 200 reaches the position of point 313-2 or the position of point 313-3. 図13のときの経路点候補の関係をグラフ理論の木で表現した図。14 is a diagram expressing the relationship between route point candidates in FIG. 13 using a graph theory tree; FIG. 自船200が点311-4の位置に到達した時刻の他船302,303の位置を設定し、そのときの予測避航領域を計算した結果を示す図。The figure which shows the result of setting the position of other ships 302, 303 at the time when own ship 200 reached the position of point 311-4, and calculating the predicted avoidance area at that time. 図15のときの経路点候補の関係をグラフ理論の木で表現した図。FIG. 16 is a diagram expressing the relationship between route point candidates in FIG. 15 using a graph theory tree. 自船200が点312-2の位置に到達した時刻の他船302,303の位置を設定し、そのときの予測避航領域を計算した結果を示す図。The figure which shows the result of setting the position of other ships 302, 303 at the time when own ship 200 reached the position of point 312-2, and calculating the predicted avoidance area at that time. 図17のときの経路点候補の関係をグラフ理論の木で表現した図。18 is a diagram expressing the relationship between route point candidates in FIG. 17 using a graph theory tree; FIG. 自船200が点313-2の位置、もしくは点313-3の位置に到達した時刻の様子を示す図。A diagram showing the time when own ship 200 reaches the position of point 313-2 or the position of point 313-3. 図19のときの経路点候補の関係をグラフ理論の木で表現した図。FIG. 20 is a diagram expressing the relationship between route point candidates in FIG. 19 using a graph theory tree. 自船200が点311-3を経由して点312-4の位置に到達した時刻の様子を示す図。A diagram showing the time when own ship 200 reaches the position of point 312-4 via point 311-3. 図21のときの経路点候補の関係をグラフ理論の木で表現した図。FIG. 22 is a diagram expressing the relationship between route point candidates in FIG. 21 using a graph theory tree. 自船200が直接点312-3に進み、点312-4の位置に到達した時刻の様子を示す図。A diagram showing the time when the own ship 200 directly proceeds to point 312-3 and reaches the position of point 312-4. 図23のときの経路点候補の関係をグラフ理論の木で表現した図。24 is a diagram expressing the relationship between route point candidates in FIG. 23 using a graph theory tree; FIG. 変針角が制限角を超える場合の例示を示す図。The figure which shows the illustration when a turning angle exceeds a limit angle. 変針角が制限角となるように予測避航領域を移動させた図。A diagram in which the predicted avoidance area has been moved so that the turning angle becomes the limit angle. 図26のときの経路点候補の関係をグラフ理論の木で表現した図。27 is a diagram expressing the relationship between route point candidates in FIG. 26 using a graph theory tree; FIG. 再計算部160も備えた場合に得られる木を示す図。FIG. 7 is a diagram showing a tree obtained when a recalculation unit 160 is also provided. 互いに近い予測避航領域が存在する例を示す図。FIG. 3 is a diagram showing an example in which predicted avoidance areas that are close to each other exist. 避航経路探索支援装置の機能構成例を示す図。FIG. 2 is a diagram showing an example of a functional configuration of an avoidance route search support device. 避航経路探索支援装置の処理フロー例を示す図。FIG. 3 is a diagram showing an example of a processing flow of the avoidance route search support device. コンピュータの機能構成例を示す図。FIG. 1 is a diagram showing an example of a functional configuration of a computer.

以下、本発明の実施の形態について、詳細に説明する。なお、同じ機能を有する構成部には同じ番号を付し、重複説明を省略する。 Embodiments of the present invention will be described in detail below. Note that components having the same functions are given the same numbers and redundant explanations will be omitted.

図1に避航経路探索装置の機能構成例を示す。図2に避航経路探索装置の処理フロー例を示す。避航経路探索装置100は、情報収集部110、条件設定部130、予測避航領域計算部140、経路探索部150、繰り返し制御部180、記録部190を備える。避航経路探索装置100は、さらに、他船選別部120、予測避航領域結合部145、再計算部160、経路決定部170も備えてもよい。 FIG. 1 shows an example of the functional configuration of an avoidance route search device. FIG. 2 shows an example of the processing flow of the avoidance route search device. The avoidance route search device 100 includes an information collection section 110, a condition setting section 130, a predicted avoidance area calculation section 140, a route search section 150, a repetition control section 180, and a recording section 190. The avoidance route search device 100 may further include an other ship selection section 120, a predicted avoidance area combination section 145, a recalculation section 160, and a route determination section 170.

情報収集部110は、自船および周辺の他船の位置と速度の情報を収集する(S110)。情報収集部110は、例えば、位置センサ、速度センサ、AIS(船舶自動識別装置:Automatic Identification System)、ARPA(自動衝突予防援助装置:Automatic Radar Plotting Aid)などを有し、これらのセンサおよび装置から得られる情報を統合して、自船および周辺の他船の位置と速度の情報を得ればよい。なお、本明細書では、「速さ」と表現するときはスカラー量を意味しており、方向の情報は含んでいない。「速度」と表現するときはベクトル意味しており、スカラー量である「速さ」と方向の両方を含んでいる。記録部190は、収集した自船および周辺の他船の位置と速度の情報を記録する。 The information collecting unit 110 collects information on the position and speed of the own ship and other nearby ships (S110). The information collecting unit 110 includes, for example, a position sensor, a speed sensor, an AIS (Automatic Identification System), an ARPA (Automatic Radar Plotting Aid), etc., and receives information from these sensors and devices. All you have to do is integrate the obtained information to obtain information on the position and speed of your own ship and other nearby ships. Note that in this specification, when "speed" is expressed, it means a scalar amount and does not include directional information. When we say "velocity," we mean a vector, which includes both "velocity" and direction, which are scalar quantities. The recording unit 190 records the collected position and speed information of the own ship and other nearby ships.

他船選別部120を備えているときは、他船の中から避航経路探索に関係する他船を選別する。他船を選別するタイミングは、後述する条件設定部130の処理の前でもよいし、後でもよい。また、条件設定部130の処理の前後の両方でもよい。また、他船の数が少ないときは他船を選別する処理は行わなくてもよい。条件設定部130の処理の前に行う場合は、他船選別部120は、情報を収集した他船の中から避航経路探索に関係する他船を選別する(S121)。具体的には、現在以降に航路が交差する可能性がある他船を選別すればよい。条件設定部130の処理の後に行う場合は、他船選別部120は、避航経路探索に関係する他船を、条件設定部130が設定した自船および他船の位置と速度の条件に基づいて選別する(S122)。つまり、条件設定部130が設定した自船および他船の位置と速度の条件に基づいて、その後に航路が交差する可能性がある他船を選別すればよい。 When the other ship selection section 120 is provided, other ships related to the avoidance route search are selected from among other ships. The timing for selecting other ships may be before or after the processing of the condition setting unit 130, which will be described later. Further, it may be performed both before and after the processing by the condition setting unit 130. Further, when the number of other ships is small, it is not necessary to perform the process of selecting other ships. If carried out before the processing by the condition setting unit 130, the other ship selection unit 120 selects other ships related to the avoidance route search from among the other ships for which information has been collected (S121). Specifically, it is only necessary to select other ships with which the routes may intersect after the current time. When carried out after the processing by the condition setting unit 130, the other ship selection unit 120 selects other ships related to the avoidance route search based on the position and speed conditions of the own ship and other ships set by the condition setting unit 130. Sort (S122). That is, based on the position and speed conditions of the own ship and other ships set by the condition setting unit 130, other ships with which the routes may intersect later may be selected.

条件設定部130は、自船および他船の位置と速度の条件を設定する(S131)。最初の条件設定では、情報収集部110で収集した現在の自船および他船の位置と速度を設定すればよい。その後は、後述する繰り返し制御部180の指示に従って自船および他船の位置と速度の条件を設定すればよい。詳細は後述する。 The condition setting unit 130 sets conditions for the position and speed of the own ship and other ships (S131). In the first condition setting, the current positions and speeds of the own ship and other ships collected by the information collection unit 110 may be set. Thereafter, the position and speed conditions of the own ship and other ships may be set according to instructions from the repeat control unit 180, which will be described later. Details will be described later.

予測避航領域計算部140は、条件設定部130が設定した自船および他船の位置と速度に基づいて、他船選別部120が選別した他船ごとに、あらかじめ定めた避航領域の条件を満たす領域である予測避航領域を計算する(S141)。図3にDCPA円を用いて求めた予測避航領域のイメージを示す。DCPA円を用いる方法は、上述のように予測避航領域が余裕を持ちすぎるという課題があるが、他船が複数存在する海域であっても、他船間の距離が離れている場合はDCPA円を用いても経路を探索できるので、実施例1の予測避航領域計算部140では、DCPA円を用いる方法を採用してもよい。図3中の自船200は上方向に進もうとしており、他船300は左方向に進もうとしている。自船200の周りにDCPA円210を作図する。他船300-1とDCPA円210-1は、自船200が他船300の後方を通過するときに最も自船200と他船300が接近するタイミングを示している。他船300-2とDCPA円210-2は、自船200が他船300の前方を通過するときに最も自船200と他船300が接近するタイミングを示している。予測避航領域310は、図3に示したような形状となる。 The predicted avoidance area calculation unit 140 satisfies predetermined avoidance area conditions for each other ship selected by the other ship selection unit 120 based on the positions and speeds of the own ship and other ships set by the condition setting unit 130. A predicted avoidance area is calculated (S141). Figure 3 shows an image of the predicted avoidance area determined using the DCPA circle. As mentioned above, the method of using the DCPA circle has the problem that the predicted avoidance area has too much margin, but even in an area where there are multiple other ships, if the distance between the other ships is large, the DCPA circle is used. Since the route can be searched by using the DCPA circle, the predicted avoidance area calculation unit 140 of the first embodiment may adopt a method using the DCPA circle. The own ship 200 in FIG. 3 is trying to move upward, and the other ship 300 is trying to move leftward. A DCPA circle 210 is drawn around own ship 200. The other ship 300-1 and the DCPA circle 210-1 indicate the timing at which the own ship 200 and the other ship 300 come closest when the own ship 200 passes behind the other ship 300. The other ship 300-2 and the DCPA circle 210-2 indicate the timing at which the own ship 200 and the other ship 300 approach the closest when the own ship 200 passes in front of the other ship 300. The predicted avoidance area 310 has a shape as shown in FIG.

図4に提案する安全距離の考え方を示す。他船300の前方方向の避ける距離を前方安全距離L、他船300の側方方向の避ける距離を側方安全距離L、他船の後方方向の避ける距離を後方安全距離Lとする。前方安全距離L、側方安全距離L、後方安全距離Lは、自船200と他船300の全長に応じて、あらかじめ定めた方法で決めればよい。例えば、自船200の全長をL、他船300の全長をLとするときに、基準となる長さLを、L=(L+L)/2のように求め、例えば、
=12L,L=4L,L=4L
のように決めればよい。図4に示した設定にすれば、自船が他船の正面に位置するときに前方安全距離を確保し、自船が他船の真横に位置するときに側方安全距離を確保し、自船が他船の真後ろに位置するときに後方安全距離を確保するので、避けるべき領域を適切に設定できる。
Figure 4 shows the concept of the proposed safety distance. The distance to avoid the other ship 300 in the forward direction is the forward safe distance LF , the distance to avoid the other ship 300 in the lateral direction is the lateral safe distance LW , and the distance to avoid the other ship in the rear direction is the rear safe distance LR . . The forward safety distance L F , the side safety distance L W , and the rear safety distance L R may be determined by a predetermined method depending on the total lengths of the own ship 200 and the other ship 300. For example, when the total length of own ship 200 is L O and the total length of other ship 300 is L T , the reference length L is determined as L = (L O + L T )/2, and for example,
L F =12L, L W =4L, L R =4L
You can decide as follows. If the settings shown in Figure 4 are used, a safe forward distance is secured when the own ship is located in front of another ship, a lateral safe distance is secured when the own ship is located directly beside the other ship, and a safe distance is secured when the own ship is located directly beside the other ship. A safe rear distance is ensured when a ship is located directly behind another ship, so areas to avoid can be set appropriately.

図5~図8に予測避航領域のイメージを示す。予測避航領域は、自船200が通過できない領域を示している。図5は他船が自船よりも遅い場合と同じ速さの場合の予測避航領域のイメージを、図6は他船が自船よりも速い場合の予測避航領域の第1のイメージを、図7は他船が自船よりも速い場合の予測避航領域の第2のイメージを、図8は他船と自船の速さが同じ場合の特殊な例のときの予測避航領域のイメージを示している。自船200の速さをV、他船300の速さをVとする。図5の予測避航領域310の4つの頂点を点310-1~4、自船200と他船300との距離をd、点310-1と310-2を結んだ線と他船300との距離をa、点310-3と310-4を結んだ線と他船300との距離をaとする。他船300の航路と自船200の方向とのなす角をβとすると、他船300の航路に自船200から引いた垂線と他船300との距離kは、dcosβである。他船300-1は、自船200が点310-1経由で、他船300の航路上(点310-1と点310-2の中点付近)まで進んだタイミングの他船300を示している。他船300-2は、自船200が点310-3経由で、他船300の航路上(点310-3と点310-4の中点付近)まで進んだタイミングの他船300を示している。なお、船舶は急峻には曲がれないので、図5の場合であれば、自船200が点310-1経由で他船300の航路上に到達したときは、実際には点310-1と点310-2の中点よりも、右側にずれた位置を通過すると考えられるが、全体的には誤差の範囲なので以下の計算ではずれは無視する。他船300-1と、点310-1と点310-2の中点との距離は後方安全距離L以上、他船300-2と、点310-3と点310-4の中点との距離は前方安全距離L以上、他船300の航路と、点310-1と点310-3を結んだ線との距離は側方安全距離L、他船300の航路と、点310-2と点310-4を結んだ線との距離は側方安全距離Lである。 Figures 5 to 8 show images of predicted avoidance areas. The predicted avoidance area indicates an area through which the own ship 200 cannot pass. Figure 5 shows an image of the predicted avoidance area when the other ship is slower than the own ship and when the speed is the same, and Figure 6 shows the first image of the predicted avoidance area when the other ship is faster than the own ship. Figure 7 shows a second image of the predicted avoidance area when the other ship is faster than the own ship, and Figure 8 shows an image of the predicted avoidance area in a special case where the speed of the other ship and the own ship are the same. ing. Let the speed of own ship 200 be V O and the speed of other ship 300 be V T . The four vertices of the predicted avoidance area 310 in FIG. Let the distance be a 1 and the distance between the line connecting points 310-3 and 310-4 and the other ship 300 be a 2 . If the angle between the route of the other ship 300 and the direction of the own ship 200 is β, then the distance k between the other ship 300 and the perpendicular line drawn from the own ship 200 to the route of the other ship 300 is dcosβ. Other ship 300-1 indicates the timing when own ship 200 has proceeded to the route of other ship 300 (near the midpoint of points 310-1 and 310-2) via point 310-1. There is. Other ship 300-2 indicates the timing when own ship 200 has proceeded to the route of other ship 300 (near the midpoint between points 310-3 and 310-4). There is. Note that ships cannot make sharp turns, so in the case of Figure 5, when own ship 200 reaches the route of another ship 300 via point 310-1, it actually crosses point 310-1 and point 310-1. It is thought that the signal passes through a position shifted to the right of the midpoint of 310-2, but since the overall error is within the range of error, the shift will be ignored in the calculations below. The distance between the other ship 300-1 and the midpoint between points 310-1 and 310-2 is at least the rear safety distance LR . The distance between the forward safe distance LF is greater than the forward safety distance L F , the distance between the other ship 300's route and the line connecting points 310-1 and 310-3 is the side safety distance L W , and the other ship 300's route and the point 310 The distance between -2 and the line connecting point 310-4 is the lateral safety distance LW .

上述のように前方安全距離L、側方安全距離L、後方安全距離Lを設定する場合は、予測避航領域計算部140は、自船200が他船300の正面に位置するときに前方安全距離Lを確保し、自船200が他船300の真横に位置するときに側方安全距離Lを確保し、自船200が他船300の真後ろに位置するときに後方安全距離Lを確保するように予測避航領域310を計算する(S141)。「予測避航領域310を計算する」とは、「予測避航領域310」の位置を求めることを意味している。具体的には、以下に示すように、予測避航領域310の位置を求めればよい。 When setting the forward safety distance L F , the side safety distance L W , and the rear safety distance L R as described above, the predicted avoidance area calculation unit 140 calculates when the own ship 200 is located in front of the other ship 300 Secure the forward safety distance L F , secure the lateral safety distance L W when the own ship 200 is located directly beside the other ship 300, and secure the rear safety distance L W when the own ship 200 is located directly behind the other ship 300. A predicted avoidance area 310 is calculated to ensure L R (S141). "Calculating the predicted avoidance area 310" means finding the position of the "predicted avoidance area 310." Specifically, the position of the predicted avoidance area 310 may be determined as shown below.

<他船が自船よりも遅い場合に、他船の後方を通過するとき(図5参照)>
自船200が他船300の後方を安全に通過する場合の条件は以下のとおりである。
[1]自船200が点310-1の位置に到達したときに、他船300は点310-1と点310-2の中点上または当該中点を通り過ぎている。
[2]自船200が点310-1と点310-2の中点付近に到達したときに、他船300は他船300-1の位置である。
<When passing behind another ship if it is slower than your own ship (see Figure 5)>
The conditions for the own ship 200 to safely pass behind the other ship 300 are as follows.
[1] When the own ship 200 reaches the position of the point 310-1, the other ship 300 is on or passing the midpoint between the points 310-1 and 310-2.
[2] When own ship 200 reaches near the midpoint between points 310-1 and 310-2, other ship 300 is at the position of other ship 300-1.

自船200と点310-1との距離pは、次式のようになる。 The distance p 1 between own ship 200 and point 310-1 is expressed by the following formula.

=((dcosβ-a+(dsinβ-L1/2
自船200が点310-1に到達するまでの時間Sは、次式のようになる。
p 1 = ((dcosβ-a 1 ) 2 + (dsinβ-L W ) 2 ) 1/2
The time S1 until the own ship 200 reaches the point 310-1 is expressed by the following equation.

=p/V
=((dcosβ-a+(dsinβ-L1/2/V
時間Sのときには、他船300はV・Sだけ進んでいる。条件[1]より、
≦V・S=V・((dcosβ-a+(dsinβ-L1/2/V
が成り立つ。aは正なので、両辺を2乗して(V/Vで割ると、次式が成り立つ。
S 1 =p 1 /V O
=((dcosβ−a 1 ) 2 +(dsinβ−L W ) 2 ) 1/2 /V O
At time S1 , the other ship 300 is moving forward by V T · S1 . From condition [1],
a 1 ≦V T・S 1 =V T・((dcosβ−a 1 ) 2 +(dsinβ−L W ) 2 ) 1/2 /V O
holds true. Since a 1 is positive, by squaring both sides and dividing by (V T /V O ) 2 , the following equation holds true.

(V/V・a ≦(dcosβ-a+(dsinβ-L
この式をaについて整理すると、
(V O /V T ) 2・a 1 2 ≦(dcosβ−a 1 ) 2 +(dsinβ−L W ) 2
If we rearrange this formula for a 1 , we get

Figure 0007364521000001
(1)
Figure 0007364521000001
(1)

となる。他船300は自船200よりも遅いので、V/Vは1より大きくなる。よって、式(1)のaの二次関数は上に凸の二次曲線となる。また、a=0の場合に左辺は正なので、この式の等号が成立するときの大きい方の解をa1max、小さい方の解をa1minとすると、a1maxは正であり、a1minは負である。上述のとおりaは正なので、0<a≦a1maxの範囲で条件[1]を満たす。 becomes. Since the other ship 300 is slower than the own ship 200, V O /V T becomes larger than 1. Therefore, the quadratic function of a 1 in equation (1) becomes an upwardly convex quadratic curve. Also, when a 1 = 0, the left side is positive, so when the equality sign of this equation holds, let the larger solution be a 1max and the smaller solution be a 1min , then a 1max is positive, and a 1 min is negative. Since a 1 is positive as described above, condition [1] is satisfied within the range of 0<a 1 ≦a 1max .

自船200が点310-1と点310-2の中点付近に到達する時間は、S+L/Vである。この時間に、他船300は他船300-1の位置である。よって、条件[2]が成り立つためには、
・(S+L/V)≧a+L
を満たさなければならない。よって、
+L-L・V/V≦V・S
を満たす必要がある。L-L・V/Vが負のときはa=a1maxとすればよく、L-L・V/Vが正のときはaをL-L・V/Vの値に応じてa1maxよりも小さくすればよい。また、現実には自船200は点310-1と点310-2とを結ぶ直線上は進めないので、直線からのずれを考慮してaを調整してもよい。
The time for the own ship 200 to reach near the midpoint between the points 310-1 and 310-2 is S 1 +L W /V O. At this time, the other ship 300 is at the position of the other ship 300-1. Therefore, in order for condition [2] to hold,
V T・(S 1 +L W /V O )≧a 1 +L R
must be met. Therefore,
a 1 +L R -L W・V T /V O ≦V T・S 1
need to be met. When L R -L W・V T /V O is negative, a 1 = a 1max , and when L R -L W・V T /V O is positive, a 1 is set to L R -L W - It is sufficient to make a smaller than 1max depending on the value of V T /V O. Furthermore, since the own ship 200 cannot actually proceed on a straight line connecting points 310-1 and 310-2, a1 may be adjusted by taking into account the deviation from the straight line.

<他船が自船よりも遅い場合に、他船の前方を通過するとき(図5参照)>
自船200が他船300の前方を安全に通過する場合の条件は以下のとおりである。
[3]自船200が点310-4の位置に到達したときに、他船300は点310-3と点310-4の中点上または当該中点に到達していない。
[4]自船200が点310-3と点310-4の中点付近に到達したときに、他船300は他船300-2の位置である。
<When passing in front of another ship when it is slower than your own ship (see Figure 5)>
The conditions for the own ship 200 to safely pass in front of the other ship 300 are as follows.
[3] When the own ship 200 reaches the position of the point 310-4, the other ship 300 is on the midpoint between the points 310-3 and 310-4, or has not yet reached the midpoint.
[4] When own ship 200 reaches near the midpoint between points 310-3 and 310-4, other ship 300 is at the position of other ship 300-2.

自船200と点310-3との距離pは、次式のようになる。 The distance p2 between own ship 200 and point 310-3 is expressed by the following formula.

=((a-dcosβ)+(dsinβ-L1/2
自船200が点310-3に到達するまでの時間Sは、次式のようになる。
p 2 = ((a 2 −dcosβ) 2 +(dsinβ−L W ) 2 ) 1/2
The time S2 until the own ship 200 reaches the point 310-3 is expressed by the following equation.

=p/V
=((a-dcosβ)+(dsinβ-L1/2/V
時間Sのときには、他船300はV・Sだけ進んでいる。自船200が点310-3と点310-4の中点付近に到達する時間は、S+L/Vである。また、自船200が点310-4に到達する時間は、S+2L/Vである。
S 2 =p 2 /V O
=((a 2 −dcosβ) 2 +(dsinβ−L W ) 2 ) 1/2 /V O
At time S2 , the other ship 300 is ahead by V T · S2 . The time for the own ship 200 to reach near the midpoint between points 310-3 and 310-4 is S 2 +L W /V O. Further, the time for the own ship 200 to reach the point 310-4 is S 2 +2L W /V O.

条件[3]が成り立つので、
≧V・(S+2L/V
=V・(((a-dcosβ)+(dsinβ-L1/2+2L)/V
となる。V/Vは正なので、両辺を(V/V)で割り、両辺から2Lを減算すると、次式になる。
Since condition [3] holds true,
a 2 ≧V T・(S 2 +2L W /V O )
=V T・(((a 2 −dcosβ) 2 +(dsinβ−L W ) 2 ) 1/2 +2L W )/V O
becomes. Since V T /V O is positive, dividing both sides by (V T /V O ) and subtracting 2L w from both sides yields the following equation.

(V/V)・a-2L≧((a-dcosβ)+(dsinβ-L1/2
右辺は正なので、左辺の(V/V)・a-2Lも正である。よって、両辺を2乗し、aについて整理すると、
(V O /V T )・a 2 −2L W ≧((a 2 −dcosβ) 2 +(dsinβ−L W ) 2 ) 1/2
Since the right side is positive, (V O /V T )·a 2 -2L W on the left side is also positive. Therefore, by squaring both sides and rearranging for a 2 , we get

Figure 0007364521000002
(2)
Figure 0007364521000002
(2)

となる。他船300は自船200よりも遅いので、式(2)のaの二次関数は上に凸の二次曲線となる。また、dはLよりも十分に大きいことを前提にすると、a=0の場合に左辺は正なので、この式の等号が成立するときの大きい方の解をa2max、小さい方の解をa2minとすると、a2maxは正であり、a2minは負である。上述のとおりaは正なので、a2max≦aの範囲で条件[3]を満たす。 becomes. Since the other ship 300 is slower than the own ship 200, the quadratic function of a2 in equation ( 2 ) becomes an upwardly convex quadratic curve. Also, assuming that d is sufficiently larger than L W , the left side is positive when a 2 = 0, so when the equality sign of this equation holds, the larger solution is a 2max and the smaller one is If the solution is a 2min , then a 2max is positive and a 2min is negative. Since a 2 is positive as described above, condition [3] is satisfied within the range of a 2max ≦a 2 .

自船200が点310-3と点310-4の中点付近に到達する時間は、S+L/Vである。この時間に、他船300は他船300-2の位置である。よって、条件[4]が成り立つためには、
・(S+L/V)≦a-L
を満たさなければならない。よって、
-L+L・V/V≧V・(S+2L/V
を満たす必要がある。L-L・V/Vが負のときはa=a2maxとすればよく、L-L・V/Vが正のときはaをL-L・V/Vの値に応じてa2maxよりも大きくすればよい。また、現実には自船200は点310-3と点310-4とを結ぶ直線上は進めないので、直線からのずれを考慮してaを調整してもよい。
The time for the own ship 200 to reach near the midpoint between points 310-3 and 310-4 is S 2 +L W /V O. At this time, the other ship 300 is at the position of the other ship 300-2. Therefore, in order for condition [4] to hold,
V T・(S 2 +L W /V O )≦a 2 -L F
must be met. Therefore,
a 2 -L F +L W・V T /V O ≧V T・(S 2 +2L W /V O )
need to be met. When L F −L W・V T /V O is negative, a 2 = a 2max , and when L F −L W・V T /V O is positive, a 2 is set to L F −L W - It is sufficient to make a larger than 2max depending on the value of V T /V O. Furthermore, in reality, own ship 200 cannot proceed on a straight line connecting points 310-3 and 310-4, so a2 may be adjusted taking into account the deviation from the straight line.

<他船が自船よりも速い場合に、他船の後方を通過するとき(図6,7参照)>
条件は、上述の条件[1],[2]と同じである。また、式(1)までの計算は同じである。他船300は自船200より速いので、V/Vが1より小さくなる。よって、式(1)のaの二次関数は下に凸の二次曲線となる。また、a=0の場合に左辺は正であり、二次関数の軸は正である。したがって、式(1)の等号が成立する解が2つ存在する場合には、この式の等号が成立するときの大きい方の解をa1max、小さい方の解をa1minとすると、a1maxもa1minも正である。また、上述のとおりaは正なので、0<a≦a1min,a1max≦aの範囲で条件[1]を満たす。図6と図7においては、a1minをa、a1maxをaのように示している。なお、式(1)の等号が成立する解が1つの場合と存在しない場合は、式(1)はaがすべての正の値のときに成り立つので、他船300に対する予測避航領域は存在しない(他船300を避けなくてよい)。
<When passing behind another ship when it is faster than your own ship (see Figures 6 and 7)>
The conditions are the same as conditions [1] and [2] above. Moreover, the calculations up to equation (1) are the same. Since the other ship 300 is faster than the own ship 200, V O /V T becomes smaller than 1. Therefore, the quadratic function of a 1 in equation (1) becomes a downwardly convex quadratic curve. Further, when a 1 =0, the left side is positive, and the axis of the quadratic function is positive. Therefore, if there are two solutions for which the equality sign of equation (1) holds, then if the larger solution is a 1max and the smaller solution is a 1min when the equality sign of this equation holds, then Both a 1max and a 1min are positive. Moreover, since a 1 is positive as described above, condition [1] is satisfied in the range of 0<a 1 ≦a 1min and a 1max ≦a 1 . In FIGS. 6 and 7, a 1min is shown as a 1 and a 1max is shown as a 4 . In addition, in the case where there is only one solution where the equality sign of equation (1) holds, and when there is no solution, equation ( 1 ) holds true when a1 is all positive values, so the predicted avoidance area for other ships 300 is Does not exist (there is no need to avoid other ships 300).

自船200が点310-a1と点310-a2の中点付近(または、点310-b3と点310-b4の中点付近)に到達する時間は、S+L/Vである。この時間に、他船300は他船300-A1(または、他船300-B2)の位置である。よって、条件[2]が成り立つためには、
・(S+L/V)≧a+L , V・(S+L/V)≧a+L
を満たさなければならない。よって、
+L-L・V/V≦V・S , a+L-L・V/V≦V・S
を満たす必要がある。L-L・V/Vが負のときはa=a1min,a=a1maxとすればよく、L-L・V/Vが正のときはaとaをL-L・V/Vの値に応じて小さくすればよい。また、現実には自船200は点310-a1と点310-a2(または、点310-b3と点310-b4)とを結ぶ直線上は進めないので、直線からのずれを考慮してa(または、a)を調整してもよい。
The time for the own ship 200 to reach near the midpoint between points 310-a1 and 310-a2 (or near the midpoint between points 310-b3 and 310-b4) is S 1 +L W /V O. At this time, the other ship 300 is at the position of the other ship 300-A1 (or the other ship 300-B2). Therefore, in order for condition [2] to hold,
V T・(S 1 +L W /V O )≧a 1 +L R , V T・(S 1 +L W /V O )≧a 4 +L R
must be met. Therefore,
a 1 +L R -L W・V T /V O ≦V T・S 1 , a 4 +L R −L W・V T /V O ≦V T・S 1
need to be met. When L R -L W・V T /V O is negative, a 1 = a 1min , a 4 = a 1max , and when L R -L W・V T /V O is positive, a 1 and a 4 may be made smaller according to the value of L R -L W ·V T /V O. Also, in reality, the own ship 200 cannot proceed on a straight line connecting points 310-a1 and 310-a2 (or points 310-b3 and 310-b4), so taking into account the deviation from the straight line, a 1 (or a 4 ) may be adjusted.

<他船が自船よりも速い場合に、他船の前方を通過するとき(図6参照)>
条件は、上述の条件[3],[4]と同じである。また、式(2)までの計算は同じである。他船300は自船200より速いので、V/Vが1より小さくなる。よって、式(2)のaの二次関数は下に凸の二次曲線となる。また、dはLよりも十分に大きいことを前提にすると、a=0の場合に左辺は正であり、二次関数の軸は正である。したがって、式(2)の等号が成立する解が存在する場合には、この式の等号が成立するときの大きい方の解をa2max、小さい方の解をa2minとすると、a2maxもa2minも正である。よって、a2min≦a≦a2maxの範囲で条件[3]を満たす。図6においては、a2minをa、a2maxをaのように示している。なお、式(2)の等号が成立する解が存在しない場合は、式(2)はaがすべての正の値のときに成り立たない。これは、他船300の前方を安全に通過できないことを意味している。
<When passing in front of another ship when it is faster than your own ship (see Figure 6)>
The conditions are the same as conditions [3] and [4] above. Moreover, the calculations up to equation (2) are the same. Since the other ship 300 is faster than the own ship 200, V O /V T becomes smaller than 1. Therefore, the quadratic function of a2 in equation ( 2 ) becomes a downwardly convex quadratic curve. Further, assuming that d is sufficiently larger than L W , the left side is positive when a 2 =0, and the axis of the quadratic function is positive. Therefore, if there is a solution for which the equality sign of equation (2) holds, then if the larger solution is a 2max and the smaller solution is a 2min when the equality sign of this equation holds, then a 2max and a2min are also positive. Therefore, condition [3] is satisfied within the range of a 2min ≦a 2 ≦a 2max . In FIG. 6, a 2min is shown as a 2 and a 2max is shown as a 3 . Note that if there is no solution for which the equality sign of Equation (2) holds, Equation (2) does not hold when a 1 is all positive values. This means that the ship cannot safely pass in front of the other ship 300.

自船200が点310-a3と点310-a4の中点付近(または、点310-b1と点310-b2の中点付近)に到達する時間は、S+L/Vである。この時間に、他船300は他船300-A2(または、他船300-B1)の位置である。よって、条件[4]が成り立つためには、
・(S+L/V)≦a-L , V・(S+L/V)≦a-L
を満たさなければならない。よって、
-L+L・V/V≧V・(S+2L/V) ,
-L+L・V/V≧V・(S+2L/V
を満たす必要がある。L-L・V/Vが負のときはa=a2min,a=a2maxとすればよく、L-L・V/Vが正のときはaとaをL-L・V/Vの値に応じて大きくすればよい。また、現実には自船200は点310-a3と点310-a4(または、点310-b1と点310-b2)とを結ぶ直線上は進めないので、直線からのずれを考慮してa(または、a)を調整してもよい。
The time for the own ship 200 to reach near the midpoint between points 310-a3 and 310-a4 (or near the midpoint between points 310-b1 and 310-b2) is S 2 +L W /V O. At this time, the other ship 300 is at the position of the other ship 300-A2 (or the other ship 300-B1). Therefore, in order for condition [4] to hold,
V T・(S 2 +L W /V O )≦a 2 −L F , V T・(S 2 +L W /V O )≦a 3 −L F
must be met. Therefore,
a 2 −L F +L W・V T /V O ≧V T・(S 2 +2L W /V O ),
a 3 -L F +L W・V T /V O ≧V T・(S 2 +2L W /V O )
need to be met. When L F −L W・V T /V O is negative, a 2 = a 2min , a 3 = a 2max , and when L F −L W・V T /V O is positive, a 2 and a 3 may be increased according to the value of L F −L W ·V T /V O. Also, in reality, the own ship 200 cannot proceed on a straight line connecting points 310-a3 and 310-a4 (or points 310-b1 and 310-b2), so taking into account the deviation from the straight line, a 2 (or a 3 ) may be adjusted.

なお、図6の例は、式(1)にも式(2)にも等号が成立する解が2つ存在する場合を示している。また、図7の例は、式(1)には等号が成立する解が2つ存在するが、式(2)には等号が成立する解が存在しない場合を示している。 Note that the example in FIG. 6 shows a case where there are two solutions in which the equality sign holds for both equation (1) and equation (2). Further, the example in FIG. 7 shows a case where there are two solutions in which the equality sign holds true for equation (1), but there is no solution in which the equality sign holds in equation (2).

<他船と自船の速さがほぼ同じ場合に、他船の後方を通過するとき(図5,8参照)>
条件は、条件[1],[2]と同じである。また、式(1)までの計算は同じである。他船300と自船200の速さはほぼ同じなので、V/V≒1となり、1次関数になる。この1次関数の解をa1equとするとa1equは正の値なので、必ず式(1)を満たすa1は存在し、0<a≦a1equの範囲で条件[1]を満たす。
<When passing behind another ship when the speed of the other ship and own ship are almost the same (see Figures 5 and 8)>
The conditions are the same as conditions [1] and [2]. Moreover, the calculations up to equation (1) are the same. Since the speeds of the other ship 300 and the own ship 200 are almost the same, V O /V T ≈1, which is a linear function. When the solution of this linear function is a 1equ , since a 1equ is a positive value, there always exists a1 that satisfies equation (1), and satisfies condition [1] in the range of 0<a 1 ≦a 1equ .

自船200が点310-1と点310-2の中点付近に到達する時間は、S+L/Vである。この時間に、他船300は他船300-1の位置である。よって、条件[2]が成り立つためには、
・(S+L/V)≧a+L
を満たさなければならない。よって、
+L-L・V/V≦V・S
を満たす必要がある。L-L・V/Vが負のときはa=a1equとすればよく、L-L・V/Vが正のときはaをL-L・V/Vの値に応じてa1equよりも小さくすればよい。また、現実には自船200は点310-1と点310-2とを結ぶ直線上は進めないので、直線からのずれを考慮してaを調整してもよい。
The time for the own ship 200 to reach near the midpoint between the points 310-1 and 310-2 is S 1 +L W /V O. At this time, the other ship 300 is at the position of the other ship 300-1. Therefore, in order for condition [2] to hold,
V T・(S 1 +L W /V O )≧a 1 +L R
must be met. Therefore,
a 1 +L R -L W・V T /V O ≦V T・S 1
need to be met. When L R -L W・V T /V O is negative, a 1 = a 1equ , and when L R -L W・V T /V O is positive, a 1 is set to L R -L W - It may be made smaller than a 1equ depending on the value of V T /V O. Furthermore, since the own ship 200 cannot actually proceed on a straight line connecting points 310-1 and 310-2, a1 may be adjusted by taking into account the deviation from the straight line.

<他船と自船の速さがほぼ同じ場合に、他船の前方を通過するとき(図5,8参照)>
条件は、上述の条件[3],[4]と同じである。また、式(2)までの計算は同じである。他船300と自船200の速さはほぼ同じなので、V/V≒1となり、1次関数になる。この1次関数の解をa1equとするとa1equ≦aの範囲で条件[3]を満たす。
<When passing in front of another ship when the speed of the other ship and own ship are almost the same (see Figures 5 and 8)>
The conditions are the same as conditions [3] and [4] above. Moreover, the calculations up to equation (2) are the same. Since the speeds of the other ship 300 and the own ship 200 are almost the same, V O /V T ≈1, which is a linear function. If the solution of this linear function is a 1equ , then condition [3] is satisfied within the range of a 1equ ≦a 1 .

自船200が点310-3と点310-4の中点付近に到達する時間は、S+L/Vである。この時間に、他船300は他船300-2の位置である。よって、条件[4]が成り立つためには、
・(S+L/V)≦a-L
を満たさなければならない。よって、
-L+L・V/V≧V・(S+2L/V
を満たす必要がある。L-L・V/Vが負のときはa=a2maxとすればよく、L-L・V/Vが正のときはaをL-L・V/Vの値に応じてa2maxよりも大きくすればよい。
The time for the own ship 200 to reach near the midpoint between points 310-3 and 310-4 is S 2 +L W /V O. At this time, the other ship 300 is at the position of the other ship 300-2. Therefore, in order for condition [4] to hold,
V T・(S 2 +L W /V O )≦a 2 -L F
must be met. Therefore,
a 2 -L F +L W・V T /V O ≧V T・(S 2 +2L W /V O )
need to be met. When L F −L W・V T /V O is negative, a 2 = a 2max , and when L F −L W・V T /V O is positive, a 2 is set to L F −L W - It is sufficient to make a larger than 2max depending on the value of V T /V O.

なお、dにくらべLが十分小さいとすると、
1equ≒d/2cosβ
となる。角βが60度のときa1equ≒dであり、角βが大きくなるとa1equも大きくなる。つまり、他船と自船の速さがほぼ同じ場合に同じ方向に進んだのでは、安全な距離を保ちながら交差するためには非常に長い距離が必要になってしまう。したがって、他船300と自船200の速さが同じくらいであり、角βが所定の角度よりも大きい場合は、他船300の前方側を通過する経路を選択することはありえないので、図8に示したように予測避航領域310を設定してもよい。
Furthermore, if L w is sufficiently small compared to d, then
a 1equ ≒d/2cosβ
becomes. When the angle β is 60 degrees, a 1equ ≈d, and as the angle β increases, a 1equ also increases. In other words, if the speed of your own ship and the other ship are almost the same, and you proceed in the same direction, you will need a very long distance to cross while maintaining a safe distance. Therefore, if the speeds of the other ship 300 and the own ship 200 are about the same and the angle β is larger than a predetermined angle, it is impossible to select a route that passes in front of the other ship 300. The predicted avoidance area 310 may be set as shown in FIG.

予測避航領域310を計算によって求めた後、経路探索部150は、あらかじめ定めた目的地と条件設定部130が設定した自船200とを結ぶ直線上にいずれかの予測避航領域がある場合に、あらかじめ定めた経路探索の条件を満たす予測避航領域の境界線上の点から経路点候補を探索する(S142,S151)。言い換えると、避航経路探索装置100は、あらかじめ定めた目的地と条件設定部130が設定した自船200とを結ぶ直線上にいずれかの予測避航領域があるかを確認する(S142)。ステップS142がNOの場合、避航経路探索装置100は、条件設定部130が設定すべきすべての条件を設定したかを確認する(S132)。 After calculating the predicted avoidance area 310, the route search unit 150 determines whether there is any predicted avoidance area on a straight line connecting the predetermined destination and the own ship 200 set by the condition setting unit 130. Route point candidates are searched from points on the boundary line of the predicted avoidance area that satisfy predetermined route search conditions (S142, S151). In other words, the avoidance route search device 100 checks whether there is any predicted avoidance area on the straight line connecting the predetermined destination and the own ship 200 set by the condition setting unit 130 (S142). If step S142 is NO, the avoidance route search device 100 checks whether the condition setting unit 130 has set all the conditions to be set (S132).

ステップS132がYESの場合は、経路決定部170を備えている場合は、経路決定部170が、現在の自船の位置から目的地までの経路を、あらかじめ定めた優先条件にしたがって経路点候補に基づいて決定する(S170)。例えば、現在の自船200と目的地とを結んだ直線をさえぎる予測避航領域が存在しなければ、経路点候補はないので目的地までまっすぐ進む経路を決定する。経路点候補がある場合は、あらかじめ定めた優先条件にしたがって経路を決定すればよい。例えば、距離が短いことを優先条件としてもよいし、到達する時間が短いことを優先条件としてもよいし、避航しなければならない予測避航領域の合計が少ないことを優先条件としてもよい。経路決定部170を備えていない場合は、人が現在の自船の位置、目的地、経路点候補に基づいて経路を決定すればよい。また、経路決定部170を備えている場合でも、複数の優先条件を設定しておき、避航経路探索装置100が優先条件ごとに望ましい経路を示し、人がその中から経路を選択してもよい。 If step S132 is YES, if the route determining unit 170 is provided, the route determining unit 170 selects a route from the current position of the ship to the destination as route point candidates according to predetermined priority conditions. (S170). For example, if there is no predicted avoidance area that blocks the straight line connecting the current own ship 200 and the destination, there are no route point candidates and a straight route to the destination is determined. If there are route point candidates, a route may be determined according to predetermined priority conditions. For example, the priority condition may be that the distance is short, the priority condition may be that the arrival time is short, or the priority condition may be that the total number of predicted avoidance areas that must be avoided is small. If the route determination unit 170 is not provided, a person may determine the route based on the current position of the ship, the destination, and route point candidates. Further, even when the route determination unit 170 is provided, a plurality of priority conditions may be set, the avoidance route search device 100 may indicate a desirable route for each priority condition, and a person may select a route from among them. .

ステップS132がNOの場合は、条件設定部130が次の条件を設定する(S131)。ステップS142がYESの場合は、経路探索部150が、あらかじめ定めた経路探索の条件を満たす予測避航領域の境界線上の点から経路点候補を探索する(S151)。次に、図9~29を参照しながら経路点候補の探索と経路決定について詳細に説明する。図9は、現在の自船と目的地と予測避航領域の例を示した図である。自船200は目的地290に向かっている。自船200の前方には、他船301,302,303が航行しており、予測避航領域311,312,313が存在する。予測避航領域311,312,313の四隅の点には、それぞれの予測避航領域の符号に“-1”,“-2”,“-3”,“-4”を付している。経路探索部150は、例えば、目的地290と自船200とを結ぶ直線上にある予測避航領域の境界線上の点の中で、右方向への変針角が最も大きくなる点および左方向への変針角が最も大きくなる点を両端点とし、それぞれの両端点について、両端点と自船200とを結ぶ直線上に他の予測避航領域がないときは当該両端点を経路点候補とする。「変針角」とは、自船200と目的地290とを結ぶ直線を基準とした方向の違いを示している。図9の場合、両端点は点311-1,312-1,311-3,312-2である。ただし、点312-1と自船200とを結ぶ直線上には予測避航領域311があるので、経路点候補は、点311-1,311-3,312-2の3つである。図10は、図9のときの経路点候補の関係をグラフ理論の木で表現した図である。自船200が点311-1を通過する場合は、点311-1が属する予測避航領域311の内側には入らないようにしながら目的地290の方向に進むので、できるだけ短い経路を選ぼうとすると点311-2も通過する。そこで、図10の木では、点311-1と点311-2を結んでいる。同様に、点311-3と点311-4、点312-3と点312-4を結んでいる。なお、図9では、他船301,302,303はすべて自船の右方向から左方向に進む例を示しているが、左方向から右方向へ進む船舶が含まれていてもよいし、斜めに進む船舶が含まれていてもよい。 If step S132 is NO, the condition setting unit 130 sets the next condition (S131). If step S142 is YES, the route search unit 150 searches for route point candidates from points on the boundary line of the predicted avoidance area that satisfy predetermined route search conditions (S151). Next, the search for route point candidates and route determination will be described in detail with reference to FIGS. 9 to 29. FIG. 9 is a diagram showing an example of the current own ship, destination, and predicted avoidance area. Own ship 200 is heading for destination 290. Other ships 301, 302, and 303 are navigating ahead of own ship 200, and predicted avoidance areas 311, 312, and 313 exist. At the four corner points of the predicted avoidance areas 311, 312, and 313, "-1", "-2", "-3", and "-4" are attached to the respective predicted avoidance area codes. For example, the route search unit 150 determines, among the points on the boundary line of the predicted avoidance area on the straight line connecting the destination 290 and own ship 200, the point where the turning angle to the right is the largest and the point where the turning angle to the left is the largest. The points where the turning angle is the largest are taken as both end points, and when there is no other predicted avoidance area on the straight line connecting both end points and own ship 200, the end points are taken as route point candidates. The “course angle” indicates a difference in direction with respect to a straight line connecting own ship 200 and destination 290. In the case of FIG. 9, the end points are points 311-1, 312-1, 311-3, and 312-2. However, since the predicted avoidance area 311 is on the straight line connecting the point 312-1 and the own ship 200, there are three route point candidates: points 311-1, 311-3, and 312-2. FIG. 10 is a diagram expressing the relationship between route point candidates in FIG. 9 using a graph theory tree. When own ship 200 passes point 311-1, it will proceed in the direction of destination 290 while avoiding entering the predicted avoidance area 311 to which point 311-1 belongs, so if it tries to choose the shortest possible route. It also passes through point 311-2. Therefore, in the tree of FIG. 10, points 311-1 and 311-2 are connected. Similarly, points 311-3 and 311-4 and points 312-3 and 312-4 are connected. Although FIG. 9 shows an example in which the other ships 301, 302, and 303 all proceed from the right direction to the left direction of their own ship, they may also include ships proceeding from the left direction to the right direction, or they may proceed diagonally from the left direction to the right direction. may include ships proceeding to

また、経路探索部150は、両端点と自船200とを結ぶ直線上に予測避航領域がある場合に、当該直線上にある予測避航領域の境界線上の点の中で、右方向への変針角が最も大きくなる点および左方向への変針角が最も大きくなる点を両端点とし、それぞれの両端点について、両端点と自船200とを結ぶ直線上に他の予測避航領域がないときは当該両端点を経路点候補とする。図9の例の場合、点312-1は両端点であり、自船200と結ぶ直線上に予測避航領域311がある。この場合に、予測避航領域311の両端点である点311-1,311-3を経路点候補とする。ただし、すでに前の処理で経路点候補にしているので、ここでは図10には追加しない。 In addition, when there is a predicted avoidance area on a straight line connecting both end points and own ship 200, the route search unit 150 determines whether to change course to the right among points on the boundary line of the predicted avoidance area on the straight line. The point where the angle is the largest and the point where the turning angle to the left is the largest are taken as both end points, and for each end point, if there is no other predicted avoidance area on the straight line connecting both end points and own ship 200, Both end points are designated as route point candidates. In the case of the example in FIG. 9, the points 312-1 are both end points, and the predicted avoidance area 311 is on the straight line connecting with the own ship 200. In this case, points 311-1 and 311-3, which are both end points of the predicted avoidance area 311, are set as route point candidates. However, since it has already been selected as a route point candidate in the previous process, it is not added to FIG. 10 here.

繰り返し制御部180は、経路点候補ごとに、当該経路点候補が属する予測避航領域の境界線上の点の1つを、目的地290方向に進む自船200の位置に設定し、当該位置に自船200が到達する時刻から他船301,302,303の位置を設定するように条件設定部130に指示し、条件設定部130、予測避航領域計算部140、経路探索部250の処理の繰り返し処理を行わせる(S152)。「当該経路点候補が属する予測避航領域の境界線上の点の1つを、目的地290方向に進む自船200の位置」とは、経路点候補311-1の場合は点311-2、経路点候補311-3の場合は点311-4、経路点候補312-3の場合は点312-4である。なお、他船選別部120がステップS122を行う場合は、繰り返し処理にはステップS122も含まれる。 For each route point candidate, the repeat control unit 180 sets one of the points on the boundary line of the predicted avoidance area to which the route point candidate belongs to the position of the own ship 200 proceeding in the direction of the destination 290, and sets the own ship 200 to the position. Instructs the condition setting unit 130 to set the positions of other ships 301, 302, and 303 from the time when the ship 200 arrives, and repeats the processing of the condition setting unit 130, predicted avoidance area calculation unit 140, and route search unit 250. (S152). "The position of the own ship 200 proceeding in the direction of the destination 290 at one of the points on the boundary line of the predicted avoidance area to which the route point candidate belongs" means the point 311-2 in the case of the route point candidate 311-1; The point candidate 311-3 is the point 311-4, and the route point candidate 312-3 is the point 312-4. In addition, when the other ship sorting part 120 performs step S122, step S122 is also included in the repeated process.

図11は、自船200が点311-2の位置に到達した時刻の他船302,303の位置を設定し、そのときの予測避航領域を計算した結果を示している。経路探索部150は、目的地290と自船200とを結ぶ直線上にある予測避航領域の境界線上の点の中で、右方向への変針角が最も大きくなる点および左方向への変針角が最も大きくなる点を両端点とし、それぞれの両端点について、両端点と自船200とを結ぶ直線上に他の予測避航領域がないときは当該両端点を経路点候補とする。図11の場合、両端点は点313-2,313-3である。両端点と自船200とを結ぶ直線上には予測避航領域はないので、経路点候補は、点313-2,313-3の2つである。図12は、図11のときの経路点候補の関係をグラフ理論の木で表現した図である。自船200が点313-2を通過する場合は、点313-2を通過後に直接目的地方向に進むので、点313-2が属する予測避航領域313の他の点は通過しない。点313-3を通過する場合も、点313-3を通過後に再び予測避航領域313の境界線上の点を通ることなく目的地に進む。よって、図12の木では、点313-2と点313-3を付加している。 FIG. 11 shows the results of setting the positions of other ships 302 and 303 at the time when own ship 200 reaches the position of point 311-2, and calculating the predicted avoidance area at that time. The route search unit 150 determines the point where the turning angle to the right is the largest and the turning angle to the left among the points on the boundary line of the predicted avoidance area on the straight line connecting the destination 290 and the own ship 200. The points where is the largest are taken as both end points, and if there is no other predicted avoidance area on the straight line connecting both end points and own ship 200, the end points are taken as route point candidates. In the case of FIG. 11, both end points are points 313-2 and 313-3. Since there is no predicted avoidance area on the straight line connecting both end points and own ship 200, there are two route point candidates, points 313-2 and 313-3. FIG. 12 is a diagram expressing the relationship between route point candidates in FIG. 11 using a graph theory tree. When the own ship 200 passes through the point 313-2, it proceeds directly toward the destination after passing through the point 313-2, so it does not pass through other points in the predicted avoidance area 313 to which the point 313-2 belongs. Even when passing point 313-3, the vehicle proceeds to the destination without passing through the point on the boundary line of predicted avoidance area 313 again after passing point 313-3. Therefore, in the tree of FIG. 12, points 313-2 and 313-3 are added.

図13は、自船200が点313-2の位置、もしくは点313-3の位置に到達した時刻の様子を示している。図14は、図13のときの経路点候補の関係をグラフ理論の木で表現した図である。目的地290と自船200とを結ぶ直線をさえぎる予測避航領域はないので、図14の木では、点313-2と点313-3のそれぞれに、目的地290を結んでいる。図13のときには、ステップS142はNOとなり、ステップS132もNOなので、条件設定ステップS131に戻る。 FIG. 13 shows the state at the time when the own ship 200 reaches the position of point 313-2 or the position of point 313-3. FIG. 14 is a diagram expressing the relationship between route point candidates in FIG. 13 using a graph theory tree. Since there is no predicted avoidance area that blocks the straight line connecting destination 290 and own ship 200, destination 290 is connected to points 313-2 and 313-3, respectively, in the tree of FIG. In the case of FIG. 13, the result in step S142 is NO, and the result in step S132 is also NO, so the process returns to the condition setting step S131.

条件設定ステップS131では、自船200が点311-4の位置に到達した時刻の他船302,303の位置を設定する。図15は、そのときの予測避航領域を計算した結果を示している。目的地290と自船200とを結ぶ直線を予測避航領域312がさえぎるので、予測避航領域312の境界線上の点の中で、右方向への変針角が最も大きくなる点312-1および左方向への変針角が最も大きくなる点312-3を両端点とする。それぞれの両端点312-1,312-3は、両端点と自船200とを結ぶ直線上に他の予測避航領域がないので、当該両端点を経路点候補とする。図16は、図15のときの経路点候補の関係をグラフ理論の木で表現した図である。船200が点312-1を通過する場合は、点312-1が属する予測避航領域312の内側には入らないようにしながら目的地290の方向に進むので、できるだけ短い経路を選ぼうとすると点312-2も通過する。そこで、図16の木では、点312-1と点312-2を結んでいる。同様に、点312-3と点312-4を結んでいる。 In condition setting step S131, the positions of other ships 302 and 303 at the time when own ship 200 reaches the position of point 311-4 are set. FIG. 15 shows the results of calculating the predicted avoidance area at that time. Since the predicted avoidance area 312 blocks the straight line connecting the destination 290 and own ship 200, among the points on the boundary line of the predicted avoidance area 312, the points 312-1 and 312-1 where the turning angle to the right is the largest and the leftward direction. The point 312-3 where the turning angle is the largest is defined as both end points. Since there is no other predicted avoidance area on the straight line connecting both end points and own ship 200, the respective end points 312-1 and 312-3 are selected as route point candidates. FIG. 16 is a diagram expressing the relationship between route point candidates in FIG. 15 using a graph theory tree. When the ship 200 passes the point 312-1, it moves toward the destination 290 while avoiding entering the predicted avoidance area 312 to which the point 312-1 belongs, so if it tries to choose the shortest route possible, the point 312-2 also passes. Therefore, in the tree of FIG. 16, points 312-1 and 312-2 are connected. Similarly, points 312-3 and 312-4 are connected.

図17は、自船200が点312-2の位置に到達した時刻の他船302,303の位置を設定し、そのときの予測避航領域を計算した結果を示している。図17の場合、両端点は点313-1,313-3である。両端点と自船200とを結ぶ直線上には予測避航領域はないので、経路点候補は、点313-1,313-3の2つである。図18は、図17のときの経路点候補の関係をグラフ理論の木で表現した図である。船200が点313-1を通過する場合は、点313-1が属する予測避航領域313の内側には入らないようにしながら目的地290の方向に進むので、できるだけ短い経路を選ぼうとすると点313-2も通過する。自船200が点313-3を通過する場合は、点313-3を通過後に直接目的地方向に進むので、点313-3が属する予測避航領域313の他の点は通過しない。よって、図18の木では、点313-1には点313-2を結び、点313-3には何も結んでいない。 FIG. 17 shows the results of setting the positions of other ships 302 and 303 at the time when own ship 200 reaches the position of point 312-2, and calculating the predicted avoidance area at that time. In the case of FIG. 17, both end points are points 313-1 and 313-3. Since there is no predicted avoidance area on the straight line connecting both end points and own ship 200, there are two route point candidates, points 313-1 and 313-3. FIG. 18 is a diagram expressing the relationship between route point candidates in FIG. 17 using a graph theory tree. When the ship 200 passes the point 313-1, it will proceed in the direction of the destination 290 while avoiding entering the predicted avoidance area 313 to which the point 313-1 belongs, so if it tries to choose the shortest route possible, the point 313-2 will also pass. When the own ship 200 passes the point 313-3, it proceeds directly toward the destination after passing the point 313-3, so it does not pass any other points in the predicted avoidance area 313 to which the point 313-3 belongs. Therefore, in the tree in FIG. 18, point 313-2 is connected to point 313-1, and nothing is connected to point 313-3.

図19は、自船200が点313-2の位置、もしくは点313-3の位置に到達した時刻の様子を示している。図20は、図19のときの経路点候補の関係をグラフ理論の木で表現した図である。目的地290と自船200とを結ぶ直線をさえぎる予測避航領域はないので、図20の木では、点313-2と点313-3のそれぞれに、目的地290を結んでいる。図19のときには、ステップS142はNOとなり、ステップS132もNOなので、条件設定ステップS131に戻る。 FIG. 19 shows the state of the time when the own ship 200 reaches the position of point 313-2 or the position of point 313-3. FIG. 20 is a diagram expressing the relationship between route point candidates in FIG. 19 using a graph theory tree. Since there is no predicted avoidance area that blocks the straight line connecting destination 290 and own ship 200, destination 290 is connected to points 313-2 and 313-3, respectively, in the tree of FIG. In the case of FIG. 19, step S142 is NO, and step S132 is also NO, so the process returns to condition setting step S131.

条件設定ステップS131では、自船200が点311-3を経由して点312-4の位置に到達した時刻の他船302,303の位置を設定する。図21は、自船200が点311-3を経由して点312-4の位置に到達した時刻の様子を示している。図22は、図21のときの経路点候補の関係をグラフ理論の木で表現した図である。目的地290と自船200とを結ぶ直線をさえぎる予測避航領域はないので、図22の木では、点312-4に目的地290を結んでいる。図21のときには、ステップS142はNOとなり、ステップS132もNOなので、条件設定ステップS131に戻る。 In the condition setting step S131, the positions of the other ships 302 and 303 are set at the time when the own ship 200 reaches the position of the point 312-4 via the point 311-3. FIG. 21 shows the state at the time when the own ship 200 reaches the position of point 312-4 via point 311-3. FIG. 22 is a diagram expressing the relationship between route point candidates in FIG. 21 using a graph theory tree. Since there is no predicted avoidance area that blocks the straight line connecting destination 290 and own ship 200, destination 290 is connected to point 312-4 in the tree of FIG. 22. In the case of FIG. 21, the result in step S142 is NO, and the result in step S132 is also NO, so the process returns to the condition setting step S131.

条件設定ステップS131では、自船200が現在の位置から直接点312-3に進み、点312-4の位置に到達した時刻の他船302,303の位置を設定する。図23は、自船200が直接点312-3に進み、点312-4の位置に到達した時刻の様子を示している。図24は、図23のときの経路点候補の関係をグラフ理論の木で表現した図である。目的地290と自船200とを結ぶ直線をさえぎる予測避航領域はないので、図24の木では、点312-4に目的地290を結んでいる。図23のときには、すべての条件の設定は終わっているので、ステップS142はNOとなり、ステップS132はYESとなるので、経路決定部170を備えているときは、経路決定ステップS170に進む。経路決定部170を備えていないときは、図24に示した木に従った経路の候補を出力して処理を終了する。 In the condition setting step S131, the positions of other ships 302 and 303 are set at the time when the own ship 200 directly advances from the current position to the point 312-3 and reaches the position of the point 312-4. FIG. 23 shows the situation at the time when the own ship 200 directly proceeds to the point 312-3 and reaches the position of the point 312-4. FIG. 24 is a diagram expressing the relationship between route point candidates in FIG. 23 using a graph theory tree. Since there is no predicted avoidance area that blocks the straight line connecting destination 290 and own ship 200, destination 290 is connected to point 312-4 in the tree of FIG. At the time of FIG. 23, all the conditions have been set, so the answer to step S142 is NO, and the answer to step S132 is YES, so if the route determining section 170 is provided, the process advances to route determining step S170. If the route determination unit 170 is not provided, route candidates according to the tree shown in FIG. 24 are output and the process is terminated.

経路決定部170は、現在の自船の位置から目的地までの経路を、あらかじめ定めた優先条件にしたがって経路点候補に基づいて決定する(S170)。上述のとおり、あらかじめ定めた優先条件とは、距離が短いこと、到達する時間が短いこと、避航しなければならない予測避航領域の合計が少ないことなどであるが、これらに限定する必要はない。経路決定部170は、図24に示した木を利用して、優先条件にしたがって経路を決定すればよい。 The route determining unit 170 determines a route from the current position of the ship to the destination based on route point candidates according to predetermined priority conditions (S170). As described above, the predetermined priority conditions include short distance, short arrival time, and small total predicted avoidance area that must be avoided, but are not limited to these. The route determining unit 170 may use the tree shown in FIG. 24 to determine the route according to the priority conditions.

上述のとおり、経路探索部150は、あらかじめ定めた目的地と条件設定部が設定した自船とを結ぶ直線上にいずれかの予測避航領域がある場合に、あらかじめ定めた経路探索の条件を満たす予測避航領域の境界線上の点から経路点候補を探索する。これは、経路探索部150は、少なくとも、さえぎる予測避航領域がある場合に経路点候補を求めることを意味している。経路探索部150は、さえぎる予測避航領域がない場合やさえぎっていない予測避航領域の境界線上にも経路点候補を求めてもよい。例えば、経路探索部150は、すべての予測避航領域の組合せからあり得る経路点候補を列挙してグラフ理論の木を作成してもよい。実際には選択するはずがない経路についても計算してしまうことになるが、「さえぎる予測避航領域があるか?(S142)」の処理を省略できる。また、既存に存在する探索技術を適宜使用してもよい。つまり、予測避航領域の境界線上の点から経路点候補を探索するための「あらかじめ定めた経路探索の条件」は、図9~24を用いて説明した方法以外でもよい。 As described above, the route search unit 150 satisfies the predetermined route search conditions when any predicted avoidance area is on the straight line connecting the predetermined destination and the own ship set by the condition setting unit. Route point candidates are searched from points on the boundary line of the predicted avoidance area. This means that the route search unit 150 obtains route point candidates at least when there is a predicted avoidance area that blocks the route. The route search unit 150 may also find route point candidates when there is no blocking predicted avoidance area or on the boundary line of the predicted avoidance area that is not blocking the predicted avoidance area. For example, the route search unit 150 may create a graph theory tree by listing possible route point candidates from all combinations of predicted avoidance areas. Although calculations will be made for routes that should not actually be selected, the process of ``Is there a predicted avoidance area that will block the route?'' (S142) can be omitted. Furthermore, existing search techniques may be used as appropriate. In other words, the "predetermined route search conditions" for searching route point candidates from points on the boundary line of the predicted avoidance area may be other than the method described using FIGS. 9 to 24.

ここまでの説明では、変針角の範囲について考慮していない。例えば、経路探索部150が予測避航領域の境界線上の点から経路点候補を探索する際に、探索する際の変針角の最大角を設け、変針角<最大角となる範囲で経路点候補を探索してもよい。また、望ましい変針角の範囲を定めてもよい。例えば、小型の船であれば速さを変更することは容易である。他船の後方を通過する場合に、速さをおそくすれば変針角を小さくできる。また、他船の前方を通過する場合に、速さを速くすれは変針角を小さくできる。そこで、変針角が、あらかじめ定めた「制限角」を超える場合には速さを変更して経路を選択することも考えられる。制限角は、例えば10度から15度から適宜定めればよいと考えられるが、この範囲に限定しなくてもよい。 In the explanation up to this point, the range of course angles has not been considered. For example, when the route search unit 150 searches for route point candidates from points on the boundary line of the predicted avoidance area, it sets the maximum angle of the turning angle during the search, and searches for route point candidates within the range where the turning angle < the maximum angle. You can explore. Further, a range of desirable course angles may be determined. For example, it is easy to change the speed of a small boat. When passing behind another ship, you can reduce the turning angle by slowing down the speed. Also, when passing in front of another ship, increasing the speed can reduce the turning angle. Therefore, if the turning angle exceeds a predetermined "limit angle", it may be possible to select a route by changing the speed. Although it is considered that the limiting angle may be appropriately set, for example, from 10 degrees to 15 degrees, it is not limited to this range.

その場合は、避航経路探索装置100は、再計算部160も備えればよい。再計算部160は、自船の速さを変更可能であることを前提として、経路点候補に進むためには変針角があらかじめ定めた角度である制限角より大きくなる場合に、自船の速さの変更によって移動する当該経路点候補に進むための変針角が制限角となるように自船の速さと当該経路点候補の位置を求める(S161,S162)。この場合は、記繰り返し処理には再計算部の処理(S161,S162)も含み、繰り返し制御部180は、再計算部160が自船の速さと当該経路点候補を求めた場合は、当該経路点候補が属する予測避航領域を当該経路点候補にしたがって移動させ、前記繰り返し処理を行う。 In that case, the avoidance route search device 100 may also include a recalculation unit 160. On the premise that the speed of the own ship can be changed, the recalculation unit 160 calculates the speed of the own ship when the turning angle becomes larger than the limit angle, which is a predetermined angle, in order to proceed to the route point candidate. The speed of the own ship and the position of the route point candidate are determined so that the turning angle for proceeding to the route point candidate, which is to be moved by changing the speed, becomes the limit angle (S161, S162). In this case, the repeating process also includes the processing of the recalculation unit (S161, S162), and when the recalculation unit 160 has determined the speed of the own ship and the route point candidate, the iterative control unit 180 will The predicted avoidance area to which the point candidate belongs is moved according to the route point candidate, and the above-mentioned repeating process is performed.

ステップS161,S162について図25~28を用いて説明する。図25は、変針角が制限角を超える場合の例示を示している。図25は図17と同じ状態であり、自船200が点313-1に進むための変針角が制限角θよりも大きくなることを示している。この場合に、自船200の速さをおそくすれば、経路点候補となる点313-1を左側に移動させることができる。図26は、変針角が制限角となるように予測避航領域を移動させた図を示している。予測避航領域313’が移動した予測避航領域である。点313’-1は、速さをおそくしたときの経路点候補である。図27は、図18に対応しており、図26のときの経路点候補の関係をグラフ理論の木で表現した図である。図17,18で求めた点313-1,313-3も木に残したうえで、点313’-1も追加している。図28は、図24に対応する木であり、再計算部160も備えた場合に得られる木を示している。再計算部160も備えれば変針角を小さくできるので、効率的に目的地まで航行できる。 Steps S161 and S162 will be explained using FIGS. 25 to 28. FIG. 25 shows an example where the turning angle exceeds the limit angle. FIG. 25 shows the same state as FIG. 17, and shows that the turning angle for the own ship 200 to proceed to point 313-1 is larger than the limit angle θ L. In this case, by slowing down the speed of own ship 200, point 313-1, which is a route point candidate, can be moved to the left. FIG. 26 shows a diagram in which the predicted avoidance area has been moved so that the turning angle becomes the limit angle. The predicted avoidance area 313' is the predicted avoidance area to which the vehicle has moved. Point 313'-1 is a route point candidate when the speed is slowed down. FIG. 27 corresponds to FIG. 18 and is a diagram expressing the relationship between route point candidates in FIG. 26 using a graph theory tree. Points 313-1 and 313-3 obtained in FIGS. 17 and 18 are left on the tree, and point 313'-1 is also added. FIG. 28 is a tree corresponding to FIG. 24, and shows a tree obtained when the recalculation unit 160 is also included. If the recalculation unit 160 is also provided, the turning angle can be reduced, so that the vessel can efficiently navigate to the destination.

次に予測避航領域結合部145を備える場合について説明する。予測避航領域結合部145の処理は、予測避航領域計算部140の処理(S141)の後に行う。予測避航領域結合部145は、予測避航領域計算部140が計算した予測避航領域同士が、あらかじめ定めた互いに近いことを示す条件を満たすときは、当該条件を満たす複数の予測避航領域を1つの予測避航領域とする(S145)。この場合は、繰り返し処理は、予測避航領域結合部145の処理も含む。図29を用いて説明する。図29は、互いに近い予測避航領域が存在する例を示す図である。予測避航領域計算部140の処理によって、予測避航領域311,312,313が計算されたとする。ここでは、上記の「あらかじめ定めた互いに近いことを示す条件」とは、予測避航領域の周りに設定する結合判断線321,322,323が重なることとする。結合判断線は、予測避航領域よりも所定の長さ離れるように設定すればよい。図29に示すように予測避航領域311,312,313が、互いに近いことを示す条件を満たすときは、予測避航領域311,312,313を含むように、それぞれの外周をつないで1つの予測避航領域330とすればよい。なお、この場合の予測避航領域330の両端点は点311-1と点312-3となり、これらの点が経路点候補となる。予測避航領域が密集している場合、予測避航領域同士の間をすり抜けるように航行することは困難である。すり抜けるような経路を探索する処理を行わないように経路点候補を選定ことで、処理の軽減を図ることができる。 Next, a case where the predicted avoidance area coupling section 145 is provided will be described. The process of the predicted avoidance area combination unit 145 is performed after the process of the predicted avoidance area calculation unit 140 (S141). When the predicted avoidance areas calculated by the predicted avoidance area calculation unit 140 satisfy a predetermined condition indicating that they are close to each other, the predicted avoidance area combination unit 145 combines the plurality of predicted avoidance areas that satisfy the condition into one prediction. It is set as an avoidance area (S145). In this case, the iterative process also includes the process of the predicted avoidance area combination unit 145. This will be explained using FIG. 29. FIG. 29 is a diagram illustrating an example in which predicted avoidance areas that are close to each other exist. It is assumed that predicted avoidance areas 311, 312, and 313 are calculated by the process of the predicted avoidance area calculation unit 140. Here, the above-mentioned "predetermined condition indicating that they are close to each other" means that the combination judgment lines 321, 322, and 323 set around the predicted avoidance area overlap. The connection determination line may be set to be a predetermined distance away from the predicted avoidance area. As shown in FIG. 29, when the predicted avoidance areas 311, 312, and 313 satisfy the condition that they are close to each other, the outer circumferences of the predicted avoidance areas 311, 312, and 313 are connected to form one predicted avoidance area. The area 330 may be used. Note that the two end points of the predicted avoidance area 330 in this case are the point 311-1 and the point 312-3, and these points become route point candidates. When predicted avoidance areas are densely packed, it is difficult to navigate while passing between the predicted avoidance areas. By selecting route point candidates so as not to perform the process of searching for a route that would pass through, the processing load can be reduced.

避航経路探索装置100によれば、条件設定部130、予測避航領域計算部140、経路探索部150の処理の繰り返し処理を行うので、複数の他船が存在する海域でも経路を探索できる。 According to the avoidance route search device 100, the processes of the condition setting section 130, the predicted avoidance area calculation section 140, and the route search section 150 are repeatedly performed, so that a route can be searched even in a sea area where a plurality of other ships exist.

図30に避航経路探索支援装置の機能構成例を、図31に避航経路探索支援装置の処理フロー例を示す。避航経路探索支援装置101は、少なくとも情報収集部110と予測避航領域計算部140を備える。船300の前方方向の避ける距離を前方安全距離L、他船300の側方方向の避ける距離を側方安全距離L、他船の後方方向の避ける距離を後方安全距離Lとする。 FIG. 30 shows an example of the functional configuration of the avoidance route search support device, and FIG. 31 shows an example of the processing flow of the avoidance route search support device. The avoidance route search support device 101 includes at least an information collection section 110 and a predicted avoidance area calculation section 140. Let the distance to avoid in the forward direction of the ship 300 be a forward safe distance LF , the distance to avoid in the side direction of the other ship 300 as a lateral safe distance LW , and the distance to avoid in the rear direction of the other ship as a rear safe distance LR .

情報収集部110は、自船および周辺の他船の位置と速度の情報を収集する(S110)。情報収集部110は、例えば、位置センサ、速度センサ、AIS(船舶自動識別装置:Automatic Identification System)、ARPA(自動衝突予防援助装置:Automatic Radar Plotting Aid)などを有し、これらのセンサおよび装置から得られる情報を統合して、自船および周辺の他船の位置と速度の情報を得ればよい。記録部190は、収集した自船および周辺の他船の位置と速度の情報を記録する。 The information collecting unit 110 collects information on the position and speed of the own ship and other nearby ships (S110). The information collecting unit 110 includes, for example, a position sensor, a speed sensor, an AIS (Automatic Identification System), an ARPA (Automatic Radar Plotting Aid), etc., and receives information from these sensors and devices. All you have to do is integrate the obtained information to obtain information on the position and speed of your own ship and other nearby ships. The recording unit 190 records the collected position and speed information of the own ship and other nearby ships.

予測避航領域計算部140は、自船が他船の正面に位置するときに前方安全距離を確保し、自船が他船の真横に位置するときに側方安全距離を確保し、自船が他船の真後ろに位置するときに後方安全距離を確保するように予測避航領域を計算する(S141)。予測避航領域計算部140で行う具体的な計算方法は、実施例1と同じである。 The predicted avoidance area calculation unit 140 secures a forward safe distance when the own ship is located in front of another ship, secures a lateral safe distance when the own ship is located directly beside the other ship, and A predicted avoidance area is calculated to ensure a safe distance to the rear when the ship is located directly behind another ship (S141). The specific calculation method performed by the predicted avoidance area calculation unit 140 is the same as in the first embodiment.

避航経路探索支援装置101によれば、自船が他船の正面に位置するときに前方安全距離Lを確保し、自船が他船の真横に位置するときに側方安全距離Lを確保し、自船が他船の真後ろに位置するときに後方安全距離Lを確保するので、避けるべき領域を適切に設定できる。 According to the avoidance route search support device 101, when the own ship is located in front of another ship, the forward safe distance L F is secured, and when the own ship is located right next to the other ship, the lateral safe distance L W is secured. When your own ship is located directly behind another ship, a safe rear distance LR is secured, so you can appropriately set the area to avoid.

[プログラム、記録媒体]
上述の各種の処理は、図32に示すコンピュータ2000の記録部2020に、上記方法の各ステップを実行させるプログラムを読み込ませ、制御部2010、入力部2030、出力部2040、表示部2050などに動作させることで実施できる。
[Program, recording medium]
The various processes described above are performed by causing the recording unit 2020 of the computer 2000 shown in FIG. This can be done by letting

この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。 A program describing the contents of this process can be recorded on a computer-readable recording medium. The computer-readable recording medium may be of any type, such as a magnetic recording device, an optical disk, a magneto-optical recording medium, or a semiconductor memory.

また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD-ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。 Further, this program is distributed by, for example, selling, transferring, lending, etc. a portable recording medium such as a DVD or CD-ROM on which the program is recorded. Furthermore, this program may be distributed by storing the program in the storage device of the server computer and transferring the program from the server computer to another computer via a network.

このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理の実行時、このコンピュータは、自己の記録媒体に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよく、さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、本形態におけるプログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。 A computer that executes such a program, for example, first stores a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device. When executing a process, this computer reads a program stored in its own recording medium and executes a process according to the read program. In addition, as another form of execution of this program, the computer may directly read the program from a portable recording medium and execute processing according to the program, and furthermore, the program may be transferred to this computer from the server computer. The process may be executed in accordance with the received program each time. In addition, the above-mentioned processing is executed by a so-called ASP (Application Service Provider) type service, which does not transfer programs from the server computer to this computer, but only realizes processing functions by issuing execution instructions and obtaining results. You can also use it as Note that the program in this embodiment includes information that is used for processing by an electronic computer and that is similar to a program (data that is not a direct command to the computer but has a property that defines the processing of the computer, etc.).

また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、本装置を構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。 Further, in this embodiment, the present apparatus is configured by executing a predetermined program on a computer, but at least a part of these processing contents may be realized by hardware.

100 避航経路探索装置 101 避航経路探索支援装置
110 情報収集部 120 他船選別部
130 条件設定部 140 予測避航領域計算部
145 予測避航領域結合部 150 経路探索部
160 再計算部 170 経路決定部
180 繰り返し制御部 190 記録部
100 Avoidance route search device 101 Avoidance route search support device 110 Information collection unit 120 Other ship selection unit 130 Condition setting unit 140 Predicted avoidance area calculation unit 145 Predicted avoidance area combination unit 150 Route search unit 160 Recalculation unit 170 Route determination unit 180 Repetition Control unit 190 Recording unit

Claims (15)

自船および周辺の他船の位置と速度の情報を収集する情報収集部と、
自船および他船の位置と速度の条件を設定する条件設定部と、
前記条件設定部が設定した自船および他船の位置と速度に基づいて、他船ごとに、あらかじめ定めた避航領域の条件を満たす領域である予測避航領域を計算する予測避航領域計算部と、
あらかじめ定めた目的地と前記条件設定部が設定した自船とを結ぶ直線上にいずれかの前記予測避航領域がある場合に、あらかじめ定めた経路探索の条件を満たす前記予測避航領域の境界線上の点から経路点候補を探索する経路探索部と、
前記経路点候補ごとに、当該経路点候補が属する予測避航領域の境界線上の点の1つを、前記目的地方向に進む自船の位置に設定し、当該位置に自船が到達する時刻から他船の位置を設定するように前記条件設定部に指示し、前記条件設定部、前記予測避航領域計算部、前記経路探索部の処理の繰り返し処理を行わせる繰り返し制御部と、
を備える避航経路探索装置。
an information collection unit that collects information on the position and speed of the own ship and other ships in the vicinity;
a condition setting section that sets conditions for the position and speed of own ship and other ships;
a predicted avoidance area calculation unit that calculates a predicted avoidance area that is an area that satisfies predetermined avoidance area conditions for each other ship based on the positions and speeds of the own ship and other ships set by the condition setting unit;
If any of the predicted avoidance areas is on a straight line connecting the predetermined destination and the own ship set by the condition setting section, the area on the boundary line of the predicted avoidance area that satisfies the predetermined route search conditions. a route search unit that searches for route point candidates from points;
For each route point candidate, one of the points on the boundary line of the predicted avoidance area to which the route point candidate belongs is set as the position of the own ship proceeding in the direction of the destination, and from the time when the own ship reaches the position. a repetition control unit that instructs the condition setting unit to set the position of another ship, and causes the condition setting unit, the predicted avoidance area calculation unit, and the route search unit to repeat processing;
An avoidance route search device comprising:
請求項1記載の避航経路探索装置であって、
自船の速さを変更可能とし、
前記経路点候補に進むためには変針角があらかじめ定めた角度である制限角より大きくなる場合に、自船の速さの変更によって移動する当該経路点候補に進むための変針角が前記制限角となるように自船の速さと当該経路点候補の位置を求める再計算部、
も備え、
前記繰り返し処理は前記再計算部の処理も含み、前記繰り返し制御部は、前記再計算部が自船の速さと当該経路点候補を求めた場合は、当該経路点候補が属する予測避航領域を当該経路点候補にしたがって移動させ、前記繰り返し処理を行う
ことを特徴とする避航経路探索装置。
The avoidance route search device according to claim 1,
It is possible to change the speed of own ship,
If the turning angle in order to proceed to the route point candidate is larger than the limit angle, which is a predetermined angle, the turning angle in order to proceed to the route point candidate, which is a predetermined angle, is determined by changing the own ship's speed. a recalculation unit that calculates the speed of own ship and the position of the route point candidate so that
Also equipped,
The iterative processing also includes the processing of the recalculation unit, and when the recalculation unit calculates the own ship's speed and the route point candidate, the iterative control unit calculates the predicted avoidance area to which the route point candidate belongs. An avoidance route search device that moves according to route point candidates and performs the above-mentioned repetitive processing.
請求項1または2記載の避航経路探索装置であって、
前記情報を収集した他船の中から避航経路探索に関係する他船を選別する他船選別部
も備える避航経路探索装置。
The avoidance route search device according to claim 1 or 2,
The avoidance route search device also includes an other ship selection unit that selects other ships related to the avoidance route search from among the other ships for which the information has been collected.
請求項1または2記載の避航経路探索装置であって、
避航経路探索に関係する他船を、前記条件設定部が設定した自船および他船の位置と速度の条件に基づいて選別する他船選別部
も備え、
前記繰り返し処理は前記他船選別部の処理も含む
ことを特徴とする避航経路探索装置。
The avoidance route search device according to claim 1 or 2,
It also includes an other ship selection unit that selects other ships related to the avoidance route search based on the position and speed conditions of the own ship and other ships set by the condition setting unit,
The avoidance route search device, wherein the repetitive processing also includes processing of the other ship selection section.
請求項1~4のいずれかに記載の避航経路探索装置であって、
現在の自船の位置から前記目的地までの経路を、あらかじめ定めた優先条件にしたがって前記経路点候補に基づいて決定する経路決定部
も備える避航経路探索装置。
The avoidance route search device according to any one of claims 1 to 4,
An avoidance route search device further comprising: a route determination unit that determines a route from the current position of the ship to the destination based on the route point candidates according to predetermined priority conditions.
請求項1~5のいずれかに記載の避航経路探索装置であって、
前記予測避航領域計算部が計算した予測避航領域同士が、あらかじめ定めた互いに近いことを示す条件を満たすときは、当該条件を満たす複数の予測避航領域を1つの予測避航領域とする予測避航領域結合部
も備え、
前記繰り返し処理は前記予測避航領域結合部の処理も含む
ことを特徴とする避航経路探索装置。
The avoidance route search device according to any one of claims 1 to 5,
When the predicted avoidance areas calculated by the predicted avoidance area calculation unit satisfy a predetermined condition indicating that they are close to each other, the predicted avoidance areas are combined into one predicted avoidance area, which combines the plurality of predicted avoidance areas that satisfy the condition. We also have a department.
The avoidance route search device is characterized in that the iterative processing also includes processing of the predicted avoidance area combination unit.
請求項1~6のいずれかに記載の避航経路探索装置であって、
前記他船の前方方向の避ける距離を前方安全距離、前記他船の側方方向の避ける距離を側方安全距離、前記他船の後方方向の避ける距離を後方安全距離とし、
前記予測避航領域計算部は、
自船が前記他船の正面に位置するときに前記前方安全距離を確保し、自船が前記他船の真横に位置するときに前記側方安全距離を確保し、自船が前記他船の真後ろに位置するときに前記後方安全距離を確保するように予測避航領域を計算する
ことを特徴とする避航経路探索装置。
The avoidance route search device according to any one of claims 1 to 6,
The distance to avoid in the forward direction of the other ship is the forward safety distance, the distance to avoid in the side direction of the other ship is the lateral safety distance, and the distance to avoid in the rear direction of the other ship is the rear safety distance,
The predicted avoidance area calculation unit includes:
The forward safety distance is secured when the own ship is located in front of the other ship, the lateral safety distance is secured when the own ship is located directly beside the other ship, and the own ship is located in front of the other ship. An avoidance route search device that calculates a predicted avoidance area so as to secure the safe rear distance when the vehicle is positioned directly behind the vehicle.
請求項7記載の避航経路探索装置であって、
前記経路探索部は、
前記目的地と自船とを結ぶ直線上にある予測避航領域の境界線上の点の中で、右方向への変針角が最も大きくなる点および左方向への変針角が最も大きくなる点を両端点とし、それぞれの両端点について、両端点と自船とを結ぶ直線上に他の予測避航領域がないときは当該両端点を前記経路点候補とする
ことを特徴とする避航経路探索装置。
The avoidance route search device according to claim 7,
The route search unit includes:
Among the points on the boundary line of the predicted give-way area on the straight line connecting the destination and own ship, the point where the turning angle to the right is the largest and the point where the turning angle to the left is the largest are both ends. A dodging route searching device characterized in that, for each end point, when there is no other predicted avoidance area on a straight line connecting both end points and the own ship, the both end points are set as the route point candidates.
請求項8記載の避航経路探索装置であって、
前記経路探索部は、
前記両端点と自船とを結ぶ直線上に予測避航領域がある場合に、当該直線上にある予測避航領域の境界線上の点の中で、右方向への変針角が最も大きくなる点および左方向への変針角が最も大きくなる点を両端点とし、それぞれの両端点について、両端点と自船とを結ぶ直線上に他の予測避航領域がないときは当該両端点を前記経路点候補とする
ことを特徴とする避航経路探索装置。
The avoidance route search device according to claim 8,
The route search unit includes:
If there is a predicted avoidance area on a straight line connecting both end points and own ship, among the points on the boundary line of the predicted avoidance area on the straight line, the point where the turning angle to starboard is the largest and the left The points where the turning angle in the direction is the largest are taken as both end points, and for each end point, if there is no other predicted avoidance area on the straight line connecting both end points and the own ship, the said end points are considered as the route point candidates. An avoidance route search device characterized by:
自船および周辺の他船の位置と速度の情報を収集する情報収集ステップと、
自船および他船の位置と速度の条件を設定する条件設定ステップと、
前記条件設定ステップが設定した自船および他船の位置と速度に基づいて、他船ごとに、あらかじめ定めた避航領域の条件を満たす領域である予測避航領域を計算する予測避航領域計算ステップと、
あらかじめ定めた目的地と前記条件設定ステップが設定した自船とを結ぶ直線上にいずれかの前記予測避航領域がある場合に、あらかじめ定めた経路探索の条件を満たす前記予測避航領域の境界線上の点から経路点候補を探索する経路探索ステップと、
前記経路点候補ごとに、当該経路点候補が属する予測避航領域の境界線上の点の1つを、前記目的地方向に進む自船の位置に設定し、当該位置に自船が到達する時刻から他船の位置を設定するように前記条件設定ステップに指示し、前記条件設定ステップ、前記予測避航領域計算ステップ、前記経路探索ステップの処理の繰り返し処理を行わせる繰り返し制御ステップと、
を実行する避航経路探索方法。
an information gathering step of collecting information on the position and speed of the own ship and other nearby ships;
a condition setting step for setting position and speed conditions of own ship and other ships;
a predicted avoidance area calculation step of calculating a predicted avoidance area that is an area that satisfies predetermined avoidance area conditions for each other ship based on the positions and speeds of the own ship and other ships set in the condition setting step;
If any of the predicted avoidance areas is on a straight line connecting the predetermined destination and the own ship set in the condition setting step, the area on the boundary line of the predicted avoidance area that satisfies the predetermined route search conditions. a route searching step of searching for route point candidates from the points;
For each route point candidate, one of the points on the boundary line of the predicted avoidance area to which the route point candidate belongs is set as the position of the own ship proceeding in the direction of the destination, and from the time when the own ship reaches the position. an iterative control step instructing the condition setting step to set the position of another ship, and repeating the processing of the condition setting step, the predicted avoidance area calculation step, and the route search step;
A method of searching for an avoidance route.
請求項1記載の避航経路探索方法であって、
自船の速さを変更可能とし、
前記経路点候補に進むためには変針角があらかじめ定めた角度である制限角より大きくなる場合に、自船の速さの変更によって移動する当該経路点候補に進むための変針角が前記制限角となるように自船の速さと当該経路点候補の位置を求める再計算ステップ、
も有し、
前記繰り返し処理は前記再計算ステップの処理も含み、前記繰り返し制御ステップは、前記再計算ステップが自船の速さと当該経路点候補を求めた場合は、当該経路点候補が属する予測避航領域を当該経路点候補にしたがって移動させ、前記繰り返し処理を行う
ことを特徴とする避航経路探索方法。
The avoidance route search method according to claim 10 ,
It is possible to change the speed of own ship,
If the turning angle in order to proceed to the route point candidate is larger than the limit angle, which is a predetermined angle, the turning angle in order to proceed to the route point candidate, which is a predetermined angle, is determined by changing the own ship's speed. a recalculation step of determining the speed of own ship and the position of the route point candidate so that
also has
The iterative process also includes the process of the recalculation step, and when the recalculation step calculates the own ship's speed and the route point candidate, the iterative control step calculates the predicted avoidance area to which the route point candidate belongs. A method for searching for an avoidance route, comprising moving according to a route point candidate and repeating the process.
請求項1または1に記載の避航経路探索方法であって、
前記他船の前方方向の避ける距離を前方安全距離、前記他船の側方方向の避ける距離を側方安全距離、前記他船の後方方向の避ける距離を後方安全距離とし、
前記予測避航領域計算ステップは、
自船が前記他船の正面に位置するときに前記前方安全距離を確保し、自船が前記他船の真横に位置するときに前記側方安全距離を確保し、自船が前記他船の真後ろに位置するときに前記後方安全距離を確保するように予測避航領域を計算する
ことを特徴とする避航経路探索方法。
The avoidance route searching method according to claim 10 or 11 ,
The distance to avoid in the forward direction of the other ship is the forward safety distance, the distance to avoid in the side direction of the other ship is the lateral safety distance, and the distance to avoid in the rear direction of the other ship is the rear safety distance,
The predicted avoidance area calculation step includes:
The forward safety distance is secured when the own ship is located in front of the other ship, the lateral safety distance is secured when the own ship is located directly beside the other ship, and the own ship is located in front of the other ship. A method for searching for an avoidance route, comprising calculating a predicted avoidance area so as to secure the safe rear distance when the vehicle is located directly behind the vehicle.
請求項1記載の避航経路探索方法であって、
前記経路探索ステップは、
前記目的地と自船とを結ぶ直線上にある予測避航領域の境界線上の点の中で、右方向への変針角が最も大きくなる点および左方向への変針角が最も大きくなる点を両端点とし、それぞれの両端点について、両端点と自船とを結ぶ直線上に他の予測避航領域がないときは当該両端点を前記経路点候補とする
ことを特徴とする避航経路探索方法。
The avoidance route search method according to claim 1 or 2 ,
The route searching step includes:
Among the points on the boundary line of the predicted give-way area on the straight line connecting the destination and own ship, the point where the turning angle to the right is the largest and the point where the turning angle to the left is the largest are both ends. A method for searching for an avoidance route, characterized in that for each endpoint, if there is no other predicted avoidance area on a straight line connecting both endpoints and the own ship, the two endpoints are selected as the route point candidates.
請求項13記載の避航経路探索方法であって、
前記経路探索ステップは、
前記両端点と自船とを結ぶ直線上に予測避航領域がある場合に、当該直線上にある予測避航領域の境界線上の点の中で、右方向への変針角が最も大きくなる点および左方向への変針角が最も大きくなる点を両端点とし、それぞれの両端点について、両端点と自船とを結ぶ直線上に他の予測避航領域がないときは当該両端点を前記経路点候補とする
ことを特徴とする避航経路探索方法。
The avoidance route search method according to claim 13,
The route searching step includes:
If there is a predicted avoidance area on a straight line connecting both end points and own ship, among the points on the boundary line of the predicted avoidance area on the straight line, the point where the turning angle to starboard is the largest and the left The points where the turning angle in the direction is the largest are taken as both end points, and for each end point, if there is no other predicted avoidance area on the straight line connecting both end points and the own ship, the said end points are considered as the route point candidates. An avoidance route search method characterized by:
請求項1~9のいずれかに記載の避航経路探索装置としてコンピュータを機能させるためのプログラム。 A program for causing a computer to function as the avoidance route search device according to any one of claims 1 to 9.
JP2020064054A 2020-03-31 2020-03-31 Avoidance route search device, avoidance route search method, program Active JP7364521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020064054A JP7364521B2 (en) 2020-03-31 2020-03-31 Avoidance route search device, avoidance route search method, program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020064054A JP7364521B2 (en) 2020-03-31 2020-03-31 Avoidance route search device, avoidance route search method, program

Publications (2)

Publication Number Publication Date
JP2021160550A JP2021160550A (en) 2021-10-11
JP7364521B2 true JP7364521B2 (en) 2023-10-18

Family

ID=78002260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020064054A Active JP7364521B2 (en) 2020-03-31 2020-03-31 Avoidance route search device, avoidance route search method, program

Country Status (1)

Country Link
JP (1) JP7364521B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115995165A (en) * 2022-10-31 2023-04-21 河北东来工程技术服务有限公司 Ship navigation risk management method and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018109621A (en) 2016-12-22 2018-07-12 ゲシュタルト システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツングGestalt Systems GmbH Navigation for moving body
JP2020027344A (en) 2018-08-09 2020-02-20 株式会社日本海洋科学 Collision avoidance support device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018109621A (en) 2016-12-22 2018-07-12 ゲシュタルト システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツングGestalt Systems GmbH Navigation for moving body
JP2020027344A (en) 2018-08-09 2020-02-20 株式会社日本海洋科学 Collision avoidance support device

Also Published As

Publication number Publication date
JP2021160550A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
EP3699048B1 (en) Travelling track prediction method and device for vehicle
JP6661745B2 (en) Ship collision avoidance guidance system using time-series graphic display
CN110119140A (en) System and method for acceleration curve projection
JP2024050711A5 (en)
CN110470299A (en) A kind of seaway planning algorithm evaded based on round roadblock
JP7364521B2 (en) Avoidance route search device, avoidance route search method, program
Szlapczynski Evolutionary planning of safe ship tracks in restricted visibility
KR101894674B1 (en) Ship navigation apparatus and method for providing route information for ship
US20200018601A1 (en) Navigation device and method of creating route
KR101799216B1 (en) Ship navigation apparatus and method for providing route information for ship
KR101719142B1 (en) Ship navigation apparatus and method for providing route information for ship
CN114387824B (en) Anti-collision steering judging method conforming to international offshore anti-collision rule
US20060164416A1 (en) Method, apparatus, and medium for three-dimensionally transforming two-dimensional flyover data in three-dimensional graphics environment and for three-dimensionally visualizing two-dimensional flyover data in three-dimensional graphics environment
Chen et al. Research on ship meteorological route based on A-star algorithm
KR101193081B1 (en) The method and apparatus for detecting collision possibility of ship using detecting line
CN110414042B (en) Ship cluster situation analysis method under conflict meeting situation
CN116215517A (en) Collision detection method, device, apparatus, storage medium, and autonomous vehicle
Mahipala et al. Model Predictive Control for Path Following and Collision-Avoidance of Autonomous Ships in Inland Waterways
JP2004086450A (en) Vehicle branch road selecting device and traveling controller
CN117132012B (en) Multi-ship collision prevention method for predicting collision danger area, electronic equipment and storage medium
Van Baelen et al. Dynamic semantic world models and increased situational awareness for highly automated inland waterway transport
WO2023286825A1 (en) Navigation assistance device, navigation assistance method, and program
CN115167426A (en) Path planning method and device for multiple self-moving devices and self-moving device
EP3957548A1 (en) System and mehtod for avoiding collision based on vision
CN117739983A (en) Ship path planning method with improved A-algorithm

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200409

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231005

R150 Certificate of patent or registration of utility model

Ref document number: 7364521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150