JP7364437B2 - Temperature measuring device and temperature measuring method - Google Patents

Temperature measuring device and temperature measuring method Download PDF

Info

Publication number
JP7364437B2
JP7364437B2 JP2019210831A JP2019210831A JP7364437B2 JP 7364437 B2 JP7364437 B2 JP 7364437B2 JP 2019210831 A JP2019210831 A JP 2019210831A JP 2019210831 A JP2019210831 A JP 2019210831A JP 7364437 B2 JP7364437 B2 JP 7364437B2
Authority
JP
Japan
Prior art keywords
temperature
emission intensity
intensity distribution
silicon carbide
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019210831A
Other languages
Japanese (ja)
Other versions
JP2021081371A (en
Inventor
雅史 花輪
秀一 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2019210831A priority Critical patent/JP7364437B2/en
Publication of JP2021081371A publication Critical patent/JP2021081371A/en
Application granted granted Critical
Publication of JP7364437B2 publication Critical patent/JP7364437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、紫外線光で発光する材料(例えば、炭化珪素)を用いて温度を測定する温度測定装置、及び、温度測定方法に関する。 The present invention relates to a temperature measuring device and a temperature measuring method that measure temperature using a material that emits light with ultraviolet light (for example, silicon carbide).

半導体装置の製造においては、例えば、温度ストレスを印加した状態で電気的特性を測定する場合がある。この場合、印加する温度を正確に制御する必要があり、温度測定手段で温度を測定しながら温度を所望の状態に維持することが実施されている(特許文献1)。 In manufacturing semiconductor devices, for example, electrical characteristics may be measured while applying temperature stress. In this case, it is necessary to accurately control the applied temperature, and it is practiced to maintain the temperature at a desired state while measuring the temperature with a temperature measuring means (Patent Document 1).

温度測定手段としては、特定の構造を持った機器や素子等を測定部に接触させる温度測定手段を用いることが考えられる。また、放射温度計等、赤外光を用いた非接触の温度測定手段を用いることが考えられる。 As the temperature measuring means, it is conceivable to use a temperature measuring means in which a device or element having a specific structure is brought into contact with the measuring section. It is also possible to use a non-contact temperature measuring means using infrared light, such as a radiation thermometer.

機器や素子等を測定部に接触させる温度測定手段は、使用できる測定対象物や使用環境に制約があった。また、赤外光を用いた非接触の温度測定手段は、周囲に熱源がある等赤外光源がある場所では使用できない状況であった。 Temperature measuring means that bring equipment, elements, etc. into contact with a measuring part have limitations on the objects that can be measured and the environments in which they can be used. Furthermore, non-contact temperature measuring means using infrared light cannot be used in places where an infrared light source is present, such as when there is a heat source nearby.

特開2016-99300号公報Japanese Patent Application Publication No. 2016-99300

本発明は上記状況に鑑みてなされたもので、測定対象物や使用する環境の制約を受け難い状態で測定対象物の温度を測定することができる温度測定装置、及び、温度測定方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a temperature measuring device and a temperature measuring method capable of measuring the temperature of an object to be measured without being subject to restrictions of the object to be measured or the environment in which it is used. The purpose is to

上記目的を達成するための請求項1に係る本願発明の温度測定装置は、検出対象に接触させる炭化珪素(SiC)と、紫外線波長域の紫外線光を前記炭化珪素(SiC)に照射する紫外線光照射手段と、前記紫外線光照射手段で照射された紫外線光により発光した前記炭化珪素(SiC)の発光データが入力され、前記発光データに基づいて前記炭化珪素(SiC)の温度を推定することで前記検出対象の温度を測定する温度検出制御手段とを備えたことを特徴とする。 To achieve the above object, the temperature measuring device of the present invention according to claim 1 includes: silicon carbide (SiC) that is brought into contact with a detection target; and ultraviolet light that irradiates the silicon carbide (SiC) with ultraviolet light in an ultraviolet wavelength range. By inputting light emission data of the silicon carbide (SiC) emitted by the ultraviolet light irradiated by the irradiation means and the ultraviolet light irradiation means, and estimating the temperature of the silicon carbide (SiC) based on the light emission data. The apparatus is characterized by comprising: temperature detection control means for measuring the temperature of the detection target.

請求項1に係る本願発明では、検出対象に接触させた炭化珪素(SiC)に対し、紫外線光照射手段(例えば、レーザー、LED)から紫外線光(波長が10nmから400nmの光)が照射され、炭化珪素(SiC)の発光データが温度検出制御手段に入力される。温度検出制御手段では発光データに基づいて炭化珪素(SiC)の温度が推定され、検出対象の温度を直接測定する。例えば、紫外線光は、エネルギー密度が0.01W/cm以上の強度で照射することができる。
そして、材料として、六方晶(2H、4H、6H)、立方晶(3C)、及び、菱面体晶(15R)の各種結晶構造を持った炭化珪素(SiC)を用いて温度を測定することができる。炭化珪素(SiC)に対し発光を促進する物質(例えば、窒素)を含有させることで、発光を促進させることができる。
In the present invention according to claim 1, silicon carbide (SiC) brought into contact with a detection target is irradiated with ultraviolet light (light with a wavelength of 10 nm to 400 nm) from an ultraviolet light irradiation means (for example, a laser, an LED), Light emission data of silicon carbide (SiC) is input to the temperature detection control means. The temperature detection control means estimates the temperature of silicon carbide (SiC) based on the luminescence data, and directly measures the temperature of the detection target. For example, ultraviolet light can be irradiated with an energy density of 0.01 W/cm 2 or more.
Temperature can be measured using silicon carbide (SiC), which has various crystal structures such as hexagonal (2H, 4H, 6H), cubic (3C), and rhombohedral (15R), as a material. can. Light emission can be promoted by incorporating a substance (for example, nitrogen) that promotes light emission into silicon carbide (SiC).

材料は、粒径が1nm以上の粉体にし、その粉末を圧縮成形した形状で測定対象に混合する、あるいは、直接密着させる、被覆部材等の介在物を介した状態で密着させることが好ましい。測定対象が流体の場合、材料を、粒径が1nm以上の粉体として流体に混合することが好ましい。 It is preferable that the material is a powder with a particle size of 1 nm or more, and the powder is compressed and mixed with the measurement object, or it is brought into close contact with the object directly, or through an inclusion such as a covering member. When the object to be measured is a fluid, it is preferable to mix the material with the fluid as a powder having a particle size of 1 nm or more.

これにより、測定対象物や使用する環境の制約を受け難い状態で測定対象物の温度を測定することが可能になる。 This makes it possible to measure the temperature of the object to be measured without being subject to restrictions from the object to be measured or the environment in which it is used.

炭化珪素に窒素を含有させることで、紫外線領域波長の光を照射した際に得られる発光強度が照射エネルギー密度に比例することが知られている。具体的には、炭化珪素に、例えば、1018/cmから1019/cmの範囲で窒素を含有させることで、紫外線領域波長の光を照射した際に得られる発光強度が照射エネルギー密度に依存することが知られている。 It is known that by incorporating nitrogen into silicon carbide, the luminescence intensity obtained when irradiated with light having a wavelength in the ultraviolet region is proportional to the irradiation energy density. Specifically, by making silicon carbide contain nitrogen in the range of, for example, 10 18 /cm 3 to 10 19 /cm 3 , the luminescence intensity obtained when irradiated with light in the ultraviolet region wavelength increases with the irradiation energy density. is known to depend on

このため、炭化珪素に、例えば、1018/cmから1019/cmの範囲で窒素を含有させることが好ましい。 For this reason, silicon carbide preferably contains nitrogen in a range of, for example, 10 18 /cm 3 to 10 19 /cm 3 .

また、請求項2に係る本願発明の温度測定装置は、請求項1に記載の温度測定装置において、前記温度検出制御手段は、前記発光データとして発光強度分布に基づき温度を導出する温度導出手段を有することを特徴とする。 Further, in the temperature measuring device of the present invention according to claim 2 , in the temperature measuring device according to claim 1 , the temperature detection control means includes a temperature deriving means for deriving the temperature based on the light emission intensity distribution as the light emission data. It is characterized by having.

求項2に係る本願発明では、温度検出制御手段の温度導出手段により、発光強度分布に基づいて温度が導出される。例えば、発光強度分布の形が比較され、形の近似の度合いに基づいて温度が導出される。発光強度分布の比較の対象の具体的な例としては、任意の発光強度の波長(ピークとなる波長)の値と温度との関係、任意の複数の発光強度の比率と温度との関係、発光強度分布の半値幅と温度との関係、ピーク面積と温度との関係等が挙げられる。 In the present invention according to claim 2 , the temperature is derived by the temperature derivation means of the temperature detection control means based on the emission intensity distribution. For example, the shapes of the emission intensity distributions are compared, and the temperature is derived based on the degree of approximation of the shapes. Specific examples of comparison targets for emission intensity distribution include the relationship between the wavelength (peak wavelength) of any emission intensity and temperature, the relationship between the ratio of arbitrary multiple emission intensities and temperature, and the relationship between the temperature and the ratio of arbitrary emission intensities. Examples include the relationship between the half width of the intensity distribution and temperature, and the relationship between peak area and temperature.

また、請求項3に係る本願発明の温度測定装置は、請求項2に記載の温度測定装置において、前記温度検出制御手段は、複数の温度パラメータに応じた発光強度分布が、比較発光強度分布として記憶された発光強度分布記憶手段を有し、前記温度導出手段では、入力された発光データの発光強度分布と、前記発光強度分布記憶手段に記憶された前記比較発光強度分布とに基づいて温度が導出されることを特徴とする。 Further, in the temperature measuring device of the present invention according to claim 3 , in the temperature measuring device according to claim 2 , the temperature detection control means detects a light emission intensity distribution according to a plurality of temperature parameters as a comparative light emission intensity distribution. The temperature deriving means calculates the temperature based on the luminescence intensity distribution of the input luminescence data and the comparative luminescence intensity distribution stored in the luminescence intensity distribution storage means. It is characterized by being derived.

請求項3に係る本願発明では、複数の温度パラメータに応じた比較発光強度分布が発光強度分布記憶手段に記憶され、入力された発光データの発光強度分布と比較発光強度分布とが比較されて温度が導出される。つまり、予め記憶された発光強度分布(比較発光強度分布)のデータと実際の発光強度分布を比較して温度が推定される。 In the present invention according to claim 3 , a comparison luminescence intensity distribution according to a plurality of temperature parameters is stored in the luminescence intensity distribution storage means, and the luminescence intensity distribution of the input luminescence data and the comparison luminescence intensity distribution are compared to determine the temperature. is derived. That is, the temperature is estimated by comparing the data of the luminescence intensity distribution stored in advance (comparison luminescence intensity distribution) with the actual luminescence intensity distribution.

予め記憶された発光強度分布(比較発光強度分布)のデータと実際の発光強度分布を比較する場合、例えば、発光強度分布の形が比較される。具体的な形の比較の態様としては、任意の波長での発光強度の状況の比較、発光強度分布の半値幅の状況の比較、発光強度分布の複数の密度分布関数に基づく複数のピーク面積の状況の比較を適用することが好ましい。 When comparing data of a pre-stored emission intensity distribution (comparison emission intensity distribution) and an actual emission intensity distribution, for example, the shapes of the emission intensity distributions are compared. Specific forms of comparison include comparison of the status of emission intensity at arbitrary wavelengths, comparison of the status of half-width of the emission intensity distribution, and comparison of the status of multiple peak areas based on multiple density distribution functions of the emission intensity distribution. Preferably, a comparative situation is applied.

また、請求項4に係る本願発明の温度測定装置は、請求項3に記載の温度測定装置において、前記温度検出制御手段は、前記炭化珪素(SiC)の発光データが入力され、入力された発光データにおける複数の波長での発光強度の割合である実発光強度割合が求められる実強度割合導出手段を有し、前記発光強度分布記憶手段では、複数の温度毎に、比較発光強度分布の複数の波長の発光強度の割合が発光強度割合として記憶され、前記温度導出手段では、前記発光強度分布記憶手段に記憶された発光強度割合、及び、前記実強度割合導出手段で導出された実発光強度割合が比較され、実発光強度割合に応じた温度が導出されることを特徴とする。 Further, in the temperature measuring device of the present invention according to claim 4 , in the temperature measuring device according to claim 3 , the temperature detection control means receives the light emission data of the silicon carbide (SiC) , and the input light emission data is inputted. It has an actual intensity ratio deriving means for calculating an actual emission intensity ratio which is a ratio of emission intensities at a plurality of wavelengths in the data, and the emission intensity distribution storage means stores a plurality of comparative emission intensity distributions for each of a plurality of temperatures. The ratio of the emission intensity of the wavelength is stored as the emission intensity ratio , and the temperature derivation means calculates the emission intensity ratio stored in the emission intensity distribution storage means and the actual emission intensity ratio derived by the actual intensity ratio derivation means. are compared, and a temperature corresponding to the actual emission intensity ratio is derived.

請求項4に係る本願発明では、実強度割合導出手段で、複数の波長での発光強度の割合である実発光強度割合が求められる。発光強度分布記憶手段には、複数の温度毎に、比較発光強度分布の複数の波長での発光強度の割合が発光強度割合として記憶されている。温度導出手段では、発光強度割合と実発光強度割合が比較され、実発光強度割合に応じた温度が導出される。 In the present invention according to claim 4 , the actual intensity ratio deriving means calculates the actual emission intensity ratio, which is the ratio of the emission intensities at a plurality of wavelengths. The emission intensity distribution storage means stores, for each of a plurality of temperatures, the proportions of emission intensities at a plurality of wavelengths in a comparative emission intensity distribution as emission intensity proportions. The temperature deriving means compares the light emission intensity ratio and the actual light emission intensity ratio, and derives a temperature corresponding to the actual light emission intensity ratio.

つまり、複数の波長、例えば、2つの波長での発光強度の割合と温度の関係がデータ化され、実際の発光強度分布における、2つの波長での発光強度の割合がデータ化された割合と比較される。比較の結果、近似する割合における温度が実際の温度であると推定される。 In other words, the relationship between the ratio of emission intensity at multiple wavelengths, for example, two wavelengths, and temperature is converted into data, and compared with the ratio of the ratio of emission intensity at two wavelengths in the actual emission intensity distribution. be done. As a result of the comparison, it is estimated that the temperature at the approximate rate is the actual temperature.

例えば、400nm近傍での波長での発光強度と、420nm近傍での波長での発光強度との割合が温度毎にデータ化され、発光強度割合と温度との関係のグラフとして予め記憶されている。実際の発光強度分布における、400nm近傍での波長での発光強度と、420nm近傍での波長での発光強度との割合が求められ、予め記憶されたデータに基づいて、求められた発光強度割合に対する温度が導出される。 For example, the ratio of the emission intensity at a wavelength near 400 nm and the emission intensity at a wavelength near 420 nm is converted into data for each temperature, and is stored in advance as a graph of the relationship between the emission intensity ratio and temperature. In the actual emission intensity distribution, the ratio of the emission intensity at a wavelength near 400 nm and the emission intensity at a wavelength near 420 nm is determined, and based on pre-stored data, the ratio of the emission intensity to the obtained emission intensity ratio is calculated. Temperature is derived.

また、請求項5に係る本願発明の温度測定装置は、請求項3に記載の温度測定装置において、前記温度検出制御手段は、前記炭化珪素(SiC)の発光データが入力され、入力された発光データにおける複数の波長での発光強度分布の実半値幅が求められる実半値幅導出手段を有し、前記発光強度分布記憶手段では、複数の温度毎に、比較発光強度分布の複数の波長での半値幅が比較半値幅として記憶され、前記温度導出手段では、発光強度分布記憶手段に記憶された比較半値幅、及び、実半値幅導出手段で導出された半値幅が比較され、半値幅に応じた温度が導出されることを特徴とする。 Further, in the temperature measuring device of the present invention according to claim 5 , in the temperature measuring device according to claim 3, the temperature detection control means receives the light emission data of the silicon carbide (SiC) , and It has an actual half-width derivation means for calculating the actual half-width of the emission intensity distribution at a plurality of wavelengths in the data, and the emission intensity distribution storage means calculates the actual half-width of the emission intensity distribution at a plurality of wavelengths for each of the plurality of temperatures. The half-value width is stored as a comparative half-value width, and the temperature deriving means compares the comparative half-value width stored in the emission intensity distribution storage means and the half-value width derived by the actual half-value width deriving means, and calculates the value according to the half-value width. It is characterized in that the temperature is derived.

請求項5に係る本願発明では、実半値幅導出手段で、複数の波長での発光強度分布の半値幅が求められる。発光強度分布記憶手段には、複数の温度毎に、比較発光強度分布の複数の波長での半値幅が比較半値幅として記憶されている。温度導出手段では、比較半値幅と実半値幅とが比較され、実半値幅に応じた温度が導出される。 In the present invention according to claim 5 , the actual half-width deriving means calculates the half-width of the emission intensity distribution at a plurality of wavelengths. In the emission intensity distribution storage means, half-value widths of comparative emission intensity distributions at a plurality of wavelengths are stored as comparative half-value widths for each of a plurality of temperatures. The temperature deriving means compares the comparative half-width and the actual half-width, and derives a temperature corresponding to the actual half-width.

つまり、比較半値幅と温度の関係がデータ化され、実際の半値幅がデータ化された比較半値幅と比較される。比較の結果、近似する半値幅における温度が実際の温度であると推定される。 That is, the relationship between the comparison half-width and temperature is converted into data, and the actual half-width is compared with the comparison half-width that has been converted into data. As a result of the comparison, it is estimated that the temperature at the approximate half-width is the actual temperature.

上記目的を達成するための請求項6に係る本願発明の温度測定方法は、検出対象に接触させた炭化珪素(SiC:結晶構造を持つSiC)に紫外線波長域の電磁波を照射し、電磁波により発光した前記炭化珪素の発光強度の状況に基づいて、前記炭化珪素の温度を推定することで、前記検出対象の温度を測定することを特徴とする。 The temperature measuring method of the present invention according to claim 6 for achieving the above object irradiates silicon carbide (SiC: SiC with a crystalline structure) brought into contact with a detection target with electromagnetic waves in the ultraviolet wavelength range, and emits light by the electromagnetic waves. The temperature of the detection target is measured by estimating the temperature of the silicon carbide based on the state of the emission intensity of the silicon carbide.

請求項6に係る本願発明では、紫外線領域の波長の光(10nmから400nmの波長の光)を炭化珪素(炭化珪素単結晶、SiC:結晶構造を持つSiC)に当て、炭化珪素単結晶の発光強度の状況に基づいて、検出対象の温度を測定する。例えば、発光強度の分布(発光強度分布)に基づいて、予め温度毎に得られたデータと比較して温度を推定したり、発光強度と温度との関係のデータに基づいて温度を求めたりすることで、炭化珪素単結晶の温度が検出される。 In the present invention according to claim 6 , light with a wavelength in the ultraviolet region (light with a wavelength of 10 nm to 400 nm) is applied to silicon carbide (silicon carbide single crystal, SiC: SiC with a crystal structure) to emit light from the silicon carbide single crystal. Measure the temperature of the detection target based on the intensity situation. For example, based on the distribution of luminescence intensity (luminescence intensity distribution), temperature can be estimated by comparing it with data obtained in advance for each temperature, or temperature can be calculated based on data on the relationship between luminescence intensity and temperature. This allows the temperature of the silicon carbide single crystal to be detected.

このため、測定対象物や使用する環境の制約を受け難い状態で測定対象物の温度を測定することが可能になる。 Therefore, it becomes possible to measure the temperature of the object to be measured without being subject to restrictions from the object to be measured or the environment in which it is used.

本発明の温度測定装置は、測定対象物や使用する環境の制約を受け難い状態で測定対象物の温度を測定することが可能になる。
本発明の温度測定方法は、測定対象物や使用する環境の制約を受け難い状態で測定対象物の温度を測定することが可能になる。
The temperature measuring device of the present invention can measure the temperature of an object to be measured without being subject to restrictions from the object to be measured or the environment in which it is used.
The temperature measurement method of the present invention makes it possible to measure the temperature of an object to be measured without being subject to restrictions from the object to be measured or the environment in which it is used.

本発明の第1実施例に係る温度測定装置の概略図である。1 is a schematic diagram of a temperature measuring device according to a first embodiment of the present invention. 本発明の第2実施例に係る温度測定装置の概略図である。FIG. 2 is a schematic diagram of a temperature measuring device according to a second embodiment of the present invention. 温度検出制御手段のブロック図である。FIG. 3 is a block diagram of temperature detection control means. 比較発光強度分布のグラフである。It is a graph of comparative luminescence intensity distribution. 比較発光強度分布のグラフである。It is a graph of comparative luminescence intensity distribution. 比較発光強度分布のグラフである。It is a graph of comparative luminescence intensity distribution. 発光強度割合と温度との関係を表すグラフである。It is a graph showing the relationship between emission intensity ratio and temperature. 半値幅と温度との関係を表すグラフである。It is a graph showing the relationship between half width and temperature. ピーク面積を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining peak area.

図1には本発明の第1実施例に係る温度測定装置の概略の構成、図2には本発明の第2実施例に係る温度測定装置の概略の構成、図3には温度検出制御手段のブロック構成を示してある。 FIG. 1 shows a schematic configuration of a temperature measuring device according to a first embodiment of the present invention, FIG. 2 shows a schematic configuration of a temperature measuring device according to a second embodiment of the present invention, and FIG. 3 shows a temperature detection control means. The block configuration of is shown.

図1に基づいて第1実施例を説明する。 A first embodiment will be described based on FIG.

図1に示すように、検出対象としての構造物の壁1には、材料としての炭化珪素(SiC:結晶構造を持つSiC)2が取り付けられている。炭化珪素2は、粒径が1nm以上の粉体にされ、その粉末が圧縮成形された形状で壁1に密着されている。 As shown in FIG. 1, silicon carbide (SiC: SiC having a crystal structure) 2 as a material is attached to a wall 1 of a structure as a detection target. Silicon carbide 2 is powdered with a particle size of 1 nm or more, and the powder is compressed and adhered to wall 1.

検出対象の構造によっては、粒径が1nm以上の粉体を測定対象に混合させることもできる。炭化珪素2は、六方晶(2H、4H、6H)、立方晶(3C)、及び、菱面体晶(15R)の各種結晶構造を持った炭化珪素が適用される。 Depending on the structure of the object to be detected, powder having a particle size of 1 nm or more may be mixed into the object to be measured. As the silicon carbide 2, silicon carbide having various crystal structures such as hexagonal (2H, 4H, 6H), cubic (3C), and rhombohedral (15R) is applied.

炭化珪素2には、紫外線光照射手段3から、紫外線波長域の紫外線光(波長が10nmから400nmの光)が、例えば、エネルギー密度が0.01W/cm以上の強度で照射される。炭化珪素2は、紫外線光照射手段3から照射された紫外線光により発光する。炭化珪素2の発光データは温度検出制御手段4に入力される。 Silicon carbide 2 is irradiated with ultraviolet light in the ultraviolet wavelength range (light with a wavelength of 10 nm to 400 nm) from ultraviolet light irradiation means 3 at an intensity with an energy density of 0.01 W/cm 2 or more, for example. Silicon carbide 2 emits light by ultraviolet light irradiated from ultraviolet light irradiation means 3 . The light emission data of silicon carbide 2 is input to temperature detection control means 4 .

温度検出制御手段4では、発光データに基づいて炭化珪素2の温度が推定される。そして、炭化珪素2の推定された温度に基づいて壁1(構造物)の温度が測定される。 Temperature detection control means 4 estimates the temperature of silicon carbide 2 based on the light emission data. Then, the temperature of wall 1 (structure) is measured based on the estimated temperature of silicon carbide 2.

これにより、複雑な構造物や作業者が近づき難い構造物の壁1の温度を測定することができ、測定対象物や使用する環境の制約を受け難い状態で測定対象物の温度を測定することが可能になる。 As a result, it is possible to measure the temperature of the wall 1 of a complex structure or a structure that is difficult for workers to access, and the temperature of the object to be measured can be measured without being subject to restrictions from the object to be measured or the environment in which it is used. becomes possible.

炭化珪素2に対して、発光を促進する物質(例えば、窒素)が含有されている。窒素が含有されることで、紫外線領域波長の光を照射した際に得られる発光強度が、照射エネルギー密度に比例して促進される。 Silicon carbide 2 contains a substance (for example, nitrogen) that promotes luminescence. By containing nitrogen, the luminescence intensity obtained when irradiated with light having a wavelength in the ultraviolet region is promoted in proportion to the irradiation energy density.

炭化珪素2に、例えば、1018/cmから1019/cmの範囲で窒素を含有させることで、紫外線領域波長の光を照射した際に得られる発光強度を、照射エネルギー密度に依存して促進させることができる。 By containing nitrogen in silicon carbide 2 in a range of, for example, 10 18 /cm 3 to 10 19 /cm 3 , the luminescence intensity obtained when irradiated with light in the ultraviolet region wavelength becomes dependent on the irradiation energy density. can be promoted.

図1に示した実施例では、炭化珪素2の粉末が圧縮成形された形状の1つの密着部材を壁1に密着させた例を挙げて説明したが、複数の密着部材を壁1の面内に密着させ、複数の密着部材のそれぞれの温度を測定して、壁1の所望の面内の温度分布を把握することも可能である。 In the embodiment shown in FIG. 1, an example was given in which one contact member in the shape of compression-molded silicon carbide 2 powder was brought into close contact with the wall 1, but a plurality of contact members were It is also possible to grasp the temperature distribution within a desired plane of the wall 1 by measuring the temperature of each of the plurality of contact members.

また、図1に示した実施例では、1つの壁1の面に密着部材を密着させた例を示してあるが、高さ方向、幅方向、深さ方向等の状態が任意の形状で構成される複雑な形状の構造物に対して、任意の部位に炭化珪素2の粉末の密着部材を密着させ、それぞれの温度を測定して、複雑な構造物の3次元の状態での温度分布を把握することも可能である。 Further, in the embodiment shown in FIG. 1, an example is shown in which the contact member is brought into close contact with the surface of one wall 1, but it can be configured in any shape in the height direction, width direction, depth direction, etc. The temperature distribution in the three-dimensional state of the complex structure can be determined by attaching an adhesive member made of silicon carbide 2 powder to any part of the complex-shaped structure and measuring the temperature of each part. It is also possible to understand.

図2に基づいて第2実施例を説明する。 A second embodiment will be described based on FIG. 2.

図2に示すように、検出対象としての配管7の内部の流体(例えば、発電所のボイラ給水等)8の中には、材料としての炭化珪素(SiC:結晶構造を持つSiC)9が混合されている。炭化珪素9は、粒径が1nm以上の粉体にされ、その粉末が粒状に成型された形状で流体8に混合されている。 As shown in FIG. 2, silicon carbide (SiC: SiC with a crystalline structure) 9 as a material is mixed in the fluid 8 (e.g., boiler feed water of a power plant) inside the piping 7 as the detection target. has been done. Silicon carbide 9 is made into powder with a particle size of 1 nm or more, and the powder is mixed into fluid 8 in the form of granules.

炭化珪素9は、六方晶(2H、4H、6H)、立方晶(3C)、及び、菱面体晶(15R)の各種結晶構造を持った炭化珪素が適用される。 Silicon carbide 9 is silicon carbide having various crystal structures such as hexagonal (2H, 4H, 6H), cubic (3C), and rhombohedral (15R).

流体8に混合された炭化珪素9には、紫外線光照射手段3から、紫外線波長域の紫外線光(波長が10nmから400nmの光)が、例えば、エネルギー密度が0.01W/cm以上の強度で照射される。炭化珪素9は、紫外線光照射手段3から照射された紫外線光により発光する。 The silicon carbide 9 mixed in the fluid 8 is irradiated with ultraviolet light in the ultraviolet wavelength range (light with a wavelength of 10 nm to 400 nm) from the ultraviolet light irradiation means 3, for example, with an energy density of 0.01 W/cm 2 or more. irradiated with. Silicon carbide 9 emits light by ultraviolet light irradiated from ultraviolet light irradiation means 3 .

炭化珪素9の発光データは温度検出制御手段4に入力され、温度検出制御手段4では、発光データに基づいて炭化珪素9の温度が推定される。そして、炭化珪素9の推定された温度に基づいて流体8の温度が測定される。 The light emission data of silicon carbide 9 is input to temperature detection control means 4, and temperature detection control means 4 estimates the temperature of silicon carbide 9 based on the light emission data. Then, the temperature of fluid 8 is measured based on the estimated temperature of silicon carbide 9.

これにより、温度検出用の機器を配管7に設置することなく、配管7の内部の流体8の温度を直接測定することができ、測定対象物や使用する環境の制約を受け難い状態で測定対象物の温度を測定することが可能になる。 As a result, the temperature of the fluid 8 inside the pipe 7 can be directly measured without installing a temperature detection device in the pipe 7, and the temperature of the fluid 8 inside the pipe 7 can be directly measured. It becomes possible to measure the temperature of objects.

炭化珪素9に対して、発光を促進する物質(例えば、窒素)が含有されている。窒素が含有されることで、紫外線領域波長の光を照射した際に得られる発光強度が、照射エネルギー密度に比例して促進される。 Silicon carbide 9 contains a substance (for example, nitrogen) that promotes luminescence. By containing nitrogen, the luminescence intensity obtained when irradiated with light having a wavelength in the ultraviolet region is promoted in proportion to the irradiation energy density.

炭化珪素2に、例えば、1018/cmから1019/cmの範囲で窒素を含有させることで、紫外線領域波長の光を照射した際に得られる発光強度を、照射エネルギー密度の2乗に比例して促進させることができる。 For example, by incorporating nitrogen in the silicon carbide 2 in the range of 10 18 /cm 3 to 10 19 /cm 3 , the luminescence intensity obtained when irradiated with light in the ultraviolet region wavelength can be increased to the square of the irradiation energy density. can be promoted in proportion to

図2に示した実施例では、1つの炭化珪素9に紫外線光を照射して温度を測定している例を挙げて説明したが、配管7の内部の径方向、軸方向の複数の炭化珪素9に紫外線光を照射して温度を測定し、配管7の内部の流体の所望の範囲の温度分布を把握することが可能である。 In the embodiment shown in FIG. 2, the temperature is measured by irradiating one silicon carbide 9 with ultraviolet light. It is possible to measure the temperature by irradiating the tube 9 with ultraviolet light and grasp the temperature distribution of the fluid inside the pipe 7 in a desired range.

図3に基づいて温度検出制御手段4を具体的に説明する。 The temperature detection control means 4 will be specifically explained based on FIG.

図3に示すように、温度検出制御手段4は、発光データとして発光強度分布に基づき温度を導出する温度導出手段11を有している。また、温度検出制御手段4は、複数の温度パラメータ(例えば、室温、100℃、200℃、300℃、400℃、480℃)に応じた発光強度分布が、比較発光強度分布として記憶された発光強度分布記憶手段12を有している。 As shown in FIG. 3, the temperature detection control means 4 has a temperature derivation means 11 that derives a temperature based on the luminescence intensity distribution as luminescence data. Further, the temperature detection control means 4 is configured to store a light emission intensity distribution corresponding to a plurality of temperature parameters (for example, room temperature, 100° C., 200° C., 300° C., 400° C., 480° C.) as a comparative light emitting intensity distribution. It has intensity distribution storage means 12.

更に、温度検出制御手段4は、炭化珪素9の発光データが入力され、入力された発光データにおける2つの波長である380nm(400nm近傍での波長)での発光強度P1、420nmでの発光強度P2の割合である実発光強度割合(P2/P1)が求められる実強度割合導出手段13を有している。 Furthermore, the temperature detection control means 4 receives the luminescence data of silicon carbide 9 and detects the luminescence intensity P1 at 380 nm (wavelength near 400 nm) and the luminescence intensity P2 at 420 nm, which are two wavelengths in the input luminescence data. It has an actual intensity ratio deriving means 13 for determining the actual emission intensity ratio (P2/P1) which is the ratio of .

発光強度分布記憶手段12では、複数の温度(例えば、室温、100℃、200℃、300℃、400℃、480℃)毎に、比較発光強度分布の2つの波長である380nmでの発光強度P1、420nmでの発光強度P2の割合が発光強度割合(P2/P1)として記憶されている。そして、発光強度割合(P2/P1)に対する温度の状況がマップ化されている(後述する図7参照)。 The emission intensity distribution storage means 12 stores the emission intensity P1 at 380 nm, which is the two wavelengths of the comparative emission intensity distribution, for each of a plurality of temperatures (for example, room temperature, 100°C, 200°C, 300°C, 400°C, and 480°C). , the ratio of the emission intensity P2 at 420 nm is stored as the emission intensity ratio (P2/P1). The temperature situation with respect to the emission intensity ratio (P2/P1) is then mapped (see FIG. 7, which will be described later).

温度導出手段11では、発光強度分布記憶手段12に記憶された発光強度割合{発光強度割合(P2/P1)に対する温度の状況のマップ}と、実強度割合導出手段13で導出された実発光強度割合(P2/P1)が比較され、実発光強度割合(P2/P1)に応じた温度がマップから読み取られる(導出される)。即ち、予め記憶された発光強度分布(比較発光強度分布)のデータと実際の発光強度分布を比較して温度が推定される。 The temperature deriving means 11 calculates the luminous intensity ratio stored in the luminous intensity distribution storage means 12 {map of temperature situation relative to luminous intensity ratio (P2/P1)} and the actual luminous intensity derived by the actual intensity ratio deriving means 13. The ratios (P2/P1) are compared, and the temperature corresponding to the actual luminescence intensity ratio (P2/P1) is read (derived) from the map. That is, the temperature is estimated by comparing the data of the luminescence intensity distribution stored in advance (comparison luminescence intensity distribution) with the actual luminescence intensity distribution.

つまり、複数(2つ)の波長である、380nm、420nmでの発光強度P1、P2の割合(P2/P1)と、温度(例えば、室温、100℃、200℃、300℃、400℃、480℃)との関係がデータ化され、実際の発光強度分布における、2つの波長(380nm、420nm)での発光強度の割合(P2/P1)が、データ化された割合と比較される。 In other words, the ratio of the emission intensities P1 and P2 at multiple (two) wavelengths, 380 nm and 420 nm (P2/P1), and the temperature (for example, room temperature, 100°C, 200°C, 300°C, 400°C, 480°C) C) is converted into data, and the ratio (P2/P1) of the emission intensity at two wavelengths (380 nm, 420 nm) in the actual emission intensity distribution is compared with the dataized ratio.

比較の結果、近似する割合における温度が実際の温度であるとマップから読み出されて推定される(形の近似の度合いに基づいて温度が導出される)。 As a result of the comparison, the temperature in the approximated proportion is read out from the map and estimated to be the actual temperature (the temperature is derived based on the degree of approximation of the shapes).

図4から図7に基づいて、発光強度割合(P2/P1)に対する温度の状況のマップ化の具体例を説明する。 A specific example of mapping the temperature situation with respect to the emission intensity ratio (P2/P1) will be explained based on FIGS. 4 to 7.

図4から図6には発光強度分布記憶手段12に記憶された比較発光強度分布のグラフ(発光強度と波長との関係)を示してある。 4 to 6 show graphs of comparative emission intensity distributions (relationship between emission intensity and wavelength) stored in the emission intensity distribution storage means 12.

図4(a)は室温における比較発光強度分布(発光強度と波長との関係)のグラフ、図4(b)は100℃における比較発光強度分布のグラフ、図5(a)は200℃における比較発光強度分布のグラフ、図5(b)は300℃における比較発光強度分布のグラフ、図6(a)は400℃における比較発光強度分布のグラフ、図6(b)は480℃における比較発光強度分布のグラフである。 Figure 4(a) is a graph of comparative luminescence intensity distribution (relationship between luminous intensity and wavelength) at room temperature, Figure 4(b) is a graph of comparative luminous intensity distribution at 100°C, and Figure 5(a) is a graph of comparative luminous intensity distribution at 200°C. Graph of luminescence intensity distribution, Figure 5(b) is a graph of comparative luminescence intensity distribution at 300 °C, Figure 6(a) is a graph of comparative luminescence intensity distribution at 400 °C, Figure 6(b) is a graph of comparative luminescence intensity at 480 °C It is a graph of distribution.

また、図7には発光強度割合(P2/P1)に対する温度の状況のマップである発光強度割合と温度との関係を表すグラフを示してある。 Further, FIG. 7 shows a graph showing the relationship between the emission intensity ratio and temperature, which is a map of the temperature situation with respect to the emission intensity ratio (P2/P1).

尚、図示例は、各温度における窒素の含有量が2×1018/cmの炭化珪素の発光強度の波長依存性能を示してある。紫外光の照射光の波長は、325nm、エネルギー密度が30W/cmの強度で照射されたものである。得られた結果の数値は一例であり、示された数値が結果の全てではない。 Note that the illustrated example shows the wavelength-dependent performance of the emission intensity of silicon carbide with a nitrogen content of 2×10 18 /cm 3 at each temperature. The wavelength of the ultraviolet light was 325 nm, and the intensity of the energy density was 30 W/cm 2 . The numerical values obtained are just examples, and the numerical values shown are not all of the results.

図4(a)に示すように、室温での比較発光強度分布は、例えば、350nmから460nmの波長で発光が認められ、波長が約390nmの際の発光強度P1が約0.6×10-8cpsとなり、波長が約420nmの際の発光強度P2が約0.01×10-8cpsとなっている。 As shown in FIG. 4(a), in the comparative emission intensity distribution at room temperature, for example, emission is observed at a wavelength of 350 nm to 460 nm, and the emission intensity P1 at a wavelength of about 390 nm is about 0.6 × 10 - 8 cps, and the emission intensity P2 at a wavelength of about 420 nm is about 0.01×10 −8 cps.

図4(b)に示すように、100℃での比較発光強度分布は、360nmから460nmの波長で発光が認められ、波長が約390nmの際の発光強度P1が約0.9×10-8cpsとなり、波長が約420nmの際の発光強度P2が約0.16×10-8cpsとなっている。 As shown in FIG. 4(b), in the comparative emission intensity distribution at 100°C, emission is observed at wavelengths from 360 nm to 460 nm, and the emission intensity P1 at a wavelength of about 390 nm is about 0.9 × 10 -8 cps, and the emission intensity P2 at a wavelength of about 420 nm is about 0.16×10 -8 cps.

図5(a)に示すように、200℃での比較発光強度分布は、360nmから460nmの波長で発光が認められ、波長が約390nmの際の発光強度P1が約0.9×10-8cpsとなり、波長が約420nmの際の発光強度P2が約0.05×10-8cpsとなっている。 As shown in FIG. 5(a), in the comparative emission intensity distribution at 200°C, emission is observed at wavelengths from 360 nm to 460 nm, and the emission intensity P1 at a wavelength of about 390 nm is about 0.9 × 10 -8 cps, and the emission intensity P2 at a wavelength of about 420 nm is about 0.05×10 −8 cps.

図5(b)に示すように、300℃での比較発光強度分布は、360nmから460nmの波長で発光が認められ、波長が約390nmの際の発光強度P1が約0.8×10-8cpsとなり、波長が約420nmの際の発光強度P2が約0.06×10-8cpsとなっている。 As shown in FIG. 5(b), in the comparative emission intensity distribution at 300°C, emission is observed at wavelengths from 360 nm to 460 nm, and the emission intensity P1 at a wavelength of about 390 nm is about 0.8 × 10 -8 cps, and the emission intensity P2 at a wavelength of about 420 nm is about 0.06×10 −8 cps.

図6(a)に示すように、400℃での比較発光強度分布は、360nmから460nmの波長で発光が認められ、波長が約390nmの際の発光強度P1が約0.7×10-8cpsとなり、波長が約420nmの際の発光強度P2が約0.06×10-8cpsとなっている。 As shown in FIG. 6(a), in the comparative emission intensity distribution at 400°C, emission is observed at a wavelength of 360 nm to 460 nm, and the emission intensity P1 at a wavelength of about 390 nm is about 0.7 × 10 -8 cps, and the emission intensity P2 at a wavelength of about 420 nm is about 0.06×10 −8 cps.

図6(b)に示すように、480℃での比較発光強度分布は、360nmから460nmの波長で発光が認められ、波長が約390nmの際の発光強度P1が約0.6×10-8cpsとなり、波長が約420nmの際の発光強度P2が約0.07×10-8cpsとなっている。 As shown in FIG. 6(b), in the comparative emission intensity distribution at 480°C, emission is observed at wavelengths from 360 nm to 460 nm, and the emission intensity P1 at a wavelength of about 390 nm is about 0.6 × 10 -8 cps, and the emission intensity P2 at a wavelength of about 420 nm is about 0.07×10 −8 cps.

図4から図6に示すように、各温度(室温、100℃、200℃、300℃、400℃、480℃)の発光強度分布における2つの波長である約390nmでの発光強度P1、約420nmでの発光強度P2が求められる。求められたそれぞれの発光強度P1、P2の割合(P2/P1)が、各温度(室温、100℃、200℃、300℃、400℃、480℃)での発光強度割合とされる。 As shown in FIGS. 4 to 6, the emission intensity P1 at about 390 nm, which is the two wavelengths in the emission intensity distribution at each temperature (room temperature, 100°C, 200°C, 300°C, 400°C, 480°C), is about 420 nm. The luminescence intensity P2 at is determined. The ratio (P2/P1) of the determined luminescence intensities P1 and P2 is taken as the luminescence intensity ratio at each temperature (room temperature, 100°C, 200°C, 300°C, 400°C, 480°C).

図7に示すように、各温度(室温、100℃、200℃、300℃、400℃、480℃)の発光強度割合(P2/P1)がプロットされ、発光強度割合(P2/P1)に対する温度の状況のマップが構築される。 As shown in Figure 7, the emission intensity ratio (P2/P1) at each temperature (room temperature, 100°C, 200°C, 300°C, 400°C, 480°C) is plotted, and the emission intensity ratio (P2/P1) is plotted against temperature. A map of the situation is constructed.

入力された発光データ(実発光強度分布)における2つの波長である380nm(400nm近傍での波長)での発光強度P1、420nmでの発光強度P2の割合が実発光強度割合(P2/P1)として求められる(実強度割合導出手段13)。 The ratio of the emission intensity P1 at 380 nm (wavelength near 400 nm) and the emission intensity P2 at 420 nm, which are two wavelengths in the input emission data (actual emission intensity distribution), is expressed as the actual emission intensity ratio (P2/P1). (actual intensity ratio deriving means 13).

実発光強度割合(P2/P1)の値がデータ化された割合と比較され(図7に示したマップから読み出され)、対応する割合における温度が実際の温度であるとマップに基づいて推定される。 The value of the actual luminous intensity ratio (P2/P1) is compared with the dataed ratio (read from the map shown in Figure 7), and it is estimated based on the map that the temperature at the corresponding ratio is the actual temperature. be done.

尚、入力された発光データ(実発光強度分布)そのものの形と、図4から図6に示した比較発光強度分布の形を直接比較し、近似の度合いを判断して温度を導出することも可能である。 It is also possible to directly compare the shape of the input luminescence data (actual luminescence intensity distribution) and the comparative luminescence intensity distributions shown in FIGS. 4 to 6, determine the degree of approximation, and derive the temperature. It is possible.

従って、実際の発光データ(実発光強度分布)から、2つの波長(複数の波長)である380nm、420nmでの発光強度の割合である実発光強度割合(P2/P1)が求められ、予め記憶された比較発光強度分布から、複数の温度(室温、100℃、200℃、300℃、400℃、480℃)毎の、2つの波長(複数の波長)である380nm、420nmでの発光強度割合(P2/P1)が求められる。 Therefore, from the actual luminescence data (actual luminescence intensity distribution), the actual luminescence intensity ratio (P2/P1), which is the ratio of the luminescence intensity at two wavelengths (multiple wavelengths) of 380 nm and 420 nm, is calculated and stored in advance. From the comparative emission intensity distribution, the emission intensity ratio at two wavelengths (multiple wavelengths) of 380 nm and 420 nm at each of multiple temperatures (room temperature, 100°C, 200°C, 300°C, 400°C, 480°C) (P2/P1) is obtained.

そして、発光強度割合に基づいて構築された発光強度割合(P2/P1)に対する温度の状況のマップに基づいて、実発光強度割合に対応する温度が読み出されて温度が求められる(発光強度割合と実発光強度割合とが比較されて実発光強度割合に応じた温度が導出される)。 Then, based on the map of the temperature situation for the luminescence intensity ratio (P2/P1) constructed based on the luminescence intensity ratio, the temperature corresponding to the actual luminescence intensity ratio is read out and the temperature is determined (emission intensity ratio and the actual luminescence intensity ratio are compared to derive a temperature corresponding to the actual luminescence intensity ratio).

上述した実施例では、2つの波長(複数の波長)である380nm、420nmでの発光強度割合(P2/P1)を用いて温度を推定する例を挙げて説明したが、発光強度が最大の半分の時の発光強度分布の幅である半値幅を用いて温度を推定することも可能である。 In the above embodiment, an example was given in which temperature is estimated using the emission intensity ratio (P2/P1) at two wavelengths (multiple wavelengths), 380 nm and 420 nm. It is also possible to estimate the temperature using the half-width, which is the width of the emission intensity distribution when .

半値幅を用いた温度の推定について説明する。図8には半値幅と温度の関係を表すグラフを示してある。 Estimation of temperature using half width will be explained. FIG. 8 shows a graph showing the relationship between half width and temperature.

図4から図6に示すように、室温、100℃、200℃、300℃、400℃、480℃の各温度における発光強度分布(比較発光強度分布)に対し、発光強度が最大の半分の時の発光強度分布の幅である半値幅H(比較半値幅)が記憶されている。 As shown in Figures 4 to 6, when the emission intensity is half of the maximum, for the emission intensity distribution (comparative emission intensity distribution) at each temperature of room temperature, 100°C, 200°C, 300°C, 400°C, and 480°C. A half-width H (comparison half-width) that is the width of the emission intensity distribution is stored.

そして、図8に示したように、室温、100℃、200℃、300℃、400℃、480℃の各温度における半値幅Hがプロットされ、半値幅Hに対する温度のマップが構築されて記憶される(発光強度分布記憶手段)。 Then, as shown in FIG. 8, the half-width H at each temperature of room temperature, 100°C, 200°C, 300°C, 400°C, and 480°C is plotted, and a map of temperature against the half-width H is constructed and stored. (emission intensity distribution storage means).

入力された発光強度の分布である実発光強度分布における半値幅Hが求められ(実半値幅導出手段)、求められた値がマップ化された値と比較され(図8に示したマップから読み出され)、対応する半値幅における温度が実際の温度であるとマップに基づいて推定される(温度導出手段)。 The half-value width H in the actual emission intensity distribution, which is the distribution of the input emission intensity, is calculated (actual half-value width deriving means), and the obtained value is compared with the mapped value (read from the map shown in Figure 8). The temperature at the corresponding half width is estimated to be the actual temperature based on the map (temperature derivation means).

また、発光強度分布のピーク面積を用いて温度を推定することも可能である。 It is also possible to estimate the temperature using the peak area of the emission intensity distribution.

発光強度分布のピーク面積を用いた温度の推定について説明する。図9(a)には発光強度分布のグラフ、図9(b)にはピーク面積の状況のグラフを示してある。 Estimation of temperature using the peak area of the emission intensity distribution will be explained. FIG. 9(a) shows a graph of the emission intensity distribution, and FIG. 9(b) shows a graph of the peak area.

図9(a)に実線で示した発光強度分布に対し、密度分布関数(フォクト関数)により2つのピークの重ね合わせを再現する計算を行う。計算の結果、図9(a)に点線で示したように、2つの密度分布関数の重ね合わせにより元の発光強度分布(実線)がほぼ再現される。 Calculations are performed to reproduce the superposition of two peaks using a density distribution function (Voigt function) for the emission intensity distribution shown by the solid line in FIG. 9(a). As a result of the calculation, as shown by the dotted line in FIG. 9(a), the original emission intensity distribution (solid line) is almost reproduced by superimposing the two density distribution functions.

図9(b)に示すように、それぞれのピークの発光強度はその面積に比例している。例えば、ピーク1の面積は、太線のハッチングの範囲の部分となり、ピーク2の面積は、細線の範囲の部分となる。 As shown in FIG. 9(b), the emission intensity of each peak is proportional to its area. For example, the area of peak 1 is within the thick hatched range, and the area of peak 2 is within the thin hatched range.

室温、100℃、200℃、300℃、400℃、480℃の各温度における発光強度分布のピーク1、ピーク2の面積が求められ、ピーク面積比(ピーク2/ピーク1)が記憶される。 The areas of peak 1 and peak 2 of the emission intensity distribution at each temperature of room temperature, 100° C., 200° C., 300° C., 400° C., and 480° C. are determined, and the peak area ratio (peak 2/peak 1) is stored.

そして、室温、100℃、200℃、300℃、400℃、480℃の各温度におけるピーク面積比(ピーク2/ピーク1)がプロットされ、ピーク面積比(ピーク2/ピーク1)に対する温度のマップ(図示省略)が構築されて記憶される。 Then, the peak area ratio (Peak 2/Peak 1) at each temperature of room temperature, 100°C, 200°C, 300°C, 400°C, and 480°C is plotted, and a map of temperature against the peak area ratio (Peak 2/Peak 1) is plotted. (not shown) is constructed and stored.

入力された発光強度の分布である実発光強度分布におけるピーク面積比(ピーク2/ピーク1)が求められ、求められたピーク面積比がマップ化されたピーク面積比の値と比較され、対応するピーク面積比における温度が実際の温度であるとマップに基づいて推定される。 The peak area ratio (peak 2/peak 1) in the actual emission intensity distribution, which is the input emission intensity distribution, is determined, and the obtained peak area ratio is compared with the mapped peak area ratio value, and the corresponding peak area ratio is calculated. The temperature at the peak area ratio is estimated to be the actual temperature based on the map.

上述したように(図1参照)、構造物の壁1に炭化珪素2(炭化珪素2の粉末が圧縮成形された形状の密着部材)を取り付け、紫外線光照射手段3から照射された紫外線光により炭化珪素2を発光させることで、炭化珪素2の発光データに基づいて炭化珪素2の温度を推定し、推定された温度に基づいて壁1(構造物)の温度が測定される。 As described above (see FIG. 1), silicon carbide 2 (adhering member in the shape of compression molded silicon carbide 2 powder) is attached to the wall 1 of the structure, and the ultraviolet light irradiated from the ultraviolet light irradiation means 3 By causing silicon carbide 2 to emit light, the temperature of silicon carbide 2 is estimated based on the light emission data of silicon carbide 2, and the temperature of wall 1 (structure) is measured based on the estimated temperature.

これにより、複雑な構造物や作業者が近づき難い構造物の壁1の温度を測定することができ、測定対象物や使用する環境の制約を受け難い状態で測定対象物の温度を測定することが可能になる。 As a result, it is possible to measure the temperature of the wall 1 of a complex structure or a structure that is difficult for workers to access, and the temperature of the object to be measured can be measured without being subject to restrictions from the object to be measured or the environment in which it is used. becomes possible.

また(図2参照)、流体8に炭化珪素9を混合し、紫外線光照射手段3から照射された紫外線光により炭化珪素9を発光させることで、炭化珪素9の発光データに基づいて炭化珪素9の温度を推定し、推定された温度に基づいて流体8の温度が測定される。 Furthermore, by mixing silicon carbide 9 with fluid 8 and causing silicon carbide 9 to emit light with ultraviolet light irradiated from ultraviolet light irradiation means 3 (see FIG. 2), silicon carbide 9 can be The temperature of the fluid 8 is measured based on the estimated temperature.

これにより、温度検出用の機器を配管7に設置することなく、配管7の内部の流体8の温度を直接測定することができ、測定対象物や使用する環境の制約を受け難い状態で測定対象物の温度を測定することが可能になる。 As a result, the temperature of the fluid 8 inside the pipe 7 can be directly measured without installing a temperature detection device in the pipe 7, and the temperature of the fluid 8 inside the pipe 7 can be directly measured. It becomes possible to measure the temperature of objects.

上述した実施例では、構造物の壁1、配管7の内部の流体8の温度を検出する装置を例に挙げて説明したが、検出対象としては、固体、流体、その他の形態の物質等、様々な対象物の温度の検出に適用することができる。 In the above-mentioned embodiment, the device for detecting the temperature of the wall 1 of the structure and the temperature of the fluid 8 inside the pipe 7 was explained as an example. It can be applied to detecting the temperature of various objects.

構造物としては、発電設備(原子力、火力等)の機器や各種流体の配管の温度の検出に適用することができる。また、配管の内部の流体としては、発電設備(原子力、火力等)の給水配管、冷却水配管、作動流体等の流体の温度の検出に適用することができる。 As a structure, it can be applied to detecting the temperature of equipment of power generation equipment (nuclear power, thermal power, etc.) and piping of various fluids. Further, as the fluid inside the piping, it can be applied to detecting the temperature of fluids such as water supply piping, cooling water piping, and working fluid of power generation equipment (nuclear power, thermal power, etc.).

例えば、構造物として、原子力発電設備(PWR:加圧水型、BWR:沸騰水型)、火力発電設備の作動用の蒸気の配管(広範囲にわたる配管)、配管の溶接部を適用することができる。また、構造物として、ボイラ(燃焼ボイラ、排熱回収ボイラ)のケース等の内部の水配管(蒸気配管)を適用することができる。また、構造物として、ガスタービンの羽根(熱遮蔽コーティング)を適用することができる。 For example, as structures, nuclear power generation equipment (PWR: pressurized water type, BWR: boiling water type), steam piping for operation of thermal power generation equipment (extensive piping), and welded parts of piping can be applied. Further, as a structure, water piping (steam piping) inside a case of a boiler (combustion boiler, exhaust heat recovery boiler), etc. can be applied. Moreover, a gas turbine blade (heat shield coating) can be applied as a structure.

原子力発電設備、火力発電設備の蒸気配管、溶接部では、高温の広範囲にわたる配管(溶接部)の温度分布を測定することで、応力腐食割れ等の破損の虞の事前予測を行うことができ、施設保護につながる。特に、燃焼ボイラや排熱回収ボイラのケースなどの内側は作業者が近づき難い複雑な構造物であるため、本願発明の温度検出装置を適用することが好適である。 For steam piping and welded parts of nuclear power generation equipment and thermal power generation equipment, by measuring the temperature distribution of the piping (welded parts) over a wide range of high temperatures, it is possible to predict in advance the risk of damage such as stress corrosion cracking. Leads to facility protection. In particular, since the inside of the case of a combustion boiler or an exhaust heat recovery boiler is a complex structure that is difficult for workers to access, it is suitable to apply the temperature detection device of the present invention.

また、沸騰水型原子力発電設備(PWR)では、一次冷却管(鋳造鋼)の温度分布を測定することで、一次冷却管の劣化を予測することができ、劣化機構のメカニズムの解明につながる。更に、ガスタービンの羽根(熱遮蔽コーティング)の温度を測定することで、温度に起因して引き起こされる熱遮蔽コーティングの酸化劣化の虞を予測することができる。 In addition, in boiling water nuclear power generation facilities (PWR), by measuring the temperature distribution of the primary cooling pipe (cast steel), it is possible to predict the deterioration of the primary cooling pipe, which will lead to the elucidation of the deterioration mechanism. Furthermore, by measuring the temperature of the gas turbine blade (thermal shield coating), it is possible to predict the risk of oxidative deterioration of the heat shield coating caused by temperature.

また、検出対象としては、例えば、生物(生体)の血液、皮膚、臓器等、測定に関して制約を受ける部位の対象物を適用することが可能である。 Further, as the detection target, for example, it is possible to apply a target of a part that is subject to restrictions regarding measurement, such as blood, skin, and organs of a living organism (living body).

材料としては、紫外線波長域の紫外線光により発光する材料であれば炭化珪素(SiC)に限定されず、他の材料を適用することができる。 The material is not limited to silicon carbide (SiC), and other materials can be used as long as they emit light with ultraviolet light in the ultraviolet wavelength range.

本発明は、温度測定装置、及び、温度測定方法の産業分野で利用することができる。 INDUSTRIAL APPLICATION This invention can be utilized in the industrial field of a temperature measuring device and a temperature measuring method.

1 壁
2、9 炭化珪素(SiC:結晶構造を持つSiC)
3 紫外線光照射手段
4 温度検出制御手段
7 配管
8 流体
11 温度導出手段
12 発光強度分布記憶手段
13 実強度割合導出手段
1 Wall 2, 9 Silicon carbide (SiC: SiC with crystal structure)
3 Ultraviolet light irradiation means 4 Temperature detection control means 7 Piping 8 Fluid 11 Temperature derivation means 12 Emission intensity distribution storage means 13 Actual intensity ratio derivation means

Claims (6)

検出対象に接触させる炭化珪素(SiC)と、
紫外線波長域の紫外線光を前記炭化珪素(SiC)に照射する紫外線光照射手段と、
前記紫外線光照射手段で照射された紫外線光により発光した前記炭化珪素(SiC)の発光データが入力され、前記発光データに基づいて前記炭化珪素(SiC)の温度を推定することで前記検出対象の温度を測定する温度検出制御手段とを備えた
ことを特徴とする温度測定装置。
Silicon carbide (SiC) brought into contact with the detection target;
ultraviolet light irradiation means for irradiating the silicon carbide (SiC) with ultraviolet light in the ultraviolet wavelength range;
The light emission data of the silicon carbide (SiC) emitted by the ultraviolet light irradiated by the ultraviolet light irradiation means is input, and the temperature of the silicon carbide (SiC) is estimated based on the light emission data, thereby detecting the detection target. A temperature measuring device comprising: temperature detection control means for measuring temperature.
請求項1に記載の温度測定装置において、
前記温度検出制御手段は、
前記発光データとして発光強度分布に基づき温度を導出する温度導出手段を有する
ことを特徴とする温度測定装置。
The temperature measuring device according to claim 1 ,
The temperature detection control means includes:
A temperature measuring device comprising: a temperature deriving means for deriving a temperature based on a luminescence intensity distribution as the luminescence data.
請求項2に記載の温度測定装置において、
前記温度検出制御手段は、
複数の温度パラメータに応じた発光強度分布が、比較発光強度分布として記憶された発光強度分布記憶手段を有し
前記温度導出手段では、
入力された発光データの発光強度分布と、前記発光強度分布記憶手段に記憶された前記比較発光強度分布とに基づいて温度が導出される
ことを特徴とする温度測定装置。
The temperature measuring device according to claim 2 ,
The temperature detection control means includes:
The temperature derivation means includes a light emission intensity distribution storage means in which a light emission intensity distribution corresponding to a plurality of temperature parameters is stored as a comparative light emission intensity distribution;
A temperature measurement device characterized in that a temperature is derived based on a light emission intensity distribution of input light emission data and the comparative light emission intensity distribution stored in the light emission intensity distribution storage means.
請求項3に記載の温度測定装置において、
前記温度検出制御手段は、
前記炭化珪素(SiC)の発光データが入力され、入力された発光データにおける複数の波長での発光強度の割合である実発光強度割合が求められる実強度割合導出手段を有し、
前記発光強度分布記憶手段では、
複数の温度毎に、比較発光強度分布の複数の波長の発光強度の割合が発光強度割合として記憶され、
前記温度導出手段では、
前記発光強度分布記憶手段に記憶された発光強度割合、及び、前記実強度割合導出手段で導出された実発光強度割合が比較され、実発光強度割合に応じた温度が導出される
ことを特徴とする温度測定装置。
The temperature measuring device according to claim 3 ,
The temperature detection control means includes:
Emission data of the silicon carbide (SiC) is inputted, and an actual intensity ratio deriving means is provided for obtaining an actual emission intensity ratio that is a ratio of emission intensities at a plurality of wavelengths in the input emission data,
In the emission intensity distribution storage means,
For each of the plurality of temperatures, the ratio of the luminescence intensity of the plurality of wavelengths of the comparative luminescence intensity distribution is stored as the luminescence intensity ratio,
In the temperature deriving means,
The light emission intensity ratio stored in the light emission intensity distribution storage means and the actual light emission intensity ratio derived by the actual light intensity ratio deriving means are compared, and a temperature according to the actual light emission intensity ratio is derived. Temperature measuring device.
請求項3に記載の温度測定装置において、
前記温度検出制御手段は、
前記炭化珪素(SiC)の発光データが入力され、入力された発光データにおける複数の波長での発光強度分布の実半値幅が求められる実半値幅導出手段を有し、
前記発光強度分布記憶手段では、
複数の温度毎に、比較発光強度分布の複数の波長での半値幅が比較半値幅として記憶され、
前記温度導出手段では、
発光強度分布記憶手段に記憶された比較半値幅、及び、実半値幅導出手段で導出された半値幅が比較され、半値幅に応じた温度が導出される
ことを特徴とする温度測定装置。
The temperature measuring device according to claim 3 ,
The temperature detection control means includes:
having an actual half-value width deriving means for receiving the emission data of the silicon carbide (SiC) and determining the actual half-value width of the emission intensity distribution at a plurality of wavelengths in the input emission data;
In the emission intensity distribution storage means,
For each of a plurality of temperatures, the half-width at a plurality of wavelengths of the comparative emission intensity distribution is stored as a comparative half-width,
In the temperature deriving means,
A temperature measurement device characterized in that a comparative half-width stored in an emission intensity distribution storage means and a half-width derived by an actual half-width deriving means are compared, and a temperature corresponding to the half-width is derived.
検出対象に接触させた炭化珪素(SiC)に紫外線波長域の電磁波を照射し、電磁波により発光した前記検出対象の発光強度の状況に基づいて、前記炭化珪素(SiC)の温度を推定することで、前記検出対象の温度を測定する
ことを特徴とする温度測定方法。
By irradiating silicon carbide (SiC) in contact with a detection target with electromagnetic waves in the ultraviolet wavelength range, and estimating the temperature of the silicon carbide (SiC) based on the status of the emission intensity of the detection target emitted by the electromagnetic waves. , measuring the temperature of the detection target.
JP2019210831A 2019-11-21 2019-11-21 Temperature measuring device and temperature measuring method Active JP7364437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019210831A JP7364437B2 (en) 2019-11-21 2019-11-21 Temperature measuring device and temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019210831A JP7364437B2 (en) 2019-11-21 2019-11-21 Temperature measuring device and temperature measuring method

Publications (2)

Publication Number Publication Date
JP2021081371A JP2021081371A (en) 2021-05-27
JP7364437B2 true JP7364437B2 (en) 2023-10-18

Family

ID=75964848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019210831A Active JP7364437B2 (en) 2019-11-21 2019-11-21 Temperature measuring device and temperature measuring method

Country Status (1)

Country Link
JP (1) JP7364437B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028629A (en) 2002-06-21 2004-01-29 Air Water Inc Temperature sensor and temperature measuring instrument using it
JP2019160999A (en) 2018-03-13 2019-09-19 株式会社アイテス Defect inspection device, and defect inspection method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028629A (en) 2002-06-21 2004-01-29 Air Water Inc Temperature sensor and temperature measuring instrument using it
JP2019160999A (en) 2018-03-13 2019-09-19 株式会社アイテス Defect inspection device, and defect inspection method

Also Published As

Publication number Publication date
JP2021081371A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP7364437B2 (en) Temperature measuring device and temperature measuring method
RU2617725C1 (en) Method for determining emissivity of hard materials and device for its implementation
Zhao et al. Investigation of the effects of Ni-based alloy DZ125 on the normal spectral emissivity during oxidation
Amrastanov et al. One possibility of mathematically modeling the thermal effect of a finely focused electron beam on a homogeneous semiconductor
Pilgrim et al. Surface temperature measurements in an industrial gas turbine using thermal history paints
CN110057444B (en) Laser intensity inversion method based on heat conduction inverse problem
JP2011214955A (en) Method and device for evaluation of thermal barrier coating
US20150072432A1 (en) System and method for measuring cooling of a component
Zezell et al. Heat generation and transfer on biological tissues due to high-intensity laser irradiation
Perera et al. Accurate measurement of LED lens surface temperature
Zhou et al. Numerical and experimental investigations on the total-variation regularization method of temperature distribution reconstruction in acoustic tomography
Shabgard et al. An inverse heat conduction method to determine the energy transferred to the workpiece in EDM process
Gaspar et al. Surface heat flux estimation with embedded fiber Bragg gratings measurements: Numerical study
Patel et al. High pressure melting curve of platinum up to 35 GPa
JP7343736B2 (en) Neutron measurement unit, neutron measurement device, and neutron measurement method
Drozdenko et al. Methods for analyzing the thermal field of rod type piezoceramic electroacoustic transducer
JP2018072027A (en) Method, apparatus and program for determining timing of performing chemical cleaning of boiler water-cooled wall pipe material
Harvey et al. Progress toward new reference correlations for the transport properties of carbon dioxide
WE van Dijk et al. The zero signal and glow curves of bare LiF: Mg, Ti detectors in a hot gas TLD system
JP2005156158A (en) In-situ highly durable and sensitive radiation irradiation area analyzing method using radio luminescence
Bloembergen et al. Spectral and total effective emissivity of a high-temperature fixed-point radiator considered in relation to the temperature drop across its back wall
Murthy et al. High heat-flux sensor calibration: a Monte Carlo modeling
US20160102974A1 (en) System and method for measuring cooling of a component
Swank et al. Specimen size effects in the determination of nuclear grade graphite thermal diffusivity
Calamas et al. Free Convection Heat Transfer From Sierpinski Carpet Fractal Fins of Varying Size

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231005

R150 Certificate of patent or registration of utility model

Ref document number: 7364437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150