JP2005156158A - In-situ highly durable and sensitive radiation irradiation area analyzing method using radio luminescence - Google Patents

In-situ highly durable and sensitive radiation irradiation area analyzing method using radio luminescence Download PDF

Info

Publication number
JP2005156158A
JP2005156158A JP2003390372A JP2003390372A JP2005156158A JP 2005156158 A JP2005156158 A JP 2005156158A JP 2003390372 A JP2003390372 A JP 2003390372A JP 2003390372 A JP2003390372 A JP 2003390372A JP 2005156158 A JP2005156158 A JP 2005156158A
Authority
JP
Japan
Prior art keywords
radiation
fluorescence
irradiation
target
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003390372A
Other languages
Japanese (ja)
Other versions
JP4281088B2 (en
Inventor
Shintaro Ishiyama
新太郎 石山
Shinichi Kitazawa
真一 北澤
Masaharu Asano
雅春 浅野
Haruya Yamamoto
春也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2003390372A priority Critical patent/JP4281088B2/en
Publication of JP2005156158A publication Critical patent/JP2005156158A/en
Application granted granted Critical
Publication of JP4281088B2 publication Critical patent/JP4281088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily measure in situ a three-dimensional shape of an irradiation image by the irradiation of a radiation with an element of a long life. <P>SOLUTION: In this method for analyzing the three-dimensional shape of the irradiation image obtained by the irradiation of the radiation, a heat-resistant target with a transition metal indicating a radiation fluorescent characteristic contained three-dimensionally is irradiated with the radiation to measure emitted fluorescence. The heat-resistant target may contain a plurality of kinds of transition metals indicating different radiation fluorescent characteristics. The heat-resistant target is a metal oxide or a ceramic, and the transition metal is chromium or zinc. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、放射線照射により得られる照射像の三次元的な形状を解析する方法に関するものであって、より具体的には、放射線照射領域及び放射線強度をin-situで三次元的に計測するための方法に関する。本発明の方法は、原子力関連施設、放射線利用施設、宇宙ステーションをはじめとした航空宇宙分野における宇宙放射線環境場等で利用することができ、また、深海探査等の海洋分野における放射線による損傷評価や微量元素の元素分析技術としても利用可能である。   The present invention relates to a method for analyzing a three-dimensional shape of an irradiation image obtained by radiation irradiation. More specifically, the present invention measures a radiation irradiation region and radiation intensity three-dimensionally in-situ. Related to the method. The method of the present invention can be used in an aerospace field such as a nuclear facility, a radiation utilization facility, a space station, etc. It can also be used as an elemental analysis technique for trace elements.

従来の二次元に配置されたCCDなどの半導体検出器は、一次光を直接検出するか、又は蛍光板などからの二次光を検出するものであるが、これらの検出器や蛍光板では、放射線損傷による原子・分子のはじき出しや欠陥形成などが主な原因となり長寿命化が困難であった。   Conventional semiconductor detectors such as CCDs arranged in two dimensions detect primary light directly or detect secondary light from fluorescent screens, etc., but these detectors and fluorescent screens do not cause radiation damage. It was difficult to extend the lifetime mainly due to the ejection of atoms and molecules and the formation of defects.

また、従来の放射線照射計測方法では、二次元の空間情報を光学像として直接捕らえなければならなかったので、散乱光などからは、照射像を再現することは不可能であった。
更に、通常、放射線照射中の施設内への立ち入りは禁止されており、計測装置の設置が不可能であったことから、放射線発光分析装置による分析例はこれまでに存在しない。
Further, in the conventional radiation irradiation measurement method, since two-dimensional spatial information has to be directly captured as an optical image, it has been impossible to reproduce the irradiation image from scattered light or the like.
Furthermore, since it is usually prohibited to enter the facility during radiation irradiation, it has been impossible to install a measuring device, and thus there has been no analysis example using a radiation emission analyzer.

従って、本発明の目的は、従来の方法では不可能であった放射線照射による照射像の三次元的な形状(照射領域の縦×横×深さの三次元情報)を、長寿命の素子で、簡便に、in-situで計測することにある。   Therefore, an object of the present invention is to provide a three-dimensional shape (three-dimensional information of irradiation area length × width × depth) of an irradiation image by radiation irradiation, which is impossible with a conventional method, by a long-life element. It is easy to measure in-situ.

本発明者らは、上記した従来技術の課題を解決するため鋭意研究を行った結果、放射線照射により得られる照射像の三次元的な形状を解析する方法に関する本発明を完成させた。   As a result of intensive studies to solve the above-described problems of the prior art, the present inventors have completed the present invention relating to a method for analyzing a three-dimensional shape of an irradiation image obtained by radiation irradiation.

すなわち、本発明は、放射線照射により得られる照射像の三次元的な形状を解析する方法であって、放射線蛍光特性を示す遷移金属を三次元的に含有させた耐熱性ターゲットに放射線を照射して、発せられる蛍光を計測することを特徴とするものである。   That is, the present invention is a method for analyzing a three-dimensional shape of an irradiation image obtained by radiation irradiation, and irradiating a heat-resistant target containing a transition metal exhibiting radiation fluorescence characteristics three-dimensionally. Thus, the emitted fluorescence is measured.

本発明の解析方法は、イオン加速器施設、例えば、日本原子力研究所のイオン照射研究施設であるTIARAなどにおいて、イオンビームの形状・強度を調整するためのモニター技術として利用することができる。   The analysis method of the present invention can be used as a monitoring technique for adjusting the shape and intensity of an ion beam in an ion accelerator facility, for example, TIARA, which is an ion irradiation research facility of the Japan Atomic Energy Research Institute.

また、本発明の解析方法は、原子力関連施設、放射線利用施設、宇宙ステーションをはじめとした航空宇宙分野における宇宙放射線環境場等で利用することができ、また、深海探査等の海洋分野における放射線による損傷評価や微量元素の元素分析技術としても利用可能である。   In addition, the analysis method of the present invention can be used in an aerospace field such as a nuclear facility, a radiation utilization facility, a space station, etc., and also by radiation in the ocean field such as deep sea exploration. It can also be used for damage evaluation and elemental analysis techniques for trace elements.

本発明は、放射線照射により得られる照射像の三次元的な形状を解析する方法に関する発明であって、放射線蛍光特性(ラジオ・ルミネッセンス)を示す遷移金属を三次元的に含有させた耐熱性ターゲットに放射線を照射して、発せられる蛍光を計測することを特徴とするものである。ここで、本発明において、「照射像の三次元的な形状」とは照射領域の縦×横×深さの三次元情報をいうものとする。本発明にしたがえば、放射線が照射されている領域の二次元分布を解析することができる。   The present invention relates to a method for analyzing a three-dimensional shape of an irradiation image obtained by radiation irradiation, and is a heat-resistant target containing a transition metal exhibiting radiation fluorescence characteristics (radioluminescence) three-dimensionally. This is characterized in that the emitted fluorescence is irradiated and fluorescence emitted is measured. Here, in the present invention, the “three-dimensional shape of the irradiation image” refers to three-dimensional information of the vertical × horizontal × depth of the irradiation region. According to the present invention, it is possible to analyze a two-dimensional distribution of a region irradiated with radiation.

本発明においては、遷移金属、ターゲット、蛍光波長の範囲が重要な項目である。
本発明に用いることができる放射線蛍光特性を示す遷移金属としては、例えばクロム(Cr)又は亜鉛(Zn)があげられる。放射線蛍光特性を示す遷移金属を三次元的にターゲット内に配置することにより、ターゲットへの放射線照射により発せられる蛍光の三次元データを取得することができる。この三次元データを用いることにより、照射像の三次元的な形状、すなわち、放射線の照射面及び照射量の三次元的な解析が可能となる。放射線蛍光特性を示す遷移金属は、一種のみを用いるか又は異なる放射線蛍光特性を示す複数種を使用してもよい。複数の遷移金属を三次元的にターゲット内に配置して放射線照射を行い、異なる蛍光波長を選別して、照射量と蛍光強度との相関を解析することにより、三次元の空間情報を一次元の波長−蛍光強度特性に変換することができる。これにより、場所による照射強度分布が明らかとなり、更に波長分析によりどこに配置された発光元素に由来するものかが分かることから、放射線被曝時の線量当量を詳細に評価することが可能となり、放射線計測技術の向上を図ることができる。本発明の特定の応用として、身体への影響を詳細に分析することにより、放射線治療等に資することができる。
In the present invention, the range of transition metal, target, and fluorescence wavelength are important items.
Examples of the transition metal exhibiting radiation fluorescence characteristics that can be used in the present invention include chromium (Cr) and zinc (Zn). By arranging the transition metal exhibiting radiation fluorescence characteristics in the target three-dimensionally, it is possible to acquire three-dimensional data of fluorescence emitted by irradiation of the target with radiation. By using this three-dimensional data, it becomes possible to perform a three-dimensional analysis of a three-dimensional shape of an irradiation image, that is, a radiation irradiation surface and a dose. Only one kind of transition metal exhibiting radiation fluorescence characteristics may be used, or a plurality of kinds exhibiting different radiation fluorescence characteristics may be used. Three-dimensional spatial information is one-dimensionally arranged by arranging multiple transition metals in the target three-dimensionally and performing radiation irradiation, selecting different fluorescence wavelengths, and analyzing the correlation between the dose and fluorescence intensity. The wavelength-fluorescence intensity characteristic can be converted. This makes it possible to clarify the distribution of irradiation intensity depending on the location, and further know where the light-emitting element is located by wavelength analysis, so that the dose equivalent at the time of radiation exposure can be evaluated in detail, and radiation measurement Technology can be improved. As a specific application of the present invention, it is possible to contribute to radiotherapy and the like by analyzing the influence on the body in detail.

また、本発明において用いることができる耐熱性ターゲットは、典型的には金属酸化物又はセラミックスであり、例えば、酸化アルミニウム(アルミナ)があげられる。また、これ以外にカプトン膜(ポリイミド)も使用することができる。耐熱性のターゲットを用いることにより、照射による劣化などを軽減させることができる。更に、遷移金属を含有する金属酸化物は、放射線照射に関して高耐久性で長寿命である。   The heat-resistant target that can be used in the present invention is typically a metal oxide or ceramic, and examples thereof include aluminum oxide (alumina). In addition, a Kapton film (polyimide) can also be used. By using a heat-resistant target, deterioration due to irradiation can be reduced. Furthermore, the metal oxide containing a transition metal has high durability and long life with respect to irradiation.

耐熱性ターゲットに、放射線蛍光特性を示す遷移金属を三次元的に含有させるためには、粉末状ないし繊維状の繊維金属を重量比で約0.1%〜10%程度、ターゲット原料(金属酸化物、セラミックス粉末ないしカプトン膜)中に添加・混合し均一に混ぜ合わせ、その後この混合粉末ないし溶液を前者では高温高圧で焼結、後者では重合硬化させてターゲット形状に加工する。   In order to make the heat-resistant target three-dimensionally contain a transition metal exhibiting radiation fluorescence characteristics, about 0.1% to 10% by weight of powdered or fibrous fiber metal, target raw material (metal oxide, In the former, the mixed powder or solution is sintered at a high temperature and high pressure in the former, and polymerized and cured in the latter to be processed into a target shape.

本発明においては、具体的には、放射線蛍光特性を示す遷移金属を含んだ耐熱性ターゲットに放射線を照射し、そのときラジオ・ルミネッセンスにより遷移金属から発せられる紫外・可視・赤外光の蛍光について、その蛍光波長及び強度を適切な計測機器で観測することにより、放射線が照射されている部分の形状と、放射線の強度とを測定する。本明細書中において「放射線」とは、電子線、軽イオン、重イオンをいう。また、本発明は、イオン種及びイオンの加速エネルギーに依存せず、特に、容易にターゲット材の損傷を招来する重金属イオン(Zr等)を使用できる点で有用である。   In the present invention, specifically, a heat-resistant target containing a transition metal exhibiting radiation fluorescence characteristics is irradiated with radiation, and at that time, fluorescence of ultraviolet, visible, and infrared light emitted from the transition metal by radioluminescence Then, by observing the fluorescence wavelength and intensity with an appropriate measuring instrument, the shape of the portion irradiated with the radiation and the intensity of the radiation are measured. In this specification, “radiation” means an electron beam, light ions, and heavy ions. In addition, the present invention is useful in that heavy metal ions (such as Zr) that easily cause damage to the target material can be used without depending on the ion species and the acceleration energy of the ions.

計測により得られた蛍光波長に関して、その後の計測において特定の蛍光波長範囲を採用することにより詳細な情報を得ることができる。
図1に、本発明の解析方法を実施するための計測系配置の一態様を示す。
With respect to the fluorescence wavelength obtained by measurement, detailed information can be obtained by adopting a specific fluorescence wavelength range in subsequent measurements.
FIG. 1 shows an aspect of a measurement system arrangement for implementing the analysis method of the present invention.

図1によれば、真空槽の中に耐熱性ターゲットを配して放射線照射を行う。このとき、ターゲットを支点に放射線の照射軸と60度をなす角度方向でターゲットから20cmの距離の真空槽外部に設置された、バンドルされた光ファイバーを用いて、放射線照射により発せられる蛍光を集光レンズを介して観測する。蛍光測定のためには、光ファイバー以外の当技術分野において既知の計測機器も使用することができるが、光ファイバーを用いる場合は長寿命である耐放射線性光ファイバー素子を使用する。計測機器をターゲット位置から距離を隔てて置き、蛍光を計測することにより、放射線による損傷を軽減し計測機器の寿命を長期化することができる。角度、距離などの計測機器とターゲットの位置関係は、適宜決定することができる。   According to FIG. 1, a heat resistant target is arranged in a vacuum chamber to perform radiation irradiation. At this time, the fluorescence emitted by radiation irradiation is collected using a bundled optical fiber installed outside the vacuum chamber at a distance of 20 cm from the target at an angle direction of 60 degrees with the radiation irradiation axis with the target as a fulcrum. Observe through the lens. For fluorescence measurement, a measuring instrument known in the art other than the optical fiber can be used. However, when an optical fiber is used, a radiation-resistant optical fiber element having a long life is used. By placing the measurement device at a distance from the target position and measuring fluorescence, damage due to radiation can be reduced and the life of the measurement device can be extended. The positional relationship between the measuring device such as the angle and distance and the target can be determined as appropriate.

図1において、蛍光を光ファイバーにより分光器へと伝達し、コンピュータに情報を蓄積、分析する。
図1に示す計測系によれば、照射ターゲットからの蛍光をin-situで簡便に連続的に計測できることから、放射線照射中に発生する蛍光をin-situで測定することにより、放射線の照射範囲及び強度を長時間連続で計測することができる。ここで、本明細書中において「in-situ」とは、高放射線下や高真空中でリアルタイムに連続計測できることを意味する。
In FIG. 1, fluorescence is transmitted to a spectroscope through an optical fiber, and information is stored and analyzed in a computer.
According to the measurement system shown in FIG. 1, the fluorescence from the irradiation target can be easily and continuously measured in-situ, so that the irradiation range of radiation can be measured by measuring the fluorescence generated during radiation irradiation in-situ. In addition, the intensity can be measured continuously for a long time. Here, “in-situ” in this specification means that continuous measurement can be performed in real time under high radiation or in a high vacuum.

また、本発明の解析方法によれば、ターゲットからの蛍光情報を校正値とし、放射線の線種及びエネルギーを変化させることにより、微量元素の成分分析が可能となる。
具体的には、高純度の分析対象元素から複数の蛍光情報をその波長を含めて取得し、その発光強度と量との関係で校正情報を加速イオン種とその加速エネルギーの関係として得ておく。次いで、分析対象物に特定の加速イオン種を照射し、その際得られる発光の波長、分布、及び強さのデータを得ることにより、分析対象物の元素種、量、及び分布に関する解析情報を得ることができる。
Further, according to the analysis method of the present invention, it is possible to analyze trace elements by changing the radiation line type and energy using the fluorescence information from the target as a calibration value.
Specifically, a plurality of fluorescence information including the wavelength is acquired from a high-purity analysis target element, and calibration information is obtained as a relationship between the acceleration ion species and the acceleration energy based on the relationship between the emission intensity and the amount. . Next, the analysis object is irradiated with a specific accelerated ion species, and data on the wavelength, distribution, and intensity of the light emission obtained at that time is obtained, whereby analysis information on the element type, amount, and distribution of the analysis object is obtained. Can be obtained.

また、本発明の解析方法にしたがえば、薄膜を重ねたターゲットに関してストッピング・パワーの違いを利用した深さ方向を加えた三次元エネルギーモニターを行うことができる。   Further, according to the analysis method of the present invention, it is possible to perform a three-dimensional energy monitor in which a depth direction using a difference in stopping power is applied to a target on which thin films are stacked.

具体的には、ターゲットは、薄膜を重ねて形成したものであり、層ごとに各々パターンを有するものである。各層の構成元素は同じでも異なっていてもよい。例えば、三層構造とし、第1層をアルミ、第2層をCr、第3層にZrとすることができる。それぞれ、特定の厚みを持たせてプリント印刷等によりパターンが形成される。   Specifically, the target is formed by stacking thin films, and each layer has a pattern. The constituent elements of each layer may be the same or different. For example, a three-layer structure can be used, the first layer being aluminum, the second layer being Cr, and the third layer being Zr. Each pattern is formed by printing or the like with a specific thickness.

このようなターゲットの片表面を照射した際に、特定の深さ及び箇所からの特定の波長の発光をモニターすることにより、照射深度、箇所、及び加速エネルギーの強さを知ることができる。   When irradiating one surface of such a target, it is possible to know the irradiation depth, the location, and the strength of the acceleration energy by monitoring the emission of the specific wavelength from the specific depth and location.

また、本発明の方法を実施する計測機器は小型・軽量であることから、簡単に携行設置することができ、このような計測系を原子力発電所や宇宙ステーションの作業員の作業服等に装着・設置して、本発明の解析方法を実施することにより、放射線作業環境下における被曝管理を容易に行うことが可能となる。   In addition, since the measuring instrument for carrying out the method of the present invention is small and light, it can be easily carried and installed, and such a measuring system is attached to the work clothes of workers at nuclear power plants and space stations. -By installing and carrying out the analysis method of the present invention, it becomes possible to easily perform exposure management in a radiation work environment.

以下、本発明を実施例に基づいて説明するが、本発明は実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited by an Example.

(実施例1)
図1に示す装置を用いて本発明を実施した。
すなわち、加速エネルギー1MeVの連続的な水素イオンビームを、高真空槽中で、数%の亜鉛を含んだ酸化アルミニウム(アルミナ)ターゲットに直径10〜20mm程度に集光させて入射した。ターゲットを支点にイオンビームの光軸と60度をなす角度方向で、ターゲットから20cmの距離の真空槽外部に設置された、バンドルされた光ファイバーを用いて、水素イオンビーム照射中の蛍光を集光レンズを介して観測した。本実施例において測定された、紫外・可視・赤外光のラジオ・ルミネッセンスを示す蛍光スペクトルを図2に示す。蛍光スペクトルには、692nm付近に非常に強いシャープなクロムのピークが検出された。この素子は数時間の長時間照射による劣化は見られなかった。
(実施例2)
ターゲットとして5〜10%のクロムを含有する酸化ケイ素(SiO2)ターゲットを用いたこと以外は、実施例1と同様の条件で照射を行い、蛍光を観測した。
(Example 1)
The present invention was implemented using the apparatus shown in FIG.
That is, a continuous hydrogen ion beam having an acceleration energy of 1 MeV was focused on an aluminum oxide (alumina) target containing several percent of zinc in a high vacuum chamber and focused on a diameter of about 10 to 20 mm. Fluorescence during hydrogen ion beam irradiation is collected using a bundled optical fiber installed outside the vacuum chamber at a distance of 20 cm from the target at an angle of 60 degrees with the optical axis of the ion beam with the target as a fulcrum. Observed through a lens. FIG. 2 shows fluorescence spectra showing radio / luminescence of ultraviolet, visible, and infrared light measured in this example. In the fluorescence spectrum, a very strong sharp chromium peak was detected around 692 nm. This element was not deteriorated by long-time irradiation for several hours.
(Example 2)
Irradiation was carried out under the same conditions as in Example 1 except that a silicon oxide (SiO 2 ) target containing 5 to 10% chromium was used as a target, and fluorescence was observed.

本実施例において測定された、紫外・可視・赤外光のラジオ・ルミネッセンスを示す蛍光スペクトルを図3に示す。620nm付近にピークが検出された。
(実施例3)
ターゲットとしてリンを5%含んだ酸化ケイ素(SiO2)ターゲットを用いたこと以外は、実施例1と同様の条件で照射を行い、蛍光を観測した。本実施例において測定された、紫外・可視・赤外光のラジオ・ルミネッセンスを示す蛍光スペクトルを図4に示す。実施例2で観察された620nm付近のピークは検出されなかった。
(実施例4)
ターゲットとして0.1〜10wt%程度のクロムを含有する酸化アルミニウムを用い、1MeV水素イオンのビーム強度を減少させてラジオ・ルミネッセンスを計測した。692nmでの蛍光強度変化を図5に示す。発光現象は照射イオン種及び加速エネルギーの影響を受けて変化する。
FIG. 3 shows fluorescence spectra showing radio luminescence of ultraviolet, visible, and infrared light measured in this example. A peak was detected around 620 nm.
(Example 3)
Irradiation was performed under the same conditions as in Example 1 except that a silicon oxide (SiO 2 ) target containing 5% phosphorus was used as a target, and fluorescence was observed. FIG. 4 shows a fluorescence spectrum showing radio luminescence of ultraviolet, visible, and infrared light measured in this example. The peak around 620 nm observed in Example 2 was not detected.
Example 4
Radioluminescence was measured by reducing the beam intensity of 1 MeV hydrogen ions using aluminum oxide containing 0.1 to 10 wt% chromium as a target. The change in fluorescence intensity at 692 nm is shown in FIG. The luminescence phenomenon changes under the influence of irradiation ion species and acceleration energy.

図1は、本発明の解析方法を実施するための計測系配置の一態様である。FIG. 1 shows an embodiment of a measurement system arrangement for implementing the analysis method of the present invention. 図2は、1MeV水素イオンを照射したときのクロムを含んだ酸化アルミニウムからの紫外・可視・赤外光のラジオ・ルミネッセンスを示す。FIG. 2 shows radioluminescence of ultraviolet, visible and infrared light from aluminum oxide containing chromium when irradiated with 1 MeV hydrogen ion. 図3は、1MeV水素イオンを照射したときの酸化ケイ素からの紫外・可視・赤外光のラジオ・ルミネッセンスを示す。FIG. 3 shows radio luminescence of ultraviolet, visible, and infrared light from silicon oxide when irradiated with 1 MeV hydrogen ion. 図4は、1MeV水素イオンを照射したときのリンを5%含有する酸化ケイ素からの紫外・可視・赤外光のラジオ・ルミネッセンスを示す。FIG. 4 shows radioluminescence of ultraviolet, visible, and infrared light from silicon oxide containing 5% phosphorus when irradiated with 1 MeV hydrogen ion. 図5は、1MeV水素イオンのビーム強度を減少させたときのクロムを含有する酸化アルミニウムからのラジオ・ルミネッセンス(692nm)の蛍光強度変化を示す。FIG. 5 shows the change in fluorescence intensity of radio luminescence (692 nm) from aluminum oxide containing chromium when the beam intensity of 1 MeV hydrogen ions is decreased.

Claims (8)

放射線照射により得られる照射像の三次元的な形状を解析する方法であって、放射線蛍光特性を示す遷移金属を三次元的に含有させた耐熱性ターゲットに放射線を照射して、発せられる蛍光を計測することを特徴とする方法。   A method for analyzing the three-dimensional shape of an irradiation image obtained by radiation irradiation, in which a heat-resistant target containing a transition metal exhibiting radiation fluorescence properties is three-dimensionally irradiated with radiation, and fluorescence emitted is emitted. A method characterized by measuring. 耐熱性ターゲットが、異なる放射線蛍光特性を示す複数種の遷移金属を含有する、請求項1記載の方法。   The method according to claim 1, wherein the heat-resistant target contains a plurality of transition metals exhibiting different radiation fluorescence characteristics. 耐熱性ターゲットが金属酸化物又はセラミックスであり、遷移金属がクロム又は亜鉛である、請求項1に記載の方法。   The method according to claim 1, wherein the heat-resistant target is a metal oxide or a ceramic, and the transition metal is chromium or zinc. 放射線が、電子線、軽イオンビーム又は重イオンビームである、請求項1〜3のいずれか1項に記載の方法。   The method according to claim 1, wherein the radiation is an electron beam, a light ion beam, or a heavy ion beam. ターゲット位置から距離を隔てて蛍光を計測することにより、放射線による計測機器の損傷を軽減し寿命を長期化できることを特徴とする、請求項1〜4のいずれか1項に記載の方法。   The method according to any one of claims 1 to 4, wherein the fluorescence is measured at a distance from the target position, whereby damage to the measuring instrument due to radiation can be reduced and the life can be extended. 放射線照射中に発生する蛍光をin-situで測定することにより、放射線の照射範囲及び強度を長時間連続で計測できることを特徴とする、請求項1〜5のいずれか1項に記載の方法。   The method according to any one of claims 1 to 5, wherein the irradiation range and intensity of radiation can be measured continuously for a long time by measuring fluorescence generated during radiation irradiation in-situ. ターゲットからの蛍光情報を校正値とし、放射線の線種及びエネルギーを変化させることにより、微量元素の成分分析が可能であることを特徴とする、請求項1〜6のいずれか1項に記載の方法。   7. The component analysis of trace elements is possible by changing fluorescence radiation information from the target as a calibration value and changing the radiation line type and energy, The element according to claim 1, Method. 薄膜を重ねたターゲットのストッピング・パワーの違いを利用した深さ方向を加えた三次元エネルギーモニターを行う方法。   This is a method of performing 3D energy monitoring by adding the depth direction using the difference in the stopping power of the thin film target.
JP2003390372A 2003-11-20 2003-11-20 In-situ high durability and high sensitivity radiation irradiation area analysis method using radio luminescence Expired - Fee Related JP4281088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390372A JP4281088B2 (en) 2003-11-20 2003-11-20 In-situ high durability and high sensitivity radiation irradiation area analysis method using radio luminescence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390372A JP4281088B2 (en) 2003-11-20 2003-11-20 In-situ high durability and high sensitivity radiation irradiation area analysis method using radio luminescence

Publications (2)

Publication Number Publication Date
JP2005156158A true JP2005156158A (en) 2005-06-16
JP4281088B2 JP4281088B2 (en) 2009-06-17

Family

ID=34717770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390372A Expired - Fee Related JP4281088B2 (en) 2003-11-20 2003-11-20 In-situ high durability and high sensitivity radiation irradiation area analysis method using radio luminescence

Country Status (1)

Country Link
JP (1) JP4281088B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049145A (en) * 2006-07-28 2008-03-06 Hitachi Maxell Ltd Dosimetry system, dosimetry method and scintillator for use therein
JP2008186801A (en) * 2006-12-04 2008-08-14 Axcelis Technologies Inc Use of ion induced luminescence (iil) as feedback control for ion implantation
WO2011136317A1 (en) * 2010-04-28 2011-11-03 株式会社トクヤマ Standard sample for calibration of electron beam-excited vacuum ultraviolet emission spectrometer
WO2017006700A1 (en) * 2015-07-06 2017-01-12 株式会社日立製作所 Radiation monitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049145A (en) * 2006-07-28 2008-03-06 Hitachi Maxell Ltd Dosimetry system, dosimetry method and scintillator for use therein
JP2008186801A (en) * 2006-12-04 2008-08-14 Axcelis Technologies Inc Use of ion induced luminescence (iil) as feedback control for ion implantation
WO2011136317A1 (en) * 2010-04-28 2011-11-03 株式会社トクヤマ Standard sample for calibration of electron beam-excited vacuum ultraviolet emission spectrometer
WO2017006700A1 (en) * 2015-07-06 2017-01-12 株式会社日立製作所 Radiation monitor
JP2017015662A (en) * 2015-07-06 2017-01-19 株式会社日立製作所 Radiation monitor

Also Published As

Publication number Publication date
JP4281088B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
RU2660301C2 (en) High resolution fluorescent microscopy with the structured excitation beam
US8903040B2 (en) X-ray multiple spectroscopic analyzer
KR101031327B1 (en) Plasma electron temperature measuring method and device
US11105756B2 (en) X-ray diffraction and X-ray spectroscopy method and related apparatus
TWI515426B (en) Evaluation system and evaluation method of machined surface condition, the stress corrosion cracking susceptibility evaluation method of non-sensitized material
Marshall et al. Directional detection of dark matter with diamond
CN105593967B (en) Reduce the method for the thickness of target sample
Sykora et al. Novel fluorescent nuclear track detector technology for mixed neutron-gamma fields
Limburg et al. Insights from two‐dimensional mapping of otolith chemistry
Haugh et al. Calibrating image plate sensitivity in the 700 to 5000 eV spectral energy range
JP2011060555A (en) Detecting method of vacuum ultraviolet ray, and scanning electron microscope
Patterson et al. Three‐dimensional density measurements of ultra low density materials by X‐ray scatter using confocal micro X‐ray fluorescence spectroscopy
Reinhardt et al. Reference-free quantification of particle-like surface contaminations by grazing incidence X-ray fluorescence analysis
JP4281088B2 (en) In-situ high durability and high sensitivity radiation irradiation area analysis method using radio luminescence
Shinsho et al. X-ray imaging using the thermoluminescent properties of commercial Al2O3 ceramic plates
US20190154720A1 (en) Detection apparatus and method for detection of chi energy
JP2017522571A (en) Method for measuring the mass thickness of a target sample for an electron microscope
EP2077449A1 (en) Reverse x-ray photoelectron holography device and its measuring method
Nowak et al. Geometrical optics modelling of grazing incidence X-ray fluorescence of nanoscaled objects
RU2522709C2 (en) Diagnostics of flaws on metal surfaces
JP2008180656A (en) Non-scanning wavelength-dispersive x-ray spectrometer and measuring method of using the same
US9921158B2 (en) Method and apparatus for determining isotopic properties of a sample mass
Poths et al. Experimental assessment of effectively probed volume in confocal XRF spectrometry using microparticles
JP6358045B2 (en) X-ray analysis method for surface-coated fine particles and X-ray analyzer for surface-coated fine particles
KR100788467B1 (en) Rapid measurement method of nano-scale thickness of thin film using white X-ray reflectivity and system thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees