JP7363583B2 - Manufacturing method of insulated circuit board - Google Patents

Manufacturing method of insulated circuit board Download PDF

Info

Publication number
JP7363583B2
JP7363583B2 JP2020036466A JP2020036466A JP7363583B2 JP 7363583 B2 JP7363583 B2 JP 7363583B2 JP 2020036466 A JP2020036466 A JP 2020036466A JP 2020036466 A JP2020036466 A JP 2020036466A JP 7363583 B2 JP7363583 B2 JP 7363583B2
Authority
JP
Japan
Prior art keywords
plate
curved surface
metal plate
metal
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020036466A
Other languages
Japanese (ja)
Other versions
JP2021141150A (en
Inventor
慎介 青木
浩和 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2020036466A priority Critical patent/JP7363583B2/en
Publication of JP2021141150A publication Critical patent/JP2021141150A/en
Application granted granted Critical
Publication of JP7363583B2 publication Critical patent/JP7363583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、絶縁回路基板の製造方法に関する。 The present invention relates to a method for manufacturing an insulated circuit board.

金属板と、セラミックス基板とを接合してなる回路基板として、例えば、特許文献1及び2に記載の絶縁回路基板が知られている。これら特許文献1及び2に記載の絶縁回路基板は、AIN(窒化アルミニウム)、Al(アルミナ)、又はSi(窒化ケイ素)等からなるセラミックス基板を備えており、このセラミックス基板の一方の面に第1金属板が接合されて形成された回路層が設けられるとともに、他方の面に第2金属板が接合されて形成された放熱層が設けられている。
このような絶縁回路基板では、回路層が溝により複数に分断されることにより、複数の回路パターンを形成しているため、回路層のパターン形状と放熱層のパターン形状とが異なっている。
BACKGROUND ART As a circuit board formed by bonding a metal plate and a ceramic substrate, for example, insulated circuit boards described in Patent Documents 1 and 2 are known. The insulated circuit boards described in Patent Documents 1 and 2 include a ceramic substrate made of AIN (aluminum nitride), Al 2 O 3 (alumina), Si 3 N 4 (silicon nitride), etc. A circuit layer formed by bonding a first metal plate is provided on one surface of the substrate, and a heat dissipation layer formed by bonding a second metal plate is provided on the other surface.
In such an insulated circuit board, the circuit layer is divided into a plurality of parts by grooves to form a plurality of circuit patterns, so that the pattern shape of the circuit layer and the pattern shape of the heat dissipation layer are different.

特許第3211856号公報Patent No. 3211856 特開2014-172802号公報Japanese Patent Application Publication No. 2014-172802

ところで、上記特許文献1及び2に開示されている絶縁回路基板は、第1金属板、セラミックス基板及び第2金属板を重ねた積層体を積層方向に加圧しながら加熱することにより接合される。しかしながら、これらの接合時に、回路層となる第1金属板の形状や厚さと、放熱層となる第2金属板の形状や厚さとが異なると、絶縁回路基板に反り(回路層を上側とする凸状の反り)が発生する。特に、第1金属板が複数の金属板からなり、第2金属板が1枚の金属板からなる場合には、反りが大きくなり、また、反りの方向(回路層側に凸となるか凹となるか)がバラバラとなる。
この反りの低減及び反りの方向制御のため、加圧の際に所定の曲率半径を有する押圧板を用いて接合を行うが、この場合、第1金属板のセラミックス基板に対する位置ずれが生じる。この反りが大きい場合や、位置ずれが生じていると、回路層上への半導体素子等の実装時に位置ずれが発生しやすくなるため、絶縁回路基板は、その反り量が小さいものが望まれている。
Incidentally, the insulated circuit boards disclosed in Patent Documents 1 and 2 are joined by heating a stacked body in which a first metal plate, a ceramic substrate, and a second metal plate are stacked while applying pressure in the stacking direction. However, when bonding them together, if the shape and thickness of the first metal plate that serves as the circuit layer differs from the shape and thickness of the second metal plate that serves as the heat dissipation layer, the insulated circuit board may warp (with the circuit layer on the top). convex warpage) occurs. In particular, when the first metal plate is made of multiple metal plates and the second metal plate is made of one metal plate, the warpage becomes large and the direction of the warp (convex or concave toward the circuit layer side) ) will fall apart.
In order to reduce the warpage and control the direction of the warp, a press plate having a predetermined radius of curvature is used to perform the bonding during pressurization, but in this case, a positional shift of the first metal plate with respect to the ceramic substrate occurs. If this warpage is large or misalignment occurs, misalignment will easily occur when semiconductor elements, etc. are mounted on the circuit layer, so it is desirable for the insulated circuit board to have a small amount of warpage. There is.

本発明は、このような事情に鑑みてなされたもので、接合時の位置ずれを抑制でき、かつ、反り量を低減でき、反りの方向を統一した絶縁回路基板の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing an insulated circuit board that can suppress misalignment during bonding, reduce the amount of warpage, and unify the direction of warp. purpose.

本発明の絶縁回路基板の製造方法は、セラミックス基板の一方の面に第1金属板を配置するとともに、前記セラミックス基板の他方の面に第2金属板を配置して、これら積層体を積層方向に押圧した状態で接合する接合工程を有し、
前記接合工程では、前記第1金属板を押圧する凸曲面を有する第1押圧板と前記第2金属板を押圧する凹曲面を有する第2押圧板とを用い、前記第1金属板の前記セラミックス基板とは反対側の面である第1面を平板からなる第1接触板を介して前記凸曲面で押圧するともに、前記第2金属板の前記セラミックス基板とは反対側の面である第2面を平板からなる第2接触板を介して前記凹曲面で押圧することにより、前記積層体を前記第1接触板及び前記第2接触板との間に挟持して変形させた状態で加熱し、
前記第1押圧板及び前記第2押圧板は、ヤング率が100GPa以上の板材からなるとともに、前記第1接触板及び前記第2接触板は、ヤング率が1GPa以上70GPa以下、厚さが0.5mm以上50mm以下に設定されている。
なお、第1接触板及び第2接触板のヤング率と厚さは25℃における値である。
In the method for manufacturing an insulated circuit board of the present invention, a first metal plate is placed on one side of a ceramic substrate, a second metal plate is placed on the other side of the ceramic substrate, and these laminates are stacked in the stacking direction. It has a joining process in which it is joined under pressure,
In the joining step, a first pressing plate having a convex curved surface pressing the first metal plate and a second pressing plate having a concave curved surface pressing the second metal plate are used to bond the ceramic of the first metal plate. A first surface opposite to the substrate is pressed by the convex curved surface via a first contact plate made of a flat plate, and a second surface of the second metal plate opposite to the ceramic substrate is pressed. The laminate is heated in a deformed state while being sandwiched between the first contact plate and the second contact plate by pressing the surface with the concave curved surface through a second contact plate made of a flat plate. ,
The first press plate and the second press plate are made of plate materials having a Young's modulus of 100 GPa or more, and the first contact plate and the second contact plate have a Young's modulus of 1 GPa or more and 70 GPa or less and a thickness of 0. It is set to 5 mm or more and 50 mm or less.
Note that the Young's modulus and thickness of the first contact plate and the second contact plate are values at 25°C.

本発明では、絶縁回路基板の接合後に生じ得る反りの方向とは逆方向に反らせながら第1金属板、セラミックス基板及び第2金属板の積層体を押圧することで、絶縁回路基板の接合後の反りを抑制でき、反りの方向を統一できる。 In the present invention, the laminate of the first metal plate, the ceramic substrate, and the second metal plate is pressed while being warped in the opposite direction to the direction of warpage that may occur after the insulated circuit boards are joined. Warpage can be suppressed and the direction of warpage can be unified.

ここで、第1押圧板の凸曲面により第1金属板の第1面を直接押圧するとともに、第2押圧板の凹曲面により第2金属板の第2面を直接押圧する場合、まず、凸曲面の先端が第1面の中央に接触し、徐々に第1面への接触範囲が中央から外周側に拡大して押圧されていく。一方、凹曲面では、その外周端が第2面の外周縁に接触し、第2面への接触範囲が外周縁から中央側に拡大して押圧されていく。この場合、凸曲面及び凹曲面のそれぞれは、第1金属板の第1面及び第2金属板の第2面の全領域を最初から押圧することができないため、この凸曲面及び凹曲面の押圧力により、第1金属板及び第2金属板がセラミックス基板上で滑って位置ずれが生じる場合がある。 Here, when directly pressing the first surface of the first metal plate with the convex curved surface of the first pressing plate and directly pressing the second surface of the second metal plate with the concave curved surface of the second pressing plate, first, the convex curved surface of the second pressing plate The tip of the curved surface contacts the center of the first surface, and the range of contact with the first surface gradually expands from the center to the outer circumferential side and is pressed. On the other hand, in the case of the concave curved surface, its outer peripheral edge contacts the outer peripheral edge of the second surface, and the range of contact with the second surface expands from the outer peripheral edge toward the center and is pressed. In this case, each of the convex curved surface and the concave curved surface cannot press the entire area of the first surface of the first metal plate and the second surface of the second metal plate from the beginning. The pressure may cause the first metal plate and the second metal plate to slip on the ceramic substrate, causing positional deviation.

これに対し、本発明では、凸曲面と第1面との間に第1接触板が配置され、凹曲面と第2面との間に第2接触板が配置された状態で、積層体の押圧が開始されると、まず、凸曲面の先端が第1接触板の中央に接触する。この第1接触板は、ヤング率が1GPa以上70GPa以下、厚さが0.5mm以上50mm以下に設定されているため、凸曲面の先端部の押圧力によりたわむことから、凸曲面の先端部が接触していない第1接触板の外周部でも第1金属板が押圧される。つまり、第1接触板の中央のみが押圧されている場合でも、第1金属板の全面を押圧した状態が維持される。そして、凸曲面の押圧が進むと、第1接触板の中央から外周側に拡大して押圧されるが、この場合においても第1接触板が適切にたわんで第1金属板の全面を押圧した状態が維持される。また、第2接触板においても同じであり、凹曲面により押圧されている間、第2接触板が第2金属板の全面を押圧した状態が維持される。このため、接合工程におけるセラミックス基板に対する第1金属板及び第2金属板の位置ずれの発生を抑制できる。
なお、第1接触板及び第2接触板が平板により形成されているので、これら第1接触板及び第2接触板により挟まれた積層体を凸曲面及び凹曲面の間に配置する際にも、これらを水平に配置でき、積層体の配置時に生じる位置ずれを抑制できる。
In contrast, in the present invention, the first contact plate is disposed between the convex curved surface and the first surface, and the second contact plate is disposed between the concave curved surface and the second surface. When the pressing starts, first, the tip of the convex curved surface contacts the center of the first contact plate. This first contact plate has a Young's modulus of 1 GPa or more and 70 GPa or less, and a thickness of 0.5 mm or more and 50 mm or less, so it is bent by the pressing force of the tip of the convex curved surface. The first metal plate is also pressed by the outer peripheral portion of the first contact plate that is not in contact with the first metal plate. That is, even if only the center of the first contact plate is pressed, the state in which the entire surface of the first metal plate is pressed is maintained. As the pressure on the convex curved surface progresses, the pressure expands from the center of the first contact plate toward the outer circumference, but even in this case, the first contact plate is appropriately bent to press the entire surface of the first metal plate. The state is maintained. The same applies to the second contact plate, and while being pressed by the concave curved surface, the state in which the second contact plate presses the entire surface of the second metal plate is maintained. Therefore, it is possible to suppress the occurrence of misalignment of the first metal plate and the second metal plate with respect to the ceramic substrate in the bonding process.
In addition, since the first contact plate and the second contact plate are formed of flat plates, when placing the laminate sandwiched between the first contact plate and the second contact plate between the convex curved surface and the concave curved surface, , these can be arranged horizontally, and positional shifts that occur when arranging the laminate can be suppressed.

なお、第1接触板及び第2接触板のヤング率が1GPa未満であり、かつ、厚さが0.5mm未満であると、凸曲面の先端が第1接触板の中央に接触して、第1接触板にたわみが生じたとしても第1金属板の周縁部への押圧力が低く、位置ずれが生じるおそれがある。一方、第1接触板及び第2接触板のヤング率が70GPaを超え、かつ、厚さが50mmを超えると、これをたわませるのに過大な力が必要になり、接合時にかかる荷重で変形しにくくなるため、反りを抑制できない可能性がある。 Note that when the Young's modulus of the first contact plate and the second contact plate is less than 1 GPa and the thickness is less than 0.5 mm, the tip of the convex curved surface contacts the center of the first contact plate, and the first contact plate Even if the first contact plate is bent, the pressing force against the peripheral edge of the first metal plate is low, and there is a risk of positional displacement. On the other hand, if the Young's modulus of the first contact plate and the second contact plate exceeds 70 GPa and the thickness exceeds 50 mm, excessive force will be required to deflect them, and the load applied during joining will deform them. Therefore, it may not be possible to suppress warping.

本発明の絶縁回路基板の製造方法において、前記第1金属板は、前記セラミックス基板の面方向に並べて配置される複数の金属板からなるものとすることができる。
第1金属板が複数の金属板からなる場合、凸曲面の押圧により複数の金属板が位置ずれする可能性が大きくなる。この場合でも、凸曲面での押圧時に第1接触板が複数の金属板の全面に接触して押圧する状態が維持される。つまり、本発明は、第1金属板が複数の金属板からなる場合に、特に有効であり、セラミックス基板に対する第1金属板及び第2金属板の位置ずれを抑制できる。
In the method for manufacturing an insulated circuit board according to the present invention, the first metal plate may include a plurality of metal plates arranged side by side in a surface direction of the ceramic substrate.
When the first metal plate is composed of a plurality of metal plates, there is a high possibility that the plurality of metal plates will be displaced due to the pressure of the convex curved surface. Even in this case, the state in which the first contact plate contacts and presses the entire surfaces of the plurality of metal plates when pressing on the convex curved surface is maintained. That is, the present invention is particularly effective when the first metal plate is composed of a plurality of metal plates, and can suppress misalignment of the first metal plate and the second metal plate with respect to the ceramic substrate.

本発明の絶縁回路基板の製造方法の好ましい態様としては、前記凸曲面及び前記凹曲面の曲率半径は、100mm以上5000mm以下であるとよい。
凸曲面及び凹曲面の曲率半径が100mm未満では、曲率半径が小さすぎて絶縁回路基板に割れ等が生じるおそれがあるとともに、接合後に第1金属板を凹状とする変形が残りやすい。一方、5000mmを超えると、曲率半径が大きすぎて、絶縁回路基板の接合後の反りを抑制する効果に乏しい。
In a preferred embodiment of the method for manufacturing an insulated circuit board of the present invention, the radius of curvature of the convex curved surface and the concave curved surface is preferably 100 mm or more and 5000 mm or less.
If the radius of curvature of the convex curved surface and the concave curved surface is less than 100 mm, the radius of curvature is too small and there is a risk that cracks may occur in the insulated circuit board, and the first metal plate is likely to be deformed into a concave shape after bonding. On the other hand, if it exceeds 5000 mm, the radius of curvature is too large, and the effect of suppressing warpage after bonding of the insulated circuit board is poor.

本発明によれば、セラミックス基板に対する第1金属板及び前記第2金属板の接合時の位置ずれを抑制でき、かつ、反り量を低減し、反りの方向を統一できる。 According to the present invention, it is possible to suppress misalignment during bonding of the first metal plate and the second metal plate to the ceramic substrate, reduce the amount of warpage, and unify the direction of warp.

本発明の一実施形態に係る絶縁回路基板を用いたパワーモジュールを示す断面図である。FIG. 1 is a cross-sectional view showing a power module using an insulated circuit board according to an embodiment of the present invention. 図1に示す絶縁回路基板の製造方法を説明する断面図であり、セラミックス基板の両面に金属板を配置した状態を示す断面図である。FIG. 2 is a cross-sectional view illustrating a method of manufacturing the insulated circuit board shown in FIG. 1, and is a cross-sectional view showing a state in which metal plates are arranged on both sides of a ceramic substrate. 図1に示す絶縁回路基板の製造方法を説明する断面図であり、接合装置内に積層体を配置し、その両面に接触板を配置した状態を示す断面図である。FIG. 2 is a cross-sectional view illustrating a method of manufacturing the insulated circuit board shown in FIG. 1, and is a cross-sectional view showing a state in which a laminate is placed in a bonding device and contact plates are placed on both surfaces thereof. 図1に示す絶縁回路基板の製造方法を説明する断面図であり、接合装置により積層体を押圧している途中の状態を示す断面図である。FIG. 2 is a cross-sectional view illustrating a method for manufacturing the insulated circuit board shown in FIG. 1, and is a cross-sectional view showing a state in which a laminate is being pressed by a bonding device.

以下、本発明の一実施形態について、図面を参照しながら説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

本発明に係る絶縁回路基板の製造方法により製造される絶縁回路基板10にヒートシンク20が接合されてヒートシンク付絶縁回路基板1が形成される。 A heat sink 20 is joined to an insulated circuit board 10 manufactured by the method for manufacturing an insulated circuit board according to the present invention, thereby forming an insulated circuit board 1 with a heat sink.

[パワーモジュールの構成]
そして、このヒートシンク付絶縁回路基板1の表面に半導体素子30等が搭載されることにより、図1に示すように、電子部品が製造される。半導体素子30としては、パワー半導体素子や、LED素子、熱電変換素子などが挙げられる。本実施形態では、半導体素子30としてパワー半導体素子を用いたパワーモジュール100(電子部品)で説明する。
なお、ヒートシンク20を備えるパワーモジュール100は、例えば冷却器等に取り付けられた状態で使用される。
[Power module configuration]
Then, by mounting the semiconductor element 30 and the like on the surface of this insulated circuit board 1 with a heat sink, an electronic component is manufactured as shown in FIG. 1. Examples of the semiconductor element 30 include a power semiconductor element, an LED element, a thermoelectric conversion element, and the like. In this embodiment, a power module 100 (electronic component) using a power semiconductor element as the semiconductor element 30 will be described.
Note that the power module 100 including the heat sink 20 is used, for example, while being attached to a cooler or the like.

[絶縁回路基板の構成]
絶縁回路基板10は、セラミックス基板11と、セラミックス基板11の一方の面に積層された回路層12と、セラミックス基板11の他方の面に積層された放熱層13とを備える。
セラミックス基板11は、回路層12と放熱層13の間の電気的接続を防止する絶縁材であって、例えば窒化アルミニウム(AlN)、窒化珪素(Si)等により形成され、その板厚は0.2mm~1.2mmである。また、セラミックス基板11の平面サイズは、例えば、30~160mm×30~160mmに設定されている。
[Configuration of insulated circuit board]
The insulated circuit board 10 includes a ceramic substrate 11 , a circuit layer 12 laminated on one surface of the ceramic substrate 11 , and a heat dissipation layer 13 laminated on the other surface of the ceramic substrate 11 .
The ceramic substrate 11 is an insulating material that prevents electrical connection between the circuit layer 12 and the heat dissipation layer 13, and is made of, for example, aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), etc. is 0.2 mm to 1.2 mm. Further, the planar size of the ceramic substrate 11 is set to, for example, 30 to 160 mm x 30 to 160 mm.

回路層12は、セラミックス基板11の一方の面に形成されており、2つの回路パターン(小回路層120a,120b)に分断されている。この回路層12は、無酸素銅等の純銅、又は、ジルコニウム添加銅合金等の銅合金により形成された2枚の銅板からなる。
放熱層13は、セラミックス基板11の他方の面に形成されており、1枚の無酸素銅等の純銅、又は、ジルコニウム添加銅合金等の銅合金により形成された銅板からなる。つまり、回路層12の形状と放熱層13の形状とは異なっている。
また、回路層12及び放熱層13の厚さは0.4mm~1.6mmに設定されており、セラミックス基板11よりも若干小さく形成されている。
The circuit layer 12 is formed on one surface of the ceramic substrate 11, and is divided into two circuit patterns (small circuit layers 120a and 120b). This circuit layer 12 is composed of two copper plates made of pure copper such as oxygen-free copper or a copper alloy such as zirconium-added copper alloy.
The heat dissipation layer 13 is formed on the other surface of the ceramic substrate 11, and is made of a copper plate made of pure copper such as oxygen-free copper or a copper alloy such as zirconium-added copper alloy. In other words, the shape of the circuit layer 12 and the shape of the heat dissipation layer 13 are different.
Further, the thickness of the circuit layer 12 and the heat dissipation layer 13 is set to 0.4 mm to 1.6 mm, which is slightly smaller than the ceramic substrate 11.

[絶縁回路基板の製造方法]
次に、本実施形態の絶縁回路基板10の製造方法について説明する。
その製造方法は、セラミックス基板11の一方の面に回路層12に対応する(2つの小回路層120a,120bに対応する)第1金属板121,122をろう材箔14を介して配置するとともに、セラミックス基板11の他方の面に放熱層13となる第2金属板130をろう材箔14を介して配置して、絶縁回路基板の製造装置60(以下、製造装置60という)によりこれらを積層方向に押圧した状態で加熱してろう付けにより接合する接合工程を有している。
[Method for manufacturing insulated circuit board]
Next, a method for manufacturing the insulated circuit board 10 of this embodiment will be described.
The manufacturing method includes arranging first metal plates 121 and 122 corresponding to the circuit layer 12 (corresponding to the two small circuit layers 120a and 120b) on one surface of a ceramic substrate 11 with a brazing material foil 14 in between. , a second metal plate 130 serving as a heat dissipation layer 13 is placed on the other surface of the ceramic substrate 11 via a brazing material foil 14, and these are laminated by an insulated circuit board manufacturing apparatus 60 (hereinafter referred to as manufacturing apparatus 60). It has a joining process of heating while being pressed in the direction and joining by brazing.

(絶縁回路基板の製造装置の構成)
ここで、絶縁回路基板10は、回路層12(2つの小回路層120a,120b)となる第1金属板121,122の大きさと第2金属板130の大きさとが異なるため、接合後に回路層12を上側とする凸状の反りが発生する傾向がある。この反りを抑制するため、本実施形態では、製造装置60を用いて回路層12を上側とする凹状に変形させながら、接合後に生じる反りの方向とは反対方向に変形させながら)セラミックス基板11と第1金属板121,122及び第2金属板130との接合を実行する。
(Configuration of insulated circuit board manufacturing equipment)
Here, in the insulated circuit board 10, since the size of the first metal plates 121, 122, which become the circuit layer 12 (two small circuit layers 120a, 120b), and the size of the second metal plate 130 are different, the circuit layer is layered after bonding. There is a tendency for a convex warp with 12 on the upper side to occur. In order to suppress this warping, in this embodiment, the manufacturing apparatus 60 is used to deform the ceramic substrate 11 into a concave shape with the circuit layer 12 on the upper side, while deforming the ceramic substrate 11 in a direction opposite to the direction of the warp that occurs after bonding. The first metal plates 121, 122 and the second metal plate 130 are joined.

この製造装置60は、図3及び図4に示すように、セラミックス基板11の面方向に並べて配置される第1金属板121,122、セラミックス基板11及び第2金属板130の積層体40を積層方向に押圧する第1押圧板61及び第2押圧板62を備えている。第1押圧板61は、第1金属板121,122のセラミックス基板11とは反対側の面である第1面121A,122Aを押圧可能な凸曲面611を有している。また、第2押圧板62は、第2金属板130のセラミックス基板11とは反対側の面である第2面130Aを押圧可能な凹曲面621を有している。
また、製造装置60は、第1押圧板61及び第2押圧板62により積層体40を押圧する際に、凸曲面611と第1面121A,122Aとの間に配置される第1接触板71と、凹曲面621と第2面130Aとの間に配置される第2接触板72と、を備えている。
As shown in FIGS. 3 and 4, this manufacturing apparatus 60 laminates a laminate 40 of first metal plates 121 and 122, a ceramic substrate 11, and a second metal plate 130, which are arranged side by side in the surface direction of a ceramic substrate 11. It is provided with a first pressing plate 61 and a second pressing plate 62 that press in the direction. The first pressing plate 61 has a convex curved surface 611 that can press the first surfaces 121A, 122A of the first metal plates 121, 122 opposite to the ceramic substrate 11. Further, the second pressing plate 62 has a concave curved surface 621 that can press the second surface 130A of the second metal plate 130, which is the surface opposite to the ceramic substrate 11.
In addition, when the manufacturing apparatus 60 presses the laminate 40 with the first pressing plate 61 and the second pressing plate 62, a first contact plate 71 disposed between the convex curved surface 611 and the first surfaces 121A and 122A. and a second contact plate 72 disposed between the concave curved surface 621 and the second surface 130A.

これらのうち、第1押圧板61及び第2押圧板62は、第1接触板71及び第2接触板72よりも平面サイズが大きいことが好ましい。また、第1押圧板61及び第2押圧板62は、ヤング率が100GPa以上の板材(例えば、ステンレス鋼材、窒化アルミニウム等のセラミックス)により形成されている。これら第1押圧板61及び第2押圧板62の厚さは、5mm以上100mm以下とすることが好ましい。
この第1押圧板61の凸曲面611は、曲率半径Rが100mm以上5000mm以下とされる凸状の曲面である。また、第2押圧板62の凹曲面621は、凸曲面611に対応する曲率半径Rが100mm以上5000mm以下とされる凹状の曲面である。具体的には、凸曲面611は、図3に示す絶縁回路基板10の中心を厚さ方向に延びて通過する仮想線C1から周縁にかけて下り勾配となる凸状の曲面であり、凹曲面621は、上記仮想線C1から周縁にかけて上り勾配となる凹状の曲面である。
Among these, it is preferable that the first pressing plate 61 and the second pressing plate 62 have a larger planar size than the first contact plate 71 and the second contact plate 72. Further, the first pressing plate 61 and the second pressing plate 62 are formed of a plate material (for example, stainless steel material, ceramics such as aluminum nitride) having a Young's modulus of 100 GPa or more. The thickness of the first pressing plate 61 and the second pressing plate 62 is preferably 5 mm or more and 100 mm or less.
The convex curved surface 611 of the first pressing plate 61 is a convex curved surface with a radius of curvature R of 100 mm or more and 5000 mm or less. Further, the concave curved surface 621 of the second pressing plate 62 is a concave curved surface whose radius of curvature R corresponding to the convex curved surface 611 is 100 mm or more and 5000 mm or less. Specifically, the convex curved surface 611 is a convex curved surface that slopes downward from the virtual line C1 extending in the thickness direction through the center of the insulated circuit board 10 shown in FIG. , is a concave curved surface having an upward slope from the virtual line C1 to the peripheral edge.

なお、これら凸曲面611及び凹曲面621の曲率半径Rが100mm未満では、曲率半径が小さすぎて絶縁回路基板10に割れなどが生じるおそれがあるとともに、接合後に第1金属板121,122を凹状とする変形が残りやすい。一方、5000mmを超えると、曲率半径が大きすぎて、絶縁回路基板10の接合後の反りを抑制する効果に乏しい。 Note that if the radius of curvature R of the convex curved surface 611 and the concave curved surface 621 is less than 100 mm, the radius of curvature is too small and there is a risk that cracks may occur in the insulated circuit board 10, and the first metal plates 121 and 122 may have a concave shape after bonding. Deformation tends to remain. On the other hand, if it exceeds 5000 mm, the radius of curvature is too large, and the effect of suppressing warping of the insulated circuit board 10 after bonding is poor.

第1接触板71及び第2接触板72は、それぞれ第1金属板121,122及び第2金属板130よりも平面サイズが同じか、または、大きく形成されていることが好ましい。また、第1接触板71及び第2接触板72は、ヤング率が1GPa以上70GPa以下、厚さw1が0.5mm以上50mm以下に設定され、例えば、カーボン板やカーボンコンポジットの他、グラファイトシート等からなる。なお、第1接触板71及び第2接触板72のヤング率と厚さは25℃における値である。
これら第1接触板71及び第2接触板72のヤング率が1GPa未満で、かつ、厚さw1が0.5mm未満であると、凸曲面611の先端が第1接触板71の中央に接触して、第1接触板71にたわみが生じたとしても第1金属板121,122の周縁部への押圧力が弱く、位置ずれが生じる。一方、第1接触板71及び第2接触板72のヤング率が70GPaを超え、かつ、厚さw1が50mmを超えると、これをたわませるのに過大な力が必要になり、接合時にかかる荷重で変形しにくくなるため、反りを抑制できない可能性がある。
このため、本実施形態では、第1接触板71及び第2接触板72のヤング率を1GPa以上70GPa以下、厚さw1を0.5mm以上50mm以下としている。
It is preferable that the first contact plate 71 and the second contact plate 72 have the same or larger planar size than the first metal plates 121, 122 and the second metal plate 130, respectively. The first contact plate 71 and the second contact plate 72 have a Young's modulus of 1 GPa or more and 70 GPa or less, and a thickness w1 of 0.5 mm or more and 50 mm or less, and are made of, for example, a carbon plate, a carbon composite, a graphite sheet, etc. Consisting of Note that the Young's modulus and thickness of the first contact plate 71 and the second contact plate 72 are values at 25°C.
When the Young's modulus of the first contact plate 71 and the second contact plate 72 is less than 1 GPa and the thickness w1 is less than 0.5 mm, the tip of the convex curved surface 611 contacts the center of the first contact plate 71. Therefore, even if the first contact plate 71 is bent, the pressing force against the peripheral edges of the first metal plates 121 and 122 is weak, resulting in positional displacement. On the other hand, if the Young's modulus of the first contact plate 71 and the second contact plate 72 exceeds 70 GPa and the thickness w1 exceeds 50 mm, excessive force will be required to deflect them, which will be applied during bonding. Since it becomes difficult to deform under load, it may not be possible to suppress warping.
Therefore, in this embodiment, the Young's modulus of the first contact plate 71 and the second contact plate 72 is set to be 1 GPa or more and 70 GPa or less, and the thickness w1 is set to 0.5 mm or more and 50 mm or less.

(製造装置を用いた絶縁回路基板の製造方法)
このような製造装置60を用いて絶縁回路基板10を製造するには、まず、図2に示すように、第1金属板121,122、セラミックス基板11、第2金属板130を、それぞれ活性金属ろう材(例えば、Ag-Cu-Ti系等)のろう材箔14を介して積層し、積層体40を形成する。
なお、本実施形態では、ろう材箔14を用いることとしたが、これに限らず、ろう材ペーストを用いてもよい。この場合、ろう材ペーストは、セラミックス基板11に塗布してもよいし、第1金属板121,122及び第2金属板130に塗布してもよい。
(Method for manufacturing an insulated circuit board using manufacturing equipment)
To manufacture the insulated circuit board 10 using such a manufacturing apparatus 60, first, as shown in FIG. A laminate 40 is formed by laminating a brazing material (for example, Ag--Cu--Ti based) through a brazing material foil 14.
Note that in this embodiment, the brazing material foil 14 is used, but the present invention is not limited to this, and a brazing material paste may also be used. In this case, the brazing material paste may be applied to the ceramic substrate 11 or may be applied to the first metal plates 121 and 122 and the second metal plate 130.

そして、図3に示すように、積層体40の第1金属板121,122側に第1接触板71を配置するとともに、第2金属板130側に第2接触板72を配置し、これらで積層体40を挟んだ状態で凸曲面611と凹曲面621との間に配置する。その後、第1押圧板61及び第2押圧板62によりこれらを積層方向に押圧する。 As shown in FIG. 3, the first contact plate 71 is placed on the first metal plate 121, 122 side of the laminate 40, and the second contact plate 72 is placed on the second metal plate 130 side. It is placed between the convex curved surface 611 and the concave curved surface 621 with the laminate 40 sandwiched therebetween. Thereafter, the first pressing plate 61 and the second pressing plate 62 press these in the stacking direction.

この状態で、積層体に対し、第1押圧板61及び第2押圧板62による押圧が開始されると、図4に示すように、まず、凸曲面611の先端が第1接触板71の中央に接触する。この第1接触板71は、ヤング率が1GPa以上70GPa以下、厚さが0.5mm以上50mm以下に設定されているため、凸曲面611の先端部の押圧力によりたわむことから、凸曲面611の先端部が接触していない第1接触板71の外周部でも第1金属板121,122が押圧される。つまり、第1接触板71の中央のみが押圧されている場合でも、第1金属板121,122の全面が押圧した状態が維持される。そして、凸曲面611の押圧が進むと、第1接触板71の中央から外周側に拡大して押圧されるが、この場合においても第1接触板71が適切にたわんで第1金属板121,122の全面を押圧した状態が維持される。また、第2接触板72においても同じであり、凹曲面621により押圧されている間、第2接触板72がたわんで第2金属板130の全面を押圧した状態が維持される。このため、接合工程におけるセラミックス基板11に対する第1金属板121,122及び第2金属板130の位置ずれの発生を抑制できる。 In this state, when the first pressing plate 61 and the second pressing plate 62 start pressing the laminate, as shown in FIG. come into contact with. The first contact plate 71 has a Young's modulus of 1 GPa or more and a thickness of 70 GPa or less and a thickness of 0.5 mm or more and 50 mm or less. The first metal plates 121 and 122 are also pressed on the outer circumferential portion of the first contact plate 71 with which the tip portions are not in contact. That is, even if only the center of the first contact plate 71 is pressed, the state in which the entire surfaces of the first metal plates 121 and 122 are pressed is maintained. As the pressing of the convex curved surface 611 progresses, the first contact plate 71 is expanded and pressed from the center to the outer circumferential side, but even in this case, the first contact plate 71 is appropriately bent and the first metal plate 121, The state in which the entire surface of 122 is pressed is maintained. The same applies to the second contact plate 72, and while being pressed by the concave curved surface 621, the second contact plate 72 is bent to maintain a state in which the entire surface of the second metal plate 130 is pressed. Therefore, it is possible to suppress the occurrence of misalignment of the first metal plates 121, 122 and the second metal plate 130 with respect to the ceramic substrate 11 in the bonding process.

そして、この積層体40をさらに積層方向に加圧した状態で加熱した後、冷却することにより、セラミックス基板11の一方の面に第1金属板121,122が接合され、他方の面に第2金属板130が接合される。ろう材箔14は、加熱により溶融し、第1金属板121,122や第2金属板130中に拡散して、これらをセラミックス基板11と強固に接合する。
このときの接合条件は、必ずしも限定されるものではないが、真空雰囲気中で、積層方向の加圧力が0.1MPa~1.0MPa、加熱温度は800℃~930℃の加熱温度に20分以上120分以下保持するのが好適である。
Then, by heating this laminate 40 under further pressure in the stacking direction and then cooling it, the first metal plates 121 and 122 are joined to one surface of the ceramic substrate 11, and the second metal plate is bonded to the other surface. Metal plate 130 is joined. The brazing filler metal foil 14 is melted by heating, diffuses into the first metal plates 121 and 122 and the second metal plate 130, and firmly joins them to the ceramic substrate 11.
The bonding conditions at this time are not necessarily limited, but in a vacuum atmosphere, the pressure in the stacking direction is 0.1 MPa to 1.0 MPa, and the heating temperature is 800°C to 930°C for 20 minutes or more. It is preferable to hold the temperature for 120 minutes or less.

この製造方法によれば、絶縁回路基板10の接合後に生じ得る反りの方向とは逆方向に反らせながら第1金属板121,122、セラミックス基板11及び第2金属板130の積層体40を押圧することで、絶縁回路基板10の接合後の反りを抑制し、反りの方向を統一できる。また、凸曲面611及び凹曲面621のそれぞれにより第1接触板71及び第2接触板72の一部が押圧された場合でも、これら第1接触板71及び第2接触板72がたわむので、第1面121A,122A及び第2面130Aの全面に接触して押圧した状態が維持されるので、接合工程におけるセラミックス基板11に対する第1金属板121,122及び第2金属板130の位置ずれの発生を抑制できる。
なお、第1接触板71及び第2接触板72が平板により形成されているので、これら第1接触板71及び第2接触板72により挟まれた積層体40を凸曲面611及び凹曲面621の間に配置する際にも、これらを水平に配置でき、積層体40の配置時に生じる位置ずれを抑制できる。
According to this manufacturing method, the laminate 40 of the first metal plates 121, 122, the ceramic substrate 11, and the second metal plate 130 is pressed while being warped in the opposite direction to the direction of warpage that may occur after the insulated circuit board 10 is bonded. By doing so, it is possible to suppress warping of the insulated circuit board 10 after bonding and to unify the direction of the warp. Further, even when a portion of the first contact plate 71 and the second contact plate 72 are pressed by the convex curved surface 611 and the concave curved surface 621, respectively, the first contact plate 71 and the second contact plate 72 are bent. Since the entire surfaces of the first surfaces 121A, 122A and the second surface 130A are kept in contact with each other and pressed, misalignment of the first metal plates 121, 122 and the second metal plate 130 with respect to the ceramic substrate 11 during the bonding process can be avoided. can be suppressed.
Note that, since the first contact plate 71 and the second contact plate 72 are formed of flat plates, the laminate 40 sandwiched between the first contact plate 71 and the second contact plate 72 is placed between the convex curved surface 611 and the concave curved surface 621. Even when disposed between them, they can be arranged horizontally, and positional deviations that occur when arranging the laminate 40 can be suppressed.

さらに、第1押圧板61の凸曲面611及び第2押圧板62の凹曲面621の曲率半径が100mm以上5000mm以下に設定されているので、絶縁回路基板10に割れ等が生じることを抑制しつつ、反りを低減できる。 Furthermore, since the radius of curvature of the convex curved surface 611 of the first pressing plate 61 and the concave curved surface 621 of the second pressing plate 62 is set to 100 mm or more and 5000 mm or less, cracks etc. in the insulated circuit board 10 can be suppressed. , warpage can be reduced.

本実施形態では、第1金属板121,122が複数の金属板からなるため、凸曲面611の押圧により複数の金属板121,122が位置ずれする可能性が大きくなるものの、凸曲面611での押圧時に第1接触板71が複数の金属板121,122の全面に接触した状態が維持される。つまり、本実施形態の製造方法は、第1金属板が複数の金属板121,122からなる場合に、特に有効であり、この場合でもセラミックス基板11に対する第1金属板121,122及び第2金属板130の位置ずれを抑制できる。 In this embodiment, since the first metal plates 121 and 122 are made of a plurality of metal plates, there is a high possibility that the plurality of metal plates 121 and 122 will be displaced due to the pressure of the convex curved surface 611. When pressed, the state in which the first contact plate 71 is in contact with the entire surfaces of the plurality of metal plates 121 and 122 is maintained. In other words, the manufacturing method of this embodiment is particularly effective when the first metal plate consists of a plurality of metal plates 121, 122, and even in this case, the first metal plate 121, 122 and the second metal plate relative to the ceramic substrate 11 are Misalignment of the plate 130 can be suppressed.

その他、細部構成は実施形態の構成のものに限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では、第1金属板は、2枚の金属板121,122からなることとしたが、第1金属板は1枚の金属板により形成されてもよいし、3枚以上の金属板により形成されてもよい。なお、第1金属板を製造する方法に限定はないが、特に好ましくはプレス法で第1金属板を製造するとよい。
In addition, the detailed configuration is not limited to that of the embodiment, and various changes can be made without departing from the spirit of the present invention.
For example, in the above embodiment, the first metal plate is made up of two metal plates 121 and 122, but the first metal plate may be made of one metal plate, or may be made of three or more metal plates. It may also be formed from a metal plate. Although there is no limitation on the method of manufacturing the first metal plate, it is particularly preferable to manufacture the first metal plate by a pressing method.

上記実施形態では、回路層12及び放熱層13は、いずれも無酸素銅等の銅又はジルコニウム添加銅合金等により形成されていることとしたが、これに限らず、アルミニウム又はアルミニウム合金により形成されていてもよい。この場合、回路層12及び放熱層13は、純度99質量%以上の純アルミニウム板、JIS規格では1000番台の純アルミニウム、特に1N90(純度99.9質量%以上:いわゆる3Nアルミニウム)又は1N99(純度99.99質量%以上:いわゆる4Nアルミニウム)により形成されることが好ましい。また、回路層12及び放熱層13は、2層構造であってもよく、この場合、第1層となる回路層及び放熱層を純アルミニウムにより形成し、第2層となる回路層及び放熱層を銅やA6063、A3003等のアルミニウム合金等により形成してもよい。
また、回路層12の組成と放熱層13の組成とが異なっていてもよい。つまり、絶縁回路基板10が接合した際に反る可能性のある絶縁回路基板に本発明を適用可能である。
In the above embodiment, the circuit layer 12 and the heat dissipation layer 13 are both formed of copper such as oxygen-free copper, or a zirconium-added copper alloy, but are not limited to this, and may be formed of aluminum or an aluminum alloy. You can leave it there. In this case, the circuit layer 12 and the heat dissipation layer 13 are made of a pure aluminum plate with a purity of 99% by mass or more, pure aluminum in the 1000 series according to the JIS standard, especially 1N90 (purity of 99.9% by mass or more: so-called 3N aluminum) or 1N99 (purity of 3N aluminum). 99.99% by mass or more: so-called 4N aluminum). Further, the circuit layer 12 and the heat dissipation layer 13 may have a two-layer structure, in which case the first layer, the circuit layer and the heat dissipation layer, are made of pure aluminum, and the second layer, the circuit layer and the heat dissipation layer, are made of pure aluminum. may be made of copper or an aluminum alloy such as A6063 or A3003.
Further, the composition of the circuit layer 12 and the composition of the heat dissipation layer 13 may be different. That is, the present invention can be applied to an insulated circuit board that may warp when the insulated circuit board 10 is joined.

上記実施形態では、第1金属板121,122、セラミックス基板11及び第2金属板130の積層体40を第1押圧板61及び第2押圧板62により押圧する例を示したが、これに限らず、例えば、複数の積層体40を重ねた状態で同時に押圧してもよい。 In the above embodiment, an example was shown in which the laminate 40 of the first metal plates 121, 122, the ceramic substrate 11, and the second metal plate 130 is pressed by the first pressing plate 61 and the second pressing plate 62, but the invention is not limited to this. First, for example, a plurality of laminates 40 may be stacked and pressed at the same time.

上記実施形態では、第1接触板71と第2接触板72とを備えている製造装置60を用いたが、これに限らず、第1接触板71及び第2接触板72を備えていない製造装置60に、別途に用意した第1接触板71及び第2接触板72を介して、第1押圧板61及び第2押圧板62の間に積層体40を配置し、接合してもよい。 In the above embodiment, the manufacturing apparatus 60 that includes the first contact plate 71 and the second contact plate 72 is used, but the present invention is not limited to this. The laminate 40 may be placed between the first press plate 61 and the second press plate 62 and bonded to the device 60 via a first contact plate 71 and a second contact plate 72 that are separately prepared.

実施例1~6、比較例1~12については、窒化珪素により形成された平面視で70mm×70mm、厚さ0.32mmのセラミックス基板と、無酸素銅により形成された2枚の第1金属板(平面視で33mm×68mm、厚さ0.8mmの1枚と、平面視で33mm×68mm、厚さ0.8mmの他の1枚)、無酸素銅により形成された1枚の第2金属板(平面視で68mm×68mm、厚さ0.8mm)とを、第1金属板、セラミックス基板及び第2金属板の順で積層して、上記実施形態の絶縁回路基板の製造装置を用いて接合した。なお、2枚の第1金属板は、セラミックス基板の表面に平面視で平行に、かつ、2mmの隙間を開けた状態で配置した。
製造装置の第1押圧板及び第2押圧板のヤング率、並びに、第1接触板及び第2接触板のヤング率及び厚さについては、表1に示す通りとした。また、第1押圧板及び第2押圧板の厚さは20mmとし、これらの凸曲面及び凹曲面の曲率半径Rは2000mmとし、セラミックス基板と第1金属板及び第2金属板の接合には、厚さ10μmのAg-Cu-Ti系ろう材箔を用いた。また、製造手順は、上記実施形態と同様であり、セラミックス基板の一方の面にろう材箔を介して第1金属板を配置するとともに、他方の面にろう材箔を介して第2金属板を配置して積層体を形成し、この積層体を第1及び第2接触板で挟んだ状態で第1及び第2押圧板間に配置し、これらを加圧しながら加熱して接合した。このときの接合条件は、真空雰囲気中で、積層方向の加圧力が0.5MPaで、810℃の加熱温度に70分保持した。なお、各試料は、30個ずつ作成した。
For Examples 1 to 6 and Comparative Examples 1 to 12, a ceramic substrate 70 mm x 70 mm in plan view and 0.32 mm thick made of silicon nitride and two first metal sheets made of oxygen-free copper were used. plates (one sheet of 33 mm x 68 mm in plan view and 0.8 mm thickness and the other plate of 33 mm x 68 mm in plan view and 0.8 mm thickness), one second plate made of oxygen-free copper; A metal plate (68 mm x 68 mm in plan view, thickness 0.8 mm) is laminated in the order of the first metal plate, the ceramic substrate, and the second metal plate, using the insulated circuit board manufacturing apparatus of the above embodiment. I joined it. Note that the two first metal plates were arranged parallel to the surface of the ceramic substrate in a plan view with a gap of 2 mm between them.
The Young's modulus of the first press plate and the second press plate of the manufacturing apparatus, and the Young's modulus and thickness of the first contact plate and the second contact plate were as shown in Table 1. Further, the thickness of the first pressing plate and the second pressing plate is 20 mm, the radius of curvature R of the convex curved surface and the concave curved surface is 2000 mm, and the joining of the ceramic substrate, the first metal plate, and the second metal plate is as follows. An Ag-Cu-Ti brazing filler metal foil with a thickness of 10 μm was used. In addition, the manufacturing procedure is the same as in the above embodiment, in which a first metal plate is placed on one side of the ceramic substrate with a brazing metal foil interposed therebetween, and a second metal plate is placed on the other side with a brazing metal foil interposed therebetween. A laminate was formed by arranging the laminate, and this laminate was sandwiched between the first and second contact plates and placed between the first and second pressing plates, and these were heated and bonded while being pressed. The bonding conditions at this time were that the pressure in the stacking direction was 0.5 MPa in a vacuum atmosphere, and the heating temperature was maintained at 810° C. for 70 minutes. Note that 30 samples were prepared for each sample.

この手順にて製造した実施例1~6及び比較例1~12の絶縁回路基板について、位置精度及び反りを評価した。
位置精度の評価は、作成した各試料から20個を取り出し、株式会社ミツトヨ製の画像測定器(Quick Scope)を用いて、それぞれの絶縁回路基板に対し、2枚の第1金属板とセラミックス基板のそれぞれの接合予定位置から水平方向のいずれかにずれた距離を計測した。これらのずれた距離を、全て平均した値が±0.25mmより大きい場合を不可「B」と判定し、±0.25mm以内の場合を良好「A」と評価した。
The positional accuracy and warpage of the insulated circuit boards of Examples 1 to 6 and Comparative Examples 1 to 12 manufactured using this procedure were evaluated.
To evaluate the positional accuracy, 20 samples were taken out of each sample, and using an image measuring device (Quick Scope) manufactured by Mitutoyo Co., Ltd., two first metal plates and a ceramic substrate were measured for each insulated circuit board. The distance shifted in either horizontal direction from each planned joining position was measured. When the average value of all of these shifted distances was larger than ±0.25 mm, it was determined to be unacceptable “B”, and when it was within ±0.25 mm, it was evaluated as good “A”.

また、反り評価は、下記の通りとした。
反り量は、ダイヤルゲージ(Mitutoyo製)を用いて、中央一点式で測定する。回路層側を下面にし、定盤に設置する。放熱層側中央に測定子を接触させ、その点をゼロ点とする。その後、回路層側の2枚の第1金属板のそれぞれの中央部付近に測定子を接触させ、その値の平均値を反り量と定義する。
この際、反り量が-の場合は金属層側に凸、+の場合を回路層側に凸として反りの方向を決定した。
作成した各試料から20個を取り出し、上述の方法によってそれぞれの絶縁回路基板に対し、反りの方向と反り量を測定した。
各試料の反り量の平均値が30μm以下、かつ、反り方向が全ての絶縁回路基板で同一方向の場合を良好「A」と評価し、各試料の反り量の平均値が30μmを超えた場合や、反りの方向が一つでも異なる場合を不可「B」と評価した。
これら位置精度及び反りの評価は、表1に示した。
Moreover, the warpage evaluation was as follows.
The amount of warpage is measured using a dial gauge (manufactured by Mitutoyo) with a single point in the center. Place it on the surface plate with the circuit layer side facing down. Touch the probe to the center of the heat dissipation layer side and set that point as the zero point. Thereafter, a measuring element is brought into contact with the vicinity of the center of each of the two first metal plates on the circuit layer side, and the average value of the values is defined as the amount of warpage.
At this time, the direction of the warp was determined by setting a convexity toward the metal layer side when the amount of warpage was negative, and a convexity toward the circuit layer side when the amount of warpage was positive.
Twenty pieces were taken out from each of the prepared samples, and the direction and amount of warpage of each insulated circuit board was measured using the method described above.
If the average value of the amount of warpage of each sample is 30 μm or less and the warp direction is the same for all insulated circuit boards, it is evaluated as good "A", and if the average value of the amount of warp of each sample exceeds 30 μm. In the case where the direction of warpage was different even in one direction, it was evaluated as "B".
The positional accuracy and evaluation of warpage are shown in Table 1.

Figure 0007363583000001
Figure 0007363583000001

表1から明らかなように、第1及び第2押圧板のヤング率が100GPa以上であり、かつ、第1及び第2接触板のヤング率が1GPa以上70GPa以下、厚さが0.5mm~50mmの実施例1~6では、位置精度評価及び反り評価のいずれもが良好「A」であり、セラミックス基板に対する回路層及び放熱層の位置ずれを抑制し、かつ、反りを低減できることが分かった。
一方、比較例1及び4では、第1及び第2接触板のヤング率が0.5GPaと低かったことから、セラミックス基板に対する回路層及び放熱層の位置ずれが発生したため、位置精度評価が不可「B」であった。また、比較例2及び3では、第1及び第2接触板のヤング率が100GPaと高すぎたことから、絶縁回路基板に発生する反りとは反対方向の反りを十分に付与できなかったため、反り評価が不可「B」であった。
また、比較例5及び8では、第1及び第2接触板の厚さが0.3mmと薄すぎたことから、セラミックス基板に対する回路層及び放熱層の位置ずれが発生したため、位置精度評価が不可「B」であった。また、比較例6及び7では、第1及び第2接触板の厚さが60mmと厚すぎたことから、絶縁回路基板に発生する反りとは反対方向の反りを十分に付与できなかったため、反り評価が不可「B」であった。
さらに、比較例9~12では、第1及び第2押圧板のヤング率が50GPaと低かったため、絶縁回路基板を適切に押圧できず、かつ、上記反対方向の反りも付与できなかったため、位置精度評価及び反り評価のいずれもが不可「B」であった。
As is clear from Table 1, the Young's modulus of the first and second pressing plates is 100 GPa or more, the Young's modulus of the first and second contact plates is 1 GPa or more and 70 GPa or less, and the thickness is 0.5 mm to 50 mm. In Examples 1 to 6, both the positional accuracy evaluation and the warpage evaluation were good "A", and it was found that the positional shift of the circuit layer and the heat dissipation layer with respect to the ceramic substrate could be suppressed and the warpage could be reduced.
On the other hand, in Comparative Examples 1 and 4, the Young's modulus of the first and second contact plates was as low as 0.5 GPa, which caused positional deviation of the circuit layer and heat dissipation layer with respect to the ceramic substrate, making it impossible to evaluate the position accuracy. It was "B". In addition, in Comparative Examples 2 and 3, the Young's modulus of the first and second contact plates was too high at 100 GPa, so it was not possible to provide sufficient warpage in the opposite direction to the warpage that occurs on the insulated circuit board. The evaluation was "B".
In addition, in Comparative Examples 5 and 8, the thickness of the first and second contact plates was too thin at 0.3 mm, which caused misalignment of the circuit layer and heat dissipation layer with respect to the ceramic substrate, making it impossible to evaluate position accuracy. It was "B". In addition, in Comparative Examples 6 and 7, the thickness of the first and second contact plates was too thick at 60 mm, so it was not possible to provide sufficient warpage in the opposite direction to the warpage that occurs on the insulated circuit board. The evaluation was "B".
Furthermore, in Comparative Examples 9 to 12, since the Young's modulus of the first and second pressing plates was as low as 50 GPa, it was not possible to properly press the insulated circuit board, and it was also not possible to apply warpage in the opposite direction, resulting in positional accuracy. Both the evaluation and the warp evaluation were rated "B".

1 ヒートシンク付絶縁回路基板
10 絶縁回路基板
11 セラミックス基板
12 回路層
13 放熱層
20 ヒートシンク
30 半導体素子
61 第1押圧板
62 第2押圧板
611 凸曲面
621 凹曲面
71 第1接触板
72 第2接触板
120a,120b 小回路層
121,122 第1金属板(複数の金属板)
121A,122A 第1面
130 第2金属板
130A 第2面
C1 仮想線
1 Insulated circuit board with heat sink 10 Insulated circuit board 11 Ceramic substrate 12 Circuit layer 13 Heat dissipation layer 20 Heat sink 30 Semiconductor element 61 First press plate 62 Second press plate 611 Convex curved surface 621 Concave curved surface 71 First contact plate 72 Second contact plate 120a, 120b Small circuit layer 121, 122 First metal plate (multiple metal plates)
121A, 122A First surface 130 Second metal plate 130A Second surface C1 Virtual line

Claims (3)

セラミックス基板の一方の面に第1金属板を配置するとともに、前記セラミックス基板の他方の面に第2金属板を配置して、これら積層体を積層方向に押圧した状態で接合する接合工程を有し、
前記接合工程では、前記第1金属板を押圧する凸曲面を有する第1押圧板と前記第2金属板を押圧する凹曲面を有する第2押圧板とを用い、前記第1金属板の前記セラミックス基板とは反対側の面である第1面を平板からなる第1接触板を介して前記凸曲面で押圧するともに、前記第2金属板の前記セラミックス基板とは反対側の面である第2面を平板からなる第2接触板を介して前記凹曲面で押圧することにより、前記積層体を前記第1接触板及び前記第2接触板との間に挟持して変形させた状態で加熱し、
前記第1押圧板及び前記第2押圧板はヤング率が100GPa以上の板材からなるとともに、前記第1接触板及び前記第2接触板は、ヤング率が1GPa以上70GPa以下、厚さが0.5mm以上50mm以下に設定されていることを特徴とする絶縁回路基板の製造方法。
The method includes a bonding step of arranging a first metal plate on one surface of a ceramic substrate, arranging a second metal plate on the other surface of the ceramic substrate, and bonding these laminates while being pressed in the stacking direction. death,
In the joining step, a first pressing plate having a convex curved surface pressing the first metal plate and a second pressing plate having a concave curved surface pressing the second metal plate are used to bond the ceramic of the first metal plate. A first surface opposite to the substrate is pressed by the convex curved surface via a first contact plate made of a flat plate, and a second surface of the second metal plate opposite to the ceramic substrate is pressed. The laminate is heated in a deformed state while being sandwiched between the first contact plate and the second contact plate by pressing the surface with the concave curved surface through a second contact plate made of a flat plate. ,
The first pressing plate and the second pressing plate are made of plate materials having a Young's modulus of 100 GPa or more, and the first contact plate and the second contact plate have a Young's modulus of 1 GPa or more and 70 GPa or less and a thickness of 0.5 mm. A method for manufacturing an insulated circuit board, characterized in that the thickness is set to 50 mm or less.
前記第1金属板は、前記セラミックス基板の面方向に並べて配置される複数の金属板からなることを特徴とする請求項1に記載の絶縁回路基板の製造方法。 2. The method of manufacturing an insulated circuit board according to claim 1, wherein the first metal plate includes a plurality of metal plates arranged side by side in a surface direction of the ceramic substrate. 前記凸曲面及び前記凹曲面の曲率半径は、100mm以上5000mm以下であることを特徴とする請求項1又は2に記載の絶縁回路基板の製造方法。 3. The method of manufacturing an insulated circuit board according to claim 1, wherein the radius of curvature of the convex curved surface and the concave curved surface is 100 mm or more and 5000 mm or less.
JP2020036466A 2020-03-04 2020-03-04 Manufacturing method of insulated circuit board Active JP7363583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020036466A JP7363583B2 (en) 2020-03-04 2020-03-04 Manufacturing method of insulated circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020036466A JP7363583B2 (en) 2020-03-04 2020-03-04 Manufacturing method of insulated circuit board

Publications (2)

Publication Number Publication Date
JP2021141150A JP2021141150A (en) 2021-09-16
JP7363583B2 true JP7363583B2 (en) 2023-10-18

Family

ID=77669674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020036466A Active JP7363583B2 (en) 2020-03-04 2020-03-04 Manufacturing method of insulated circuit board

Country Status (1)

Country Link
JP (1) JP7363583B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197246A (en) 2012-03-19 2013-09-30 Nippon Light Metal Co Ltd Substrate integrated with radiator, and method of manufacturing the same
JP2016072563A (en) 2014-10-01 2016-05-09 三菱マテリアル株式会社 Manufacturing method of substrate for power module with heat sink
JP2017011293A (en) 2016-09-12 2017-01-12 三菱マテリアル株式会社 Power module substrate with heat sink and manufacturing method of the same
JP2018148065A (en) 2017-03-07 2018-09-20 三菱マテリアル株式会社 Board for power module with heat sink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197246A (en) 2012-03-19 2013-09-30 Nippon Light Metal Co Ltd Substrate integrated with radiator, and method of manufacturing the same
JP2016072563A (en) 2014-10-01 2016-05-09 三菱マテリアル株式会社 Manufacturing method of substrate for power module with heat sink
JP2017011293A (en) 2016-09-12 2017-01-12 三菱マテリアル株式会社 Power module substrate with heat sink and manufacturing method of the same
JP2018148065A (en) 2017-03-07 2018-09-20 三菱マテリアル株式会社 Board for power module with heat sink

Also Published As

Publication number Publication date
JP2021141150A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP4978221B2 (en) Circuit board manufacturing apparatus and manufacturing method, and cushion sheet used in the manufacturing method
JP6455056B2 (en) Manufacturing method and pressure device for power module substrate with heat sink
US20200413534A1 (en) Insulated circuit board
JP6776953B2 (en) Board for power module with heat sink
TW201941374A (en) Method of manufacturing bonded body for insulating circuit board, and bonded body for insulating circuit board
JP2010165807A (en) Method of manufacturing insulating circuit board, insulating circuit board, and substrate for power module
JP7363583B2 (en) Manufacturing method of insulated circuit board
JP2018135251A (en) Method for manufacturing substrate for power module
US11013107B2 (en) Insulated circuit board
JP4419461B2 (en) Circuit board manufacturing method and power module
TW202142061A (en) Insulated circuit board manufacturing method
CN115136299A (en) Method for manufacturing bonded body and method for manufacturing insulated circuit board
JP3915722B2 (en) Circuit board manufacturing method and manufacturing apparatus
JP7428034B2 (en) Manufacturing method of insulated circuit board with heat sink
WO2019188884A1 (en) Insulated circuit board with heat sink
JP7119689B2 (en) Manufacturing method of insulated circuit board with heat sink and insulated circuit board with heat sink
JP6853443B2 (en) Manufacturing method of board for power module
JP6471465B2 (en) Power module board with cooler
JP2021118257A (en) Insulated circuit board with heat sink, electronic component, and manufacturing method of insulated circuit board with heat sink
JP2021150357A (en) Manufacturing method of joint body and manufacturing method of insulation circuit board
TW202141714A (en) Heat sink integrated insulating circuit board
JP6149655B2 (en) Power module substrate and manufacturing method thereof
JP2021158144A (en) Manufacturing method of insulation circuit board
JP2021150558A (en) Insulation circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230918

R150 Certificate of patent or registration of utility model

Ref document number: 7363583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150