JP7363215B2 - Exhaust gas purification catalyst and its manufacturing method - Google Patents

Exhaust gas purification catalyst and its manufacturing method Download PDF

Info

Publication number
JP7363215B2
JP7363215B2 JP2019159549A JP2019159549A JP7363215B2 JP 7363215 B2 JP7363215 B2 JP 7363215B2 JP 2019159549 A JP2019159549 A JP 2019159549A JP 2019159549 A JP2019159549 A JP 2019159549A JP 7363215 B2 JP7363215 B2 JP 7363215B2
Authority
JP
Japan
Prior art keywords
exhaust gas
alumina
support material
supported
zirconium phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019159549A
Other languages
Japanese (ja)
Other versions
JP2021037445A (en
Inventor
久也 川端
益寛 松村
啓司 山田
雅彦 重津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2019159549A priority Critical patent/JP7363215B2/en
Publication of JP2021037445A publication Critical patent/JP2021037445A/en
Application granted granted Critical
Publication of JP7363215B2 publication Critical patent/JP7363215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は排気ガス浄化用触媒及びその製造方法に関する。 The present invention relates to an exhaust gas purifying catalyst and a method for manufacturing the same.

自動車等のエンジンから排出される排気ガスを浄化する触媒として、三元触媒が知られている。この三元触媒には、触媒金属としてのPt等の貴金属を、サポート材としてのγ-アルミナに担持させた貴金属担持アルミナが広く利用されている。 A three-way catalyst is known as a catalyst that purifies exhaust gas emitted from engines of automobiles and the like. For this three-way catalyst, noble metal-supported alumina, in which a noble metal such as Pt as a catalytic metal is supported on γ-alumina as a support material, is widely used.

また、排気ガス浄化用触媒において、サポート材としてリン酸ジルコニウムを採用することも知られている。例えば、特許文献1には、リン酸ジルコニウム(ZrP)、La安定化アルミナ及びアルミナバインダをRh溶液に添加して湿式粉砕処理を施し、さらに硝酸Rh溶液を加え、得られたRh含有スラリーをハニカム担体に塗布して、乾燥、焼成を行なうことによって排気ガス浄化用触媒を得ることが記載されている。 It is also known to employ zirconium phosphate as a support material in exhaust gas purification catalysts. For example, Patent Document 1 discloses that zirconium phosphate (ZrP 2 O 7 ), La-stabilized alumina, and an alumina binder are added to a Rh solution, subjected to a wet pulverization treatment, and then a Rh nitric acid solution is added to obtain an Rh-containing powder. It is described that an exhaust gas purifying catalyst is obtained by applying a slurry to a honeycomb carrier, drying and firing the slurry.

特開2016-26874号公報JP2016-26874A

上記貴金属担持アルミナは、高温の排気ガスに晒される時間が長くなると、サポート材としてのγ-アルミナの比表面積の低下と貴金属の凝集によって、サポート材における貴金属の分散度が低下し、活性サイトが減少する。すなわち、貴金属担持アルミナは、フレッシュ時の排気ガス浄化性能は高いものの、耐久後の排気ガス浄化性能が低い。 When the precious metal-supported alumina is exposed to high-temperature exhaust gas for a long time, the specific surface area of γ-alumina as a support material decreases and the precious metals agglomerate, resulting in a decrease in the degree of dispersion of the noble metal in the support material and the active sites. Decrease. That is, noble metal supported alumina has high exhaust gas purification performance when fresh, but has low exhaust gas purification performance after durability.

特許文献1には、Rh担持ZrPがRh担持ZrO等に比べて、耐久後のリーン領域でのNOx浄化性能が良いことが記載されているが、低温活性やHC(炭化水素)の浄化性能については、さほどの効果が得られていない。 Patent Document 1 describes that Rh-supported ZrP 2 O 7 has better NOx purification performance in the lean region after durability than Rh-supported ZrO 2 , etc. Regarding the purification performance, no significant effect has been obtained.

本発明は、排気ガス浄化用触媒の低温活性の向上及び高温浄化性能の向上を課題とする。 An object of the present invention is to improve the low-temperature activity and high-temperature purification performance of an exhaust gas purification catalyst.

本発明は、上記課題を解決するために、γ-アルミナと非晶質リン酸ジルコニウムを組合せて貴金属のサポート材とした。 In order to solve the above problems, the present invention combines γ-alumina and amorphous zirconium phosphate to form a noble metal support material.

気ガス浄化用触媒は、サポート材に触媒金属として貴金属が担持されてなり、
上記サポート材は、γ-アルミナと非晶質リン酸ジルコニウムよりなるものである
Exhaust gas purification catalysts are made by supporting noble metals as catalytic metals on support materials.
The support material is made of γ-alumina and amorphous zirconium phosphate.

非晶質リン酸ジルコニウムは、比表面積が大きく、リン酸がジルコニアに高分散して酸点が形成されている。そのため、貴金属MをM-O-P結合の形成によって比較的安定に高分散担持することができる。この非晶質リン酸ジルコニウムと高比表面積のγ-アルミナの組合せにより、非晶質リン酸ジルコニウム自体の分散性も高くなる。このため、貴金属がサポート材に高分散に安定して担持された状態になる。従って、当該排気ガス浄化用触媒は、高温の排気ガスに晒されても、貴金属の凝集が抑えられる結果、耐久後でも、良好な低温活性及び高温浄化性能を示す。要するに、本発明は、比表面積が大きなγ-アルミナを利用して非晶質リン酸ジルコニウムを高分散させ、非晶質リン酸ジルコニウムの酸点を利用して貴金属の凝集を防止する。 Amorphous zirconium phosphate has a large specific surface area, and phosphoric acid is highly dispersed in zirconia to form acid sites. Therefore, the noble metal M can be supported in a relatively stable and highly dispersed manner through the formation of M--O--P bonds. This combination of amorphous zirconium phosphate and γ-alumina with a high specific surface area also increases the dispersibility of the amorphous zirconium phosphate itself. Therefore, the noble metal is stably supported in a highly dispersed state on the support material. Therefore, even after exposure to high-temperature exhaust gas, the agglomeration of precious metals is suppressed in the exhaust gas purification catalyst, and as a result, it exhibits good low-temperature activity and high-temperature purification performance even after durability. In short, the present invention uses γ-alumina with a large specific surface area to highly disperse amorphous zirconium phosphate, and uses acid sites of the amorphous zirconium phosphate to prevent agglomeration of noble metals.

記非晶質リン酸ジルコニウムが上記γ-アルミナに担持されている。従って、高比表面積のγ-アルミナによって非晶質リン酸ジルコニウムの分散性が高くなる。言うなれば、γ-アルミナ上に強い酸点が高分散した状態になっている。その結果、貴金属の分散性が高くなり、その凝集が防止される。 The amorphous zirconium phosphate is supported on the γ-alumina. Therefore, the dispersibility of amorphous zirconium phosphate becomes high due to the high specific surface area of γ-alumina. In other words, strong acid sites are highly dispersed on γ-alumina. As a result, the dispersibility of the noble metal increases and its agglomeration is prevented.

上記貴金属としては、Pt、Pd、Rh等を採用することができる。なかでも、上記貴金属がPtであるときは、Pt-O-P結合の形成により、Ptの安定性が高くなり、その凝集防止に有利になる。 As the above-mentioned noble metal, Pt, Pd, Rh, etc. can be adopted. In particular, when the noble metal is Pt, the stability of Pt increases due to the formation of Pt--O--P bonds, which is advantageous in preventing its agglomeration.

ここに開示する排気ガス浄化用触媒の製造方法は、ジルコニウム化合物とリン酸及び/又はリン酸塩を含有する水溶液とを混合してリン酸ジルコニウムの沈殿物を生じさせる工程と、
上記沈殿物の分散液を攪拌しながら、該分散液にアルミナゲルを添加して混合し、蒸発乾固する工程と、
得られた乾固物を乾燥し、焼成することによって、γ-アルミナに非晶質リン酸ジルコニウムが担持されてなるサポート材を得る工程と、
上記サポート材に貴金属を担持する工程とを備えていることを特徴とする。
The method for producing an exhaust gas purification catalyst disclosed herein includes a step of mixing a zirconium compound and an aqueous solution containing phosphoric acid and/or a phosphate to form a precipitate of zirconium phosphate;
While stirring the dispersion of the precipitate, adding and mixing alumina gel to the dispersion and evaporating to dryness;
A step of drying and firing the obtained dried product to obtain a support material in which amorphous zirconium phosphate is supported on γ-alumina;
The present invention is characterized by comprising a step of supporting a noble metal on the support material.

これにより、非晶質リン酸ジルコニウムがγ-アルミナに担持されてなるサポート材に、貴金属が担持された排気ガス浄化用触媒が得られる。 As a result, an exhaust gas purifying catalyst is obtained in which a noble metal is supported on a support material in which amorphous zirconium phosphate is supported on γ-alumina.

本発明によれば、排気ガス浄化用触媒はサポート材に貴金属が担持されてなり、そのサポート材はγ-アルミナと非晶質リン酸ジルコニウムよりなるから、当該排気ガス浄化用触媒が高温の排気ガスに晒されても、比表面積の低下及び貴金属の凝集が抑えられるため、活性サイトの減少が抑えられ、長期間にわたって良好な低温活性及び高温浄化性能を示すという効果が得られる。 According to the present invention, the exhaust gas purification catalyst is formed by supporting a noble metal on a support material, and the support material is made of γ-alumina and amorphous zirconium phosphate. Even when exposed to gas, the reduction in specific surface area and the aggregation of precious metals are suppressed, so the reduction of active sites is suppressed, and the effect of exhibiting good low-temperature activity and high-temperature purification performance over a long period of time can be obtained.

実施形態に係る排気ガス浄化用触媒の概念図。FIG. 1 is a conceptual diagram of an exhaust gas purifying catalyst according to an embodiment. 実施例及び比較例の780℃変動耐久処理後のHC浄化率の温度特性を示すグラフ図。FIG. 3 is a graph diagram showing the temperature characteristics of HC purification rate after 780° C. fluctuation durability treatment of Examples and Comparative Examples. 実施例及び比較例の880℃変動耐久処理後のHC浄化率の温度特性を示すグラフ図。FIG. 3 is a graph diagram showing the temperature characteristics of HC purification rate after 880° C. fluctuation durability treatment of Examples and Comparative Examples. 実施例及び比較例のNH昇温脱離曲線を示すグラフ図。The graph figure which shows the NH3 temperature-programmed desorption curve of an Example and a comparative example. 実施例及び比較例のNH吸着量を示すグラフ図。The graph figure which shows the NH3 adsorption amount of an Example and a comparative example. 実施例のXRDプロファイルを示すグラフ図。A graph diagram showing an XRD profile of an example.

以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated based on drawing. The following description of preferred embodiments is merely exemplary in nature and is not intended to limit the invention, its applications, or its uses.

ここに説明する排気ガス浄化用触媒は、自動車のエンジンの排気ガスの浄化に適したものであり、そのエンジンの排気通路に配設される。この排気ガス浄化用触媒は、ガソリンエンジンの排気ガスを浄化する三元触媒を構成するものとすることができ、或いは、ディーゼルエンジンの排気ガスを浄化する酸化触媒を構成するものとすることができる。 The exhaust gas purification catalyst described herein is suitable for purifying the exhaust gas of an automobile engine, and is disposed in the exhaust passage of the engine. This exhaust gas purification catalyst can constitute a three-way catalyst that purifies the exhaust gas of a gasoline engine, or can constitute an oxidation catalyst that purifies the exhaust gas of a diesel engine. .

<排ガス浄化用触媒>
図1に概念的(観念的)に示すように、排気ガス浄化用触媒1は、サポート材2に触媒金属としての貴金属3が分散して担持されている。サポート材2は、γ-アルミナ(活性アルミナ)4と多孔質の非晶質リン酸ジルコニウム5とよりなる。非晶質リン酸ジルコニウム5はγ-アルミナ4に分散して担持されている。
<Exhaust gas purification catalyst>
As conceptually shown in FIG. 1, in the exhaust gas purifying catalyst 1, noble metals 3 as catalytic metals are supported on a support material 2 in a dispersed manner. The support material 2 is made of γ-alumina (activated alumina) 4 and porous amorphous zirconium phosphate 5. Amorphous zirconium phosphate 5 is dispersed and supported on γ-alumina 4.

排気ガス浄化用触媒1は、例えば、ハニカム担体のセルの壁面に担持することができる。この場合、ハニカム担体の各セルが排気ガス流路となり、排気ガスがこのセルを通過するときに、排気ガス浄化用触媒1によって浄化される。排気ガス浄化用触媒1は、セルの壁面にバインダによって単独で担持することができ、或いは、他の触媒及び/又は酸素吸蔵放出材等の助触媒と混合してセルの壁面に単一層となるように、又は他の触媒及び/又は助触媒と別個の層となるように積層して担持することができる。 The exhaust gas purifying catalyst 1 can be supported, for example, on the wall surfaces of cells of a honeycomb carrier. In this case, each cell of the honeycomb carrier becomes an exhaust gas flow path, and when exhaust gas passes through this cell, it is purified by the exhaust gas purifying catalyst 1. The exhaust gas purification catalyst 1 can be supported on the wall of the cell by itself with a binder, or it can be mixed with other catalysts and/or co-catalysts such as oxygen storage/release materials to form a single layer on the wall of the cell. It can be supported in a layered manner or in a separate layer with other catalysts and/or co-catalysts.

サポート材2は、サポート材2に対する非晶質リン酸ジルコニウム5の質量比(Al、Zr及びP各々を酸化物に換算した質量比,この場合は(PO+ZrO)/(PO +ZrO AlO )が20%以上70%以下であること、さらには20%以上55%以下であることが好ましい。また、非晶質リン酸ジルコニウム5はジルコニアに対するリン酸の質量比(Zr及びP各々を酸化物に換算した質量比,この場合は(PO/ZrO))は2%以上25%以下であること、さらには2%以上10%以下であることが好ましい。 The support material 2 has a mass ratio of amorphous zirconium phosphate 5 to the support material 2 (mass ratio of each of Al, Zr, and P converted into oxides, in this case, (PO 4 +ZrO 2 )/ (PO 4 +ZrO 2 + Al2O3 ) ) is preferably 20% or more and 70% or less, more preferably 20% or more and 55% or less. In addition, the amorphous zirconium phosphate 5 has a mass ratio of phosphoric acid to zirconia (mass ratio of Zr and P converted into oxides, in this case (PO 4 /ZrO 2 )) of 2% to 25%. It is preferable that the content be 2% or more and 10% or less.

貴金属3としては、Pt、Pd、Rh等を採用することができ、サポート材2に対する担持量は、サポート材量の0.1質量%以上10質量%以下とすることが好ましい。 As the noble metal 3, Pt, Pd, Rh, etc. can be adopted, and the amount supported on the support material 2 is preferably 0.1% by mass or more and 10% by mass or less of the amount of the support material.

<排気ガス浄化用触媒の製法>
上記排気ガス浄化用触媒は次の方法によって製造することができる。
<Production method of exhaust gas purification catalyst>
The above exhaust gas purifying catalyst can be manufactured by the following method.

-リン酸ジルコニウム前駆体の生成-
ジルコニウム化合物とリン酸及び/又はリン酸塩を含有する水溶液とを混合してリン酸ジルコニウムの前駆体の沈殿物を生じさせる。ジルコニウム化合物としては、水酸化ジルコニウム、硝酸ジルコニウム、酢酸ジルコニウム、硫酸ジルコニウム、炭酸ジルコニウム、塩基性炭酸ジルコニウム、塩基性硫酸ジルコニウム、オキシ硫酸ジルコニウム、およびオキシ塩化ジルコニウムなどが例示される。リン酸塩としては、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウムなどが例示される。
-Generation of zirconium phosphate precursor-
A zirconium compound and an aqueous solution containing phosphoric acid and/or a phosphate salt are mixed to form a precipitate of a zirconium phosphate precursor. Examples of the zirconium compound include zirconium hydroxide, zirconium nitrate, zirconium acetate, zirconium sulfate, zirconium carbonate, basic zirconium carbonate, basic zirconium sulfate, zirconium oxysulfate, and zirconium oxychloride. Examples of phosphates include sodium phosphate, potassium phosphate, and ammonium phosphate.

例えば、水酸化ジルコニウムをイオン交換水に分散させ、これにリン酸アンモニウム水溶液を添加して、ゲル状水酸化ジルコニウムとリン酸アンモニウム水溶液の反応によって、リン酸ジルコニウムの前駆体を沈殿させ、該前駆体が分散した懸濁液を得ることができる。 For example, zirconium hydroxide is dispersed in ion-exchanged water, an ammonium phosphate aqueous solution is added thereto, and a zirconium phosphate precursor is precipitated by a reaction between the gelled zirconium hydroxide and the ammonium phosphate aqueous solution. A suspension in which the bodies are dispersed can be obtained.

-蒸発乾固(サポート材前駆体の生成)-
上記リン酸ジルコニウム前駆体の沈殿物の分散液(懸濁液)を攪拌しながら、該分散液にアルミナゲル(アルミナ水和物)を添加して混合し、これを蒸発乾固させる。これにより、サポート材前駆体(非晶質リン酸ジルコニウム担持アルミナの前駆体)を得る。
- Evaporation to dryness (generation of support material precursor) -
While stirring the dispersion of the zirconium phosphate precursor precipitate, alumina gel (alumina hydrate) is added to the dispersion, mixed, and evaporated to dryness. As a result, a support material precursor (precursor of amorphous zirconium phosphate-supported alumina) is obtained.

-乾燥・焼成-
上記蒸発乾固によって得られた乾固物(リン酸ジルコニウム前駆体とアルミナゲルの混合物)を乾燥し、乾燥物を粉砕して、空気中で焼成することによって、γ-アルミナに非晶質リン酸ジルコニウムが担持されてなるサポート材を得る。乾燥は、乾固物を大気雰囲気において例えば90℃以上120℃以下の温度に所定時間保持することによって行なうことができる。焼成は、粉砕物を例えば大気雰囲気において350℃以上450℃以下の温度に数時間保持することによって行なうことができる。
-Drying/Baking-
The dried product (mixture of zirconium phosphate precursor and alumina gel) obtained by the above-mentioned evaporation to dryness is dried, the dried product is pulverized, and the amorphous phosphor is converted into γ-alumina by firing in the air. A support material on which acid zirconium is supported is obtained. Drying can be carried out by maintaining the dried product at a temperature of, for example, 90° C. or higher and 120° C. or lower for a predetermined period of time in the air. Firing can be carried out by maintaining the pulverized material at a temperature of 350° C. or higher and 450° C. or lower for several hours, for example, in an air atmosphere.

-貴金属の担持-
上記サポート材に貴金属の溶液を含浸させる。含浸後、乾燥及び焼成を行なうことによって、排気ガス浄化用触媒が得られる。乾燥は、例えば大気雰囲気において100℃以上250℃以下の温度に所定時間保持することによって行なうことができ、焼成は、例えば大気雰囲気において400℃以上600℃以下の温度に数時間保持することによって行なうことができる。
- Supporting precious metals -
The support material is impregnated with a precious metal solution. After impregnation, drying and calcination are performed to obtain an exhaust gas purifying catalyst. Drying can be carried out, for example, by holding the material at a temperature of 100° C. or more and 250° C. or less in an air atmosphere for a predetermined period of time, and baking can be carried out, for example, by holding the material at a temperature of 400° C. or more and 600° C. or less in an air atmosphere for several hours. be able to.

<実施例及び比較例>
上述の製法により、ジルコニウム源としてゲル状水酸化ジルコニウムを採用し、リン酸源としてリン酸アンモニウム水溶液を採用して、γ-アルミナに非晶質リン酸ジルコニウムが担持されてなる組成が相異なるサポート材を調製し、各々に触媒金属としてPtを含浸担持させた実施例1-8の排気ガス浄化用触媒を調製した(表1)。比較例1として、市販のγ-アルミナ(La安定化アルミナ)にPtを担持させた排気ガス浄化用触媒を準備し、比較例2として、非晶質リン酸ジルコニウム(アルミナなし)にPtを担持させた排気ガス浄化用触媒を準備した(表1)。
<Examples and comparative examples>
Using the above-mentioned manufacturing method, gelled zirconium hydroxide is used as the zirconium source and ammonium phosphate aqueous solution is used as the phosphoric acid source to produce supports with different compositions in which amorphous zirconium phosphate is supported on γ-alumina. Exhaust gas purifying catalysts of Examples 1-8 were prepared by impregnating and supporting Pt as a catalyst metal in each material (Table 1). As Comparative Example 1, an exhaust gas purification catalyst was prepared in which Pt was supported on commercially available γ-alumina (La-stabilized alumina), and as Comparative Example 2, Pt was supported on amorphous zirconium phosphate (without alumina). A catalyst for purifying exhaust gas was prepared (Table 1).

比較例2の非晶質リン酸ジルコニウムは、ジルコニウム源として水酸化ジルコニウムを採用し、リン酸源としてリン酸アンモニウムを採用して、上記リン酸ジルコニウム前駆体の生成、蒸発乾固、乾燥及び焼成を行なうことによって作成した。Pt担持量は実施例1-8及び比較例1,2のいずれもサポート材量の3.0質量%である。 The amorphous zirconium phosphate of Comparative Example 2 employs zirconium hydroxide as a zirconium source and ammonium phosphate as a phosphoric acid source to produce the zirconium phosphate precursor, evaporate to dryness, dry and calcinate. It was created by doing the following. The amount of Pt supported is 3.0% by mass of the amount of support material in both Examples 1-8 and Comparative Examples 1 and 2.

Figure 0007363215000001
Figure 0007363215000001

実施例1-8及び比較例1,2の各排気ガス浄化用触媒について、フレッシュ時(耐久処理前)及び耐久処理後のBET比表面積を測定した。耐久処理は、排気ガス浄化用触媒をO含有ガス雰囲気(O;2%,HO;10%,残N)において1000℃の温度に3時間保持するというものである。結果を表1に示す。 For each of the exhaust gas purifying catalysts of Examples 1-8 and Comparative Examples 1 and 2, the BET specific surface area was measured when fresh (before durability treatment) and after durability treatment. The durability treatment involves holding the exhaust gas purifying catalyst at a temperature of 1000° C. for 3 hours in an O 2 -containing gas atmosphere (O 2 ; 2%, H 2 O; 10%, remainder N 2 ). The results are shown in Table 1.

また、実施例1-8及び比較例1,2の各排気ガス浄化用触媒について、880℃変動耐久処理後のHC浄化性能及びPt分散度を測定した。 Furthermore, for each of the exhaust gas purification catalysts of Examples 1-8 and Comparative Examples 1 and 2, the HC purification performance and Pt dispersion degree after 880° C. fluctuation durability treatment were measured.

880℃変動耐久処理は、CO含有ガス(CO;1%,HO;10%,CO;13%,残N)とO含有ガス(O;2%,HO;10%,CO;13%,残N)とを3分間のインターバルをおいて交互に1分間ずつ触媒に流す処理を24時間続け、そのときのCO含有ガス及びO含有ガスの温度を880℃とするものである。後述する780℃変動耐久処理は、CO含有ガス及びO含有ガスの温度を780℃として当該処理を行なうものである。 The 880°C fluctuation durability treatment was performed using CO-containing gas (CO; 1%, H 2 O; 10%, CO 2 ; 13%, balance N 2 ) and O 2- containing gas (O 2 ; 2%, H 2 O; 10%). %, CO 2 ; 13%, balance N 2 ) was flowed through the catalyst alternately for 1 minute at 3 minute intervals for 24 hours, and the temperature of the CO-containing gas and O 2- containing gas at that time was set to 880℃. ℃. The 780° C. fluctuation durability treatment described later is performed with the temperature of the CO-containing gas and the O 2- containing gas set to 780° C.

HC浄化性能は、触媒をハニカム担体に担持させた供試触媒(直径25mm,長さ50mm)を作成し、該供試触媒に流入するモデル排気ガスの温度を常温から漸次上昇させていく一方、供試触媒を流出するガスのHCの濃度を検出してHC浄化率を求めるというものである。モデル排気ガスの組成は、HC=iso-ペンタン;1500ppmC、CO;0.17%、O;9.6%、CO;12.4%,HO;10.0%、残Nである。ガス流量は26.1L/min(空間速度SV=約60000h-1)、ガスの昇温速度は30℃/minである。 The HC purification performance was determined by creating a test catalyst (diameter 25 mm, length 50 mm) in which the catalyst was supported on a honeycomb carrier, and gradually increasing the temperature of the model exhaust gas flowing into the test catalyst from room temperature. The HC purification rate is determined by detecting the HC concentration of the gas flowing out of the test catalyst. The composition of the model exhaust gas is: HC = iso-pentane; 1500 ppm C, CO; 0.17%, O 2 ; 9.6%, CO 2 ; 12.4%, H 2 O; 10.0%, balance N 2 It is. The gas flow rate was 26.1 L/min (space velocity SV=about 60,000 h -1 ), and the gas temperature increase rate was 30° C./min.

各供試触媒の入口ガス温度が350℃であるときのHC浄化率(HC-C350)は表1に示す通りである。 Table 1 shows the HC purification rate (HC-C350) of each test catalyst when the inlet gas temperature was 350°C.

Pt分散度は、サポート材に担持させたPt量に対するサポート材の表面に存在するPt量の割合であり、COパルス法で測定したCO吸着量から、触媒に含まれるPtがCOと1:1の割合で吸着するとみなしてPtのサポート材表面存在量を算出した。 The degree of Pt dispersion is the ratio of the amount of Pt present on the surface of the support material to the amount of Pt supported on the support material, and from the amount of CO adsorption measured by the CO pulse method, the Pt contained in the catalyst is 1:1 with CO. The amount of Pt present on the surface of the support material was calculated assuming that Pt is adsorbed at a rate of .

表1の880℃変動耐久処理後の触媒入口ガス温度350℃でのHC浄化率(HC-C350)をみると、実施例1-8は比較例1(Pt/γ-AlO)よりも高くなっている。 Looking at the HC purification rate (HC-C350) at a catalyst inlet gas temperature of 350°C after 880°C fluctuation durability treatment in Table 1, Examples 1-8 are better than Comparative Example 1 (Pt/γ-Al 2 O 3 ). The prices are also getting higher.

一方、比較例2は実施例1-8よりも(HC-C350)が高くなっているが、実施例3,5及び比較例1,2のHC浄化率の温度特性を示す図2(780℃変動耐久処理後)及び図3(880℃変動耐久処理後)から明らかなように、HCの浄化に関する低温活性をみると、実施例3,5(Pt/PO-Z-Al(PO=4mass%,PO=7mass%))の方が比較例2(Pt/PO-ZrO)よりも高くなっている。実施例3,5は、非晶質リン酸ジルコニウムがγ-アルミナに担持されていて、変動耐久処理後のPt分散度が比較例2よりも大きいためである。実施例1,2,4,6-8も、変動耐久処理後のPt分散度が比較例2よりも大きいから、低温活性は比較例2よりも高くなる。 On the other hand, although Comparative Example 2 has a higher (HC-C350) than Examples 1-8, Figure 2 shows the temperature characteristics of the HC purification rate of Examples 3 and 5 and Comparative Examples 1 and 2 (780°C As is clear from FIG. 3 ( after 880°C fluctuation durability treatment) and FIG . 4 mass%, PO 4 =7 mass%)) is higher than Comparative Example 2 (Pt/PO 4 -ZrO 2 ). This is because Examples 3 and 5 have amorphous zirconium phosphate supported on γ-alumina, and the degree of Pt dispersion after the variable durability treatment is greater than that of Comparative Example 2. Examples 1, 2, 4, and 6-8 also have higher low-temperature activity than Comparative Example 2 because the degree of Pt dispersion after the variable durability treatment is larger than that of Comparative Example 2.

ここに、BET比表面積をみると、実施例1-8はフレッシュ時が150m/g以上であり、耐久処理後でも40m/g以上である。これに対して、比較例2はフレッシュ時が257m/gと高いものの、耐久処理後は4.6m/gまで低下している。両者の比較から、非晶質リン酸ジルコニウムをγ-アルミナに担持すると、耐久処理に伴うBET比表面積の低下が抑制されることがわかる。 Here, looking at the BET specific surface area, in Example 1-8, it is 150 m 2 /g or more when fresh, and it is 40 m 2 /g or more even after durability treatment. On the other hand, although Comparative Example 2 has a high freshness of 257 m 2 /g, it decreases to 4.6 m 2 /g after durability treatment. A comparison between the two shows that when amorphous zirconium phosphate is supported on γ-alumina, the decrease in BET specific surface area due to durability treatment is suppressed.

サポート材の(PO+ZrO)/(PO +ZrO +AlO 質量比が20%以上70%以下であれば、耐久処理後のBET比表面積の維持率が高く、特に、当該質量比が20%以上55%以下であるときにBET比表面積の維持率が高い。880℃変動耐久処理後のPt分散度に関しても、実施例1-8は比較例2に比べて格段に高くなっている。 If the mass ratio of (PO 4 +ZrO 2 )/ (PO 4 +ZrO 2 + Al 2 O 3 ) of the support material is 20% or more and 70% or less, the retention rate of the BET specific surface area after durability treatment is high, especially , when the mass ratio is 20% or more and 55% or less, the BET specific surface area retention rate is high. Regarding the Pt dispersion degree after the 880°C fluctuation durability treatment, Examples 1-8 are significantly higher than Comparative Example 2.

実施例3,6-8は、サポート材のAlO量を固定して非晶質リン酸ジルコニウムのPO量を変化させている。非晶質リン酸ジルコニウムのPO/ZrO質量比が2%以上25%以下において、耐久処理後のBET比表面積が高い。特に当該質量比が2%以上10%以下において耐久処理後のBET比表面積が高くなっている。 In Examples 3 and 6-8, the amount of Al 2 O 3 in the support material is fixed and the amount of PO 4 in the amorphous zirconium phosphate is varied. When the PO 4 /ZrO 2 mass ratio of amorphous zirconium phosphate is 2% or more and 25% or less, the BET specific surface area after durability treatment is high. In particular, when the mass ratio is 2% or more and 10% or less, the BET specific surface area after durability treatment is high.

サポート材のBET比表面積は、フレッシュ時において150m/g以上であること、そして、耐久処理後において40m/g以上であることが好ましい。 The BET specific surface area of the support material is preferably 150 m 2 /g or more when fresh and 40 m 2 /g or more after durability treatment.

また、サポート材におけるPt分散度は、フレッシュ時において90%以上であること、そして、880℃変動耐久処理後において5.0%以上であることが好ましい。 Further, the Pt dispersion degree in the support material is preferably 90% or more when fresh, and 5.0% or more after 880° C. fluctuation durability treatment.

図4及び図5はアンモニア昇温脱離法によって実施例3(Pt/PO-Z-Al(PO=4mass%))、実施例5(Pt/PO-Z-Al(PO=7mass%))及び比較例2(Pt/PO-ZrO)の880℃変動耐久処理後の固体酸性質をみたものである。図4はTPD曲線を示し、図5はアンモニア吸着量(脱離量)を示す。 Figures 4 and 5 show Example 3 (Pt/PO 4 -Z-Al (PO 4 =4 mass%)) and Example 5 (Pt/PO 4 -Z-Al (PO 4 = 7mass%)) and Comparative Example 2 (Pt/PO 4 -ZrO 2 ) after being subjected to 880°C fluctuation durability treatment. FIG. 4 shows the TPD curve, and FIG. 5 shows the ammonia adsorption amount (desorption amount).

実施例3,5及び比較例2の脱離ピークはいずれも200℃付近にあり、酸点の強度は略同じである。しかし、非晶質リン酸ジルコニウムがγ-アルミナに担持されていない比較例2(Pt/PO-ZrO)は、POが、8質量%であって、実施例3(Pt/PO-Z-Al(PO=4mass%))及び実施例5(Pt/PO-Z-Al(PO=7mass%))よりも多いにも拘わらず、アンモニア吸着量は実施例比3,5よりもが少ない。すなわち、酸点の量が少ない。このことから、実施例のように、非晶質リン酸ジルコニウムをγ-アルミナに担持させると、耐久処理による酸点量の低下が抑制され、触媒活性の維持に有利であることがわかる。 The desorption peaks of Examples 3 and 5 and Comparative Example 2 are all around 200°C, and the strengths of the acid sites are approximately the same. However, in Comparative Example 2 (Pt/PO 4 -ZrO 2 ) in which amorphous zirconium phosphate was not supported on γ-alumina, PO 4 was 8% by mass, and in Example 3 (Pt/PO 4 -ZrO 2 ), PO 4 was 8% by mass. -Z-Al (PO 4 =4 mass%)) and Example 5 (Pt/PO 4 -Z-Al (PO 4 =7 mass%)), the ammonia adsorption amount was 3 compared to the example. Less than 5. That is, the amount of acid sites is small. From this, it can be seen that when amorphous zirconium phosphate is supported on γ-alumina as in the example, the decrease in the amount of acid sites due to durability treatment is suppressed and it is advantageous for maintaining catalyst activity.

図6は実施例3に係るサポート材(PO-Z-Al(PO=4mass%))及び実施例5に係るサポート材(PO-Z-Al(PO=7mass%))のXRDプロファイルである。回折線は鮮明ではなく、ブロードな回折線となっている。γ-アルミナは元来が鮮明な回折線を示さないが、PO-Z-Al(PO=4mass%)では、γ-アルミナ特有のピークが(回折角46deg付近と67deg付近)に出ており、γ-アルミナに非晶質リン酸ジルコニウムが担持されていることがわかる。 FIG. 6 shows XRD of the support material according to Example 3 (PO 4 -Z-Al (PO 4 =4 mass%)) and the support material according to Example 5 (PO 4 -Z-Al (PO 4 =7 mass%)) It is a profile. The diffraction lines are not clear and are broad. γ-Alumina originally does not show clear diffraction lines, but in PO 4 -Z-Al (PO 4 = 4 mass%), peaks specific to γ-Alumina appear (diffraction angles around 46deg and 67deg). It can be seen that amorphous zirconium phosphate is supported on γ-alumina.

1 排気ガス浄化用触媒
2 サポート材
3 貴金属
4 γ-アルミナ
5 非晶質リン酸ジルコニウム
1 Exhaust gas purification catalyst 2 Support material 3 Precious metal 4 γ-alumina 5 Amorphous zirconium phosphate

Claims (1)

ジルコニウム化合物とリン酸及び/又はリン酸塩を含有する水溶液とを混合してリン酸ジルコニウムの前駆体の沈殿物を生じさせる工程と、
上記沈殿物の分散液を攪拌しながら、該分散液にアルミナゲルを添加して混合し、蒸発乾固する工程と、
得られた乾固物を乾燥し、焼成することによって、γ-アルミナに非晶質リン酸ジルコニウムが担持されてなるサポート材を得る工程と、
上記サポート材に貴金属を担持する工程とを備えていることを特徴とする排気ガス浄化用触媒の製造方法。
mixing a zirconium compound and an aqueous solution containing phosphoric acid and/or a phosphate to form a precipitate of a zirconium phosphate precursor;
While stirring the dispersion of the precipitate, adding and mixing alumina gel to the dispersion and evaporating to dryness;
A step of drying and firing the obtained dried product to obtain a support material in which amorphous zirconium phosphate is supported on γ-alumina;
A method for producing an exhaust gas purifying catalyst, comprising the step of supporting a precious metal on the support material.
JP2019159549A 2019-09-02 2019-09-02 Exhaust gas purification catalyst and its manufacturing method Active JP7363215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019159549A JP7363215B2 (en) 2019-09-02 2019-09-02 Exhaust gas purification catalyst and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019159549A JP7363215B2 (en) 2019-09-02 2019-09-02 Exhaust gas purification catalyst and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021037445A JP2021037445A (en) 2021-03-11
JP7363215B2 true JP7363215B2 (en) 2023-10-18

Family

ID=74847906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019159549A Active JP7363215B2 (en) 2019-09-02 2019-09-02 Exhaust gas purification catalyst and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7363215B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119860A (en) 2000-10-16 2002-04-23 Ibiden Co Ltd Catalyst and method of manufacturing for the same
US20030150709A1 (en) 2002-02-14 2003-08-14 Labarge William J. Non-thermal plasma reactor gas treatment system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281116A (en) * 1995-04-10 1996-10-29 Toyota Motor Corp Catalyst for purifying exhaust gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119860A (en) 2000-10-16 2002-04-23 Ibiden Co Ltd Catalyst and method of manufacturing for the same
US20030150709A1 (en) 2002-02-14 2003-08-14 Labarge William J. Non-thermal plasma reactor gas treatment system

Also Published As

Publication number Publication date
JP2021037445A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP4833453B2 (en) Exhaust gas purification catalyst and its production and use
JP3664182B2 (en) High heat-resistant exhaust gas purification catalyst and production method thereof
JP4959129B2 (en) Exhaust gas purification catalyst
JP5327048B2 (en) Exhaust gas purification catalyst carrier manufacturing method and exhaust gas purification catalyst carrier
JP7518763B2 (en) Exhaust gas purification catalyst
US7863217B2 (en) Exhaust gas purifying catalyst and exhaust gas purifying method
WO2003097232A1 (en) Particulate oxidizing material and oxidation catalyst
CN101293203A (en) Exhaust gas purification catalyst and manufacturing method thereof
RU2621679C2 (en) Catalyst for exhaust gas cleaning and method for exhaust gas cleaning with the use of the specified catalyst
JP5217072B2 (en) Exhaust gas purification catalyst and process for producing the same
WO2012161091A1 (en) Exhaust gas purifying catalyst and carrier
US10449522B2 (en) Process for manufacture of NOx storage materials
US9925524B2 (en) Exhaust gas purification catalyst
JP2578219B2 (en) Method for producing exhaust gas purifying catalyst
JP5488215B2 (en) Exhaust gas purification catalyst
JP7363215B2 (en) Exhaust gas purification catalyst and its manufacturing method
JP2003020227A (en) Fine mixed oxide powder, production method thereor and catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4779461B2 (en) Catalyst carrier, method for producing the same, and exhaust gas purification catalyst
JP4666007B2 (en) Exhaust gas purification catalyst
JP7262975B2 (en) Ceria-Zirconia Composite Oxygen Absorption-Desorption Material and Exhaust Gas Purification Catalyst
JP5181839B2 (en) Exhaust gas purification catalyst
JP2008279319A (en) Catalyst for cleaning exhaust gas and method for producing acidic oxide-deposited alumina to be used therefor
JP2003305363A (en) Catalyst carrier and catalyst for exhaust gas treatment
JP4239679B2 (en) Exhaust gas purification catalyst and exhaust gas purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230918

R150 Certificate of patent or registration of utility model

Ref document number: 7363215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150