JP7363028B2 - Component measuring device and component measuring method - Google Patents

Component measuring device and component measuring method Download PDF

Info

Publication number
JP7363028B2
JP7363028B2 JP2018239590A JP2018239590A JP7363028B2 JP 7363028 B2 JP7363028 B2 JP 7363028B2 JP 2018239590 A JP2018239590 A JP 2018239590A JP 2018239590 A JP2018239590 A JP 2018239590A JP 7363028 B2 JP7363028 B2 JP 7363028B2
Authority
JP
Japan
Prior art keywords
sample
laser beam
measurement space
optical system
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018239590A
Other languages
Japanese (ja)
Other versions
JP2020101441A (en
Inventor
裕之 野瀬
紀仁 河口
孝男 倉田
淳 伊澤
真太郎 藏田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2018239590A priority Critical patent/JP7363028B2/en
Publication of JP2020101441A publication Critical patent/JP2020101441A/en
Application granted granted Critical
Publication of JP7363028B2 publication Critical patent/JP7363028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Incineration Of Waste (AREA)

Description

本開示は、レーザー光を利用した試料の成分計測装置及び成分計測方法に関する。 The present disclosure relates to a sample component measuring device and component measuring method using laser light.

物質の組成を分析する手段として、レーザー誘起ブレークダウン分光法(Laser Induced Breakdown Spectroscopy:以下、LIBS)が知られている。LIBSでは、測定対象である試料にパルス状のレーザー光を照射する。レーザー光は物質をプラズマ化させる十分なエネルギーを有しており、照射領域には試料のプラズマが発生する。プラズマは加熱されており、その中のイオン(場合によっては中性粒子)は励起されている。励起されたイオンは脱励起過程で、物質固有の波長の光を放出する。つまり、プラズマから放出された光の波長と強度を計測することによって、試料の組成や濃度などを分析することができる(特許文献1及び2参照)。 Laser induced breakdown spectroscopy (hereinafter referred to as LIBS) is known as a means of analyzing the composition of a substance. In LIBS, a sample to be measured is irradiated with pulsed laser light. The laser beam has sufficient energy to turn the material into plasma, and plasma of the sample is generated in the irradiated area. The plasma is heated and the ions (and sometimes neutral particles) within it are excited. During the deexcitation process, the excited ions emit light at a wavelength unique to the substance. That is, by measuring the wavelength and intensity of light emitted from plasma, the composition, concentration, etc. of a sample can be analyzed (see Patent Documents 1 and 2).

特開2000-121558号公報Japanese Patent Application Publication No. 2000-121558 特開2004-226252号公報Japanese Patent Application Publication No. 2004-226252

LIBSでは試料を短時間にプラズマ化させる必要がある。つまり、レーザー光の照射領域には、プラズマ化に必要なエネルギー密度をもつレーザー光を照射する必要がある。従って、レーザー光は、通常、試料に向けて集光される。 In LIBS, it is necessary to turn a sample into plasma in a short time. In other words, it is necessary to irradiate the laser beam irradiation area with a laser beam having an energy density necessary for plasma formation. Therefore, laser light is typically focused onto the sample.

しかしながら、試料が常に移動している場合、或いは、試料の形状が常に変化している場合、当該試料に対するレーザー光の適切な集光が困難になる。換言すれば、レーザー光の集光位置に、試料が適切に位置しない場合が多くなる。一方、LIBSでは、試料に対して10Hz程度の頻度でレーザー光の照射を繰り返す。従って、試料が移動或いは変形する場合、単位時間当たりの信号強度の変動が大きくなりやすく、成分の特定等に利用できる有効信号数の変動も大きくなる。その結果、例えば、計測結果に対する十分な統計精度が得られるまでの時間にもばらつきが大きく,計測の定量性が損なわれる。 However, if the sample is constantly moving or the shape of the sample is constantly changing, it becomes difficult to appropriately focus the laser beam on the sample. In other words, there are many cases where the sample is not appropriately positioned at the laser beam focusing position. On the other hand, in LIBS, a sample is repeatedly irradiated with laser light at a frequency of about 10 Hz. Therefore, when the sample moves or deforms, fluctuations in signal intensity per unit time tend to increase, and fluctuations in the number of effective signals that can be used for component identification etc. also increase. As a result, for example, the time it takes to obtain sufficient statistical accuracy for measurement results also varies widely, impairing the quantitative nature of measurement.

本開示は、上述の事情を鑑みて成されたものである。即ち、本開示は、LIBSを用いた成分計測装置及び成分計測方法において、統計精度を向上させることを目的とする。 The present disclosure has been made in view of the above circumstances. That is, the present disclosure aims to improve statistical accuracy in a component measuring device and a component measuring method using LIBS.

本開示の第1の態様は粉体、粒体又は塊体の試料の成分計測装置であって、レーザー光を繰り返し発生する光源と、前記試料が時間的且つ空間的に不規則に、継続的に通過する計測空間内の複数の照射点のそれぞれを、通る複数の光軸をもつ前記レーザー光の照射光学系と、前記計測空間を見据え1本の光軸をもつ観測光学系と、前記レーザー光の照射によって前記試料から放出され、前記観測光学系によって導かれる光の波長と強度を計測する分析装置とを備えることを要旨とする。 A first aspect of the present disclosure is an apparatus for measuring the components of a sample of powder, granules, or lumps, which includes a light source that repeatedly generates laser light, and a sample that is continuously and irregularly temporally and spatially. an irradiation optical system for the laser beam having a plurality of optical axes that pass through each of a plurality of irradiation points in the measurement space, an observation optical system having one optical axis that looks at the measurement space; The gist of the present invention is to include an analyzer that measures the wavelength and intensity of light emitted from the sample by irradiation with laser light and guided by the observation optical system.

本開示の第2の態様は粉体、粒体又は塊体の試料の成分計測方法であって、前記試料が時間的且つ空間的に不規則に、継続的に通過する計測空間内の複数の照射点のそれぞれに対して、異なる方向からレーザー光を繰り返し照射し、前記レーザー光の照射によって前記計測空間内の前記試料から放出され且つ前記計測空間を見据える1本の光軸をもつ観測光学系に入射した光の波長と強度を計測することを要旨とする。 A second aspect of the present disclosure is a method for measuring components of a sample of powder, granules, or lumps, in which a plurality of components are measured in a measurement space through which the sample continuously passes temporally and spatially irregularly. an observation optical system that repeatedly irradiates each irradiation point with laser light from different directions, and that has one optical axis that is emitted from the sample in the measurement space by the irradiation of the laser light and that looks at the measurement space; The gist is to measure the wavelength and intensity of light incident on the object .

本開示の第3の態様は廃棄物処理プラントであって、前記第1の態様に係る成分計測装置を備えることを要旨とする。 A third aspect of the present disclosure is a waste treatment plant that includes the component measuring device according to the first aspect.

本開示によれば、LIBSを用いた成分計測装置及び成分計測方法において、統計精度を向上させることができる。 According to the present disclosure, statistical accuracy can be improved in a component measuring device and a component measuring method using LIBS.

本実施形態に係る成分計測装置の構成図である。FIG. 1 is a configuration diagram of a component measuring device according to the present embodiment. 本実施形態に係る計測空間及びその周辺の拡大図であり、成分計測装置による計測を説明するための図である。It is an enlarged view of the measurement space and its surroundings according to the present embodiment, and is a diagram for explaining measurement by the component measuring device. 本実施形態に係る成分計測方法のフローチャートである。It is a flowchart of the ingredient measurement method concerning this embodiment.

以下、本開示の実施形態について添付図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。 Embodiments of the present disclosure will be described below based on the accompanying drawings. Note that common parts in each figure are given the same reference numerals, and redundant explanation will be omitted.

図1は、本実施形態に係る成分計測装置10の構成図である。図2は、本実施形態に係る計測空間30及びその周辺の拡大図であり、成分計測装置による計測を説明するための図である。本実施形態に係る成分計測装置10は、上述のLIBSを用いて、測定対象(観察対象)としての試料31に含まれる成分の特定及び当該成分の濃度(成分量)を計測する。試料31は、例えば、計測空間30を通過(例えば落下)する粉体(粒体、塊体)であり、所定の期間中、試料供給源32から計測空間30に継続的に供給される。 FIG. 1 is a configuration diagram of a component measuring device 10 according to this embodiment. FIG. 2 is an enlarged view of the measurement space 30 and its surroundings according to the present embodiment, and is a diagram for explaining measurement by the component measuring device. The component measuring device 10 according to the present embodiment uses the above-mentioned LIBS to identify a component contained in the sample 31 as a measurement target (observation target) and measure the concentration (component amount) of the component. The sample 31 is, for example, a powder (granules, lumps) that passes (for example, falls) through the measurement space 30, and is continuously supplied to the measurement space 30 from the sample supply source 32 during a predetermined period.

試料31は、計測空間30を時間的且つ空間的に不規則に通過する。即ち、試料31が計測空間30を通過する単位時間あたりの頻度は変化し(即ち、一定ではなく)、試料31が計測空間30内を通過する位置も変化する(即ち、一定ではない)。 The sample 31 passes through the measurement space 30 temporally and spatially irregularly. That is, the frequency per unit time at which the sample 31 passes through the measurement space 30 changes (that is, it is not constant), and the position at which the sample 31 passes within the measurement space 30 also changes (that is, it is not constant).

成分計測装置10は、例えば、廃棄物処理プラント(図示せず)に設置される。この場合、試料供給源32は廃棄物処理プラントであり、試料31としての粉体は飛灰である。成分計測装置10は、例えば、この飛灰に含まれる微量な重金属の成分及びその濃度を計測する。 The component measuring device 10 is installed, for example, in a waste treatment plant (not shown). In this case, the sample source 32 is a waste treatment plant and the powder as sample 31 is fly ash. The component measuring device 10 measures, for example, trace amounts of heavy metal components contained in this fly ash and their concentrations.

図1に示すように、成分計測装置10は、光源11と、照射光学系12と、観測光学系13と、分析装置14とを備える。 As shown in FIG. 1, the component measuring device 10 includes a light source 11, an irradiation optical system 12, an observation optical system 13, and an analysis device 14.

光源11は、レーザー光15を所定の周期で繰り返し発生する。光源11は、例えば、パルスレーザー光源であるNd:YAGレーザーである。本実施形態のNd:YAGレーザーは2倍波である532nmのパルスレーザー光を、数十f~数百nsのパルス幅、且つ、10Hz程度の周波数で出力する。 The light source 11 repeatedly generates laser light 15 at a predetermined period. The light source 11 is, for example, a Nd:YAG laser that is a pulsed laser light source. The Nd:YAG laser of this embodiment outputs a pulsed laser beam of 532 nm, which is a double wave, with a pulse width of several tens of fahrenheit to several hundred ns and a frequency of about 10 Hz.

なお、レーザー光31の波長は測定対象の組成に応じて設定される。例えば、Nd:YAGレーザーの基本波(1064nm)、3倍波(355nm)、或いは、4倍波(266nm)でもよい。また、光源11はNd:YAGレーザーに限られず、測定対象固有の発光を促す波長とエネルギーをもつレーザー光を発生する他の光源でもよい。波長は例えば193nm~10.6μmであり、エネルギー(パルスエネルギー)は例えば0.1mJ以上である。 Note that the wavelength of the laser beam 31 is set depending on the composition of the measurement target. For example, the fundamental wave (1064 nm), 3rd harmonic (355 nm), or 4th harmonic (266 nm) of an Nd:YAG laser may be used. Furthermore, the light source 11 is not limited to the Nd:YAG laser, but may be any other light source that generates a laser beam with a wavelength and energy that promotes light emission specific to the object to be measured. The wavelength is, for example, 193 nm to 10.6 μm, and the energy (pulse energy) is, for example, 0.1 mJ or more.

照射光学系12は、レンズ、(平面、凹面)ミラー、光ファイバ等の周知の光学素子によって構成され、光源11から出力されたレーザー光15を、試料31が通過する計測空間30に導く。ただし、計測空間30に導かれるレーザー光15の数は複数である。つまり、照射光学系12は、レーザー光15を分岐した上で、異なる方向から計測空間30内に集光させる。例えば、照射光学系12は、分岐したレーザー光15を計測空間30内の複数の照射点のそれぞれに集光させる。換言すれば、照射光学系12は、異なる方向から計測空間31を通る複数の光軸をもつ。例えば、照射光学系12は、複数の照射点のそれぞれを通る複数の光軸をもつ。なお、この集光は同時に発生する。ここで言う「同時」には、光路差に伴う時間差を含む。 The irradiation optical system 12 is constituted by well-known optical elements such as lenses, (flat or concave) mirrors, and optical fibers, and guides the laser beam 15 output from the light source 11 to the measurement space 30 through which the sample 31 passes. However, the number of laser beams 15 guided into the measurement space 30 is plural. That is, the irradiation optical system 12 branches the laser beam 15 and focuses the beam into the measurement space 30 from different directions. For example, the irradiation optical system 12 focuses the branched laser beam 15 on each of a plurality of irradiation points within the measurement space 30 . In other words, the irradiation optical system 12 has a plurality of optical axes passing through the measurement space 31 from different directions. For example, the irradiation optical system 12 has a plurality of optical axes passing through each of the plurality of irradiation points. Note that this light convergence occurs at the same time. "Simultaneous" here includes a time difference due to an optical path difference.

LIBSによる計測においては、レーザー光を試料に照射してから発光が起こるまでの時間(遅延時間)も、所望の成分に関する情報(例えば当該成分の有無、濃度、種々の反応過程など)を取得するための計測条件(例えばシャッター(ゲート)時間の設定)となる場合がある。この場合、複数のレーザー光の照射タイミングの差は小さいほど良いため、例えば、図1に示すように複数のレーザー光(第1レーザー光15aおよび第2レーザー光15b)の光路長が互いに等しくなるように光学系を設置してもよい。なお、レーザー光の分岐には、周知のビームスプリッタ、ハーフミラー、分波器などが使用される。また、レーザー光の集光には、周知のレンズ、凹面ミラーなどが使用される。 In measurements using LIBS, the time from irradiation of a sample with laser light to the occurrence of light emission (delay time) is also used to obtain information regarding a desired component (for example, presence or absence of the component, concentration, various reaction processes, etc.) measurement conditions (for example, shutter (gate) time settings). In this case, the smaller the difference in the irradiation timing of the plurality of laser beams, the better. For example, as shown in FIG. 1, the optical path lengths of the plurality of laser beams (first laser beam 15a and second laser beam 15b) are made equal to each other. The optical system may be installed as shown in FIG. Note that a well-known beam splitter, half mirror, demultiplexer, or the like is used to split the laser beam. Furthermore, well-known lenses, concave mirrors, and the like are used to condense the laser beam.

以下、説明の便宜上、照射光学系12から出力されるレーザー光の数を2本として説明する。即ち、照射光学系12は、光源11から出力されたレーザー光15を、第1レーザー光15aおよび第2レーザー光15bに分岐する。更に、照射光学系12は、第1レーザー光15aを計測空間30の照射点30aに集光させ、且つ、第2レーザー光15bを計測空間30の照射点30bに集光させる(図2参照)。つまり、照射点30aは、照射光学系12の光軸12a上、換言すれば、第1レーザー光15aを集光させる最終段(最下流)のレンズ17の光軸12a上に位置する。同様に、照射点30bは、照射光学系12の光軸12b上、換言すれば、第2レーザー光15bを集光させる最終段(最下流)のレンズ18の光軸12b上に位置する。 Hereinafter, for convenience of explanation, the number of laser beams output from the irradiation optical system 12 will be described as two. That is, the irradiation optical system 12 branches the laser beam 15 output from the light source 11 into the first laser beam 15a and the second laser beam 15b. Furthermore, the irradiation optical system 12 focuses the first laser beam 15a on the irradiation point 30a of the measurement space 30, and focuses the second laser beam 15b on the irradiation point 30b of the measurement space 30 (see FIG. 2). . That is, the irradiation point 30a is located on the optical axis 12a of the irradiation optical system 12, in other words, on the optical axis 12a of the final stage (most downstream) lens 17 that focuses the first laser beam 15a. Similarly, the irradiation point 30b is located on the optical axis 12b of the irradiation optical system 12, in other words, on the optical axis 12b of the final stage (most downstream) lens 18 that focuses the second laser beam 15b.

なお、光軸12aと光軸12bは同一線上に並んでもよく、互いに交差していてもよい。また、照射点30aと照射点30bは互いに離れていてもよく、一致していてもよい。何れの場合も、第1レーザー光15aと第2レーザー光15bは、異なる方向から計測空間30に入射する。 Note that the optical axis 12a and the optical axis 12b may be aligned on the same line or may intersect with each other. Further, the irradiation point 30a and the irradiation point 30b may be separated from each other or may coincide with each other. In either case, the first laser beam 15a and the second laser beam 15b enter the measurement space 30 from different directions.

観測光学系13は、照射光学系12と同様に、レンズ、(平面、凹面)ミラー、光ファイバ等の周知の光学素子によって構成される。観測光学系13の光軸13aは、計測空間30を通る。例えば、観測光学系13の光軸13aは、照射点30a及び照射点30bのうちの少なくとも1つを通過する。なお、計測空間30において、観測光学系13の光軸13aは、照射光学系12の光軸12a及び光軸12bのうちの何れかに一致していてもよい。間隔を置いて平行でもよい。 Similar to the irradiation optical system 12, the observation optical system 13 is composed of well-known optical elements such as lenses, (flat or concave) mirrors, and optical fibers. The optical axis 13a of the observation optical system 13 passes through the measurement space 30. For example, the optical axis 13a of the observation optical system 13 passes through at least one of the irradiation point 30a and the irradiation point 30b. Note that in the measurement space 30, the optical axis 13a of the observation optical system 13 may coincide with either the optical axis 12a or the optical axis 12b of the irradiation optical system 12. They may be parallel and spaced apart.

計測空間30は観測光学系13が試料31を見据える空間であり、その大きさ(幅や深さなど)は観測光学系13の光学的仕様(焦点距離、有効口径、屈折率、素材など)に依存する。換言すれば、光学的仕様によって規定される。計測空間30内で試料31から放出され且つ観測光学系13に入射した光33は、後述の分析装置14に適切に導かれる。即ち、当該光は、分析装置14が規定する最大受容立体角の範囲内の角度で分析装置14に入射する。 The measurement space 30 is a space where the observation optical system 13 looks at the sample 31, and its size (width, depth, etc.) depends on the optical specifications (focal length, effective aperture, refractive index, material, etc.) of the observation optical system 13. Dependent. In other words, it is defined by optical specifications. Light 33 emitted from the sample 31 within the measurement space 30 and incident on the observation optical system 13 is appropriately guided to an analysis device 14, which will be described later. That is, the light enters the analyzer 14 at an angle within the maximum acceptance solid angle defined by the analyzer 14.

試料31が計測空間30を通過する粉体である場合、当該粉体は照射点30a、30bを通過しない場合もあり得る。しかしながら、第1レーザー光15a及び第2レーザー光15bは照射光学系12によって計測空間30で充分に集光されている。従って、図2に示すように、試料31のプラズマ(発光)は、照射点30a、30b以外の場所でも第1レーザー光15a又は第2レーザー光15bの照射によって発生する。観測光学系13は、計測空間30において照射点30a、30b以外の場所で発生した光33を受光し、分析装置14に導く。 When the sample 31 is a powder that passes through the measurement space 30, the powder may not pass through the irradiation points 30a and 30b. However, the first laser beam 15a and the second laser beam 15b are sufficiently focused in the measurement space 30 by the irradiation optical system 12. Therefore, as shown in FIG. 2, plasma (luminescence) of the sample 31 is generated by irradiation with the first laser beam 15a or the second laser beam 15b even at locations other than the irradiation points 30a and 30b. The observation optical system 13 receives light 33 generated at a location other than the irradiation points 30 a and 30 b in the measurement space 30 and guides it to the analysis device 14 .

分析装置14は所謂分光器である。レーザー光15(第1レーザー光15a及び第2レーザー光15b)によって試料31から放出され、観測光学系13によって導かれる光33の波長と強度を計測する。本実施形態の分析装置14は、所定の範囲内の波長の光を一度に計測するポリクロメータやマルチチャネル型分光器である。但し、分析装置14は、モノクロメータでもよい。 The analyzer 14 is a so-called spectrometer. The wavelength and intensity of light 33 emitted from the sample 31 by laser light 15 (first laser light 15a and second laser light 15b) and guided by observation optical system 13 are measured. The analyzer 14 of this embodiment is a polychromator or a multichannel spectrometer that measures light of wavelengths within a predetermined range at once. However, the analyzer 14 may be a monochromator.

制御部16は、光源11及び分析装置14を制御する。制御部16は、例えばコンピュータであり、レーザー光15の発生及び繰り返し周期を制御する。また、制御部16は、分析装置14から出力された波長及び強度を分析し、試料31の組成を特定(検出)する。 The control unit 16 controls the light source 11 and the analyzer 14. The control unit 16 is, for example, a computer, and controls the generation and repetition period of the laser beam 15. Further, the control unit 16 analyzes the wavelength and intensity output from the analyzer 14, and specifies (detects) the composition of the sample 31.

本実施形態に係る成分計測方法について説明する。図3は、本実施形態に係る成分計測方法のフローチャートである。この図に示すように、本実施形態では、まず、試料供給源32によって、計測空間30に試料31を継続的に通過させる(ステップS1)。なお、この通過は落下でもよい。 A component measuring method according to this embodiment will be explained. FIG. 3 is a flowchart of the component measurement method according to this embodiment. As shown in this figure, in this embodiment, first, the sample supply source 32 causes the sample 31 to continuously pass through the measurement space 30 (step S1). Note that this passing may also be done by falling.

ステップS1における試料31は、計測空間30を時間的且つ空間的に不規則に通過する。即ち、試料31が計測空間30を通過する単位時間あたりの頻度は変化し(即ち、一定ではなく)、試料31が計測空間30内を通過する位置も変化する(即ち、同一ではない)。 The sample 31 in step S1 passes through the measurement space 30 temporally and spatially irregularly. That is, the frequency per unit time at which the sample 31 passes through the measurement space 30 changes (that is, it is not constant), and the position at which the sample 31 passes within the measurement space 30 also changes (that is, it is not the same).

次に、光源11及び照射光学系12によって、計測空間30に、異なる方向からレーザー光(第1レーザー光15a及び第2レーザー光15b)が繰り返し照射される(ステップS2)。例えば、計測空間30における複数の照射点30a、30bのそれぞれにレーザー光15(第1レーザー光15a及び第2レーザー光15b)が繰り返し照射される。なお、ステップS1とステップS2の各工程の順序は任意であり、同時に行われてもよい。 Next, the light source 11 and the irradiation optical system 12 repeatedly irradiate the measurement space 30 with laser light (first laser light 15a and second laser light 15b) from different directions (step S2). For example, each of the plurality of irradiation points 30a and 30b in the measurement space 30 is repeatedly irradiated with the laser beam 15 (the first laser beam 15a and the second laser beam 15b). Note that the steps S1 and S2 may be performed in any order, and may be performed simultaneously.

次に、レーザー光15(第1レーザー光15a及び第2レーザー光15b)によって試料31から放出された光33の波長と強度が、分析装置14によって計測される(ステップS3)。 Next, the wavelength and intensity of the light 33 emitted from the sample 31 by the laser beam 15 (the first laser beam 15a and the second laser beam 15b) are measured by the analyzer 14 (step S3).

図2に示すように、計測空間30には、試料供給源32から試料31が供給される。試料31が粉体の場合、粉体は、空間的にも、時間的にもランダムに計測空間30を通過(落下)する。一方、計測空間30には、第1レーザー光15a及び第2レーザー光15bが異なる方向から照射される。つまり、1本レーザー光を用いる場合と比べて、レーザー光によって試料31がプラズマ化される空間が拡大される。即ち、一回の照射において、試料31がプラズマ化される領域が大きくなる。 As shown in FIG. 2 , a sample 31 is supplied to the measurement space 30 from a sample supply source 32 . When the sample 31 is powder, the powder passes (falls) through the measurement space 30 randomly both spatially and temporally. On the other hand, the measurement space 30 is irradiated with the first laser beam 15a and the second laser beam 15b from different directions. That is, compared to the case where one laser beam is used, the space in which the sample 31 is turned into plasma by the laser beam is expanded. That is, in one irradiation, the area where the sample 31 is turned into plasma becomes larger.

観測光学系13は、レーザー光15(第1レーザー光15a及び第2レーザー光15b)によって試料31から放出された光33、即ち、試料31の発光を捕捉する。しかも、観測光学系13は、異なる位置からの複数の発光を同時に捕捉することできる。従って、一回の照射において、分析装置14にはより広い領域からの光が入射される。 The observation optical system 13 captures the light 33 emitted from the sample 31 by the laser beam 15 (the first laser beam 15a and the second laser beam 15b), that is, the light emission of the sample 31. Furthermore, the observation optical system 13 can simultaneously capture a plurality of light emissions from different positions. Therefore, in one irradiation, light from a wider area is incident on the analyzer 14.

上述の通り、LIBSではレーザー光15の照射が繰り返される。従って、本実施形態によれば、単位時間当たりの、試料31中の特定の成分を示す信号(有効信号)の数が増加するので、測定結果の統計精度を向上させることができる。 As described above, in LIBS, irradiation with the laser beam 15 is repeated. Therefore, according to the present embodiment, the number of signals (effective signals) indicating a specific component in the sample 31 per unit time increases, so that the statistical accuracy of the measurement results can be improved.

なお、本開示は上述した実施形態に限定されず、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含む。 Note that the present disclosure is not limited to the embodiments described above, but is indicated by the claims, and further includes all changes within the meaning and scope equivalent to the claims.

10…成分計測装置、11…光源、12…照射光学系、12a、12b…光軸、13…観測光学系、13a…光軸、14…分析装置、15…レーザー光、15a…第1レーザー光、15b…第2レーザー光、16…制御部、17、18…レンズ、30…計測空間、30a、30b…照射点、31…試料、32…試料供給源、33…光
DESCRIPTION OF SYMBOLS 10...Component measurement device, 11...Light source, 12...Irradiation optical system, 12a, 12b...Optical axis, 13...Observation optical system, 13a...Optical axis, 14...Analysis device, 15...Laser light, 15a...First laser beam , 15b...Second laser beam, 16...Control unit, 17, 18...Lens, 30...Measurement space, 30a, 30b...Irradiation point, 31...Sample, 32...Sample supply source, 33...Light

Claims (3)

粉体、粒体又は塊体の試料の成分計測装置であって、
レーザー光を繰り返し発生する光源と、
前記試料が時間的且つ空間的に不規則に、継続的に通過する計測空間内の複数の照射点のそれぞれを、異なる方向から通る複数の光軸をもつ前記レーザー光の照射光学系と、
前記計測空間を見据え1本の光軸をもつ観測光学系と、
前記レーザー光によって前記計測空間内の前記試料から放出され、前記観測光学系によって導かれる光の波長と強度を計測する分析装置と
を備える成分計測装置。
A component measuring device for powder, granule or lump samples, comprising:
A light source that repeatedly emits laser light,
an irradiation optical system for the laser beam having a plurality of optical axes passing from different directions through each of a plurality of irradiation points in a measurement space through which the sample continuously passes temporally and spatially irregularly;
an observation optical system having one optical axis that looks at the measurement space;
A component measuring device comprising: an analyzer that measures the wavelength and intensity of light emitted from the sample in the measurement space by the laser beam and guided by the observation optical system.
粉体、粒体又は塊体の試料の成分計測方法であって、
前記試料が時間的且つ空間的に不規則に、継続的に通過する計測空間内の複数の照射点のそれぞれに対して、異なる方向からレーザー光を繰り返し照射し、
前記レーザー光によって前記計測空間内の前記試料から放出され且つ前記計測空間を見据える1本の光軸をもつ観測光学系に入射した光の波長と強度を計測する成分計測方法。
A method for measuring the components of a powder, granule or lump sample, the method comprising:
Repeatedly irradiating laser light from different directions to each of a plurality of irradiation points in a measurement space through which the sample continuously passes temporally and spatially irregularly,
A component measurement method for measuring the wavelength and intensity of light emitted from the sample in the measurement space by the laser beam and incident on an observation optical system having one optical axis looking into the measurement space .
請求項1に記載の成分計測装置が設けられた廃棄物処理プラント。 A waste treatment plant equipped with the component measuring device according to claim 1.
JP2018239590A 2018-12-21 2018-12-21 Component measuring device and component measuring method Active JP7363028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018239590A JP7363028B2 (en) 2018-12-21 2018-12-21 Component measuring device and component measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018239590A JP7363028B2 (en) 2018-12-21 2018-12-21 Component measuring device and component measuring method

Publications (2)

Publication Number Publication Date
JP2020101441A JP2020101441A (en) 2020-07-02
JP7363028B2 true JP7363028B2 (en) 2023-10-18

Family

ID=71139480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018239590A Active JP7363028B2 (en) 2018-12-21 2018-12-21 Component measuring device and component measuring method

Country Status (1)

Country Link
JP (1) JP7363028B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220113530A1 (en) 2020-10-14 2022-04-14 Keyence Corporation Microscope

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257729A (en) 2001-03-01 2002-09-11 Mitsubishi Heavy Ind Ltd Monitoring device for powder, and cement plant provided with the device
JP2004226252A (en) 2003-01-23 2004-08-12 Toshiba Corp Element concentration measuring instrument
JP2004245702A (en) 2003-02-14 2004-09-02 Tohoku Electric Power Co Inc In-ash unburnt combustible content measuring system
JP2005180726A (en) 2003-12-16 2005-07-07 Mitsubishi Heavy Ind Ltd Ash and slug property management device, and ash melting disposal facility and its method
JP2005201762A (en) 2004-01-15 2005-07-28 Toshiba Corp Lithium leak detector and lithium leak detection method
JP2008256440A (en) 2007-04-03 2008-10-23 Toshiba Corp Analyzer
US20130301051A1 (en) 2010-06-18 2013-11-14 Andrew Pogosyan Scattering light source multi-wavelength photometer
WO2017073143A1 (en) 2015-10-27 2017-05-04 ソニー株式会社 Particle detection device
JP2017535764A (en) 2014-10-09 2017-11-30 キネティック リバー コーポレーション Particle analysis and sorting apparatus and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257729A (en) 2001-03-01 2002-09-11 Mitsubishi Heavy Ind Ltd Monitoring device for powder, and cement plant provided with the device
JP2004226252A (en) 2003-01-23 2004-08-12 Toshiba Corp Element concentration measuring instrument
JP2004245702A (en) 2003-02-14 2004-09-02 Tohoku Electric Power Co Inc In-ash unburnt combustible content measuring system
JP2005180726A (en) 2003-12-16 2005-07-07 Mitsubishi Heavy Ind Ltd Ash and slug property management device, and ash melting disposal facility and its method
JP2005201762A (en) 2004-01-15 2005-07-28 Toshiba Corp Lithium leak detector and lithium leak detection method
JP2008256440A (en) 2007-04-03 2008-10-23 Toshiba Corp Analyzer
US20130301051A1 (en) 2010-06-18 2013-11-14 Andrew Pogosyan Scattering light source multi-wavelength photometer
JP2017535764A (en) 2014-10-09 2017-11-30 キネティック リバー コーポレーション Particle analysis and sorting apparatus and method
WO2017073143A1 (en) 2015-10-27 2017-05-04 ソニー株式会社 Particle detection device

Also Published As

Publication number Publication date
JP2020101441A (en) 2020-07-02

Similar Documents

Publication Publication Date Title
JP5038831B2 (en) Method and apparatus for measuring concrete-containing substances
EP2559992A1 (en) Flash photolysis system
EP3321731B1 (en) Terahertz wave generator
US8724111B2 (en) Flash photolysis system
JP7363028B2 (en) Component measuring device and component measuring method
JP2009288068A (en) Analyzing method and analyzer
CN109154567B (en) Component composition measuring system and component composition measuring method
JP2008256440A (en) Analyzer
WO2016174963A1 (en) Microscope device
CN108195824B (en) Laser-induced breakdown spectroscopy detection system
JP2020122904A (en) Plasma analysis system
EP3330793B1 (en) Terahertz wave generator
JP2007121025A (en) Analyzer
JP2000055809A (en) Raman microspectroscope and method therefor
JP2010019626A (en) Element analyzer and element analysis method
JP2020101440A (en) Powder flow control device for spectroscopy
JPH112604A (en) Method and device for analyzing element
JP2022128325A (en) Inspection device and inspection method
JPH04274743A (en) Laser emission analysis method
JP2002005832A (en) Method and apparatus for analysis of concentration
KR102295280B1 (en) High Resolution Laser Processing Unit with LIBS Measurements
CN108075349A (en) A kind of picosecond laser of conveniently adjusted laser pulse width
JPH0875651A (en) Method for emission spectrochemical analysis by laser
JP2010127831A (en) Optical delay element and light pulse measuring instrument
de Lima Filho et al. Direct and Fast Detection of Trace Selenium in Water by Laser-Induced Breakdown Spectroscopy and by Laser-Ablation-Assisted Laser-Induced Fluorescence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230918

R151 Written notification of patent or utility model registration

Ref document number: 7363028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151