JP7361206B2 - Optical signal attenuator and optical signal transmission system - Google Patents

Optical signal attenuator and optical signal transmission system Download PDF

Info

Publication number
JP7361206B2
JP7361206B2 JP2022513482A JP2022513482A JP7361206B2 JP 7361206 B2 JP7361206 B2 JP 7361206B2 JP 2022513482 A JP2022513482 A JP 2022513482A JP 2022513482 A JP2022513482 A JP 2022513482A JP 7361206 B2 JP7361206 B2 JP 7361206B2
Authority
JP
Japan
Prior art keywords
optical signal
attenuation
connecting member
attenuator
deformable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022513482A
Other languages
Japanese (ja)
Other versions
JP2022552600A (en
Inventor
ツァオ,ジュンホン
ルオ,ヨン
ワン,ダン
ファン,ジェチャオ
シャオ,チンミン
ワン,ミン
ホン,シャオポン
サン,ミンチャオ
ビ,ヒュイガン
チェン,ヤン
Original Assignee
アクセリンク テクノロジーズ カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクセリンク テクノロジーズ カンパニー リミテッド filed Critical アクセリンク テクノロジーズ カンパニー リミテッド
Publication of JP2022552600A publication Critical patent/JP2022552600A/en
Application granted granted Critical
Publication of JP7361206B2 publication Critical patent/JP7361206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Description

本開示は、出願番号が202020444531.0号であり、出願日が2020年3月31日である中国実用新案出願に基づく優先権を主張するものであり、ここで該中国実用新案出願の全内容を本願に参照により援用する。 This disclosure claims priority based on the Chinese utility model application whose application number is 202020444531.0 and whose filing date is March 31, 2020. is incorporated herein by reference.

本開示は、光通信の分野に関し、特に光信号減衰器及び光信号伝送システムに関する。 TECHNICAL FIELD The present disclosure relates to the field of optical communications, and more particularly to optical signal attenuators and optical signal transmission systems.

光信号減衰器は、光ファイバ通信システムの重要なコンポーネントの1つであり、主に光信号を低減又は制御し、異なる通信チャネル間の電力バランスを実現するために使用される。光信号伝送システムでは、各光デバイスの光学特性が温度の変化に応じて変化するため、温度の変化に応じて光信号減衰器の減衰強度を調整する必要がある。ここで、光信号減衰器の減衰強度とは、光信号減衰器を通過する前の信号と光信号減衰器を通過した後の光信号の強度との差を意味する。 Optical signal attenuator is one of the important components of optical fiber communication systems, and is mainly used to reduce or control optical signals and realize power balance between different communication channels. In an optical signal transmission system, the optical characteristics of each optical device change in response to changes in temperature, so it is necessary to adjust the attenuation strength of an optical signal attenuator in accordance with changes in temperature. Here, the attenuation intensity of the optical signal attenuator means the difference in intensity between the signal before passing through the optical signal attenuator and the intensity of the optical signal after passing through the optical signal attenuator.

関連する光信号減衰器は温度センサー及びアクチュエータにより光信号減衰器の減衰強度の調整を実現し、このような光信号減衰器は外部エネルギーを消費する必要がある。 The related optical signal attenuator realizes the adjustment of the attenuation strength of the optical signal attenuator by a temperature sensor and an actuator, and such an optical signal attenuator needs to consume external energy.

本開示は、外部エネルギーを消費することなく、温度の変化に応じて光信号減衰器の減衰強度を自動的に調整することができる、光信号減衰器及び光信号伝送システムを提供する。 The present disclosure provides an optical signal attenuator and an optical signal transmission system that can automatically adjust the attenuation strength of the optical signal attenuator in response to changes in temperature without consuming external energy.

本開示の実施例は、収容空間が設けられた光信号通路と、少なくとも一部が前記収容空間に位置し、前記光信号通路における光信号の一部を吸収する減衰素子と、前記減衰素子に接続され、前記減衰素子を変位させるように温度に応じて変形可能な変形素子と、を含み、前記減衰素子の変位方向と前記光信号通路の延在方向とは、所定の角度をなす、光信号減衰器を提供する。 An embodiment of the present disclosure includes an optical signal path provided with an accommodation space, an attenuation element that is at least partially located in the accommodation space and absorbs a part of the optical signal in the optical signal path, and an attenuation element that absorbs a part of the optical signal in the optical signal path. a deformable element connected to the attenuator and deformable according to temperature so as to displace the attenuator, the displacement direction of the attenuator and the extending direction of the optical signal path forming a predetermined angle; Provide a signal attenuator.

また、前記光信号減衰器は、固定部材をさらに含み、前記変形素子の延在方向に沿って、前記変形素子の一端が前記固定部材に固定的に接続され、前記変形素子の他端が前記減衰素子に接続され、前記変形素子の延在方向と前記光信号通路の延在方向とは、前記所定の角度をなす。 The optical signal attenuator further includes a fixing member, one end of the deformable element is fixedly connected to the fixing member along the extending direction of the deformable element, and the other end of the deformable element is connected to the fixed member. It is connected to an attenuation element, and the extending direction of the deformable element and the extending direction of the optical signal path form the predetermined angle.

また、前記光信号減衰器は、固定部材と、前記固定部材に接続され、且つ前記変形素子に接続された第1の接続部材と、前記固定部材に接続され、且つ前記変形素子に接続された第2の接続部材と、さらに含み、前記第1の接続部材及び前記第2の接続部材は、前記変形素子の延在方向に沿って設けられ、前記変形素子と前記減衰素子とが接続されている位置は、前記第1の接続部材と前記第2の接続部材との間に位置する。 Further, the optical signal attenuator includes a fixed member, a first connecting member connected to the fixed member and connected to the deformable element, and a first connecting member connected to the fixed member and connected to the deformable element. further comprising a second connection member, the first connection member and the second connection member are provided along the extending direction of the deformation element, and the deformation element and the damping element are connected. The position is located between the first connecting member and the second connecting member.

また、前記変形素子の延在方向に沿って、前記第1の接続部材と前記第2の接続部材とは、所定の距離だけ離れている。 Further, the first connecting member and the second connecting member are separated by a predetermined distance along the extending direction of the deformable element.

また、前記第1の接続部材と前記第2の接続部材との距離は、最小間隔以上であり、前記最小間隔は、 Further, the distance between the first connection member and the second connection member is greater than or equal to a minimum distance, and the minimum distance is

Figure 0007361206000001
であり、ここで、Lminは前記最小間隔であり、Eは前記変形素子の弾性率であり、Iは前記変形素子の慣性モーメントであり、Pminは最小圧縮応力であり、前記最小圧縮応力は、前記変形素子を湾曲させることができる圧縮応力の最小値である。
Figure 0007361206000001
, where L min is the minimum spacing, E is the elastic modulus of the deformation element, I is the moment of inertia of the deformation element, P min is the minimum compressive stress, and the minimum compressive stress is is the minimum value of the compressive stress that can cause the deformable element to curve.

また、前記変形素子は、前記減衰素子に接続され、且つ前記第1の接続部材及び前記第2の接続部材を介して前記固定部材に接続された第1の金属シートと、前記第1の金属シートに接続され、且つ熱膨張係数が前記第1の金属シートの熱膨張係数とは異なる第2の金属シートと、を含む。 Further, the deformation element includes a first metal sheet connected to the damping element and connected to the fixing member via the first connection member and the second connection member, and the first metal sheet. a second metal sheet connected to the sheet and having a coefficient of thermal expansion different from that of the first metal sheet.

また、前記光信号減衰器は、係止素子をさらに含み、前記第1の接続部材は、前記固定部材とスライド可能に接続され、且つ前記変形素子とスライド可能に接続され、前記第1の接続部材は、前記第1の接続部材と前記変形素子との相対移動及び前記第1の接続部材と前記固定部材との相対移動を制限するように、前記係止素子と取り外し可能に接続され、且つ/或いは、前記第2の接続部材は、前記固定部材とスライド可能に接続され、且つ前記変形素子とスライド可能に接続され、前記第1の接続部材は、前記第1の接続部材と前記変形素子との相対移動及び前記第1の接続部材と前記固定部材との相対移動を制限するように、前記係止素子と取り外し可能に接続されている。 The optical signal attenuator further includes a locking element, and the first connection member is slidably connected to the fixed member and slidably connected to the deformable element, and the first connection member is slidably connected to the fixed member and the deformable element. a member is removably connected to the locking element so as to limit relative movement between the first connection member and the deformation element and between the first connection member and the fixed member; /Or, the second connecting member is slidably connected to the fixing member and slidably connected to the deformable element, and the first connecting member is connected to the first connecting member and the deformable element. The locking element is removably connected to the locking element so as to limit relative movement between the locking element and the first connecting member and between the first connecting member and the fixing member.

また、前記光信号減衰器は、前記変形素子及び前記減衰素子に接続された取り付け基台、をさらに含む。 Moreover, the optical signal attenuator further includes a mounting base connected to the deformation element and the attenuation element.

また、前記光信号通路は、前記減衰素子の一方側に位置する第1のコリメータと、前記減衰素子の他方側に位置する第2のコリメータと、を含み、前記第1のコリメータと前記第2のコリメータとの間には、前記収容空間が形成される。 Further, the optical signal path includes a first collimator located on one side of the attenuation element and a second collimator located on the other side of the attenuation element, and the first collimator and the second collimator are located on the other side of the attenuation element. The accommodation space is formed between the collimator and the collimator.

また、前記第1のコリメータの端部及び前記第2のコリメータの端部には、反射防止膜が設けれている。 Further, an antireflection film is provided at the end of the first collimator and the end of the second collimator.

本開示の実施例は、第1の信号出力端及び第2の信号出力端が設けられた光スプリッタと、前記第1の信号出力端に接続された第1の光ファイバと、前記第2の信号出力端に接続された第2の光ファイバと、前記第1の光ファイバ又は前記第2の光ファイバに設けられた、上記の光信号減衰器と、を含む、光信号伝送システムをさらに提供する。 An embodiment of the present disclosure includes an optical splitter provided with a first signal output end and a second signal output end, a first optical fiber connected to the first signal output end, and a second optical fiber connected to the first signal output end. Further provided is an optical signal transmission system comprising: a second optical fiber connected to a signal output end; and the above-mentioned optical signal attenuator provided on the first optical fiber or the second optical fiber. do.

本開示の実施例は、上記の実施例に記載の光信号伝送システムに適用される、光信号伝送システムの故障検出方法であって、前記光信号減衰器を測定し、前記光信号減衰器の減衰強度と温度との対応関係を取得するステップと、環境温度を取得し、前記光信号減衰器の減衰強度と温度との対応関係に基づいて理論減衰強度を取得するステップと、前記第1の光ファイバにおける前記光信号減衰器により減衰されていない光信号の強度と前記第2の光ファイバにおける前記光信号減衰器により減衰された光信号の強度とを減算し、前記光信号減衰器の実際減衰強度を取得するステップと、前記理論減衰強度と前記実際減衰強度との差の絶対値が予定閾値よりも小さい場合、前記光信号伝送システムに故障がないと決定し、前記理論減衰強度と前記実際減衰強度との差の絶対値が予定閾値よりも大きい場合、前記光信号伝送システムに故障があると決定するステップと、を含む、故障検出方法をさらに提供する。 An embodiment of the present disclosure is a failure detection method for an optical signal transmission system, which is applied to the optical signal transmission system described in the above embodiments, and includes: measuring the optical signal attenuator; a step of obtaining a correspondence relationship between the attenuation intensity and the temperature; a step of obtaining an environmental temperature and obtaining a theoretical attenuation intensity based on the correspondence relationship between the attenuation intensity of the optical signal attenuator and the temperature; The intensity of the optical signal not attenuated by the optical signal attenuator in the optical fiber is subtracted from the intensity of the optical signal attenuated by the optical signal attenuator in the second optical fiber, and the actual intensity of the optical signal attenuator is obtaining an attenuation intensity; and if the absolute value of the difference between the theoretical attenuation intensity and the actual attenuation intensity is smaller than a predetermined threshold, determining that there is no failure in the optical signal transmission system; A fault detection method is further provided, comprising determining that there is a fault in the optical signal transmission system if the absolute value of the difference from the actual attenuation strength is greater than a predetermined threshold.

本開示の実施例は、上記の実施例に記載の光信号伝送システムに適用される、環境温度の検出方法であって、前記光信号減衰器を測定し、前記光信号減衰器の減衰強度と温度との対応関係を取得するステップと、前記第1の光ファイバにおける前記光信号減衰器により減衰されていない光信号の強度と前記第2の光ファイバにおける前記光信号減衰器により減衰された光信号の強度とを減算し、前記光信号減衰器の減衰強度を取得するステップと、前記減衰強度及び前記光信号減衰器の減衰強度と温度との対応関係に基づいて、環境温度を取得するステップと、を含む、環境温度の検出方法をさらに提供する。 An embodiment of the present disclosure is an environmental temperature detection method applied to the optical signal transmission system described in the above embodiments, the method comprising measuring the optical signal attenuator and determining the attenuation intensity of the optical signal attenuator. obtaining a correspondence relationship with temperature, and the intensity of the optical signal not attenuated by the optical signal attenuator in the first optical fiber and the light attenuated by the optical signal attenuator in the second optical fiber; obtaining the attenuation intensity of the optical signal attenuator by subtracting the signal intensity; and obtaining the environmental temperature based on the attenuation intensity and the correspondence relationship between the attenuation intensity of the optical signal attenuator and temperature. The present invention further provides a method for detecting an environmental temperature.

本開示の実施例に係る光信号減衰器は、収容空間が設けられた光信号通路と、一部が光信号通路に位置する減衰素子と、減衰素子に接続された変形素子と、を含み、温度が変化する際に変形素子が減衰素子を変位させ、光信号通路の横断面に占める減衰素子の面積を変更することで、光信号全体に占める減衰光信号の割合を変更し、光信号減衰器の減衰強度を調整する。即ち、本開示の実施例は、温度が変化する際に光信号減衰器の変形素子により生成された運動エネルギーを利用することで、外部エネルギーを消費することなく、温度の変化に応じて光信号減衰器の減衰強度を自動的に調整する。 An optical signal attenuator according to an embodiment of the present disclosure includes an optical signal path provided with an accommodation space, an attenuation element partially located in the optical signal path, and a deformable element connected to the attenuation element, The deformable element displaces the attenuation element when the temperature changes, and by changing the area of the attenuation element in the cross section of the optical signal path, the proportion of the attenuated optical signal in the total optical signal is changed, and the optical signal is attenuated. Adjust the attenuation strength of the device. That is, embodiments of the present disclosure utilize the kinetic energy generated by the deformable element of the optical signal attenuator when the temperature changes, thereby adjusting the optical signal in response to the temperature change without consuming external energy. Automatically adjust the attenuation strength of the attenuator.

本開示の実施例に係る光信号減衰器の構成の概略図である。1 is a schematic diagram of a configuration of an optical signal attenuator according to an embodiment of the present disclosure. 本開示の実施例に係る他の光信号減衰器の構成の概略図である。FIG. 3 is a schematic diagram of the configuration of another optical signal attenuator according to an embodiment of the present disclosure. 本開示の実施例に係る他の光信号減衰器の構成の概略図である。FIG. 3 is a schematic diagram of the configuration of another optical signal attenuator according to an embodiment of the present disclosure. 本開示の実施例に係る他の光信号減衰器の構成の概略図である。FIG. 3 is a schematic diagram of the configuration of another optical signal attenuator according to an embodiment of the present disclosure. 本開示の実施例に係る光信号減衰器における第1のタイプの係止素子の構成の概略図である。FIG. 3 is a schematic diagram of a configuration of a first type of locking element in an optical signal attenuator according to an embodiment of the present disclosure. 本開示の実施例に係る光信号減衰器における第2のタイプの係止素子の構成の概略図である。FIG. 3 is a schematic diagram of a configuration of a second type of locking element in an optical signal attenuator according to an embodiment of the present disclosure. 本開示の実施例に係る光信号減衰器における取り付け基台、変形素子及び減衰素子の組み立ての概略図である。FIG. 2 is a schematic diagram of an assembly of a mounting base, a deformation element, and an attenuation element in an optical signal attenuator according to an embodiment of the present disclosure. 本開示の実施例に係る光信号減衰器における第1のコリメータ、第2のコリメータ及び減衰素子の組み立ての概略図である。FIG. 2 is a schematic diagram of an assembly of a first collimator, a second collimator, and an attenuation element in an optical signal attenuator according to an embodiment of the present disclosure. 本開示の実施例に係る光信号伝送システムの構成の概略図である。1 is a schematic diagram of a configuration of an optical signal transmission system according to an embodiment of the present disclosure. 本開示の実施例に係る光信号伝送システムにおける光信号減衰器の減衰強度と温度との対応関係を示す図である。FIG. 3 is a diagram showing a correspondence relationship between attenuation strength of an optical signal attenuator and temperature in an optical signal transmission system according to an example of the present disclosure.

具体的な実施形態で説明される各実施例における各具体的な技術的特徴は、矛盾がない限り、様々な方法で組み合わせてもよく、例えば、様々な具体的な技術的特徴を組み合わせて様々な実施形態を形成してもよい。不要な繰り返しを避けるために、本開示では、各具体的な技術的特徴の様々な組み合わせ方法の説明を省略する。 Each specific technical feature in each example described in the specific embodiment may be combined in various ways unless there is a contradiction, for example, various specific technical features may be combined in various ways. Other embodiments may also be formed. To avoid unnecessary repetition, this disclosure omits descriptions of various combinations of each specific technical feature.

以下の具体的な実施形態では、光信号減衰器は、任意の光ファイバ伝送システムに適用されてもよい。例えば、該光信号減衰器は、ネットワーク光信号伝送システムに適用されてもよいし、短距離の制御システムの光信号伝送に適用されてもよい。 In the specific embodiments below, the optical signal attenuator may be applied to any optical fiber transmission system. For example, the optical signal attenuator may be applied to a network optical signal transmission system, or may be applied to optical signal transmission of a short-range control system.

図1に示すように、該光信号減衰器は、光信号通路10、減衰素子20及び変形素子30を含む。光信号通路10は、光信号を伝送するために使用され、光信号通路10は、光信号を伝送可能な任意の素子であってもよい。例えば光ファイバであってもよく、光信号は光ファイバで伝送されてもよい。光信号通路10は、例えば光信号送信機及び光信号受信機を含む光信号通路であってもよく、光信号は光信号送信機から送信され、光信号受信機により受信されてもよい。光信号通路10には、収容空間11が設けられ、収容空間11は、減衰素子20を収容するために使用され、即ち、減衰素子20は、収容空間11を通って光信号通路内に入る。光信号通路10の形態によっては、収容空間11の形態も異なる。例えば、光信号通路10は伝送光ファイバであり、該伝送光ファイバにはスロットが設けられ、これによって、収容空間11は伝送光ファイバ内に形成される。例えば、光信号通路が光信号送信機と光信号受信機を含む光信号通路である場合、光信号送信機と光信号受信機とは、所定の距離だけ離れており、光信号送信機と光信号受信機との間に収容空間11が形成されている。 As shown in FIG. 1, the optical signal attenuator includes an optical signal path 10, an attenuation element 20, and a deformation element 30. Optical signal path 10 is used to transmit optical signals, and optical signal path 10 may be any element capable of transmitting optical signals. For example, it may be an optical fiber, and the optical signal may be transmitted through the optical fiber. Optical signal path 10 may be an optical signal path including, for example, an optical signal transmitter and an optical signal receiver, and the optical signal may be transmitted from the optical signal transmitter and received by the optical signal receiver. The optical signal path 10 is provided with an accommodation space 11, which is used to accommodate the attenuation element 20, that is, the attenuation element 20 enters the optical signal path through the accommodation space 11. Depending on the form of the optical signal path 10, the form of the accommodation space 11 also differs. For example, the optical signal path 10 is a transmission optical fiber, and the transmission optical fiber is provided with a slot, so that the receiving space 11 is formed in the transmission optical fiber. For example, if the optical signal path is an optical signal path that includes an optical signal transmitter and an optical signal receiver, the optical signal transmitter and optical signal receiver are separated by a predetermined distance, and the optical signal transmitter and optical signal receiver are separated by a predetermined distance. A housing space 11 is formed between the signal receiver and the signal receiver.

減衰素子20は光信号を吸収可能な素子であってもよく、減衰素子20の少なくとも一部は収容空間11に位置し、即ち、減衰素子20の少なくとも一部は、光信号通路10に位置する。これによって、光信号通路10内の光信号を吸収し、その結果、光信号を減衰させる。具体的には、減衰素子20は、収容空間11の少なくとも一部を占める。光信号が収容空間11を通過する際に、光信号の少なくとも一部は、減衰素子20を通過する。この部分の光信号が減衰素子20を通過する際に、この部分の光信号の一部が減衰素子20により吸収されることによって、この部分の光信号の強度を低減させるため、減衰素子20を通過した後の光信号の強度を低減させる。好ましくは、減衰素子20は、光学的に研磨された中性吸収ガラスである。 The attenuation element 20 may be an element capable of absorbing optical signals, and at least a part of the attenuation element 20 is located in the accommodation space 11, that is, at least a part of the attenuation element 20 is located in the optical signal path 10. . This absorbs the optical signal in the optical signal path 10, thereby attenuating the optical signal. Specifically, the damping element 20 occupies at least a portion of the accommodation space 11 . When the optical signal passes through the accommodation space 11 , at least a portion of the optical signal passes through the attenuation element 20 . When the optical signal of this part passes through the attenuation element 20, a part of the optical signal of this part is absorbed by the attenuation element 20, thereby reducing the intensity of the optical signal of this part. Reduces the intensity of the optical signal after passing through it. Preferably, the damping element 20 is an optically polished neutral absorbing glass.

変形素子30は、温度に応じて変形可能な素子であり、即ち、変形素子30は、温度に敏感な素子である。変形素子30の所在する環境の温度が変化する状態では、変形素子30内で内部応力発生し、該内部応力の作用により変形する。変形素子30は、減衰素子20に接続されているため、変形素子30の所在する環境の温度が変化する状態では、変形素子30は、減衰素子20を変位させる。ここで、減衰素子20の変位方向と光信号通路10の延在方向とは、所定の角度をなす。なお、所定の角度は0度よりも大きく、即ち、減衰素子20の変位方向は、光信号通路10の延在方向と平行ではない。以下は、光信号減衰器の減衰強度を調整する原理を例示的に説明する。 The deformable element 30 is an element that can be deformed according to temperature, that is, the deformable element 30 is a temperature sensitive element. When the temperature of the environment in which the deformable element 30 is located changes, internal stress is generated within the deformable element 30, and the deformable element 30 deforms due to the action of the internal stress. Since the deformation element 30 is connected to the damping element 20, the deformation element 30 displaces the damping element 20 when the temperature of the environment in which the deformation element 30 is located changes. Here, the direction of displacement of the attenuation element 20 and the direction of extension of the optical signal path 10 form a predetermined angle. Note that the predetermined angle is greater than 0 degrees, that is, the displacement direction of the attenuation element 20 is not parallel to the extending direction of the optical signal path 10. Below, the principle of adjusting the attenuation strength of the optical signal attenuator will be exemplified.

説明の便宜上、光信号通路10の延在方向に垂直な断面を横断面と称する。減衰素子20は該横断面の少なくとも一部を占め、光信号が該横断面を通過する際に、光信号の少なくとも一部は減衰素子20を通過する。説明の便宜上、以下は、この部分の光信号を減衰光信号と称する。減衰光信号が減衰素子20を通過する際に、減衰素子20は、減衰光信号の一部を吸収し、その結果、減衰光信号の強度を低減させるため、光信号減衰器を通過する光信号の強度を低減させる。ここで、減衰素子20の該横断面に占める面積が大きいほど、光信号全体に対する減衰光信号の比率が大きくなり、光信号減衰器の減衰強度が強くなる。光信号減衰器の所在する環境の温度が変化する状態では、変形素子30が変形し、その結果、減衰素子20は、光信号通路10の延在方向に対して非平行に変位する。これによって、減衰素子20が横断面に占める面積が変化し、光信号全体に対する減衰光信号の比率を変更し、光信号減衰器の減衰強度を変更する、即ち、温度に応じて光信号減衰器の減衰強度を調整する。 For convenience of explanation, a cross section perpendicular to the extending direction of the optical signal path 10 will be referred to as a cross section. Attenuation element 20 occupies at least a portion of the cross-section, and at least a portion of the optical signal passes through attenuation element 20 as the optical signal passes through the cross-section. For convenience of explanation, this portion of the optical signal will hereinafter be referred to as an attenuated optical signal. When the attenuated optical signal passes through the attenuation element 20, the attenuation element 20 absorbs a portion of the attenuated optical signal, thereby reducing the intensity of the attenuated optical signal. reduce the strength of Here, the larger the area occupied by the attenuation element 20 in the cross section, the greater the ratio of the attenuated optical signal to the entire optical signal, and the stronger the attenuation intensity of the optical signal attenuator. When the temperature of the environment in which the optical signal attenuator is located changes, the deformation element 30 deforms, and as a result, the attenuation element 20 is displaced non-parallel to the direction in which the optical signal path 10 extends. This changes the area occupied by the attenuation element 20 in the cross section, changes the ratio of the attenuated optical signal to the entire optical signal, and changes the attenuation intensity of the optical signal attenuator. Adjust the attenuation strength.

本開示の実施例に係る光信号減衰器は、収容空間が設けられた光信号通路と、一部が光信号通路に位置する減衰素子と、減衰素子に接続された変形素子と、を含み、温度が変化する際に変形素子が減衰素子を変位させ、光信号通路の横断面に占める減衰素子の面積を変更することで、光信号全体に占める減衰光信号の割合を変更し、光信号減衰器の減衰強度を調整する。即ち、温度が変化する際に光信号減衰器の変形素子により生成された運動エネルギーを利用することで、外部エネルギーを消費することなく、温度の変化に応じて光信号減衰器の減衰強度を自動的に調整する。 An optical signal attenuator according to an embodiment of the present disclosure includes an optical signal path provided with an accommodation space, an attenuation element partially located in the optical signal path, and a deformable element connected to the attenuation element, The deformable element displaces the attenuation element when the temperature changes, and by changing the area of the attenuation element in the cross section of the optical signal path, the proportion of the attenuated optical signal in the total optical signal is changed, and the optical signal is attenuated. Adjust the attenuation strength of the device. In other words, by using the kinetic energy generated by the deformable element of the optical signal attenuator when the temperature changes, the attenuation strength of the optical signal attenuator can be automatically adjusted according to the temperature change without consuming external energy. Adjust accordingly.

幾つかの実施例では、図2に示すように、光信号減衰器は、固定部材40をさらに含む。変形素子30の延在方向(即ち、変形素子30の長手方向)に沿って、変形素子30の一端が固定部材40に固定的に接続され、変形素子30の他端が減衰素子20に接続されている。温度が変化する際に、変形素子30により、減衰素子20が変形素子30の延在方向に沿って移動する。ここで、変形素子30の延在方向と光信号通路10の延在方向とは、所定の角度をなし、即ち、変形素子30の延在方向は、光信号通路10の延在方向と垂直ではない。これによって、減衰素子20は、光信号通路10の延在方向と垂直ではない方向に沿って変位し、減衰素子20が光信号通路10の横断面に占める面積を変更するため、光信号減衰器の減衰強度を変更する。即ち、温度に応じて光信号減衰器の減衰強度を自動的に調整することができる。 In some embodiments, the optical signal attenuator further includes a fixed member 40, as shown in FIG. Along the extending direction of the deformation element 30 (i.e., the longitudinal direction of the deformation element 30), one end of the deformation element 30 is fixedly connected to the fixed member 40, and the other end of the deformation element 30 is connected to the damping element 20. ing. When the temperature changes, the deformable element 30 causes the damping element 20 to move along the direction in which the deformable element 30 extends. Here, the extending direction of the deformable element 30 and the extending direction of the optical signal path 10 form a predetermined angle, that is, the extending direction of the deformable element 30 is not perpendicular to the extending direction of the optical signal path 10. do not have. As a result, the attenuation element 20 is displaced along a direction that is not perpendicular to the extending direction of the optical signal path 10, and the area occupied by the attenuation element 20 in the cross section of the optical signal path 10 is changed. Change the attenuation strength of That is, the attenuation strength of the optical signal attenuator can be automatically adjusted depending on the temperature.

他の幾つかの実施例では、図3に示すように、光信号減衰器は、固定部材40、第1の接続部材50及び第2の接続部材60をさらに含む。第1の接続部材50は、固定部材40に接続され、且つ変形素子30に接続され、即ち、変形素子30は、第1の接続部材50を介して固定部材40に接続されている。第2の接続部材60は、固定部材40に接続され、変形素子30は接続され、即ち、変形素子30は、さらに第2の接続部材60を介して固定部材40に接続されている。第1の接続部材50及び第2の接続部材60は、変形素子30の延在方向に沿って設けられ、変形素子30と減衰素子20とが接続されている位置は、第1の接続部材50と第2の接続部材60との間に位置する。即ち、変形素子30の延在方向に沿って、減衰素子20は、第1の接続部材50と第2の接続部材60との間に位置する。温度が変化する際に、第1の接続部材50と第2の接続部材60との間に位置する変形素子30が湾曲し、減衰素子20が変位する。ここで、変形素子30が湾曲する際に、変形素子30と減衰素子20が接続されている位置の変位は、光信号通路10の延在方向に平行ではないため、減衰素子20は、光信号通路10の延在方向に非平行に変位し、減衰素子が光信号通路の横断面に示す面積を変化させ、光信号全体に占める減衰光信号の割合を変更し、光信号減衰器の減衰強度を調整する。 In some other embodiments, as shown in FIG. 3, the optical signal attenuator further includes a fixing member 40, a first connecting member 50, and a second connecting member 60. The first connecting member 50 is connected to the fixing member 40 and to the deformable element 30, that is, the deformable element 30 is connected to the fixing member 40 via the first connecting member 50. The second connecting member 60 is connected to the fixing member 40 and the deforming element 30 is connected, that is, the deforming element 30 is further connected to the fixing member 40 via the second connecting member 60 . The first connecting member 50 and the second connecting member 60 are provided along the extending direction of the deformable element 30, and the position where the deformable element 30 and the damping element 20 are connected is located at the first connecting member 50. and the second connecting member 60. That is, along the extending direction of the deformable element 30, the damping element 20 is located between the first connecting member 50 and the second connecting member 60. When the temperature changes, the deformation element 30 located between the first connecting member 50 and the second connecting member 60 bends and the damping element 20 is displaced. Here, when the deformation element 30 curves, the displacement of the position where the deformation element 30 and the attenuation element 20 are connected is not parallel to the extending direction of the optical signal path 10, so the attenuation element 20 Displaced non-parallel to the extending direction of the path 10, the attenuation element changes the area shown in the cross section of the optical signal path, changes the proportion of the attenuated optical signal to the entire optical signal, and changes the attenuation intensity of the optical signal attenuator. Adjust.

幾つかの実施例では、図3に示すように、変形素子30の延在方向に沿って、第1の接続部材50と第2の接続部材60とは、所定の距離だけ離れている。これによって、変形素子30は圧縮応力の作用により不安定な湾曲を生成することができるため、変形素子の湾曲により減衰素子20が変位し、光信号減衰器の減衰強度を調整する。第1の接続部材50と第2の接続部材60との間の最小間隔は、光信号減衰器の減衰強度の調整精度に基づいて決定される。具体的には、光信号減衰器の減衰強度の調整精度に基づいて、最小圧縮応力Pmin、即ち、変形素子30を湾曲させることができる圧縮応力の最小値を決定する。次に、以下の式に従って臨界圧縮応力を計算する。 In some embodiments, as shown in FIG. 3, the first connecting member 50 and the second connecting member 60 are separated by a predetermined distance along the extending direction of the deformable element 30. As a result, the deformable element 30 can generate an unstable curvature due to the action of the compressive stress, so the attenuation element 20 is displaced by the curvature of the deformable element, and the attenuation intensity of the optical signal attenuator is adjusted. The minimum distance between the first connection member 50 and the second connection member 60 is determined based on the adjustment accuracy of the attenuation strength of the optical signal attenuator. Specifically, the minimum compressive stress P min , that is, the minimum value of the compressive stress that can curve the deformable element 30 is determined based on the adjustment accuracy of the attenuation intensity of the optical signal attenuator. Next, calculate the critical compressive stress according to the following formula:

Figure 0007361206000002
式(1)において、Pcrは臨界圧縮応力であり、Eは変形素子30の弾性率であり、Iは変形素子30の慣性モーメントであり、Lは第1の接続部材50と第2の接続部材60との間の変形素子の長さ、即ち、変形素子30の延在方向の第1の接続部材50と第2の接続部材60との間隔である。臨界圧縮応力Pcrを最小圧縮応力Pinよりも小さくすることにより、変形素子30は、最小圧縮応力Pminの作用により湾曲することができる。
Figure 0007361206000002
In equation (1), P cr is the critical compressive stress, E is the elastic modulus of the deformation element 30, I is the moment of inertia of the deformation element 30, and L is the relationship between the first connection member 50 and the second connection. This is the length of the deformable element with respect to the member 60, that is, the distance between the first connecting member 50 and the second connecting member 60 in the extending direction of the deformable element 30. By making the critical compressive stress P cr smaller than the minimum compressive stress P in , the deformable element 30 can be bent under the action of the minimum compressive stress P min .

cr<Pmin (2)
式(1)を式(2)に代入すると、以下の式を得る。
P cr <P min (2)
Substituting equation (1) into equation (2) yields the following equation.

Figure 0007361206000003
式(3)によると、第1の接続部材50と第2の接続部材との間の最小間隔Lminを得ることができる。
Figure 0007361206000003
According to equation (3), the minimum distance L min between the first connecting member 50 and the second connecting member can be obtained.

Figure 0007361206000004
幾つかの実施例では、図4に示すように、変形素子30は、第1の金属シート31及び第2の金属シート32を含む。第1の金属シート31は、減衰素子20に接続され、且つ第1の接続部材50及び第2の接続部材60を介して固定部材40に接続されている。第2の金属シート32は、第1の金属シート31に接続され、第2の金属シート32の熱膨張係数は第1の金属シート31の熱膨張係数とは異なる。温度が変化する際に、第1の金属シート31による変形量と第2の金属シート32による変形量とが異なるため、変形素子30が湾曲する。具体的には、第1の金属シート31の熱膨張係数が第2の金属シート32の熱膨張係数よりも大きいことを一例にして、変形素子30と温度変化との関係を例示的に説明する。温度が上昇する状態では、第1の金属シート31の伸長量が第2の金属シート32の伸長量よりも大きく、変形素子30が第1の金属シート31側に湾曲する。温度が低下する状態では、第1の金属シート31の短縮量が第2の金属シート32の短縮量よりも大きく、変形素子30が第2の金属シート32側に湾曲する。
Figure 0007361206000004
In some embodiments, as shown in FIG. 4, deformation element 30 includes a first metal sheet 31 and a second metal sheet 32. The first metal sheet 31 is connected to the damping element 20 and to the fixing member 40 via a first connecting member 50 and a second connecting member 60 . A second metal sheet 32 is connected to the first metal sheet 31 , and the coefficient of thermal expansion of the second metal sheet 32 is different from that of the first metal sheet 31 . When the temperature changes, the amount of deformation caused by the first metal sheet 31 and the amount of deformation caused by the second metal sheet 32 are different, so the deformation element 30 curves. Specifically, the relationship between the deformable element 30 and temperature change will be exemplified by using as an example that the coefficient of thermal expansion of the first metal sheet 31 is larger than the coefficient of thermal expansion of the second metal sheet 32. . In a state where the temperature increases, the amount of elongation of the first metal sheet 31 is greater than the amount of elongation of the second metal sheet 32, and the deformable element 30 curves toward the first metal sheet 31. In a state where the temperature decreases, the amount of shortening of the first metal sheet 31 is greater than the amount of shortening of the second metal sheet 32, and the deformable element 30 curves toward the second metal sheet 32.

幾つかの実施例では、光信号減衰器は、係止素子をさらに含み、第1の接続部材50及び第2の接続部材60のうちの少なくとも1つは、可動部材、即ち、変形素子の延在方向に沿ってスライド可能な接続部材である。係止素子70は、可動部材と変形素子との相対移動を制限し、可動部材と固定部材との相対移動を制限するように、可動部材に取り外し可能に接続されている。以下は、第1の接続部材50を一例にして説明する。 In some embodiments, the optical signal attenuator further includes a locking element, and at least one of the first connecting member 50 and the second connecting member 60 is a movable member, i.e., an extension of the deformable element. It is a connecting member that is slidable along the direction of movement. The locking element 70 is removably connected to the movable member so as to limit relative movement between the movable member and the deformable element, and to limit relative movement between the movable member and the fixed member. The following will explain the first connection member 50 as an example.

図4に示すように、第1の接続部材50は、固定部材40とスライド可能に接続され、且つ変形素子30とスライド可能に接続されている。第1の接続部材50は、係止素子70と第1の接続部材50とが接続されている状態において、係止素子70により、第1の接続部材50と変形素子30との相対移動を制限し、第1の接続部材50と固定部材40との相対移動を制限するように、係止素子70と取り外し可能に接続されている。係止素子70を第1の接続部材50から取り外し、第1の接続部材50は、変形素子30の延在方向に沿ってスライドして、第1の接続部材50と第2の接続部材60との間隔を調整することができる。これによって、第1の接続部材50と第2の接続部材60との間の変形素子30の長さを調整して、変形素子30の変形量を調整し、光信号減衰器の減衰度を調整することができる。第1の接続部材50を変形素子30の延在方向に沿って所定位置にスライドさせた後、係止素子70と第1の接続部材50とを接続することによって、第1の接続部材50と変形素子30との間の相対移動を制限し、第1の接続部材50と固定部材40との間の相対移動を制限する。これによって、変形素子30を第1の接続部材50を介して固定部材40に固定して、変形素子30を湾曲させるように変形させることができる。係止素子70は、第1の接続部材50に取り外し可能に接続され、第1の接続部材50と変形素子との相対移動を制限し、第1の接続部材50と固定部材40との相対移動を制限することができる任意の構造である。以下は、図5及び図6を参照しながら係止素子70の構造を例示的に説明する。なお、係止素子70の構造は、以下に説明する2つの構造に限定されない。 As shown in FIG. 4, the first connecting member 50 is slidably connected to the fixing member 40 and slidably connected to the deformable element 30. The first connecting member 50 restricts relative movement between the first connecting member 50 and the deformable element 30 by the locking element 70 in a state where the locking element 70 and the first connecting member 50 are connected. However, it is removably connected to the locking element 70 so as to limit relative movement between the first connecting member 50 and the fixing member 40. The locking element 70 is removed from the first connecting member 50, and the first connecting member 50 slides along the extending direction of the deformable element 30 to connect the first connecting member 50 and the second connecting member 60. The interval can be adjusted. Thereby, the length of the deformable element 30 between the first connecting member 50 and the second connecting member 60 is adjusted, the amount of deformation of the deformable element 30 is adjusted, and the degree of attenuation of the optical signal attenuator is adjusted. can do. After sliding the first connecting member 50 to a predetermined position along the extending direction of the deformable element 30, the locking element 70 and the first connecting member 50 are connected. Relative movement between the deformable element 30 and the first connecting member 50 and the fixing member 40 is restricted. Thereby, the deformable element 30 can be fixed to the fixing member 40 via the first connecting member 50, and the deformable element 30 can be deformed to curve. The locking element 70 is removably connected to the first connecting member 50 and limits relative movement between the first connecting member 50 and the deformable element, and restricts relative movement between the first connecting member 50 and the fixing member 40. is any structure that can limit the The structure of the locking element 70 will be exemplarily described below with reference to FIGS. 5 and 6. Note that the structure of the locking element 70 is not limited to the two structures described below.

図5に示すように、第1のタイプの係止素子70Aは、スリーブ71A、及びスリーブ71Aの外面に取り付けられた基部72Aを含む。スリーブ71Aには変形溝73Aが設けられ、変形溝73Aの両側にはクランププレート74Aが設けられ、クランププレート74Aには係止穴75Aが設けられている。スリーブ71Aは変形素子の外側に設けられ、基部72Aの底面は固定部材40と接触する。スリーブ71Aの内縁のサイズが変形素子30の外縁のサイズよりも大きいため、第1のタイプの係止素子70Aは、変形素子の延在方向に沿ってスライドすることができる。係止素子を所望の位置に移動させた後、ボルトをクランププレートの係止穴を貫通し、ボルトの他方側にナットを取り付ける。ナットを締めてクランププレート74Aに押し付け力を付勢することで、変形溝73Aを変形させ、スリーブ71Aの内縁のサイズを小さくする。この際に、スリーブ71Aと変形素子30との間に摩擦力が発生する。該摩擦力は、第1のタイプの係止素子70Aと変形素子30との相対移動を制限することができる。それと共に、スリーブ71Aの変形により、基部72Aが固定部材40に押し付けられ、基部72Aと固定部材40との間にも摩擦力が発生する。該摩擦力は、第1のタイプの係止素子70Aと固定部材40との相対移動を制限することができる。 As shown in FIG. 5, the first type of locking element 70A includes a sleeve 71A and a base 72A attached to the outer surface of the sleeve 71A. The sleeve 71A is provided with a deformation groove 73A, a clamp plate 74A is provided on both sides of the deformation groove 73A, and a locking hole 75A is provided in the clamp plate 74A. The sleeve 71A is provided outside the deformable element, and the bottom surface of the base 72A contacts the fixing member 40. Since the size of the inner edge of the sleeve 71A is larger than the size of the outer edge of the deformation element 30, the first type of locking element 70A can slide along the direction of extension of the deformation element. After moving the locking element to the desired position, the bolt is passed through the locking hole in the clamp plate and a nut is installed on the other side of the bolt. By tightening the nut and applying a pressing force to the clamp plate 74A, the deformation groove 73A is deformed and the size of the inner edge of the sleeve 71A is reduced. At this time, a frictional force is generated between the sleeve 71A and the deformable element 30. The frictional force can limit the relative movement between the first type of locking element 70A and the deformation element 30. At the same time, due to the deformation of the sleeve 71A, the base 72A is pressed against the fixing member 40, and a frictional force is also generated between the base 72A and the fixing member 40. The frictional force can limit relative movement between the first type of locking element 70A and the fixing member 40.

図6に示すように、第2のタイプの係止素子70Bは、取り付けスリーブ71B及びベースプレート72Bを含み、取り付けスリーブ71Bは、ベースプレート72Bの外面に接続されている。取り付けスリーブ71Bには、ネジ穴73Bが設けられている。ベースプレート72Bの底面が固定部材40と接触しており、取り付けスリーブ71Bの内縁サイズが変形素子30の外縁サイズよりも大きいため、係止素子70Bは、変形素子の延在方向に沿ってスライドすることができる。係止素子を所望の位置に移動させた後、ボルトがネジ穴73Bを通過し、ボルトの他端が変形素子30に当接することによって、ボルトと変形素子30との間に摩擦力が発生し、該摩擦力は第2のタイプの係止素子70Bと変形素子30との相対移動を制限することができる。それと共に、ボルトと変形素子との間の正圧力の作用により、ベースプレート72Bが固定部材40に押し付けられ、ベースプレート72Bと固定部材40との間にも摩擦力が発生し、該摩擦力は、第2のタイプの係止素子70Bと固定部材40との相対移動を制限することができる。 As shown in FIG. 6, the second type of locking element 70B includes a mounting sleeve 71B and a base plate 72B, the mounting sleeve 71B being connected to the outer surface of the base plate 72B. The mounting sleeve 71B is provided with a screw hole 73B. Since the bottom surface of the base plate 72B is in contact with the fixing member 40 and the inner edge size of the mounting sleeve 71B is larger than the outer edge size of the deformation element 30, the locking element 70B cannot slide along the extending direction of the deformation element. I can do it. After the locking element is moved to the desired position, the bolt passes through the screw hole 73B and the other end of the bolt comes into contact with the deformation element 30, so that a frictional force is generated between the bolt and the deformation element 30. , the frictional force can limit the relative movement between the second type locking element 70B and the deformation element 30. At the same time, the base plate 72B is pressed against the fixing member 40 due to the positive pressure between the bolt and the deformation element, and a frictional force is also generated between the base plate 72B and the fixing member 40. Relative movement between the second type of locking element 70B and the fixing member 40 can be restricted.

幾つかの実施例では、図7に示すように、光信号減衰器は、変形素子30及び減衰素子20に接続された取り付け基台80をさらに含み、即ち、減衰素子20は取り付け基台80を介して変形素子30に接続されている。変形素子30は細長い素子であるため、減衰素子20と直接接続することは不便である。サイズがより大きな取り付け基台80を提供し、減衰素子20と変形素子30を取り付け基台80を介して接続することによって、減衰素子20と変形素子30とを確実に接続することができ、変形素子30の取り付けの難しさを軽減することができる。 In some embodiments, as shown in FIG. 7, the optical signal attenuator further includes a mounting base 80 connected to the deformation element 30 and the attenuation element 20, i.e., the attenuation element 20 It is connected to the deformation element 30 via the deformation element 30 . Since the deformation element 30 is an elongated element, it is inconvenient to connect it directly to the damping element 20. By providing the mounting base 80 with a larger size and connecting the damping element 20 and the deformable element 30 via the mounting base 80, the damping element 20 and the deformable element 30 can be reliably connected, and the deformation Difficulty in attaching the element 30 can be reduced.

幾つかの実施例では、図8に示すように、光信号通路10は、第1のコリメータ12及び第2のコリメータ13を含む。第1のコリメータ12は、減衰素子20の一方側に位置し、第2のコリメータ13は、減衰素子20の他方側に位置し、第1のコリメータ12と第2のコリメータ13との間には、減衰素子を収容するための収容空間11が形成されている。第1のコリメータ12及び第2のコリメータ13を設けることによって、非平行な入力光信号を平行な入力光信号に変換することができるため、光ファイバを設ける必要がなく、光信号の漏れを防止し、光信号通路10の光信号損失を低減させることができる。好ましくは、第1のコリメータ12の端部及び第2のコリメータ13の端部には、反射防止膜が設けれている。これによって、第1のコリメータ12及び第2のコリメータ13の光透過率を向上させ、光信号通路10の光信号損失をさらに低減させることができる。 In some embodiments, as shown in FIG. 8, optical signal path 10 includes a first collimator 12 and a second collimator 13. The first collimator 12 is located on one side of the damping element 20, the second collimator 13 is located on the other side of the damping element 20, and there is a space between the first collimator 12 and the second collimator 13. , an accommodation space 11 for accommodating a damping element is formed. By providing the first collimator 12 and the second collimator 13, non-parallel input optical signals can be converted into parallel input optical signals, so there is no need to provide an optical fiber and leakage of optical signals is prevented. However, optical signal loss in the optical signal path 10 can be reduced. Preferably, the ends of the first collimator 12 and the second collimator 13 are provided with antireflection coatings. Thereby, the light transmittance of the first collimator 12 and the second collimator 13 can be improved, and the optical signal loss in the optical signal path 10 can be further reduced.

図9に示すように、本開示の実施例は、光信号伝送システムをさらに提供する。該光信号伝送システムは、光スプリッタ1、第1の光ファイバ2、第2の光ファイバ3、及び上述した光信号減衰器4を含む。 As shown in FIG. 9, embodiments of the present disclosure further provide an optical signal transmission system. The optical signal transmission system includes an optical splitter 1, a first optical fiber 2, a second optical fiber 3, and the optical signal attenuator 4 described above.

光スプリッタ1には、第1の信号出力端1a及び第2の信号出力端1bが設けられており、入力された光信号を第1の信号出力端1a及び第2の信号出力端1bからそれぞれ出力することができる。第1の信号出力端1aにより出力された光信号の強度は、第2の信号出力端1bにより出力された光信号の強度に等しい。 The optical splitter 1 is provided with a first signal output end 1a and a second signal output end 1b, and receives the input optical signal from the first signal output end 1a and the second signal output end 1b, respectively. It can be output. The intensity of the optical signal output by the first signal output terminal 1a is equal to the intensity of the optical signal output by the second signal output terminal 1b.

第1の光ファイバ2は第1の信号出力端1aに接続され、第2の光ファイバ3は第2の信号出力端1bに接続され、光信号減衰器4は第1の光ファイバ2又は第2の光ファイバ3に設けられている。説明の便宜上、以下は、光信号減衰器4が第1の光ファイバに設けられることを一例にして説明する。 The first optical fiber 2 is connected to the first signal output end 1a, the second optical fiber 3 is connected to the second signal output end 1b, and the optical signal attenuator 4 is connected to the first optical fiber 2 or the first signal output end 1b. The optical fiber 3 of No. 2 is provided. For convenience of explanation, the following description will be based on an example in which the optical signal attenuator 4 is provided in the first optical fiber.

光信号減衰器4を測定することによって、光信号減衰器4の減衰強度と温度との対応関係を得ることができる。例えば、光信号減衰器4の減衰強度と温度との対応関係は図10に示されており、減衰強度と温度とは、実質的に正比例関係がある。 By measuring the optical signal attenuator 4, it is possible to obtain the correspondence between the attenuation intensity of the optical signal attenuator 4 and the temperature. For example, the correspondence relationship between the attenuation intensity of the optical signal attenuator 4 and the temperature is shown in FIG. 10, and the attenuation intensity and temperature have a substantially directly proportional relationship.

幾つかの実施例では、環境温度が既知である場合、光信号減衰器4の理論減衰強度を取得し、第1の光ファイバ2における光信号減衰器4により減衰されていない光信号の強度と第2の光ファイバ3における光信号減衰器4により減衰された光信号の強度とを減算し、光信号減衰器4の実際減衰強度を取得してもよい。理論減衰強度と実際減衰強度とを比較することによって、光信号伝送システムに故障があるか否かを決定することができる。具体的には、理論減衰強度と実際減衰強度との差の絶対値が予定閾値よりも小さい場合、光信号伝送システムに故障がないと決定し、理論減衰強度と実際減衰強度との差の絶対値が予定閾値よりも大きい場合、光信号伝送システムに故障があると決定する。 In some embodiments, when the environmental temperature is known, the theoretical attenuation strength of the optical signal attenuator 4 is obtained, and the strength of the optical signal not attenuated by the optical signal attenuator 4 in the first optical fiber 2 is calculated. The actual attenuation strength of the optical signal attenuator 4 may be obtained by subtracting the intensity of the optical signal attenuated by the optical signal attenuator 4 in the second optical fiber 3. By comparing the theoretical attenuation strength and the actual attenuation strength, it can be determined whether there is a fault in the optical signal transmission system. Specifically, if the absolute value of the difference between the theoretical attenuation strength and the actual attenuation strength is smaller than a predetermined threshold value, it is determined that there is no failure in the optical signal transmission system, and the absolute value of the difference between the theoretical attenuation strength and the actual attenuation strength is If the value is greater than a predetermined threshold, it is determined that there is a fault in the optical signal transmission system.

幾つかの実施例では、光信号伝送システムに故障がないと決定された場合、光信号減衰器4に基づいて環境の温度をさらに測定してもよい。具体的には、第1の光ファイバ2における光信号減衰器4により減衰されていない光信号の強度と第2の光ファイバ3における光信号減衰器4により減衰された光信号の強度とを減算し、光信号減衰器4の減衰強度を取得し、光信号減衰器4の減衰強度と温度との対応関係に基づいて、環境の温度を取得する。 In some embodiments, the temperature of the environment may be further measured based on the optical signal attenuator 4 if the optical signal transmission system is determined to be fault-free. Specifically, the intensity of the optical signal not attenuated by the optical signal attenuator 4 in the first optical fiber 2 and the intensity of the optical signal attenuated by the optical signal attenuator 4 in the second optical fiber 3 are subtracted. Then, the attenuation intensity of the optical signal attenuator 4 is obtained, and the temperature of the environment is obtained based on the correspondence between the attenuation intensity of the optical signal attenuator 4 and the temperature.

上記の説明は、単なる本開示の好ましい実施例であり、本開示の保護範囲を限定するものではない。
(産業上の利用可能性)
本開示の実施例に係る光信号減衰器は、収容空間が設けられた光信号通路と、一部が光信号通路に位置する減衰素子と、減衰素子に接続された変形素子と、を含み、温度が変化する際に変形素子が減衰素子を変位させ、光信号通路の横断面に占める減衰素子の面積を変更することで、光信号全体に占める減衰光信号の割合を変更し、光信号減衰器の減衰強度を調整する。即ち、本開示の実施例は、温度が変化する際に光信号減衰器の変形素子により生成された運動エネルギーを利用することで、外部エネルギーを消費することなく、温度の変化に応じて光信号減衰器の減衰強度を自動的に調整する。
The above descriptions are just preferred embodiments of the present disclosure and do not limit the protection scope of the present disclosure.
(Industrial applicability)
An optical signal attenuator according to an embodiment of the present disclosure includes an optical signal path provided with an accommodation space, an attenuation element partially located in the optical signal path, and a deformable element connected to the attenuation element, The deformable element displaces the attenuation element when the temperature changes, and by changing the area of the attenuation element in the cross section of the optical signal path, the proportion of the attenuated optical signal in the total optical signal is changed, and the optical signal is attenuated. Adjust the attenuation strength of the device. That is, embodiments of the present disclosure utilize the kinetic energy generated by the deformable element of the optical signal attenuator when the temperature changes, thereby adjusting the optical signal in response to the temperature change without consuming external energy. Automatically adjust the attenuation strength of the attenuator.

10-光信号通路、11-収容空間、12-第1のコリメータ、13-第2のコリメータ、20-減衰素子、30-変形素子、31-第1の金属シート、32-第2の金属シート、40-固定部材、50-第1の接続部材、60-第2の接続部材、70係止素子、70A-第1のタイプの係止素子、71A-スリーブ、72A-基部、73A-変形溝、74A-クランププレート、75A-係止穴、70B-第2のタイプの係止素子、71B-取り付けスリーブ、72B-ベースプレート、73B-ネジ穴、80-取り付け基台、1-光スプリッタ、1a-第1の信号出力端、1b-第2の信号出力端、2-第1のファイバ、3-第2のファイバ、4-光信号減衰器。 10-optical signal path, 11-accommodating space, 12-first collimator, 13-second collimator, 20-attenuation element, 30-deformation element, 31-first metal sheet, 32-second metal sheet , 40-fixing member, 50-first connecting member, 60-second connecting member, 70 locking element, 70A-locking element of the first type, 71A-sleeve, 72A-base, 73A-deformation groove , 74A-clamp plate, 75A-locking hole, 70B-second type locking element, 71B-mounting sleeve, 72B-base plate, 73B-screw hole, 80-mounting base, 1-light splitter, 1a- First signal output end, 1b-second signal output end, 2-first fiber, 3-second fiber, 4-optical signal attenuator.

Claims (10)

光信号伝送システムに適用される、光信号伝送システムの故障検出方法であって、
前記光信号伝送システムは、
第1の信号出力端及び第2の信号出力端が設けられた光スプリッタと、
前記第1の信号出力端に接続された第1の光ファイバと、
前記第2の信号出力端に接続された第2の光ファイバと、
前記第1の光ファイバ又は前記第2の光ファイバに設けられた光信号減衰器と、を含み、
前記光信号減衰器は、
収容空間が設けられた光信号通路と、
少なくとも一部が前記収容空間に位置し、前記光信号通路における光信号の一部を吸収する減衰素子と、
前記減衰素子に接続され、前記減衰素子を変位させるように温度に応じて変形可能な変形素子と、を含み、
前記減衰素子の変位方向と前記光信号通路の延在方向とは、所定の角度をな
前記故障検出方法は、
前記光信号減衰器を測定し、前記光信号減衰器の減衰強度と温度との対応関係を取得するステップと、
環境温度を取得し、前記光信号減衰器の減衰強度と温度との対応関係に基づいて理論減衰強度を取得するステップと、
前記第1の光ファイバにおける前記光信号減衰器により減衰されていない光信号の強度と前記第2の光ファイバにおける前記光信号減衰器により減衰された光信号の強度とを減算し、前記光信号減衰器の実際減衰強度を取得するステップと、
前記理論減衰強度と前記実際減衰強度との差の絶対値が予定閾値よりも小さい場合、前記光信号伝送システムに故障がないと決定し、前記理論減衰強度と前記実際減衰強度との差の絶対値が予定閾値よりも大きい場合、前記光信号伝送システムに故障があると決定するステップと、を含む、故障検出方法
A failure detection method for an optical signal transmission system, which is applied to an optical signal transmission system, the method comprising:
The optical signal transmission system includes:
an optical splitter provided with a first signal output end and a second signal output end;
a first optical fiber connected to the first signal output end;
a second optical fiber connected to the second signal output end;
an optical signal attenuator provided in the first optical fiber or the second optical fiber,
The optical signal attenuator is
an optical signal path provided with a storage space;
an attenuation element at least partially located in the accommodation space and absorbing a portion of the optical signal in the optical signal path;
a deformable element connected to the damping element and deformable according to temperature so as to displace the damping element,
The displacement direction of the attenuation element and the extending direction of the optical signal path form a predetermined angle,
The failure detection method includes:
measuring the optical signal attenuator and obtaining a correspondence between the attenuation intensity of the optical signal attenuator and temperature;
obtaining an environmental temperature and obtaining a theoretical attenuation intensity based on the correspondence between the attenuation intensity of the optical signal attenuator and the temperature;
Subtracting the intensity of the optical signal not attenuated by the optical signal attenuator in the first optical fiber and the intensity of the optical signal attenuated by the optical signal attenuator in the second optical fiber, obtaining the actual attenuation strength of the attenuator;
If the absolute value of the difference between the theoretical attenuation strength and the actual attenuation strength is smaller than a predetermined threshold, it is determined that there is no failure in the optical signal transmission system, and the absolute value of the difference between the theoretical attenuation strength and the actual attenuation strength is determining that there is a fault in the optical signal transmission system if the value is greater than a predetermined threshold .
前記光信号減衰器は、固定部材をさらに含み、
前記変形素子の延在方向に沿って、前記変形素子の一端が前記固定部材に固定的に接続され、前記変形素子の他端が前記減衰素子に接続され、
前記変形素子の延在方向と前記光信号通路の延在方向とは、前記所定の角度をなす、請求項1に記載の故障検出方法
The optical signal attenuator further includes a fixing member,
Along the extending direction of the deformation element, one end of the deformation element is fixedly connected to the fixing member, and the other end of the deformation element is connected to the damping element,
2. The failure detection method according to claim 1, wherein the extending direction of the deformable element and the extending direction of the optical signal path form the predetermined angle.
前記光信号減衰器は、
固定部材と、
前記固定部材に接続され、且つ前記変形素子に接続された第1の接続部材と、
前記固定部材に接続され、且つ前記変形素子に接続された第2の接続部材と、さらに含み、
前記第1の接続部材及び前記第2の接続部材は、前記変形素子の延在方向に沿って設けられ、
前記変形素子と前記減衰素子とが接続されている位置は、前記第1の接続部材と前記第2の接続部材との間に位置する、請求項1に記載の故障検出方法
The optical signal attenuator is
a fixed member;
a first connecting member connected to the fixed member and connected to the deformable element;
further comprising: a second connecting member connected to the fixing member and connected to the deformable element;
The first connecting member and the second connecting member are provided along the extending direction of the deformable element,
The failure detection method according to claim 1, wherein the position where the deformation element and the damping element are connected is located between the first connection member and the second connection member.
前記変形素子の延在方向に沿って、前記第1の接続部材と前記第2の接続部材とは、所定の距離だけ離れている、請求項3に記載の故障検出方法 The failure detection method according to claim 3, wherein the first connecting member and the second connecting member are separated by a predetermined distance along the extending direction of the deformable element. 前記第1の接続部材と前記第2の接続部材との距離は、最小間隔以上であり、
前記最小間隔は、
Figure 0007361206000005

であり、
ここで、Lminは前記最小間隔であり、Eは前記変形素子の弾性率であり、Iは前記変形素子の慣性モーメントであり、Pminは最小圧縮応力であり、前記最小圧縮応力は、前記変形素子を湾曲させることができる圧縮応力の最小値である、請求項4に記載の故障検出方法
The distance between the first connection member and the second connection member is greater than or equal to a minimum distance,
The minimum spacing is
Figure 0007361206000005

and
where L min is the minimum spacing, E is the elastic modulus of the deformation element, I is the moment of inertia of the deformation element, P min is the minimum compressive stress, and the minimum compressive stress is the 5. The failure detection method according to claim 4, which is the minimum value of compressive stress that can cause the deformable element to bend.
前記変形素子は、
前記減衰素子に接続され、且つ前記第1の接続部材及び前記第2の接続部材を介して前記固定部材に接続された第1の金属シートと、
前記第1の金属シートに接続され、且つ熱膨張係数が前記第1の金属シートの熱膨張係数とは異なる第2の金属シートと、を含む、請求項3に記載の故障検出方法
The deformable element is
a first metal sheet connected to the damping element and connected to the fixing member via the first connecting member and the second connecting member;
4. The failure detection method according to claim 3, further comprising: a second metal sheet connected to the first metal sheet and having a coefficient of thermal expansion different from that of the first metal sheet.
前記光信号減衰器は、係止素子をさらに含み、
前記第1の接続部材は、前記固定部材とスライド可能に接続され、且つ前記変形素子とスライド可能に接続され、前記第1の接続部材は、前記第1の接続部材と前記変形素子との相対移動及び前記第1の接続部材と前記固定部材との相対移動を制限するように、前記係止素子と取り外し可能に接続され、且つ/或いは、
前記第2の接続部材は、前記固定部材とスライド可能に接続され、且つ前記変形素子とスライド可能に接続され、前記第1の接続部材は、前記第1の接続部材と前記変形素子との相対移動及び前記第1の接続部材と前記固定部材との相対移動を制限するように、前記係止素子と取り外し可能に接続されている、請求項3に記載の故障検出方法
The optical signal attenuator further includes a locking element,
The first connecting member is slidably connected to the fixing member and slidably connected to the deformable element, and the first connecting member is configured to connect the first connecting member and the deformable element relative to each other. removably connected to the locking element so as to limit movement and relative movement between the first connecting member and the fixing member; and/or
The second connecting member is slidably connected to the fixing member and slidably connected to the deformable element, and the first connecting member is configured to connect the first connecting member to the deformable element. 4. The failure detection method according to claim 3, wherein the locking element is removably connected to limit movement and relative movement between the first connecting member and the fixing member.
前記光信号減衰器は、前記変形素子及び前記減衰素子に接続された取り付け基台、をさらに含む、請求項1に記載の故障検出方法 The failure detection method according to claim 1, wherein the optical signal attenuator further includes a mounting base connected to the deformation element and the attenuation element. 前記光信号通路は、
前記減衰素子の一方側に位置する第1のコリメータと、
前記減衰素子の他方側に位置する第2のコリメータと、を含み、
前記第1のコリメータと前記第2のコリメータとの間には、前記収容空間が形成される、請求項1に記載の故障検出方法
The optical signal path is
a first collimator located on one side of the attenuation element;
a second collimator located on the other side of the attenuation element;
The failure detection method according to claim 1, wherein the accommodation space is formed between the first collimator and the second collimator.
前記第1のコリメータの端部及び前記第2のコリメータの端部には、反射防止膜が設けれている、請求項9に記載の故障検出方法。 The failure detection method according to claim 9, wherein an antireflection film is provided at an end of the first collimator and an end of the second collimator.
JP2022513482A 2020-03-31 2020-12-10 Optical signal attenuator and optical signal transmission system Active JP7361206B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202020444531.0 2020-03-31
CN202020444531.0U CN211741626U (en) 2020-03-31 2020-03-31 Optical signal attenuator and optical signal transmission system
PCT/CN2020/135493 WO2021196720A1 (en) 2020-03-31 2020-12-10 Optical signal attenuator and optical signal transmission system

Publications (2)

Publication Number Publication Date
JP2022552600A JP2022552600A (en) 2022-12-19
JP7361206B2 true JP7361206B2 (en) 2023-10-13

Family

ID=72854507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022513482A Active JP7361206B2 (en) 2020-03-31 2020-12-10 Optical signal attenuator and optical signal transmission system

Country Status (3)

Country Link
JP (1) JP7361206B2 (en)
CN (1) CN211741626U (en)
WO (1) WO2021196720A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211741626U (en) * 2020-03-31 2020-10-23 武汉光迅科技股份有限公司 Optical signal attenuator and optical signal transmission system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001500989A (en) 1996-09-27 2001-01-23 シーメンス アクチエンゲゼルシヤフト Optical coupling device for coupling light between two waveguide end faces
JP2001125014A (en) 1999-09-27 2001-05-11 Jds Uniphase Inc Mems device attenuating light, variable light attenuating system, light attenuating method and manufacturing method of mems variable light attanuator.
JP2002169104A (en) 2000-12-01 2002-06-14 Sumitomo Electric Ind Ltd Optical device
US20020181928A1 (en) 2001-03-19 2002-12-05 Chen Jian J. High-resolution variable optical attenuator with mechanical adjustment
JP2003255238A (en) 2002-02-27 2003-09-10 Samsung Electro Mech Co Ltd Variable optical attenuator
JP2004191606A (en) 2002-12-11 2004-07-08 Hitachi Ltd Optical switch
JP2005010656A (en) 2003-06-20 2005-01-13 Nhk Spring Co Ltd Optical waveguide circuit with variable light-attenuation mechanism
JP2005227637A (en) 2004-02-16 2005-08-25 Citizen Watch Co Ltd Actuator device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742827A (en) * 1980-08-28 1982-03-10 Toshiba Corp Temperature-sensitive optical switch
JPS61252521A (en) * 1985-05-02 1986-11-10 Sony Corp Ultraviolet exposing device
CA2068926C (en) * 1991-09-03 1997-08-26 Cleo D. Anderson Optical line monitor
JPH10133157A (en) * 1996-10-31 1998-05-22 Ando Electric Co Ltd Variable light attenuator
US6130984A (en) * 1997-05-19 2000-10-10 E-Tek Dynamics, Inc. Miniature variable optical attenuator
CN101419313B (en) * 2008-10-31 2010-10-13 武汉光迅科技股份有限公司 Method for manufacturing afebrile array wave-guide grating based on flat-plate wave-guide movement
CN105929485A (en) * 2016-05-16 2016-09-07 中国电子科技集团公司第四十研究所 Linear-type continuous adjustable light decay device based on linear motor
CN110703384B (en) * 2019-10-09 2022-05-06 蚌埠学院 Data processing method of continuously adjustable optical attenuator
CN211741626U (en) * 2020-03-31 2020-10-23 武汉光迅科技股份有限公司 Optical signal attenuator and optical signal transmission system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001500989A (en) 1996-09-27 2001-01-23 シーメンス アクチエンゲゼルシヤフト Optical coupling device for coupling light between two waveguide end faces
JP2001125014A (en) 1999-09-27 2001-05-11 Jds Uniphase Inc Mems device attenuating light, variable light attenuating system, light attenuating method and manufacturing method of mems variable light attanuator.
JP2002169104A (en) 2000-12-01 2002-06-14 Sumitomo Electric Ind Ltd Optical device
US20020181928A1 (en) 2001-03-19 2002-12-05 Chen Jian J. High-resolution variable optical attenuator with mechanical adjustment
JP2003255238A (en) 2002-02-27 2003-09-10 Samsung Electro Mech Co Ltd Variable optical attenuator
JP2004191606A (en) 2002-12-11 2004-07-08 Hitachi Ltd Optical switch
JP2005010656A (en) 2003-06-20 2005-01-13 Nhk Spring Co Ltd Optical waveguide circuit with variable light-attenuation mechanism
JP2005227637A (en) 2004-02-16 2005-08-25 Citizen Watch Co Ltd Actuator device

Also Published As

Publication number Publication date
CN211741626U (en) 2020-10-23
JP2022552600A (en) 2022-12-19
WO2021196720A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US5745634A (en) Voltage controlled attenuator
JP7361206B2 (en) Optical signal attenuator and optical signal transmission system
US6901204B2 (en) Microelectromechanical system (MEMS) variable optical attenuator
US20130039619A1 (en) Grin-lensed, tuned wedge waveguide termination and method of reducing back reflection caused thereby
CN101133350A (en) Method and apparatus for extracting light from an optical waveguide
US6173106B1 (en) Fiber coupler variable optical attenuator
KR101209627B1 (en) Optical fiber sensor system using an optical spectrometer
US7366366B2 (en) FBG sensing system
CN105115533B (en) Fiber Bragg grating (FBG) demodulator calibration transferring part and calibration method
AU2015394911A1 (en) Optical sensor device, sensor apparatus and cable
JP5993339B2 (en) Signal light acquisition structure, signal light measurement device, and signal light acquisition method
EP3390964A1 (en) Surveying instrument with optical stage compensating for temperature variations
JPH0687018B2 (en) Optical fiber displacement detector
GB2190211A (en) Adjustable single-mode optical-fibre attenuator
US5661246A (en) Fiber optic displacement sensor for high temperature environment
EP1703307A1 (en) VIPA based chromatic dispersion and dispersion slope compensating apparatus
WO2021118065A1 (en) Spectral pressure measuring apparatus
CN116067298B (en) Optical fiber strain sensor structure
US6856729B2 (en) Wavelength monitor utilizing a tunable bragg grating and blazed grating
KR20040058478A (en) Mems variable optical attenuator
US6721099B2 (en) Variable dispersion compensator
CN204515188U (en) A kind of adjustable optical attenuator with wavelength dependent loss compensation
EP3745174A1 (en) Wavelength selective filter
US20030174948A1 (en) Large diameter optical waveguide having blazed grating therein
US6760110B2 (en) Low coherent reflectometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231002

R150 Certificate of patent or registration of utility model

Ref document number: 7361206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150