JP7360772B2 - Earthquake reinforcement structure - Google Patents

Earthquake reinforcement structure Download PDF

Info

Publication number
JP7360772B2
JP7360772B2 JP2019234126A JP2019234126A JP7360772B2 JP 7360772 B2 JP7360772 B2 JP 7360772B2 JP 2019234126 A JP2019234126 A JP 2019234126A JP 2019234126 A JP2019234126 A JP 2019234126A JP 7360772 B2 JP7360772 B2 JP 7360772B2
Authority
JP
Japan
Prior art keywords
reinforcing
column
reinforcement structure
seismic reinforcement
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019234126A
Other languages
Japanese (ja)
Other versions
JP2021102869A (en
Inventor
清志 池田
直昌 鴨川
賢一 川上
秀則 大竹
Original Assignee
株式会社長谷工コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社長谷工コーポレーション filed Critical 株式会社長谷工コーポレーション
Priority to JP2019234126A priority Critical patent/JP7360772B2/en
Publication of JP2021102869A publication Critical patent/JP2021102869A/en
Application granted granted Critical
Publication of JP7360772B2 publication Critical patent/JP7360772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、片持ちスラブを有する既設建物の耐震補強構造に関する。 The present invention relates to an earthquake-resistant reinforcement structure for an existing building having a cantilevered slab.

「スラブ」とは、鉄筋コンクリート造の上階住戸と下階住戸の間にある構造床又は屋根を意味する。また、「片持ちスラブ」とは、片持ち梁のようにスラブが外壁から張り出している部分を意味する。片持ちスラブは、集合住宅の共用廊下やバルコニーとして主に用いられる。 "Slab" means the structural floor or roof between the upper and lower floor dwelling units constructed of reinforced concrete. Furthermore, the term "cantilevered slab" refers to a portion of the slab that protrudes from the exterior wall like a cantilever beam. Cantilever slabs are mainly used for communal hallways and balconies in apartment buildings.

鉄筋コンクリート造(RC造)の既設建物を耐震補強する場合、既存の窓からの採光を確保することが強く要望される。この要望を満たす耐震補強構造は、例えば、特許文献1,2に開示されている。 When seismically reinforcing an existing reinforced concrete (RC) building, it is strongly desired to ensure daylight from the existing windows. Earthquake reinforcement structures that meet this demand are disclosed in Patent Documents 1 and 2, for example.

特許文献1の「既設建物の耐震補強構造」は、既設建物の外壁側に位置する柱体と梁体の外面に、柱体や梁体を構成するコンクリートの圧縮強度よりも高い圧縮強度を有するコンクリートで構成される補強体が固着されたものである。 The "seismic reinforcement structure for an existing building" in Patent Document 1 has a compressive strength on the outer surface of the columns and beams located on the outside wall side of the existing building that is higher than the compressive strength of the concrete that makes up the columns and beams. A reinforcement body made of concrete is fixed.

特許文献2の「補強構造物」は、補強柱部と補強梁部と補強交差部とを備える。補強柱部は、既設建物の外壁面側でかつ柱部に対応する位置に配置され、鉄筋が埋設されたコンクリート硬化体からなる。補強梁部は、既設建物の外壁面側でかつ梁部に対応する位置に配置され、鉄筋が埋設されたコンクリート硬化体からなる。補強交差部は、既設建物の外壁面側でかつ交差部に対応する位置に配置され、補強柱部の端部及び補強梁部の端部に接続され、鉄筋が埋設されたポリマーセメントモルタル硬化体からなる。 The "reinforced structure" of Patent Document 2 includes a reinforced column part, a reinforced beam part, and a reinforced intersection part. The reinforcing column section is arranged on the exterior wall side of the existing building at a position corresponding to the column section, and is made of a hardened concrete body with reinforcing bars embedded therein. The reinforcing beam section is arranged on the exterior wall side of the existing building at a position corresponding to the beam section, and is made of a hardened concrete body with reinforcing bars embedded therein. The reinforced intersection is placed on the exterior wall side of the existing building at a position corresponding to the intersection, is connected to the ends of the reinforcing columns and the ends of the reinforcing beams, and is made of hardened polymer cement mortar with embedded reinforcing bars. Consisting of

特開2008-50788号公報Japanese Patent Application Publication No. 2008-50788 特開2017-20332号公報JP 2017-20332 Publication

特許文献1の耐震補強構造の場合、既存の片持ちスラブ(共用廊下又はバルコニー)を撤去し、既存の梁とほぼ同じ梁せい(梁の高さ)の増設梁を設置する必要がある。そのため、既存の躯体自体の耐震性能が低下し、かつ居住者が許容できない騒音、振動、粉塵などが発生する。 In the case of the seismic reinforcement structure of Patent Document 1, it is necessary to remove the existing cantilevered slab (common hallway or balcony) and install an additional beam with approximately the same beam height (beam height) as the existing beam. As a result, the seismic performance of the existing building blocks themselves deteriorates, and noise, vibration, dust, etc. are generated that residents cannot tolerate.

これに対し、特許文献2の補強構造物の場合、既存の片持ちスラブを温存し、既存の躯体自体の耐震性能の低下を防止することができる。
しかし、補強柱部と補強梁部にコンクリート硬化体を用い、補強交差部にポリマーセメントモルタル硬化体を用いることから、コンクリートの二度打ちが必要となり、余分な工数と費用がかかり、かつ異なるコンクリートの接合部強度が不足するおそれがある。
On the other hand, in the case of the reinforced structure of Patent Document 2, the existing cantilevered slab can be preserved and the seismic performance of the existing frame itself can be prevented from deteriorating.
However, since hardened concrete is used for the reinforced columns and beams, and hardened polymer cement mortar is used for the reinforced intersections, it is necessary to pour concrete twice, which requires extra man-hours and costs, and a different type of concrete is used. There is a risk that the strength of the joint may be insufficient.

また、下層が鉄骨鉄筋コンクリート造(SRC造)、上層が鉄筋コンクリート造(RC造)の混合構造(以下、SRC/RC造)の場合、SRC造からRC造に切り替わる部分(中間層)のみの耐震性能が低いことが多い。
しかし、上述した特許文献1,2の補強構造の場合、上層部の鉛直軸力を基礎まで伝達するために、上層部から基礎まで補強構造物を増設する必要がある。そのため、下層部の補強及び基礎工事に余分な工数と費用がかかり、かつ下層部においても騒音、振動、粉塵などが発生する。
In addition, in the case of a mixed structure (hereinafter referred to as SRC/RC construction) where the lower layer is a steel-framed reinforced concrete structure (SRC structure) and the upper layer is a reinforced concrete structure (RC structure), the seismic performance of only the part (middle layer) where the SRC structure switches to the RC structure is often low.
However, in the case of the reinforcement structures of Patent Documents 1 and 2 mentioned above, in order to transmit the vertical axial force of the upper layer to the foundation, it is necessary to add a reinforcing structure from the upper layer to the foundation. Therefore, extra man-hours and costs are required for reinforcing the lower layer and foundation work, and noise, vibration, dust, etc. are also generated in the lower layer.

本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の第1の目的は、既存の片持ちスラブを温存し、かつコンクリートの二度打ちを回避して、既設建物を耐震補強することができる耐震補強構造を提供することにある。また第2の目的は、SRC造からRC造に切り替わる部分(中間層)のみの耐震性能が低いSRC/RC造の既設建物を、下層部の補強及び基礎工事を省略して耐震補強することができる耐震補強構造を提供することにある。 The present invention was devised to solve the above-mentioned problems. That is, a first object of the present invention is to provide an earthquake-resistance reinforcing structure that can seismically reinforce an existing building by preserving the existing cantilevered slab and avoiding double pouring of concrete. The second purpose is to seismically strengthen an existing SRC/RC building, which has low seismic performance only in the part where SRC construction is switched to RC construction (middle floor), by omitting reinforcement of the lower floors and foundation work. Our goal is to provide earthquake-resistant reinforcement structures that can be used.

本発明によれば、外壁面に沿って位置する柱部及び梁部と、前記柱部及び前記梁部で片持ち支持され外方に延びる片持ちスラブと、を有する既設建物の耐震補強構造であって、
前記柱部に対応する位置に配置された補強柱部と、
前記梁部に対応する位置に配置された補強梁部と、を備え、
前記補強柱部と前記補強梁部は、その交差部に互いに共有する張出接合部を有しており、
前記補強梁部は、矩形断面を有し、その高さが幅より小さい幅広扁平梁であり、下端が前記梁部の下端より上方に位置し、かつ前記片持ちスラブの下面に接して外方に水平に延び、
前記張出接合部は、前記柱部より幅が大きく、その幅端部近傍にヒンジ部を形成するヒンジリロケーション構造を有する、耐震補強構造が提供される。
According to the present invention, an earthquake-resistance reinforcing structure for an existing building includes a column and a beam located along an outer wall surface, and a cantilever slab that is cantilever-supported by the column and the beam and extends outward. There it is,
a reinforcing column portion disposed at a position corresponding to the column portion;
a reinforcing beam portion disposed at a position corresponding to the beam portion,
The reinforcing column part and the reinforcing beam part have a common overhang joint part at their intersection,
The reinforcing beam part is a wide flat beam having a rectangular cross section and a height smaller than the width, and the lower end is located above the lower end of the beam part, and is in contact with the lower surface of the cantilever slab and extends outward. extends horizontally to
The seismic reinforcement structure is provided, in which the overhang joint has a width larger than the column and has a hinge relocation structure in which a hinge is formed near the width end of the overhang joint.

上記本発明の構成によれば、補強柱部と補強梁部を備え、補強梁部は幅広扁平梁であり、補強梁部の下端が梁部の下端より上方に位置し、かつ片持ちスラブの下面に接して外方に水平に延びるので、既存の片持ちスラブを撤去せずに温存して耐震補強構造の耐震性能を高めることができる。 According to the above configuration of the present invention, the reinforcing column part and the reinforcing beam part are provided, the reinforcing beam part is a wide flat beam, the lower end of the reinforcing beam part is located above the lower end of the beam part, and the reinforcing beam part is a cantilever slab. Since it contacts the lower surface and extends outward horizontally, the existing cantilever slab can be preserved without being removed, thereby increasing the seismic performance of the seismically reinforced structure.

さらに、補強柱部と補強梁部が、その交差部に互いに共有する張出接合部を有しており、張出接合部が、既設建物の柱部より幅が大きく、その幅端部近傍にヒンジ部を形成するヒンジリロケーション構造を有する。これにより、補強梁部のスパン長さを既設建物の梁部よりも実質的に短くでき、耐震補強構造の耐震性能をさらに高めることができる。 Furthermore, the reinforcing column and the reinforcing beam have a common overhanging joint at their intersection, and the overhanging joint is wider than the pillar of the existing building and is located near the width end. It has a hinge relocation structure that forms a hinge part. As a result, the span length of the reinforcing beam can be made substantially shorter than that of the existing building, and the seismic performance of the seismically reinforced structure can be further improved.

また、上述した耐震補強構造は、全体として同一のコンクリートを用いることができる。
従って、ヒンジリロケーション構造により、コンクリートの二度打ちを回避して、既設建物を耐震補強することができる。
Moreover, the same concrete can be used as a whole for the seismic reinforcement structure mentioned above.
Therefore, by using the hinge relocation structure, it is possible to avoid double pouring of concrete and to strengthen earthquake resistance of an existing building.

片持ちスラブを有する既設建物の正面図である。FIG. 2 is a front view of an existing building with a cantilevered slab. 図1AのA-A矢視図である。FIG. 1A is a view taken along the line AA in FIG. 1A. 図1AのB-B矢視図である。FIG. 1A is a view taken along the line BB in FIG. 1A. 図1AのC部拡大図である。FIG. 1B is an enlarged view of section C in FIG. 1A. 図2AのD-D断面図である。FIG. 2A is a sectional view taken along line DD in FIG. 2A. 図2AのE-E断面図である。FIG. 2A is a sectional view taken along line EE in FIG. 2A. 図2AのF-F矢視図である。FIG. 2B is a view taken along the line FF in FIG. 2A. 鉛直柱部、補強梁部、及び補強中間柱の断面図である。It is a sectional view of a vertical column part, a reinforcement beam part, and a reinforcement intermediate column. 図2AのA部説明図である。FIG. 2A is an explanatory diagram of part A in FIG. 2A. 図2AのB部説明図である。FIG. 2B is an explanatory diagram of part B in FIG. 2A. 図2AのC部説明図である。FIG. 2B is an explanatory diagram of the C section in FIG. 2A. 図2Aに相当する部分のアンカー図である。FIG. 2B is an anchor diagram of a portion corresponding to FIG. 2A. 図5AのB-B断面図である。FIG. 5A is a sectional view taken along line BB in FIG. 5A. 柱と梁のアンカー図である。It is an anchor diagram of columns and beams. 補強梁部の第2実施形態を示す図である。It is a figure which shows 2nd Embodiment of a reinforcement beam part. 補強中間柱の第2実施形態を示す図である。It is a figure which shows 2nd Embodiment of a reinforcement intermediate column.

以下、本発明の好ましい実施形態を添付図面に基づいて詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail based on the accompanying drawings. Note that common parts in each figure are given the same reference numerals, and redundant explanation will be omitted.

図1Aは既設建物1の正面図、図1Bは図1AのA-A矢視図、図1Cは図1AのB-B矢視図である。
この例で既設建物1は、9階建の集合住宅(例えばマンション)であり、外壁面2に沿って位置する柱部3及び梁部4と、柱部3及び梁部4で片持ち支持され外方に延びる片持ちスラブ5とを有する。片持ちスラブ5は、共用廊下又はバルコニーである。
1A is a front view of the existing building 1, FIG. 1B is a view taken along the line AA in FIG. 1A, and FIG. 1C is a view taken along the line BB in FIG. 1A.
In this example, the existing building 1 is a nine-story apartment complex (for example, a condominium), and is supported cantilevered by columns 3 and beams 4 located along the outer wall surface 2. and an outwardly extending cantilevered slab 5. The cantilevered slab 5 is a common hallway or balcony.

柱部3の水平断面形状は、例えば幅が外壁面2において900mm、厚さが650mmの矩形形状である。また、梁部4の鉛直断面形状は、例えば高さが700mm、厚さが450mmの矩形形状である。さらに片持ちスラブ5の鉛直断面形状は、例えば最大高さが230mm、奥行き方向(Y方向)の幅は1400mmの平板形状である。また、片持ちスラブ5は梁部4の上端部と柱部3に連続して片持ち支持されている。 The horizontal cross-sectional shape of the pillar portion 3 is, for example, a rectangular shape with a width of 900 mm on the outer wall surface 2 and a thickness of 650 mm. Further, the vertical cross-sectional shape of the beam portion 4 is, for example, a rectangular shape with a height of 700 mm and a thickness of 450 mm. Further, the vertical cross-sectional shape of the cantilevered slab 5 is, for example, a flat plate shape with a maximum height of 230 mm and a width in the depth direction (Y direction) of 1400 mm. Further, the cantilever slab 5 is supported in a continuous cantilever manner by the upper end portion of the beam portion 4 and the column portion 3.

さらに、既設建物1は、床スラブ6、及び窓7を有する。
床スラブ6は、鉄筋コンクリート造の上階住戸と下階住戸の間にある構造床である。また、窓7は、集合住宅の各居室の壁に設けられた採光窓である。
既設建物1は、さらに、左右に隣接する1対の柱部3の間に、上下に隣接する1対の梁部4を鉛直に接続する中間壁8を有する。中間壁8は、柱部3から独立した固定壁である。
Furthermore, the existing building 1 has a floor slab 6 and windows 7.
The floor slab 6 is a structural floor made of reinforced concrete and located between the upper and lower floor dwelling units. Further, the window 7 is a lighting window provided on the wall of each living room of the apartment complex.
The existing building 1 further includes an intermediate wall 8 that vertically connects a pair of vertically adjacent beam portions 4 between a pair of horizontally adjacent pillar portions 3. The intermediate wall 8 is a fixed wall independent from the column part 3.

図1Cにおいて、5つの居室が隣接する水平方向をX方向、各居室のX方向に直交する水平方向(奥行き方向)をY方向とする。
また、この図において、5つの居室を仕切る壁位置Xを左側から順に壁位置X1,X2,X3,X4,X5,X6とする。この例で壁位置X1、X6は壁の外面位置であり、壁位置X2,X3,X4,X5は壁の中心位置である。隣接する壁位置Xの間隔(X方向間隔)は、例えば、5mから7mである。
また、この図において、正面側の外壁の面位置Yを面位置Y1、背面側の外壁の面位置Yを面位置Y2とする。なお、既設建物1の正面と背面は逆であってもよい。
In FIG. 1C, the horizontal direction in which five living rooms are adjacent to each other is the X direction, and the horizontal direction (depth direction) perpendicular to the X direction of each living room is the Y direction.
Further, in this figure, the wall positions X that partition five living rooms are taken as wall positions X1, X2, X3, X4, X5, and X6 in order from the left side. In this example, wall positions X1 and X6 are the outer surface positions of the wall, and wall positions X2, X3, X4, and X5 are the center positions of the wall. The interval between adjacent wall positions X (interval in the X direction) is, for example, 5 m to 7 m.
In this figure, the surface position Y of the outer wall on the front side is surface position Y1, and the surface position Y of the outer wall on the rear side is surface position Y2. Note that the front and back sides of the existing building 1 may be reversed.

図1Aと図1Bにおいて、既設建物1は、下層がSRC造、上層がRC造であるSRC/RC造である。下層はこの例では1階から5階(5FLと6FLの中間)まで、下層はこの例では5階(5FLと6FLの中間)から屋上までである。なお、FLとは床位置を意味する。
また図1Aと図1Bにおいて、下層は、SRC造を構成する鉄骨9を有している。鉄骨9は、柱部3に埋設され上層の下端まで鉛直に延びる柱鉄骨9aと、梁部4に埋設され両端が柱鉄骨9aに固定された梁鉄骨9bを有する。鉄骨9は、例えばH型鋼である。
In FIGS. 1A and 1B, the existing building 1 is an SRC/RC structure in which the lower layer is an SRC structure and the upper layer is an RC structure. In this example, the lower floors are from the 1st floor to the 5th floor (between 5FL and 6FL), and in this example, the lower floors are from the 5th floor (between 5FL and 6FL) to the roof. Note that FL means the floor position.
Further, in FIGS. 1A and 1B, the lower layer has a steel frame 9 that constitutes an SRC structure. The steel frame 9 includes a column steel frame 9a that is buried in the column part 3 and extends vertically to the lower end of the upper layer, and a beam steel frame 9b that is buried in the beam part 4 and has both ends fixed to the column steel frame 9a. The steel frame 9 is, for example, an H-shaped steel.

なお、本発明において既設建物1は、SRC/RC造に限定されず、全体がRC造、又はSRC造であってもよい。 In addition, in the present invention, the existing building 1 is not limited to SRC/RC construction, but may be entirely RC construction or SRC construction.

図1A~図1Cにおいて、本発明による耐震補強構造100は、既設建物1の正面側に設けられている。なお、耐震補強構造100は、正面側に限定されず、背面側でも両方でもよい。
この例で耐震補強構造100は、既設建物1の4階の床面(4FL)から7階の床面(7FL)の間であって、壁位置X2から壁位置X5までの仕切壁を含む範囲に設けられている。
なお、この構造は、SRC/RC造のSRC造からRC造に切り替わる部分(中間層)のみの耐震性能が低いことに対応している。しかし、RC造の耐震性能が低いところに適用してもよい。
従って、耐震補強構造100の設置範囲は、この例に限定されず、既設建物1の耐震性能に応じて自由に設定することができる。例えば、耐震補強構造100を壁位置X1から壁位置X6までの範囲に設けてもよい。
In FIGS. 1A to 1C, an earthquake reinforcement structure 100 according to the present invention is provided on the front side of an existing building 1. In addition, the seismic reinforcement structure 100 is not limited to the front side, and may be on the back side or both.
In this example, the seismic reinforcement structure 100 is an area between the fourth floor floor (4FL) and the seventh floor floor (7FL) of the existing building 1, including the partition wall from wall position X2 to wall position X5. It is set in.
In addition, this structure corresponds to the fact that only the part (middle layer) of the SRC/RC structure where the SRC structure switches to the RC structure has low earthquake resistance. However, it may be applied to places where the seismic performance of RC structures is low.
Therefore, the installation range of the seismic reinforcement structure 100 is not limited to this example, and can be freely set according to the seismic performance of the existing building 1. For example, the seismic reinforcement structure 100 may be provided in a range from wall position X1 to wall position X6.

図2Aは図1AのC部拡大図、図2Bは図2AのD-D断面図、図2Cは図2AのE-E断面図、図2Dは図2AのF-F矢視図である。
図2A~図2Dにおいて、耐震補強構造100は、補強柱部10と補強梁部20を備える。
また補強柱部10と補強梁部20は、その交差部に互いに共有する張出接合部14を有する。
2A is an enlarged view of section C in FIG. 1A, FIG. 2B is a sectional view taken along line DD in FIG. 2A, FIG. 2C is a sectional view taken along line EE in FIG. 2A, and FIG. 2D is a view taken along line FF in FIG. 2A.
In FIGS. 2A to 2D, the seismic reinforcement structure 100 includes a reinforcement column part 10 and a reinforcement beam part 20.
Further, the reinforcing column part 10 and the reinforcing beam part 20 have a shared overhang joint part 14 at the intersection thereof.

補強柱部10は、既設建物1の柱部3に対応する位置に配置されている。補強柱部10は、全体が一体的に形成された鉛直柱部12と張出接合部14を有する。
鉛直柱部12は、既設建物1の柱部3とX方向の幅が同程度であり鉛直に延びる。張出接合部14は、既設建物1の柱部3及び鉛直柱部12よりX方向の幅が大きく、その幅端部近傍にヒンジ部Hを形成するヒンジリロケーション構造を有する。ヒンジリロケーション構造の詳細は後述する。
The reinforcing column portion 10 is arranged at a position corresponding to the column portion 3 of the existing building 1. The reinforcing column portion 10 has a vertical column portion 12 and an overhang joint portion 14 that are integrally formed as a whole.
The vertical column part 12 has the same width in the X direction as the column part 3 of the existing building 1, and extends vertically. The overhang joint part 14 has a width in the X direction larger than the column part 3 and the vertical column part 12 of the existing building 1, and has a hinge relocation structure in which a hinge part H is formed near the width end. Details of the hinge relocation structure will be described later.

補強梁部20は、既設建物1の梁部4に対応する位置に配置されている。補強梁部20は、全体が一体的に形成された水平梁部22と張出接合部14を有する。なお上述したように、張出接合部14を補強柱部10が共有している。
水平梁部22のX方向の両端は張出接合部14に接続されている。また図2Bに示すように、補強梁部20の下端20aは、既設建物1の梁部4の下端4aより上方に位置する。また、補強梁部20は片持ちスラブ5の下面5aに接して鉛直柱部12よりも外方まで水平に延びる。補強梁部20の外方端は片持ちスラブ5の外方端より内側であるのがよい。この例で補強梁部20は、矩形断面を有し、その高さが幅より小さい幅広扁平梁である。
また、後述するように、補強梁部20は既設建物1の梁部4に埋設アンカー46を介して一体化されるので、耐震補強構造100の梁の剛性を大幅に高めることができる。
The reinforcing beam portion 20 is arranged at a position corresponding to the beam portion 4 of the existing building 1. The reinforcing beam section 20 has a horizontal beam section 22 and an overhang joint section 14 that are integrally formed as a whole. Note that, as described above, the reinforcing column portion 10 shares the overhang joint portion 14.
Both ends of the horizontal beam portion 22 in the X direction are connected to the overhang joint portion 14 . Further, as shown in FIG. 2B, the lower end 20a of the reinforcing beam portion 20 is located above the lower end 4a of the beam portion 4 of the existing building 1. Further, the reinforcing beam portion 20 is in contact with the lower surface 5a of the cantilevered slab 5 and extends horizontally to the outside of the vertical column portion 12. The outer end of the reinforcing beam portion 20 is preferably located inside the outer end of the cantilever slab 5. In this example, the reinforcing beam portion 20 is a wide flat beam that has a rectangular cross section and whose height is smaller than its width.
Further, as will be described later, since the reinforcing beam portion 20 is integrated with the beam portion 4 of the existing building 1 via the buried anchor 46, the rigidity of the beam of the seismic reinforcement structure 100 can be significantly increased.

図2Aにおいて、張出接合部14は、水平梁部22と同じ高さに位置する。
また、図2Dに示すように、補強柱部10の鉛直柱部12は、片持ちスラブ5を鉛直に貫通して設けられている。さらに、鉛直柱部12と片持ちスラブ5との間に水平方向の隙間C1が設けられている。隙間C1は、地震時に鉛直柱部12が変位しても片持ちスラブ5へ水平力が伝達されないように設定することが好ましい。隙間C1は、例えば10~20mmである。
また、後述するように、鉛直柱部12は既設建物1の柱部3に埋設アンカー46を介して一体化されるので、耐震補強構造100の柱の剛性を大幅に高めることができる。
In FIG. 2A, the overhang joint 14 is located at the same height as the horizontal beam 22. In FIG.
Further, as shown in FIG. 2D, the vertical column portion 12 of the reinforcing column portion 10 is provided to vertically penetrate the cantilever slab 5. Furthermore, a horizontal gap C1 is provided between the vertical column portion 12 and the cantilever slab 5. The gap C1 is preferably set so that horizontal force is not transmitted to the cantilever slab 5 even if the vertical column portion 12 is displaced during an earthquake. The gap C1 is, for example, 10 to 20 mm.
Further, as will be described later, since the vertical column portion 12 is integrated with the column portion 3 of the existing building 1 via the buried anchor 46, the rigidity of the column of the seismic reinforcement structure 100 can be significantly increased.

図2A~図2Dにおいて、耐震補強構造100は、さらに、補強中間柱30を備える。補強中間柱30は、中間壁8に対応する位置に配置され中間壁8の全幅と同程度の幅に設定されている。また補強中間柱30は、上下に隣接する複数の補強梁部20に接続されている。
また、図2Dに示すように、補強中間柱30は、片持ちスラブ5を鉛直に貫通して設けられている。さらに、補強中間柱30と片持ちスラブ5との間に水平方向の隙間C2が設けられている。隙間C2は、地震時に補強中間柱30が変位しても片持ちスラブ5へ水平力が伝達されないように設定することが好ましい。隙間C2は、例えば10~20mmである。
In FIGS. 2A to 2D, the seismic reinforcement structure 100 further includes a reinforcement intermediate column 30. The reinforcing intermediate column 30 is arranged at a position corresponding to the intermediate wall 8 and has a width approximately equal to the entire width of the intermediate wall 8. Further, the reinforcing intermediate column 30 is connected to a plurality of vertically adjacent reinforcing beam parts 20.
Moreover, as shown in FIG. 2D, the reinforcing intermediate column 30 is provided to vertically penetrate the cantilever slab 5. Furthermore, a horizontal gap C2 is provided between the reinforcing intermediate column 30 and the cantilever slab 5. The gap C2 is preferably set so that horizontal force is not transmitted to the cantilever slab 5 even if the reinforcing intermediate column 30 is displaced during an earthquake. The gap C2 is, for example, 10 to 20 mm.

上述した補強中間柱30の構成により、既存の窓7が補強中間柱30により遮光されないので、既存の窓7からの遮光を十分に確保することができる。
また、補強中間柱30が上下に隣接する複数の補強梁部20に接続されているので、耐震補強構造100の梁の剛性をさらに高めることができる。
なお、補強中間柱30は必須ではなく、耐震補強構造100の梁剛性が確保される限り、これを省略してもよい。
With the above-described configuration of the reinforcing intermediate pillar 30, the existing window 7 is not blocked from light by the reinforcing intermediate pillar 30, so that sufficient light shielding from the existing window 7 can be ensured.
Moreover, since the reinforcing intermediate column 30 is connected to the plurality of vertically adjacent reinforcing beam parts 20, the rigidity of the beam of the seismic reinforcement structure 100 can be further increased.
Note that the reinforcing intermediate column 30 is not essential, and may be omitted as long as the beam rigidity of the seismic reinforcement structure 100 is ensured.

図3は、鉛直柱部12、水平梁部22、及び補強中間柱30の断面図である。この図において、(a)(c)は図2Dの部分拡大図、(b)は図2Bの部分拡大図である。 FIG. 3 is a cross-sectional view of the vertical column portion 12, the horizontal beam portion 22, and the reinforcing intermediate column 30. In this figure, (a) and (c) are partially enlarged views of FIG. 2D, and (b) are partially enlarged views of FIG. 2B.

図3(a)において、鉛直柱部12の幅w1は、柱部3の幅と同程度の幅に設定されている。例えば、柱部3の幅(外壁面2における幅)が900mmの場合、鉛直柱部12の幅は、好ましくは900mmである。
また、鉛直柱部12の厚さb1は、柱部3の厚さと同程度以下に設定されている。例えば、柱部3の厚さが650mmの場合、鉛直柱部12の厚さは、好ましくは550~600mmである。
さらに、鉛直柱部12は、その内部に軸方向に延びる柱主筋41aと、断面内で柱主筋41aを囲んで環状に延びる環状補強筋42aとを有する。
In FIG. 3A, the width w1 of the vertical column portion 12 is set to be approximately the same as the width of the column portion 3. In FIG. For example, when the width of the column 3 (width at the outer wall surface 2) is 900 mm, the width of the vertical column 12 is preferably 900 mm.
Further, the thickness b1 of the vertical column portion 12 is set to be approximately equal to or less than the thickness of the column portion 3. For example, when the thickness of the column 3 is 650 mm, the thickness of the vertical column 12 is preferably 550 to 600 mm.
Further, the vertical column portion 12 includes a column main reinforcement 41a extending in the axial direction therein, and an annular reinforcing bar 42a extending annularly surrounding the column main reinforcement 41a in the cross section.

図3(b)において、補強梁部20の高さh1は、片持ちスラブ5の下面5aから梁部4の下端4aまでの高さと同程度以下に設定されている。例えば、梁部4の高さは700mm、片持ちスラブ5の最大高さが230mmの場合、補強梁部20の高さh1は、好ましくは450~470mmである。
また、水平梁部22は、その内部に軸方向に延びる梁主筋41bと、断面内で梁主筋41bを囲んで環状に延びる環状補強筋42bとを有する。
In FIG. 3(b), the height h1 of the reinforcing beam portion 20 is set to be equal to or less than the height from the lower surface 5a of the cantilever slab 5 to the lower end 4a of the beam portion 4. For example, when the height of the beam portion 4 is 700 mm and the maximum height of the cantilever slab 5 is 230 mm, the height h1 of the reinforcing beam portion 20 is preferably 450 to 470 mm.
Further, the horizontal beam portion 22 includes a main beam reinforcement 41b extending in the axial direction therein, and an annular reinforcing bar 42b extending annularly surrounding the main beam reinforcement 41b in the cross section.

図3(c)において、補強中間柱30の幅w2は、中間壁8の幅と同程度の幅に設定されている。例えば、中間壁8の幅が800mmの場合、補強中間柱30の幅w2は、好ましくは800mmである。
また、補強中間柱30の厚さb2は、好ましくは鉛直柱部12の厚さb1と同程度に設定されている。例えば、鉛直柱部12の厚さb1が550mmの場合、補強中間柱30の厚さb2は、好ましくは550mmである。
さらに、補強中間柱30は、その内部に軸方向に延びる間柱主筋41cと、断面内で間柱主筋41cを囲んで環状に延びる環状補強筋42cとを有する。
In FIG. 3(c), the width w2 of the reinforcing intermediate column 30 is set to be approximately the same as the width of the intermediate wall 8. In FIG. For example, when the width of the intermediate wall 8 is 800 mm, the width w2 of the reinforcing intermediate column 30 is preferably 800 mm.
Further, the thickness b2 of the reinforcing intermediate column 30 is preferably set to be approximately the same as the thickness b1 of the vertical column portion 12. For example, when the thickness b1 of the vertical column portion 12 is 550 mm, the thickness b2 of the reinforcing intermediate column 30 is preferably 550 mm.
Further, the reinforcing intermediate column 30 includes a stud main reinforcement 41c that extends in the axial direction therein, and an annular reinforcing bar 42c that extends annularly surrounding the stud main reinforcement 41c in the cross section.

また、鉛直柱部12、水平梁部22、及び補強中間柱30を構成するコンクリートには、既設建物1のコンクリートより圧縮強度が高いコンクリートを用いている。
上述した構成により、鉛直柱部12、水平梁部22、及び補強中間柱30は、所定の地震荷重において各部分に発生する圧縮、引張、曲げ、せん断、ねじりに対し、十分な強度に設定されている。
Moreover, concrete having a higher compressive strength than the concrete of the existing building 1 is used for the concrete forming the vertical column part 12, the horizontal beam part 22, and the reinforcing intermediate column 30.
With the above-described configuration, the vertical column part 12, horizontal beam part 22, and reinforced intermediate column 30 are set to have sufficient strength against compression, tension, bending, shear, and torsion that occur in each part under a predetermined earthquake load. ing.

図4Aは図2AのA部説明図、図4Bは図2AのB部説明図、図4Cは図2AのC部説明図である。 4A is an explanatory diagram of part A in FIG. 2A, FIG. 4B is an explanatory diagram of part B in FIG. 2A, and FIG. 4C is an explanatory diagram of part C in FIG. 2A.

図4Aにおいて、(a)は図2AのA部拡大図、(b)は(a)のB-B断面図である。
この図において、張出接合部14は、水平梁部22の端部に相当する鉛直断面を有する。また、張出接合部14には、図3(b)に示した補強梁部20の鉄筋(梁主筋41bと環状補強筋42b、図示せず)が同様に配筋されている。
また、張出接合部14は、鉛直柱部12の端部よりも広い水平断面を有する。また、張出接合部14の鉛直柱部12に相当する部分(鉛直部相当部14a)には、図3(a)に示した鉛直柱部12の鉄筋(柱主筋41aと環状補強筋42a、図示せず)が同様に配筋されている。
上述した構成により、張出接合部14は、水平梁部22及び鉛直柱部12よりも圧縮、引張、曲げ、せん断、ねじりに対し、高い強度に設定されている。
4A, (a) is an enlarged view of part A in FIG. 2A, and (b) is a sectional view taken along line BB in (a).
In this figure, the overhang joint 14 has a vertical cross section corresponding to the end of the horizontal beam 22. Further, the reinforcing bars (beam main reinforcement 41b and annular reinforcing bar 42b, not shown) of the reinforcing beam portion 20 shown in FIG. 3(b) are similarly arranged in the overhang joint portion 14.
Further, the overhang joint portion 14 has a horizontal cross section wider than the end portion of the vertical column portion 12. In addition, the reinforcing bars (column main reinforcement 41a and annular reinforcing bar 42a) of the vertical column 12 shown in FIG. (not shown) are similarly reinforced.
Due to the above-described configuration, the overhang joint portion 14 is set to have higher strength than the horizontal beam portion 22 and the vertical column portion 12 against compression, tension, bending, shearing, and torsion.

図4Aにおいて、ヒンジリロケーション構造は、張出接合部14に埋設され、その幅端部近傍(水平梁部22との接続部近傍)にヒンジ部Hを形成する補強筋44を有する。補強筋44は、例えば、曲げ補強筋44a、コ形補強筋44b、キャップ筋44c、又は拘束筋44dである。
ヒンジ部Hは、図中に△で示す位置に形成される。鉛直柱部12の図で右側面からのヒンジ部Hの水平位置は、鉛直柱部12の幅w1より短いことが好ましく、鉛直柱部12の幅w1が900mmである場合、400~500mm、好ましくは450mmである。
上述した構成により、張出接合部14の剛性を高め、補強梁部20のスパン長さを既設建物1の梁部4よりも短くでき、耐震補強構造100の耐震性能を高めることができる。
In FIG. 4A, the hinge relocation structure has reinforcing bars 44 that are embedded in the overhanging joint 14 and form a hinge H near the width end thereof (near the connection with the horizontal beam 22). The reinforcing bars 44 are, for example, bending reinforcing bars 44a, U-shaped reinforcing bars 44b, cap bars 44c, or restraint bars 44d.
The hinge portion H is formed at the position indicated by △ in the figure. The horizontal position of the hinge H from the right side of the vertical column 12 is preferably shorter than the width w1 of the vertical column 12, and when the width w1 of the vertical column 12 is 900 mm, it is preferably 400 to 500 mm. is 450mm.
With the above configuration, the rigidity of the overhang joint 14 can be increased, the span length of the reinforcing beam section 20 can be made shorter than that of the beam section 4 of the existing building 1, and the seismic performance of the seismic reinforcement structure 100 can be improved.

図4Bにおいて、(a)は図2AのB部拡大図、(b)は(a)のB-B断面図である。
この図において、張出接合部14は、水平梁部22の端部に相当する鉛直断面を有する。また、張出接合部14には、図3(b)に示した水平梁部22の鉄筋(梁主筋41bと環状補強筋42b、図示せず)が同様に配筋されている。
また、張出接合部14は、鉛直柱部12の端部よりも広い水平断面を有する。また、張出接合部14の鉛直柱部12に相当する鉛直部相当部14aには、図3(a)に示した鉛直柱部12の鉄筋(柱主筋41aと環状補強筋42a、図示せず)が同様に配筋されている。
上述した構成により、張出接合部14は、補強梁部20及び鉛直柱部12よりも圧縮、引張、曲げ、せん断、ねじりに対し、高い強度に設定されている。この構成は図4Aと同様である。
In FIG. 4B, (a) is an enlarged view of section B in FIG. 2A, and (b) is a sectional view taken along line BB in (a).
In this figure, the overhang joint 14 has a vertical cross section corresponding to the end of the horizontal beam 22. Furthermore, reinforcing bars (beam main bars 41b and annular reinforcing bars 42b, not shown) of the horizontal beam part 22 shown in FIG. 3(b) are similarly arranged in the overhang joint part 14.
Further, the overhang joint portion 14 has a horizontal cross section wider than the end portion of the vertical column portion 12. In addition, the vertical portion 14a corresponding to the vertical column portion 12 of the overhanging joint portion 14 includes reinforcing bars (column main reinforcement 41a and annular reinforcing bar 42a, not shown) of the vertical column portion 12 shown in FIG. 3(a). ) are similarly reinforced.
Due to the above-described configuration, the overhang joint portion 14 is set to have higher strength than the reinforcing beam portion 20 and the vertical column portion 12 against compression, tension, bending, shearing, and torsion. This configuration is similar to FIG. 4A.

図4Bにおいて、ヒンジリロケーション構造は、張出接合部14に埋設され、水平梁部22との接続部近傍にヒンジ部Hを形成する補強筋44を有する。この補強筋44は、例えば、曲げ補強筋44a、コ形補強筋44b、及び拘束筋44dを有する。
ヒンジ部Hの位置は、鉛直部相当部14aの図で左右の側面から鉛直部相当部14aの幅w1より短いことが好ましく、鉛直柱部12の幅w1が900mmである場合、400~500mm、好ましくは450mmである。
上述した構成により、張出接合部14の剛性を高め、補強梁部20のスパン長さを既設建物1の梁部4よりも短くでき、耐震補強構造100の耐震性能を高めることができる。
In FIG. 4B, the hinge relocation structure includes reinforcing bars 44 that are embedded in the overhanging joint 14 and form a hinge H near the connection with the horizontal beam 22. The reinforcing bars 44 include, for example, bending reinforcing bars 44a, U-shaped reinforcing bars 44b, and restraint bars 44d.
The position of the hinge portion H is preferably shorter than the width w1 of the vertical portion equivalent portion 14a from the left and right side surfaces in the diagram of the vertical portion equivalent portion 14a, and when the width w1 of the vertical column portion 12 is 900 mm, the position is 400 to 500 mm, Preferably it is 450 mm.
With the above configuration, the rigidity of the overhang joint 14 can be increased, the span length of the reinforcing beam section 20 can be made shorter than that of the beam section 4 of the existing building 1, and the seismic performance of the seismic reinforcement structure 100 can be improved.

図4Aでは、張出接合部14の一方(図2Aで右側)のみに水平梁部22が接続されている。図1Aと図2Aにおいて、張出接合部14の一方のみに水平梁部22が接続されている他の部分の構成は、上述した図4Aの構成と同じである。
図4Bでは、張出接合部14の両側に水平梁部22が接続されている。図1Aと図2Aにおいて、張出接合部14の両側に水平梁部22が接続されている他の部分の構成は、上述した図4Bの構成と同じである。
In FIG. 4A, the horizontal beam portion 22 is connected only to one side (the right side in FIG. 2A) of the overhang joint portion 14. In FIGS. 1A and 2A, the configuration of the other portion where the horizontal beam portion 22 is connected to only one side of the overhanging joint portion 14 is the same as the configuration of FIG. 4A described above.
In FIG. 4B, horizontal beams 22 are connected to both sides of the overhang joint 14. In FIG. In FIGS. 1A and 2A, the configuration of the other portions where the horizontal beam portions 22 are connected to both sides of the overhang joint portion 14 is the same as the configuration of FIG. 4B described above.

図4Cにおいて、(a)は図2AのC部拡大図、(b)は(a)のB-B断面図である。
この図において、水平梁部22及び補強中間柱30には、図3(b)(c)に示した鉄筋が同様に配筋されている。
また、水平梁部22と補強中間柱30の連結部分には、両者を連結するように、コ形補強筋44bと拘束筋44dが配筋されている。
図1Aと図2Aにおいて、水平梁部22と補強中間柱30が接続されている他の部分の構成は、上述した図4Cの構成と同じである。
上述した構成により、補強中間柱30の端部を水平梁部22の中間部に強固に連結することができる。
In FIG. 4C, (a) is an enlarged view of section C in FIG. 2A, and (b) is a sectional view taken along line BB in (a).
In this figure, reinforcing bars shown in FIGS. 3(b) and 3(c) are similarly arranged in the horizontal beam portion 22 and the reinforcing intermediate column 30.
Further, U-shaped reinforcing bars 44b and restraint bars 44d are arranged at the connecting portion between the horizontal beam portion 22 and the reinforcing intermediate column 30 so as to connect the two.
In FIGS. 1A and 2A, the configuration of other parts where the horizontal beam portion 22 and the reinforcing intermediate column 30 are connected is the same as the configuration of FIG. 4C described above.
With the above-described configuration, the end portion of the reinforcing intermediate column 30 can be firmly connected to the intermediate portion of the horizontal beam portion 22.

図5Aは図2Aに相当する部分のアンカー図、図5Bは図5AのB-B断面図である。
また、図6は柱と梁のアンカー図であり、(a)は6FLの梁のアンカー図、(b)は5FLの柱と梁のアンカー図、(c)は4FLの柱のアンカー図である。
5A is an anchor diagram of a portion corresponding to FIG. 2A, and FIG. 5B is a sectional view taken along line BB in FIG. 5A.
Also, Figure 6 is an anchor diagram of columns and beams, (a) is an anchor diagram of 6FL beams, (b) is an anchor diagram of 5FL columns and beams, and (c) is an anchor diagram of 4FL columns. .

図5A,図5B及び図6において、5FL以上の上方の補強柱部10及び水平梁部22は、それぞれ柱部3及び梁部4に一端部が埋設され水平に延びる埋設アンカー46を有する。
埋設アンカー46は、この例では後施工アンカーである。また、埋設アンカー46は、引張用アンカー46a、せん断用アンカー46b、変動軸力用アンカー46c、又は、脱落防止用アンカー46dである。
上述した埋設アンカー46により、5FL以上の上方において、補強柱部10と柱部3、及び水平梁部22と梁部4とを強固に連結して一体化し、耐震補強構造100の耐震性能を高めることができる。
In FIGS. 5A, 5B, and 6, the reinforcing column part 10 and the horizontal beam part 22 above 5FL each have a buried anchor 46 that extends horizontally and has one end buried in the column part 3 and the beam part 4, respectively.
The buried anchor 46 is a post-installed anchor in this example. Further, the buried anchor 46 is a tension anchor 46a, a shearing anchor 46b, a variable axial force anchor 46c, or a drop-off prevention anchor 46d.
The above-mentioned buried anchor 46 firmly connects and integrates the reinforcing column part 10 and the column part 3, and the horizontal beam part 22 and the beam part 4 above 5FL, thereby improving the seismic performance of the seismic reinforcement structure 100. be able to.

図5A及び図6(a)において、補強中間柱30は、中間壁8に一端部が埋設され水平に延びる脱落防止用アンカー47を有する。
この構成により、補強中間柱30と中間壁8を強固に連結して一体化し、耐震補強構造100の耐震性能をさらに高めることができる。
In FIGS. 5A and 6(a), the reinforcing intermediate column 30 has a fall prevention anchor 47 whose one end is buried in the intermediate wall 8 and extends horizontally.
With this configuration, the reinforcing intermediate column 30 and the intermediate wall 8 are firmly connected and integrated, and the seismic performance of the seismic reinforcement structure 100 can be further improved.

図5A及び図6(c)において、補強柱部10は、その下端部に鉄骨9に一端部が溶接され水平に延びる溶接アンカー48を有する。この例で補強柱部10の下端部は、鉛直柱部12であり、この鉛直柱部12とその上(5FL)の張出接合部14に溶接アンカー48が設けられている。
この構成により、耐震補強構造100の補強柱部10に作用する軸力を下層階の鉄骨9に伝達することができ、下層部の補強及び基礎工事を省略して耐震補強することができる。
In FIGS. 5A and 6(c), the reinforcing column portion 10 has a welding anchor 48 at its lower end, one end of which is welded to the steel frame 9 and extends horizontally. In this example, the lower end portion of the reinforcing column portion 10 is a vertical column portion 12, and a welding anchor 48 is provided on this vertical column portion 12 and an overhang joint portion 14 above it (5FL).
With this configuration, the axial force acting on the reinforcing column part 10 of the seismic reinforcement structure 100 can be transmitted to the steel frame 9 on the lower floor, and seismic reinforcement can be performed without reinforcement and foundation work of the lower floor.

図5Aにおいて、破線で囲む範囲は同一種の埋設アンカー46、脱落防止用アンカー47、又は溶接アンカー48を示している。 In FIG. 5A, the range surrounded by a broken line indicates the same type of buried anchor 46, drop-off prevention anchor 47, or welded anchor 48.

上述した耐震補強構造100は、好ましくは、既設建物1より圧縮強度が高いコンクリートを用い、打ち継ぎのない一発打ちで形成されている。 The seismic reinforcement structure 100 described above is preferably made of concrete having a higher compressive strength than that of the existing building 1, and is formed by one-shot pouring without pouring.

図7は、補強梁部20の第2実施形態を示す図である。この図において、(a)は補強梁部20の平面図、(b)は(a)のB-B断面図である。
この例で既設建物1の梁部4は、隣接する1対の柱部3の間に、梁部4を水平に貫通する第1貫通穴4bを有している。第1貫通穴4bには、例えば外径150mmの排気スリーブ(図示せず)が埋設されており、室内(例えばキッチン)からの排気を外部に排出するようになっている。
FIG. 7 is a diagram showing a second embodiment of the reinforcing beam portion 20. As shown in FIG. In this figure, (a) is a plan view of the reinforcing beam portion 20, and (b) is a sectional view taken along line BB in (a).
In this example, the beam portion 4 of the existing building 1 has a first through hole 4b that horizontally penetrates the beam portion 4 between a pair of adjacent pillar portions 3. An exhaust sleeve (not shown) having an outer diameter of 150 mm, for example, is buried in the first through hole 4b, and is configured to discharge exhaust gas from the room (for example, the kitchen) to the outside.

図7において、上述した補強中間柱30はなく、補強梁部20は、その水平梁部22の第1貫通穴4bと対向する位置に第1貫通穴4bと外部とを連通する欠損部24を有する。
欠損部24は、この例では、水平梁部22の側面に設けられた矩形の切欠部(この例では平面視で300mm×300mm)である。欠損部24は水平梁部22の上面から下面まで貫通して設けられ、第1貫通穴4bから欠損部24を介して排気をスムースに外部(水平梁部22の下方)に排出するようになっている。
その他の構成は、図1~図6の補強梁部20と同様である。
In FIG. 7, the above-mentioned reinforcing intermediate column 30 is not provided, and the reinforcing beam portion 20 has a missing portion 24 in the horizontal beam portion 22 at a position facing the first through hole 4b, which communicates the first through hole 4b with the outside. have
In this example, the missing portion 24 is a rectangular notch (300 mm×300 mm in plan view in this example) provided on the side surface of the horizontal beam portion 22. The cutout portion 24 is provided to penetrate from the upper surface to the lower surface of the horizontal beam portion 22, and exhaust gas is smoothly discharged to the outside (below the horizontal beam portion 22) through the cutout portion 24 from the first through hole 4b. ing.
The other configurations are similar to the reinforcing beam portion 20 of FIGS. 1 to 6.

図8は、補強中間柱30の第2実施形態を示す図である。この図において、(a)は、図2Aの部分拡大図に相当する補強中間柱30の正面図である。また、(b)は(a)のB-B矢視図である。
この図において、既設建物1の中間壁8は、中間壁8を水平に貫通する第2貫通穴8a(図示せず)を有する。第2貫通穴8aは、例えば、室内と外部を連通する換気孔、または、空調設備の配管を通すための配管穴(設備開口)である。この例で2つの第2貫通穴8aが設けられているが、1つでも3以上でもよい。
FIG. 8 is a diagram showing a second embodiment of the reinforcing intermediate column 30. In this figure, (a) is a front view of the reinforcing intermediate column 30 corresponding to the partially enlarged view of FIG. 2A. Moreover, (b) is a BB arrow view of (a).
In this figure, the intermediate wall 8 of the existing building 1 has a second through hole 8a (not shown) that penetrates the intermediate wall 8 horizontally. The second through hole 8a is, for example, a ventilation hole that communicates the interior and exterior, or a piping hole (equipment opening) for passing piping of air conditioning equipment. Although two second through holes 8a are provided in this example, there may be one or three or more second through holes.

図8において、補強中間柱30は、第2貫通穴8aと整合する位置に第2貫通穴8aと外部とを連通する補強中間柱用貫通穴(以下、「補強貫通穴32」と呼ぶ)を有する。補強貫通穴32の直径は第2貫通穴8aと同程度以上であることが好ましい。
補強貫通穴32は、この例では、補強中間柱30に設けられた2つの円形穴である。補強貫通穴32の直径は例えば50~150mmである。
In FIG. 8, the reinforcing intermediate pillar 30 has a reinforcing intermediate pillar through hole (hereinafter referred to as "reinforcing through hole 32") that communicates the second through hole 8a with the outside at a position aligned with the second through hole 8a. have It is preferable that the diameter of the reinforcing through hole 32 is equal to or larger than that of the second through hole 8a.
In this example, the reinforcing through holes 32 are two circular holes provided in the reinforcing intermediate column 30. The diameter of the reinforcing through hole 32 is, for example, 50 to 150 mm.

なお、この図に示すように、補強貫通穴32の周囲には、複数のコ形補強筋44bが埋設され、補強貫通穴32を補強していることが好ましい。 As shown in this figure, it is preferable that a plurality of U-shaped reinforcing bars 44b be embedded around the reinforcing through hole 32 to reinforce the reinforcing through hole 32.

上述した本発明の実施形態によれば、補強柱部10と補強梁部20を備え、補強梁部20は幅広扁平梁であり、補強梁部20が片持ちスラブ5の下面5aに接して外方に水平に延びるので、既存の片持ちスラブ5を撤去せずに温存して耐震補強構造の耐震性能を高めることができる。 According to the embodiment of the present invention described above, the reinforcing column part 10 and the reinforcing beam part 20 are provided, and the reinforcing beam part 20 is a wide flat beam, and the reinforcing beam part 20 is in contact with the lower surface 5a of the cantilever slab 5 and extends outward. Since it extends horizontally in both directions, the existing cantilever slab 5 can be preserved without being removed, and the seismic performance of the seismic reinforcement structure can be improved.

また、補強柱部10の鉛直柱部12が既設建物1の柱部3より幅が小さく、補強梁部20の下端20aが既設建物1の梁部4の下端4aより上方に位置するので、既存の窓7からの採光を十分に確保することができる。 In addition, since the vertical column portion 12 of the reinforcing column portion 10 is smaller in width than the column portion 3 of the existing building 1, and the lower end 20a of the reinforcing beam portion 20 is located above the lower end 4a of the beam portion 4 of the existing building 1, It is possible to secure sufficient lighting from the window 7.

さらに、補強柱部10と補強梁部20が、その交差部に互いに共有する張出接合部14を有しており、張出接合部14が、既設建物1の柱部3より幅が大きく、その幅端部近傍にヒンジ部Hを形成するヒンジリロケーション構造を有する。この構成により、補強梁部20のスパン長さを既設建物1の梁部4よりも短くでき、耐震補強構造100の耐震性能をさらに高めることができる。 Furthermore, the reinforcing column part 10 and the reinforcing beam part 20 have an overhang joint part 14 shared with each other at the intersection thereof, and the overhang joint part 14 is wider than the pillar part 3 of the existing building 1, It has a hinge relocation structure that forms a hinge portion H near its width end. With this configuration, the span length of the reinforcing beam portion 20 can be made shorter than that of the beam portion 4 of the existing building 1, and the seismic performance of the seismic reinforcement structure 100 can be further improved.

また、上述した耐震補強構造100は、全体として同一のコンクリートを用いることができる。すなわち、耐震補強構造100は、好ましくは、既設建物1より圧縮強度が高いコンクリートを用い、打ち継ぎのない一発打ちで形成されている。
従って、ヒンジリロケーション構造により、コンクリートの二度打ちを回避して、既設建物1を耐震補強することができる。
Furthermore, the above-described seismic reinforcement structure 100 can use the same concrete as a whole. That is, the seismic reinforcement structure 100 is preferably made of concrete having a higher compressive strength than the existing building 1, and is formed by one-shot pouring without pouring.
Therefore, by using the hinge relocation structure, it is possible to avoid double pouring of concrete and to strengthen the existing building 1 against earthquakes.

また、既設建物1が、SRC造からRC造に切り替わる部分(中間層)のみの耐震性能が低いSRC/RC造である場合でも、耐震補強構造100の補強柱部10に作用する軸力を下層階の鉄骨9に伝達することができる。これにより、下層部の補強及び基礎工事を省略して耐震補強することができる。 In addition, even if the existing building 1 is an SRC/RC structure with low seismic performance only in the part (middle layer) where the SRC structure is switched to the RC structure, the axial force acting on the reinforcing columns 10 of the seismic reinforcement structure 100 can be reduced from the lower layer. It can be transmitted to the steel frame 9 of the floor. This allows for seismic reinforcement without requiring reinforcement of the lower layer and foundation work.

なお、本発明の範囲は上述した実施形態に限定されず、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。 The scope of the present invention is not limited to the embodiments described above, but is indicated by the claims, and includes all changes within the meaning and range equivalent to the claims.

X,X1,X2,X3,X4,X5,X6 壁位置、Y,Y1,Y2 面位置、
C1,C2 隙間、H ヒンジ部、1 既設建物、2 外壁面、3 柱部、
4 梁部、4a 下端、4b 第1貫通穴、5 片持ちスラブ、5a 下面、
6 床スラブ、7 窓、8 中間壁、8a 第2貫通穴、
9 鉄骨、9a 柱鉄骨、9b 梁鉄骨、
10 補強柱部、12 鉛直柱部、14 張出接合部、14a 鉛直部相当部、
20 補強梁部、20a 下端、22 水平梁部、24 欠損部、
30 補強中間柱、32 補強貫通穴、
41a,41b,41c 主筋、42a,42b,42c 環状補強筋、
44 補強筋、44a 曲げ補強筋、44b コ形補強筋、44c キャップ筋、
44d 拘束筋、46 埋設アンカー、46a 引張用アンカー、
46b せん断用アンカー、46c 変動軸力用アンカー、
46d,47 脱落防止用アンカー、48 溶接アンカー、
100 耐震補強構造
X, X1, X2, X3, X4, X5, X6 wall position, Y, Y1, Y2 surface position,
C1, C2 Gap, H Hinge, 1 Existing building, 2 Exterior wall, 3 Column,
4 beam part, 4a lower end, 4b first through hole, 5 cantilever slab, 5a lower surface,
6 floor slab, 7 window, 8 intermediate wall, 8a second through hole,
9 Steel frame, 9a Column steel frame, 9b Beam steel frame,
10 reinforcing column part, 12 vertical column part, 14 overhanging joint part, 14a vertical part equivalent part,
20 reinforcement beam part, 20a lower end, 22 horizontal beam part, 24 missing part,
30 Reinforcement intermediate column, 32 Reinforcement through hole,
41a, 41b, 41c main reinforcement, 42a, 42b, 42c circular reinforcement,
44 reinforcing bars, 44a bending reinforcing bars, 44b U-shaped reinforcing bars, 44c cap bars,
44d restraint bar, 46 buried anchor, 46a tension anchor,
46b shear anchor, 46c variable axial force anchor,
46d, 47 Fall prevention anchor, 48 Welding anchor,
100 Earthquake-resistant reinforcement structure

Claims (11)

外壁面に沿って位置する柱部及び梁部と、前記柱部及び前記梁部で片持ち支持され外方に延びる片持ちスラブと、を有する既設建物の耐震補強構造であって、
前記柱部に対応する位置に配置された補強柱部と、
前記梁部に対応する位置に配置された補強梁部と、を備え、
前記補強柱部と前記補強梁部は、その交差部に互いに共有する張出接合部を有しており、
前記補強梁部は、矩形断面を有し、その高さが幅より小さい幅広扁平梁であり、下端が前記梁部の下端より上方に位置し、かつ前記片持ちスラブの下面に接して外方に水平に延び、
前記張出接合部は、前記柱部より幅が大きく、その幅端部近傍にヒンジ部を形成するヒンジリロケーション構造を有する、耐震補強構造。
An earthquake-resistant reinforcement structure for an existing building, comprising a column and a beam located along an outer wall surface, and a cantilevered slab extending outward and supported by the column and the beam,
a reinforcing column portion disposed at a position corresponding to the column portion;
a reinforcing beam portion disposed at a position corresponding to the beam portion,
The reinforcing column part and the reinforcing beam part have a common overhang joint part at their intersection,
The reinforcing beam part is a wide flat beam having a rectangular cross section and a height smaller than the width, and the lower end is located above the lower end of the beam part, and is in contact with the lower surface of the cantilever slab and extends outward. extends horizontally to
The above-mentioned overhang joint part has a width larger than the above-mentioned pillar part, and has a hinge relocation structure in which a hinge part is formed near the width end of the seismic reinforcement structure.
前記ヒンジリロケーション構造は、前記張出接合部に埋設され前記幅端部近傍に前記ヒンジ部を形成する補強筋を有する、請求項1に記載の耐震補強構造。 The seismic reinforcement structure according to claim 1, wherein the hinge relocation structure has reinforcing bars embedded in the overhang joint and forming the hinge near the width end. 前記補強柱部は、前記片持ちスラブを鉛直に貫通して設けられ、前記片持ちスラブとの間に、水平方向の隙間を有する、請求項1に記載の耐震補強構造。 The seismic reinforcement structure according to claim 1, wherein the reinforcing column portion is provided to vertically penetrate the cantilever slab, and has a horizontal gap between the reinforcing column and the cantilever slab. 前記梁部は、隣接する1対の前記柱部の間に、前記梁部を水平に貫通する第1貫通穴を有しており、
前記補強梁部は、前記第1貫通穴と対向する位置に前記第1貫通穴と外部とを連通する欠損部を有する、請求項1に記載の耐震補強構造。
The beam portion has a first through hole that horizontally penetrates the beam portion between a pair of adjacent pillar portions,
The seismic reinforcement structure according to claim 1, wherein the reinforcing beam portion has a defective portion at a position facing the first through hole that communicates the first through hole with the outside.
前記補強柱部及び前記補強梁部は、それぞれ前記柱部及び前記梁部に一端部が埋設され水平に延びる埋設アンカーを有する、請求項1に記載の耐震補強構造。 The seismic reinforcement structure according to claim 1, wherein the reinforcing column part and the reinforcing beam part each have a buried anchor having one end buried in the column part and the beam part and extending horizontally. 前記既設建物は、隣接する1対の前記柱部の間に、隣接する1対の前記梁部を鉛直に接続する中間壁を有しており、
前記中間壁に対応する位置に配置され前記中間壁の全幅と同程度の幅の補強中間柱を備え、前記補強中間柱は、隣接する複数の前記補強梁部に接続されている、請求項1に記載の耐震補強構造。
The existing building has an intermediate wall vertically connecting the adjacent pair of beam portions between the adjacent pair of pillar portions,
Claim 1, further comprising: a reinforcing intermediate column arranged at a position corresponding to the intermediate wall and having a width comparable to the full width of the intermediate wall, the reinforcing intermediate column being connected to a plurality of adjacent reinforcing beam sections. Earthquake reinforcement structure described in .
前記中間壁は、該中間壁を水平に貫通する第2貫通穴を有しており、
前記補強中間柱は、前記第2貫通穴と整合する位置に前記第2貫通穴と外部とを連通する補強中間柱用貫通穴を有する、請求項6に記載の耐震補強構造。
The intermediate wall has a second through hole that horizontally penetrates the intermediate wall,
7. The seismic reinforcement structure according to claim 6, wherein the reinforcing intermediate column has a reinforcing intermediate column through hole that communicates the second through hole with the outside at a position aligned with the second through hole.
前記補強中間柱は、前記中間壁に一端部が埋設され水平に延びる脱落防止用アンカーを有する、請求項6に記載の耐震補強構造。 7. The seismic reinforcement structure according to claim 6, wherein the reinforcing intermediate column has a fall prevention anchor that has one end embedded in the intermediate wall and extends horizontally. 既設建物より圧縮強度が高いコンクリートを用い、打ち継ぎのない一発打ちで形成されている、請求項1に記載の耐震補強構造。 2. The seismic reinforcement structure according to claim 1, which is made of concrete having a higher compressive strength than existing buildings and is formed by one-shot pouring without pouring joints. 前記既設建物は、下層がSRC造、上層がRC造であるSRC/RC造であり、
前記下層は、前記柱部に埋設され前記上層の下端部まで鉛直に延びる鉄骨を有しており、
前記補強柱部は、その下端部に前記鉄骨に一端部が溶接され水平に延びる溶接アンカーを有する、請求項1に記載の耐震補強構造。
The existing building is an SRC/RC structure in which the lower layer is SRC structure and the upper layer is RC structure,
The lower layer has a steel frame that is embedded in the column and extends vertically to the lower end of the upper layer,
2. The seismic reinforcement structure according to claim 1, wherein the reinforcing column part has a welding anchor at a lower end thereof, one end of which is welded to the steel frame and extends horizontally.
前記既設建物は、全体がRC造である、請求項1に記載の耐震補強構造。
The seismic reinforcement structure according to claim 1, wherein the existing building is entirely constructed of RC.
JP2019234126A 2019-12-25 2019-12-25 Earthquake reinforcement structure Active JP7360772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019234126A JP7360772B2 (en) 2019-12-25 2019-12-25 Earthquake reinforcement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019234126A JP7360772B2 (en) 2019-12-25 2019-12-25 Earthquake reinforcement structure

Publications (2)

Publication Number Publication Date
JP2021102869A JP2021102869A (en) 2021-07-15
JP7360772B2 true JP7360772B2 (en) 2023-10-13

Family

ID=76755617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019234126A Active JP7360772B2 (en) 2019-12-25 2019-12-25 Earthquake reinforcement structure

Country Status (1)

Country Link
JP (1) JP7360772B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045539A (en) 1999-08-19 2000-02-15 Yahagi Construction Co Ltd Reinforcing method for existing column in multi-story building
JP2001173241A (en) 1999-12-17 2001-06-26 Nihonkai Lng Co Ltd Concrete enclosed column base type earthquake resistant reinforcing structure of column leg part of column member, and method therefor
WO2006109580A1 (en) 2005-04-06 2006-10-19 National University Corporation Toyohashi University Of Technology Seismic strengthening structure and seismic strengthening construction method for existing building
JP2015010345A (en) 2013-06-27 2015-01-19 株式会社長谷工コーポレーション Additionally placed reinforcement structure of existing column
JP2015021324A (en) 2013-07-22 2015-02-02 名工建設株式会社 Earthquake-resistant strengthening method
JP2015052200A (en) 2013-09-05 2015-03-19 株式会社安藤・間 Aseismatic reinforcing structure
JP2017203371A (en) 2017-07-13 2017-11-16 株式会社竹中工務店 Column-beam frame
JP2018003585A (en) 2016-06-24 2018-01-11 Toto株式会社 High drainage goods
JP2018044357A (en) 2016-09-14 2018-03-22 株式会社大林組 Reinforced concrete structure and design method of column-beam junction
JP2018193815A (en) 2017-05-19 2018-12-06 宇部興産建材株式会社 Reinforced building and method for producing the same
US20190153728A1 (en) 2017-11-21 2019-05-23 Korea Institute Of Civil Engineering And Building Technology Concrete structure using reinforcing panel including embedded reinforcing grid and method of repairing and reinforcing the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045539A (en) 1999-08-19 2000-02-15 Yahagi Construction Co Ltd Reinforcing method for existing column in multi-story building
JP2001173241A (en) 1999-12-17 2001-06-26 Nihonkai Lng Co Ltd Concrete enclosed column base type earthquake resistant reinforcing structure of column leg part of column member, and method therefor
WO2006109580A1 (en) 2005-04-06 2006-10-19 National University Corporation Toyohashi University Of Technology Seismic strengthening structure and seismic strengthening construction method for existing building
JP2015010345A (en) 2013-06-27 2015-01-19 株式会社長谷工コーポレーション Additionally placed reinforcement structure of existing column
JP2015021324A (en) 2013-07-22 2015-02-02 名工建設株式会社 Earthquake-resistant strengthening method
JP2015052200A (en) 2013-09-05 2015-03-19 株式会社安藤・間 Aseismatic reinforcing structure
JP2018003585A (en) 2016-06-24 2018-01-11 Toto株式会社 High drainage goods
JP2018044357A (en) 2016-09-14 2018-03-22 株式会社大林組 Reinforced concrete structure and design method of column-beam junction
JP2018193815A (en) 2017-05-19 2018-12-06 宇部興産建材株式会社 Reinforced building and method for producing the same
JP2017203371A (en) 2017-07-13 2017-11-16 株式会社竹中工務店 Column-beam frame
US20190153728A1 (en) 2017-11-21 2019-05-23 Korea Institute Of Civil Engineering And Building Technology Concrete structure using reinforcing panel including embedded reinforcing grid and method of repairing and reinforcing the same

Also Published As

Publication number Publication date
JP2021102869A (en) 2021-07-15

Similar Documents

Publication Publication Date Title
JPH10131516A (en) Reinforcing structure of existing building
JP5249522B2 (en) Column reinforcement structure
JP6245890B2 (en) building
JP2005240358A (en) Unit building
JP7360772B2 (en) Earthquake reinforcement structure
JP2010047951A (en) Aseismic opened frame for horizontal structural surface
JP2010112099A (en) Building structure and building construction having the building structure
JP5123602B2 (en) Unit type building and construction method of unit type building
JP3373836B2 (en) Reinforcement structure of existing building with PCa concrete members
JP4937504B2 (en) Building
JP2002317498A (en) Framework structure of multistory building
JPH10266341A (en) Framed structure of steel frame construction building
JP5312163B2 (en) Unit building
JP2006037649A (en) Frame structure of apartment house
JP2016056679A (en) Column-beam structure of tabular multi-dwelling house
JP7307600B2 (en) building
JP7201452B2 (en) building unit
JP7463877B2 (en) Mixed-structure building
JP3211098U (en) Seismic reinforcement structure for existing steel buildings
JP6974006B2 (en) building
JP4800166B2 (en) housing complex
JP7000103B2 (en) Column-beam structure of a plate-shaped building
JP2023059517A (en) building structure
JP6951851B2 (en) High-rise earthquake-resistant building
JP2005068772A (en) Towery building and its construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230929

R150 Certificate of patent or registration of utility model

Ref document number: 7360772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150