JP7359669B2 - Friction evaluation method - Google Patents

Friction evaluation method Download PDF

Info

Publication number
JP7359669B2
JP7359669B2 JP2019219754A JP2019219754A JP7359669B2 JP 7359669 B2 JP7359669 B2 JP 7359669B2 JP 2019219754 A JP2019219754 A JP 2019219754A JP 2019219754 A JP2019219754 A JP 2019219754A JP 7359669 B2 JP7359669 B2 JP 7359669B2
Authority
JP
Japan
Prior art keywords
road surface
adh
frictional force
temperature
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019219754A
Other languages
Japanese (ja)
Other versions
JP2021089210A (en
Inventor
直生 諫山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2019219754A priority Critical patent/JP7359669B2/en
Publication of JP2021089210A publication Critical patent/JP2021089210A/en
Application granted granted Critical
Publication of JP7359669B2 publication Critical patent/JP7359669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

本発明は摩擦評価方法に関する。 The present invention relates to a friction evaluation method.

ゴム部材(例えば空気入りタイヤのトレッド部)と摩擦面(例えば路面)との間で生じる摩擦力が凝着成分とヒステリシス成分とからなることが知られている。そして、近年、摩擦力における凝着成分の大きさやヒステリシス成分の大きさを明らかにすることが要求されている。 It is known that the frictional force generated between a rubber member (for example, a tread portion of a pneumatic tire) and a friction surface (for example, a road surface) consists of an adhesive component and a hysteresis component. In recent years, there has been a demand to clarify the magnitude of the adhesion component and the hysteresis component of frictional force.

この要求に応えるため、特許文献1に記載のように、界面活性剤含有水(界面活性剤が含有された水)が散水された摩擦面でゴム材料を摩擦させたときの摩擦係数を計測する第1ステップと、界面活性剤非含有水(界面活性剤が含有されていない水)が散水された摩擦面でゴム材料を摩擦させたときの摩擦係数を計測する第2ステップと、第1ステップで計測された摩擦係数と第2ステップで計測された摩擦係数との差を算出する第3ステップとからなる摩擦評価方法が提案されている。 In order to meet this demand, as described in Patent Document 1, the coefficient of friction is measured when a rubber material is rubbed against a friction surface sprayed with surfactant-containing water (water containing a surfactant). A first step, a second step of measuring the coefficient of friction when a rubber material is rubbed against a friction surface sprayed with surfactant-free water (water that does not contain a surfactant), and a first step. A friction evaluation method has been proposed that includes a third step of calculating the difference between the friction coefficient measured in step 1 and the friction coefficient measured in step 2.

この方法によれば、第1ステップでヒステリシス摩擦に起因する摩擦係数が計測され、第2ステップで粘着摩擦とヒステリシス摩擦に起因する摩擦係数が計測されるので、第3ステップで粘着摩擦成分が算出されるとされている。 According to this method, the friction coefficient caused by hysteresis friction is measured in the first step, and the friction coefficient caused by sticky friction and hysteresis friction is measured in the second step, so the sticky friction component is calculated in the third step. It is said that it will be done.

特開2016-200563号公報Japanese Patent Application Publication No. 2016-200563

しかし、実際には、摩擦面を界面活性剤含有水等で濡らしても、摩擦力の凝着成分を完全に除去することはできず、ヒステリシス成分の大きさを知ることができない。また近年、摩擦力のヒステリシス成分の温度依存性に関心が持たれているが、特許文献1の方法ではそれを知ることができない。 However, in reality, even if the friction surface is wetted with surfactant-containing water or the like, the adhesive component of the frictional force cannot be completely removed, and the magnitude of the hysteresis component cannot be determined. Furthermore, in recent years, there has been interest in the temperature dependence of the hysteresis component of frictional force, but this cannot be determined using the method of Patent Document 1.

そこで本発明は、摩擦力のヒステリシス成分の温度依存性を明らかにすることができる方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a method that can clarify the temperature dependence of the hysteresis component of frictional force.

実施形態の摩擦評価方法は、ゴム製又は樹脂製の部材と摩擦面との間の摩擦力における凝着成分とヒステリシス成分とを求める摩擦評価方法において、前記摩擦面としての実路面の凹凸を再現した樹脂製の第1模擬路面を作成する工程と、前記第1模擬路面からミクロな凹凸を除去した第2模擬路面を作成する工程と、前記部材と前記の樹脂製の面との間の粘着力の温度依存性を調べる第1試験を行う工程と、前記第1試験の結果に基づき、前記部材と前記の樹脂製の面との間の摩擦力の凝着成分の温度依存係数として、基準温度T base における係数1に対する別の1又は2以上の温度T におけるそれぞれの係数a を求める工程と、前記第2模擬路面にオイルと六方晶型の結晶構造を持つ物質の粉末との少なくとも一方を塗布して潤滑面とし、複数の温度条件下で前記部材を前記潤滑面上で滑らせて摩擦力を測定する第2試験を行う工程と、前記第2試験の結果に基づき、前記部材と前記潤滑面との間の摩擦力のヒステリシス成分の温度依存係数として、基準温度T base における係数1に対する別の1又は2以上の温度T におけるそれぞれの係数b を求める工程と、前記部材と前記実路面との間の前記基準温度T base での摩擦力F1と、前記部材と前記第1模擬路面との間の前記基準温度T base での摩擦力F2と、前記部材と前記第2模擬路面との間の前記基準温度T base での摩擦力F3 base と、前記部材と前記第2模擬路面との間の前記の1又は2以上の温度T でのそれぞれの摩擦力F3 とを測定する工程と、F1=F1 adh +F1 his ・・・(式1)、F2=F2 adh +F2 his ・・・(式2)、F3 base =F3 adh +F3 his ・・・(式3)、F3 =a ×F3 adh +b ×F3 his ・・・(式4)(式1におけるF1 adh 、式2におけるF2 adh 、式3におけるF3 adh 及び式4におけるa ×F3 adh は各摩擦力における凝着成分、式1におけるF1 his 、式2におけるF2 his 、式3におけるF3 his 及び式4におけるb ×F3 his は各摩擦力におけるヒステリシス成分)とみなし、式3と式4とからF3 adh とF3 his とを求める工程と、F3 adh =F2 adh とみなし、式2に基づきF2-F3 adh を計算してF2 his を求める工程と、F2 his =F1 his とみなし、式1に基づきF1-F2 his を計算してF1 adh を求める工程と、を含むことを特徴とする
また、実施形態の摩擦評価方法は、ゴム製又は樹脂製の部材と摩擦面との間の摩擦力における凝着成分とヒステリシス成分とを求める摩擦評価方法において、前記摩擦面としての実路面の凹凸を再現した樹脂製の第1模擬路面を作成する工程と、前記部材と前記の樹脂製の面との間の粘着力の温度依存性を調べる第1試験を行う工程と、前記第1試験の結果に基づき、前記部材と前記の樹脂製の面との間の摩擦力の凝着成分の温度依存係数として、基準温度T base における係数1に対する別の1又は2以上の温度T におけるそれぞれの係数a を求める工程と、前記第1模擬路面にオイルと六方晶型の結晶構造を持つ物質の粉末との少なくとも一方を塗布して潤滑面とし、複数の温度条件下で前記部材を前記潤滑面上で滑らせて摩擦力を測定する第2試験を行う工程と、前記第2試験の結果に基づき、前記部材と前記潤滑面との間の摩擦力のヒステリシス成分の温度依存係数として、基準温度T base における係数1に対する別の1又は2以上の温度T におけるそれぞれの係数b を求める工程と、前記部材と前記実路面との間の前記基準温度T base での摩擦力F1と、前記部材と前記第1模擬路面との間の前記基準温度T base での摩擦力F2と、前記部材と前記第1模擬路面との間の前記の1又は2以上の温度T でのそれぞれの摩擦力F2 とを測定する工程と、F1=F1 adh +F1 his ・・・(式5)、F2 base =F2 adh +F2 his ・・・(式6)、F2 =a ×F2 adh +b ×F2 his ・・・(式7)(式5におけるF1 adh 、式6におけるF2 adh 、式7におけるa ×F2 adh は各摩擦力における凝着成分、式5におけるF1 his 、式6におけるF2 his 、式7におけるb ×F2 his は各摩擦力におけるヒステリシス成分)とみなし、式6と式7とからF2 adh とF2 his とを求める工程と、F2 his =F1 his とみなし、式5に基づきF1-F2 his を計算してF1 adh を求める工程と、を含むことを特徴とする。
The friction evaluation method of the embodiment is a friction evaluation method that calculates an adhesion component and a hysteresis component in the friction force between a rubber or resin member and a friction surface, and reproduces the unevenness of an actual road surface as the friction surface. a step of creating a first simulated road surface made of resin, a step of creating a second simulated road surface by removing microscopic irregularities from the first simulated road surface, and adhesion between the member and the resin surface. A step of conducting a first test to examine the temperature dependence of force, and based on the results of the first test, a standard is determined as the temperature dependence coefficient of the adhesive component of the frictional force between the member and the resin surface. a step of determining each coefficient a i at another one or more temperatures T i with respect to the coefficient 1 at the temperature T base ; and a step of at least adding oil and powder of a substance having a hexagonal crystal structure to the second simulated road surface. applying a second test to the lubricated surface and measuring the frictional force by sliding the member on the lubricated surface under a plurality of temperature conditions; and the lubricated surface, a step of determining each coefficient b i at another one or more temperatures T i with respect to coefficient 1 at the reference temperature T base , and the member and the actual road surface at the reference temperature T base , a friction force F2 at the reference temperature T base between the member and the first simulated road surface, and a friction force F2 between the member and the second simulated road surface. a friction force F3 base between the simulated road surface at the reference temperature T base , and a respective friction force F3 i between the member and the second simulated road surface at the one or more temperatures T i ; F1=F1 adh +F1 his ...(Formula 1), F2=F2 adh +F2 his ...(Formula 2), F3 base =F3 adh +F3 his ...(Formula 3), F3 i = a i ×F3 adh + b i ×F3 his ... (Formula 4) (F1 adh in formula 1 , F2 adh in formula 2 , F3 adh in formula 3, and a i ×F3 adh in formula 4 are each frictional force The adhesion component in equation 1, F2 his in equation 2 , F3 his in equation 3, and b i adh and F3 his ; assuming that F3 adh = F2 adh , and calculating F2-F3 adh based on equation 2 to obtain F2 his ; and assuming F2 his = F1 his , calculating F1 based on equation 1. - calculating F2 his to obtain F1 adh .
Further, the friction evaluation method of the embodiment is a friction evaluation method for determining an adhesion component and a hysteresis component in the friction force between a rubber or resin member and a friction surface, the unevenness of an actual road surface as the friction surface. a step of creating a first simulated road surface made of resin that reproduces the road surface; a step of conducting a first test to examine the temperature dependence of the adhesive force between the member and the resin surface; Based on the results, as the temperature dependent coefficient of the adhesion component of the frictional force between the member and the resin surface, the coefficient 1 at the reference temperature T base and the coefficient 1 at another one or more temperatures T i are determined . determining a coefficient a i ; and applying at least one of oil and powder of a substance having a hexagonal crystal structure to the first simulated road surface to provide a lubricating surface, and lubricating the member under a plurality of temperature conditions. A step of performing a second test in which the frictional force is measured by sliding it on the surface, and based on the results of the second test, a standard is determined as the temperature dependent coefficient of the hysteresis component of the frictional force between the member and the lubricated surface. a step of determining each coefficient b i at another one or more temperatures T i with respect to coefficient 1 at the temperature T base ; and a friction force F1 between the member and the actual road surface at the reference temperature T base ; The frictional force F2 between the member and the first simulated road surface at the reference temperature T base and the one or more temperatures T i between the member and the first simulated road surface , respectively. The step of measuring the frictional force F2 i , F1=F1 adh +F1 his ...(Formula 5), F2 base =F2 adh +F2 his ...(Formula 6), F2 i =a i ×F2 adh +b i ×F2 his ...(Equation 7) (F1 adh in Equation 5 , F2 adh in Equation 6 , a i ×F2 adh in Equation 7 is the adhesion component in each friction force, F1 his in Equation 5 , F2 in Equation 6 his , b i ×F2 his in Equation 7 is a hysteresis component in each friction force), and the process of calculating F2 adh and F2 his from Equation 6 and Equation 7, and considering F2 his = F1 his , and using Equation 5. The method is characterized in that it includes a step of calculating F1-F2 his based on the method to obtain F1 adh .

上記実施形態によれば、潤滑面上でゴム部材を滑らせることによって凝着成分が除去された摩擦力を測定することができ、複数の異なる温度においてそれぞれ測定することによってヒステリシス成分の温度依存性を明らかにすることができる。 According to the above embodiment, it is possible to measure the frictional force from which the adhesive component has been removed by sliding the rubber member on the lubricated surface, and by measuring each at a plurality of different temperatures, the temperature dependence of the hysteresis component can be measured. can be revealed.

実施形態の摩擦評価方法のフローチャート。1 is a flowchart of a friction evaluation method according to an embodiment. 適正な第2模擬路面が作成されたことを確認するフローチャート。A flowchart for confirming that an appropriate second simulated road surface has been created. 粘着力試験の概略を示す図。A diagram showing an outline of an adhesive strength test. 粘着力試験の測定結果の例を示す図。The figure which shows the example of the measurement result of an adhesion test. 第2試験の概略を示す図。A diagram showing an outline of the second test. 第2試験の測定結果の例を示す図。The figure which shows the example of the measurement result of the 2nd test. 路面の違いによる凝着成分とヒステリシス成分について示す図。A diagram showing adhesion components and hysteresis components due to differences in road surfaces.

実施形態について図面に基づき説明する。なお、以下で説明する実施形態は一例に過ぎず、本発明の趣旨を逸脱しない範囲で適宜変更されたものについては、本発明の範囲に含まれるものとする。 Embodiments will be described based on the drawings. Note that the embodiment described below is merely an example, and any modifications made as appropriate without departing from the spirit of the present invention are included within the scope of the present invention.

<全体工程>
本実施形態は、ゴム部材と実路面との間の摩擦力の凝着成分の大きさ及びヒステリシス成分の大きさを明らかにする実施形態である。
<Overall process>
This embodiment is an embodiment in which the magnitude of the adhesion component and the magnitude of the hysteresis component of the frictional force between the rubber member and the actual road surface is clarified.

図1に示すように、実施形態の摩擦評価方法は、実路面の凹凸を再現した樹脂製の第1模擬路面を作成する第1模擬路面作成工程(S1)と、マクロな凹凸及びミクロな凹凸を有する第1模擬路面からミクロな凹凸を除去して第2模擬路面を作成する第2模擬路面作成工程(S2)と、ゴム部材と樹脂製の面との間の粘着力の温度依存性を調べる試験を行う粘着力試験(第1試験)工程(S3)と、粘着力試験(第1試験)の結果に基づきゴム部材と樹脂製の面との間の摩擦力の凝着成分の温度依存係数aを決定する温度依存係数a決定工程(S4)と、第2模擬路面を潤滑面としたうえで複数の温度条件下で潤滑面上でゴム部材を滑らせて摩擦力を測定する第2試験工程(S5)と、第2試験の結果に基づきゴム部材と第2模擬路面との間の摩擦力のヒステリシス成分の温度依存係数bを決定する温度依存係数b決定工程(S6)と、実路面、第1模擬路面及び第2模擬路面のそれぞれに対するゴム部材の摩擦力を基準温度において測定するとともに、第2模擬路面に対するゴム部材の摩擦力を基準温度以外の温度において測定する摩擦力測定工程(S7)と、測定されたそれぞれの摩擦力及び前記温度依存係数a、bを使用して摩擦力の凝着成分及びヒステリシス成分を求める計算工程(S8)と、を含む。 As shown in FIG. 1, the friction evaluation method of the embodiment includes a first simulated road surface creation step (S1) of creating a first simulated road surface made of resin that reproduces the irregularities of an actual road surface, and a step of creating a first simulated road surface (S1) that reproduces the irregularities of an actual road surface. A second simulated road surface creation step (S2) of creating a second simulated road surface by removing microscopic irregularities from the first simulated road surface having Adhesion test (first test) step (S3) in which a test is conducted to investigate the temperature dependence of the adhesion component of the frictional force between the rubber member and the resin surface based on the results of the adhesion test (first test). A temperature-dependent coefficient a i determining step (S4) for determining the coefficient a i, and measuring the frictional force by sliding a rubber member on the lubricated surface under a plurality of temperature conditions, using the second simulated road surface as a lubricated surface. a second test step (S5) and a temperature dependent coefficient b i determination step (S6 ), the frictional force of the rubber member against each of the actual road surface, the first simulated road surface, and the second simulated road surface is measured at a reference temperature, and the frictional force of the rubber member against the second simulated road surface is measured at a temperature other than the reference temperature. A frictional force measurement step (S7), and a calculation step (S8) for determining an adhesion component and a hysteresis component of the frictional force using each measured frictional force and the temperature dependent coefficients a i and b i . .

<第1模擬路面作成工程>
第1模擬路面作成工程では、アスファルト等からなる実路面の凹凸を再現した樹脂製の第1模擬路面が作成される。作成方法の具体例としては、実路面の凹凸がシリコンゴムで型取りされ、そのシリコンゴムの型に樹脂が流し込まれ、その樹脂が硬化して第1模擬路面となる。使用される樹脂としては例えば二液混合型の樹脂が挙げられ、より具体的な例としては二液混合型のウレタン樹脂が挙げられる。
<First simulated road surface creation process>
In the first simulated road surface creation step, a first simulated road surface made of resin that reproduces the unevenness of an actual road surface made of asphalt or the like is created. As a specific example of the creation method, the unevenness of the actual road surface is molded using silicone rubber, a resin is poured into the silicone rubber mold, and the resin is hardened to form the first simulated road surface. Examples of the resins used include two-component mixture type resins, and more specific examples include two-component mixture type urethane resins.

ここで、第1模擬路面ひいては後述する第2模擬路面が樹脂で形成される理由は、ゴムと樹脂との間の粘着力が温度に依存して大きく変化するからであり、そのことにより、ゴム部材と樹脂性の第2模擬路面との間の摩擦力の凝着成分が温度に依存して大きく変化するからである。後述するようにこの温度依存性が本実施形態において利用される。すなわち、樹脂性の同じ面において温度を変化させながら摩擦力を測定すると、温度によって摩擦力が変化するが、この摩擦力の変化は凝着成分の温度変化に起因するとみなせる。そのことから、摩擦力の凝着成分とヒステリシス成分とを求めることができる。なお、アスファルト等からなる実路面とゴムとの間の粘着力の温度依存性は小さい。 Here, the reason why the first simulated road surface and the second simulated road surface (described later) are formed of resin is that the adhesive force between rubber and resin changes greatly depending on the temperature. This is because the adhesion component of the frictional force between the member and the resinous second simulated road surface changes greatly depending on the temperature. This temperature dependence is utilized in this embodiment as will be described later. That is, when the frictional force is measured while changing the temperature on the same resin surface, the frictional force changes depending on the temperature, and this change in the frictional force can be considered to be caused by the temperature change of the adhesive component. From this, the adhesion component and hysteresis component of the frictional force can be determined. Note that the temperature dependence of the adhesive force between rubber and an actual road surface made of asphalt or the like is small.

第1模擬路面は、その表面粗さを接針式の表面粗さ計で測定したときに、実路面の表面粗さを1μmオーダーで再現したものであることが好ましい。また、第1模擬路面は、ゴム部材が押し付けられたときに目視上明らかな変形をしない硬度を有することが必要である。具体的には、第1模擬路面のデュロメータタイプD硬さが80以上84以下であることが好ましい。また、第1模擬路面を形成する樹脂の弾性率は、ゴム部材を形成するゴムの弾性率の10倍以上であることが好ましい。また、第1模擬路面を形成する樹脂についてJIS K 7113の方法で測定した引張強さは例えば55MPa以上65MPa以下である。 Preferably, the first simulated road surface reproduces the surface roughness of the actual road surface to an order of 1 μm when the surface roughness is measured with a contact type surface roughness meter. Further, the first simulated road surface needs to have such hardness that it does not undergo visually obvious deformation when the rubber member is pressed against it. Specifically, it is preferable that the durometer type D hardness of the first simulated road surface is 80 or more and 84 or less. Further, it is preferable that the elastic modulus of the resin forming the first simulated road surface is 10 times or more the elastic modulus of the rubber forming the rubber member. Further, the tensile strength of the resin forming the first simulated road surface measured by the method of JIS K 7113 is, for example, 55 MPa or more and 65 MPa or less.

<第2模擬路面作成工程>
第2模擬路面作成工程では、第1模擬路面の表面が研磨されて、マクロな凹凸及びミクロな凹凸を有していた第1模擬路面からミクロな凹凸が除去され、第2模擬路面とされる。研磨には目の細かい研磨布が使用される。
<Second simulated road surface creation process>
In the second simulated road surface creation step, the surface of the first simulated road surface is polished to remove microscopic irregularities from the first simulated road surface, which had macroscopic and microscopic irregularities, and is used as a second simulated road surface. . A fine abrasive cloth is used for polishing.

ここで、実路面は、小石等の骨材がアスファルト等の素地に埋め込まれて形成されている。そして、マクロな凹凸とは、骨材の大まかな形状等に基づく大きな凹凸のことである。また、ミクロな凹凸とは、素地の表面の微細な凹凸や骨材の表面の微細な凹凸等に基づく小さな凹凸のことである。摩擦力のヒステリシス成分にはミクロな凹凸が効くことがわかっており、第1模擬路面からミクロな凹凸が除去されることにより、第2模擬路面では摩擦力のヒステリシス成分が小さくなる。 Here, the actual road surface is formed by embedding aggregates such as pebbles in a base material such as asphalt. Macro unevenness refers to large unevenness based on the rough shape of the aggregate. Further, the term "microscopic irregularities" refers to small irregularities based on fine irregularities on the surface of a base material, fine irregularities on the surface of aggregate, or the like. It is known that microscopic irregularities have an effect on the hysteresis component of the frictional force, and by removing the microscopic irregularities from the first simulated road surface, the hysteresis component of the frictional force becomes smaller on the second simulated road surface.

<第2模擬路面が適正であることの確認方法>
適正な第2模擬路面が作成されたことは図2に示す方法で確認される。まず、上記の通り第1模擬路面からミクロな凹凸が除去されて第2模擬路面が作成される(S2-1)。
<How to confirm that the second simulated road surface is appropriate>
It is confirmed by the method shown in FIG. 2 that an appropriate second simulated road surface has been created. First, as described above, microscopic irregularities are removed from the first simulated road surface to create a second simulated road surface (S2-1).

次に、第1模擬路面及び第2模擬路面の表面粗さがそれぞれ表面粗さ計で測定される(S2-2)。測定された表面粗さデータは、周波数分析装置に取り込まれて、周波数分析される(S2-3)。 Next, the surface roughness of the first simulated road surface and the second simulated road surface are each measured using a surface roughness meter (S2-2). The measured surface roughness data is taken into a frequency analyzer and subjected to frequency analysis (S2-3).

ここで、路面の表面粗さデータを周波数分析して得られる波のうち0.1mm以上1.0mm以下の範囲内にある所定波長の波が基準とされ、基準の波の波長より大きな波長の波がマクロな凹凸によるもので、基準の波の波長より小さな波長の波がミクロな凹凸によるものであると考えることとする。この考えに基づき、路面の表面粗さデータを周波数分析して得られる波のうち0.1mm以上1.0mm以下の範囲内にある所定波長の波の周波数が、カットオフ周波数として設定される。カットオフ周波数より低い周波数の成分をほとんど減衰させず、カットオフ周波数より高い周波数の成分を減衰させるフィルタが、ローパスフィルタとして設定される(S2-4)。また、カットオフ周波数より高い周波数の成分をほとんど減衰させず、カットオフ周波数より低い周波数の成分を減衰させるフィルタが、ハイパスフィルタとして設定される(S2-4)。 Here, among waves obtained by frequency analysis of road surface roughness data, waves with a predetermined wavelength within the range of 0.1 mm or more and 1.0 mm or less are used as the reference, and waves with a wavelength larger than the reference wave wavelength are used as the reference. It is assumed that waves are caused by macroscopic unevenness, and waves with wavelengths smaller than the reference wave wavelength are caused by microscopic unevenness. Based on this idea, the frequency of a wave with a predetermined wavelength within the range of 0.1 mm or more and 1.0 mm or less among waves obtained by frequency analysis of road surface roughness data is set as the cutoff frequency. A filter that hardly attenuates frequency components lower than the cutoff frequency and attenuates frequency components higher than the cutoff frequency is set as a low-pass filter (S2-4). Further, a filter that hardly attenuates frequency components higher than the cutoff frequency and attenuates frequency components lower than the cutoff frequency is set as a high-pass filter (S2-4).

次に、第1模擬路面の表面粗さの周波数分析結果に対してローパスフィルタがかけられ、波長の大きな波が取得される。このようにして取得された波が合成されて出来た波形は、第1模擬路面のマクロな凹凸を再現しているとみなすことができる。そこで、前記の合成されて出来た波形から表面粗さ(例えば算術平均粗さ)が計算される(S2-5)。その計算結果は第1模擬路面のマクロな凹凸に基づく表面粗さ(マクロな表面粗さ)であるとみなすことができる。同様に、第2模擬路面の表面粗さの周波数分析結果に対してローパスフィルタをかけて得られた波から波形が合成され、合成されて出来た波形から表面粗さ(例えば算術平均粗さ)が計算される(S2-5)。 Next, a low-pass filter is applied to the frequency analysis result of the surface roughness of the first simulated road surface, and waves with large wavelengths are obtained. The waveform obtained by combining the waves acquired in this manner can be considered to reproduce the macroscopic unevenness of the first simulated road surface. Therefore, the surface roughness (for example, arithmetic mean roughness) is calculated from the waveforms created by the above-mentioned synthesis (S2-5). The calculation result can be regarded as surface roughness (macro surface roughness) based on the macro unevenness of the first simulated road surface. Similarly, a waveform is synthesized from the waves obtained by applying a low-pass filter to the frequency analysis result of the surface roughness of the second simulated road surface, and the surface roughness (for example, arithmetic mean roughness) is calculated from the synthesized waveform. is calculated (S2-5).

次に、第1模擬路面の表面粗さの周波数分析結果に対してローパスフィルタをかけて得られた波からなる波形の表面粗さ(すなわちマクロな表面粗さ)と、第2模擬路面の表面粗さの周波数分析結果に対してローパスフィルタをかけて得られた波からなる波形の表面粗さ(すなわちマクロな表面粗さ)とが比較される。そして、両者の差が5%以下の場合、すなわち両者の差がいずれか一方の値の5%以下の場合(S2-6のYES)、第1模擬路面と第2模擬路面とでマクロな凹凸がほとんど変化していないと判断され、第2模擬路面のマクロな凹凸が適正であると判断される。 Next, the waveform surface roughness (i.e., macro surface roughness) consisting of waves obtained by applying a low-pass filter to the frequency analysis result of the surface roughness of the first simulated road surface, and the surface roughness of the second simulated road surface. The surface roughness of a waveform formed by applying a low-pass filter to the roughness frequency analysis result (that is, macroscopic surface roughness) is compared. If the difference between the two is 5% or less, that is, if the difference between the two is 5% or less of the value of either one (YES in S2-6), macroscopic unevenness is detected between the first simulated road surface and the second simulated road surface. is determined to have hardly changed, and it is determined that the macroscopic unevenness of the second simulated road surface is appropriate.

次に、第2模擬路面の表面粗さの周波数分析結果に対してハイパスフィルタがかけられ、波長の小さな波が取得される。このようにして取得された波が合成されて出来た波形は、第2模擬路面のミクロな凹凸を再現しているとみなすことができる。そこで、前記の合成されて出来た波形から表面粗さ(例えば算術平均粗さ)が計算される(S2-7)。その計算結果は第2模擬路面のミクロな凹凸に基づく表面粗さ(ミクロな表面粗さ)であるとみなすことができる。この表面粗さ(例えば算術平均粗さ)が10μm以下の場合(S2-8のYES)、第2模擬路面がミクロな凹凸が除去されたものであると判断され、第2模擬路面のミクロな凹凸が適正であると判断される。 Next, a high-pass filter is applied to the frequency analysis result of the surface roughness of the second simulated road surface, and waves with small wavelengths are obtained. The waveform obtained by combining the waves acquired in this manner can be considered to reproduce the microscopic irregularities of the second simulated road surface. Therefore, the surface roughness (eg, arithmetic mean roughness) is calculated from the synthesized waveform (S2-7). The calculation result can be regarded as surface roughness (microscopic surface roughness) based on microscopic irregularities of the second simulated road surface. If this surface roughness (for example, arithmetic mean roughness) is 10 μm or less (YES in S2-8), it is determined that the second simulated road surface has microscopic irregularities removed, and the microscopic irregularities of the second simulated road surface are It is determined that the unevenness is appropriate.

第2模擬路面のマクロな凹凸又はミクロな凹凸が適正でないと判断された場合(S2-6のNO、S2-8のNO)は、各凹凸が適正になるように第2模擬路面が作成し直される(S2-1)。 If the macro unevenness or micro unevenness of the second simulated road surface is determined to be inappropriate (NO in S2-6, NO in S2-8), the second simulated road surface is created so that each unevenness is appropriate. It is fixed (S2-1).

S2-3からS2-8までの工程は、周波数分析装置又はそれに接続されたコンピュータにより実行される。なお、S2-5からS2-6までの工程と、S2-7からS2-8までの工程とは、順序が入れ替わっても良い。 The steps from S2-3 to S2-8 are executed by the frequency analyzer or a computer connected thereto. Note that the order of the steps from S2-5 to S2-6 and the steps from S2-7 to S2-8 may be reversed.

<粘着力試験工程>
一方で、ゴム部材と樹脂製の粘着力試験面との間の粘着力の温度依存性を調べる試験が行われる。図3に示すように、この試験では、ゴム部材1が樹脂製の粘着力試験面2に対し所定の荷重で押し付けられた後に引き離され、引き離すのに要した力(N)が測定される。この測定には既知の装置が使用できる。
<Adhesive strength test process>
On the other hand, a test is conducted to examine the temperature dependence of the adhesive force between the rubber member and the resin adhesive force test surface. As shown in FIG. 3, in this test, the rubber member 1 is pressed against a resin adhesive test surface 2 with a predetermined load and then pulled apart, and the force (N) required to pull it apart is measured. Known equipment can be used for this measurement.

この試験におけるゴム部材1として、最終的な摩擦評価対象のゴム部材が使用される。また、粘着力試験面2は、第1模擬路面及び第2模擬路面を形成する樹脂と同じ樹脂で形成される。その理由は、樹脂が同じであればゴム部材と樹脂製の面との間の粘着力(及び摩擦力の凝着成分)の温度依存性が同じなので、粘着力試験結果(すなわち粘着力試験面2における粘着力の温度依存性)を、第2模擬路面における摩擦力の凝着成分の温度依存性に利用することができるからである。粘着力試験面2は、第2模擬路面そのものであることが好ましいが、第1模擬路面でも良く、また第1模擬路面及び第2模擬路面とは別に作製された樹脂製の路面であっても良い。 As the rubber member 1 in this test, the rubber member to be the final friction evaluation target is used. Moreover, the adhesive force test surface 2 is formed of the same resin as the resin that forms the first simulated road surface and the second simulated road surface. The reason for this is that if the resin is the same, the temperature dependence of the adhesion force (and the adhesion component of the frictional force) between the rubber member and the resin surface is the same. This is because the temperature dependence of the adhesive force in No. 2) can be used as the temperature dependence of the adhesive component of the frictional force on the second simulated road surface. The adhesion test surface 2 is preferably the second simulated road surface itself, but may also be the first simulated road surface, or even a resin road surface prepared separately from the first simulated road surface and the second simulated road surface. good.

粘着力の温度依存性を調べるための試験温度として、2点以上の温度が選択される必要があり、3点以上の温度が選択されることがより好ましい。3点以上の温度が選択される場合の温度には、例えば、常温(例えば20~25℃)と、常温時に対して摩擦力の凝着成分が約2倍になると予想される低温(例えば0~10℃)と、常温時に対して摩擦力の凝着成分が約1/2になると予想される高温(例えば35~40℃)とが含まれる。そして、それぞれの温度において、上記の測定が行われる。測定は、ゴム部材1と粘着力試験面2とが試験温度に達した状態で行われる。本実施形態においては、常温、低温及び高温の3点で試験が行われるものとする。 As test temperatures for examining the temperature dependence of adhesive strength, it is necessary to select two or more temperatures, and more preferably three or more temperatures. Temperatures when three or more temperatures are selected include, for example, normal temperature (for example, 20 to 25 degrees Celsius) and low temperature (for example, 0° to 10°C) and high temperatures (for example, 35 to 40°C) where the adhesive component of the frictional force is expected to be about half of that at room temperature. The above measurements are then performed at each temperature. The measurement is performed in a state where the rubber member 1 and the adhesive force test surface 2 have reached the test temperature. In this embodiment, the test is performed at three points: room temperature, low temperature, and high temperature.

ゴム部材と樹脂製の面との間の粘着力は温度に依存して大きく変化するため、粘着力試験結果として、温度毎に大きく異なる測定結果が得られる。測定結果の例を図4に棒グラフとして示す。 Since the adhesive force between the rubber member and the resin surface varies greatly depending on the temperature, measurement results that vary greatly depending on the temperature are obtained as the adhesive force test results. An example of the measurement results is shown in FIG. 4 as a bar graph.

<温度依存係数a決定工程>
次に、粘着力試験結果に基づき、ゴム部材と樹脂製の面との間の摩擦力の凝着成分の温度依存係数aが決定される。
<Temperature dependence coefficient a i determination process>
Next, the temperature dependence coefficient a i of the adhesive component of the frictional force between the rubber member and the resin surface is determined based on the adhesion test results.

具体的には、まず、ゴム部材と粘着力試験面との間の粘着力の温度依存係数として、ある基準温度Tbaseにおける係数1に対する別の温度Tにおけるそれぞれの係数aが求められる。 Specifically, first, each coefficient a i at another temperature T i is calculated as a temperature dependent coefficient of the adhesive force between the rubber member and the adhesive force test surface, with respect to coefficient 1 at a certain reference temperature T base .

その求め方の一例としては、温度毎の粘着力のデータに対して最小二乗法等による線形回帰が行われ、温度変化に対する粘着力の変化を近似する(図4を例にすれば、棒グラフの複数の棒の頂点を近似する)関数が求められる(その関数の例を図4に直線で示す)。そして、求まった関数に基づき、ある基準温度Tbaseにおける粘着力を1としたときの別の温度Tにおける粘着力の割合が、その温度Tにおける係数aとして決定される。例えば、常温である基準温度Tbaseにおける粘着力が26.0N、低温である温度T(すなわちi=1)における粘着力が48.4N、高温である温度T(すなわちi=2)における粘着力が8.8Nの場合、温度Tにおける係数aは48.4/26.0=1.86、温度Tにおける係数aは8.8/26.0=0.34である。 As an example of how to obtain it, linear regression is performed using the least squares method etc. on the adhesive force data at each temperature, and the change in adhesive force with respect to temperature change is approximated (taking Figure 4 as an example, the bar graph A function (which approximates the vertices of the plurality of bars) is determined (an example of the function is shown as a straight line in FIG. 4). Then, based on the obtained function, the ratio of the adhesive force at another temperature T i when the adhesive force at a certain reference temperature T base is set to 1 is determined as the coefficient a i at that temperature T i . For example, the adhesive force at the standard temperature T base which is room temperature is 26.0 N, the adhesive force at the low temperature T 1 (i.e., i=1) is 48.4 N, and the adhesive force at the high temperature T 2 (i.e., i=2). When the adhesive force is 8.8 N, the coefficient a 1 at temperature T 1 is 48.4/26.0 = 1.86, and the coefficient a 2 at temperature T 2 is 8.8/26.0 = 0.34. .

ここで、基準温度Tbase及び別の温度Tとして、後述する摩擦力測定のときの温度が選択される。本実施形態では、後述する摩擦力測定が上記の常温、低温及び高温の3点で行われるものとし、基準温度Tbaseとして常温が選択され、別の温度Tとして低温T及び高温Tが選択されるものとする。 Here, as the reference temperature T base and another temperature T i , temperatures at the time of frictional force measurement, which will be described later, are selected. In this embodiment, it is assumed that the frictional force measurement described later is performed at the above-mentioned three points: normal temperature, low temperature, and high temperature, and normal temperature is selected as the reference temperature T base , and low temperature T 1 and high temperature T 2 are selected as other temperatures T i . shall be selected.

ここで、本実施形態において粘着力としている力は上記のように樹脂製の路面に押し付けられたゴム部材を引き離すのに要した力であり、ゴム部材が路面に対し滑るときの摩擦力の凝着成分とは大きさが異なる。しかし、温度依存性に関しては、前記粘着力と前記凝着成分とで同じであるとみなすことができる。そのため、上記のようにして求まったゴム部材と粘着力試験面との間の粘着力の温度依存係数aが、そのまま、ゴム部材と粘着力試験面との間の摩擦力の凝着成分の温度依存係数aとされる。 Here, the force referred to as adhesive force in this embodiment is the force required to separate the rubber member pressed against the resin road surface as described above, and is the concentration of frictional force when the rubber member slides against the road surface. The size is different from the clothing component. However, regarding temperature dependence, it can be considered that the adhesive force and the adhesive component are the same. Therefore, the temperature dependence coefficient a i of the adhesion between the rubber member and the adhesion test surface determined as above is the adhesion component of the frictional force between the rubber member and the adhesion test surface. It is assumed that the temperature dependence coefficient a i .

また、粘着力試験面における粘着力(又は摩擦力の凝着成分)の温度依存係数aは、粘着力試験面と同じ樹脂で形成された面全般についてそのまま使用することができる。そして、粘着力試験面を形成する樹脂と第2模擬路面を形成する樹脂とは同じである。そのため、ゴム部材と粘着力試験面との間の摩擦力の凝着成分の温度依存係数aは、ゴム部材と第2模擬路面との間の摩擦力の凝着成分の温度依存性係数aと同じであるとみなすことができる。 Further, the temperature dependence coefficient a i of the adhesive force (or the adhesion component of the frictional force) on the adhesive force test surface can be used as is for all surfaces formed of the same resin as the adhesive force test surface. The resin forming the adhesion test surface and the resin forming the second simulated road surface are the same. Therefore, the temperature dependence coefficient a i of the adhesion component of the friction force between the rubber member and the adhesion test surface is the temperature dependence coefficient a of the adhesion component of the friction force between the rubber member and the second simulated road surface. It can be considered to be the same as i .

以上のようにして、ゴム部材と樹脂製の面(具体的には粘着力試験面や第2模擬路面)との間の摩擦力の凝着成分の温度依存係数aが決定される。 As described above, the temperature dependence coefficient a i of the adhesion component of the frictional force between the rubber member and the resin surface (specifically, the adhesion test surface or the second simulated road surface) is determined.

温度依存係数aを使用することにより、各温度における摩擦力の凝着成分が求められる。すなわち、基準温度Tbaseのときの摩擦力の凝着成分がF3adhだとすると、別の温度Tのときの摩擦力の凝着成分はa×F3adhとして求められる。 By using the temperature dependent coefficient a i , the adhesion component of the frictional force at each temperature is determined. That is, if the adhesion component of the frictional force at the reference temperature T base is F3 adh , the adhesion component of the frictional force at another temperature T i is determined as a i ×F3 adh .

<第2試験工程>
また、第2模擬路面に潤滑剤を塗布して潤滑面とし、複数の温度条件下で潤滑面上でゴム部材1を滑らせて摩擦力を測定する第2試験が行われる。
<Second test process>
In addition, a second test is conducted in which a lubricant is applied to the second simulated road surface to make it a lubricated surface, and the frictional force is measured by sliding the rubber member 1 on the lubricated surface under a plurality of temperature conditions.

まず、第2模擬路面に潤滑剤が塗布される。第2模擬路面に塗布される潤滑剤としては、オイル又は六方晶型の結晶構造を持つ物質の粉末が使用される。第2模擬路面にこれらの潤滑剤が塗布されることにより、ゴム部材1と第2模擬路面との間の摩擦力から凝着成分が除去され、摩擦力がヒステリシス成分のみからなるとみなせるようになる。 First, a lubricant is applied to the second simulated road surface. As the lubricant applied to the second simulated road surface, oil or powder of a substance having a hexagonal crystal structure is used. By applying these lubricants to the second simulated road surface, adhesive components are removed from the frictional force between the rubber member 1 and the second simulated road surface, and the frictional force can be considered to consist only of hysteresis components. .

オイルとしては、粘度がそれぞれ10cSt以上1000cSt以下の植物油、鉱物油又はシリコンオイルが適している。オイルが塗布されることにより第2模擬路面とゴム部材1との間に油膜ができるが、オイルの粘度が10cSt以上であれば第2模擬路面の凸部によって油膜が破れる現象が起こりにくく、また1000cSt以下であれば油膜の粘性抵抗が摩擦力の測定に影響しにくい。 As the oil, vegetable oil, mineral oil, or silicone oil each having a viscosity of 10 cSt or more and 1000 cSt or less is suitable. When the oil is applied, an oil film is formed between the second simulated road surface and the rubber member 1, but if the viscosity of the oil is 10 cSt or more, the phenomenon in which the oil film is ruptured by the convex parts of the second simulated road surface is unlikely to occur; If it is 1000 cSt or less, the viscous resistance of the oil film will hardly affect the measurement of frictional force.

特に好ましいオイルは粘度が50cSt以上500cSt以下の植物油である。植物油としてはサラダオイルやオリーブオイル等が挙げられる。なおcStはセンチストークスのことで、1cSt=1mm/sである。粘度はJISZ8803の方法で測定される。 A particularly preferred oil is a vegetable oil having a viscosity of 50 cSt or more and 500 cSt or less. Examples of vegetable oils include salad oil and olive oil. Note that cSt stands for centistokes, and 1cSt=1mm 2 /s. The viscosity is measured by the method of JIS Z8803.

また、六方晶型の結晶構造を持つ物質の粉末としては、グラファイト粉末又は二硫化モリブデン粉末等が挙げられる。これらの粉末は、そのまま第2模擬路面に塗布(散布)されても良いし、溶媒とともに第2模擬路面に塗布されても良い。なお、六方晶型の結晶構造を持つ物質では、結晶構造の層と層との結合が弱く、せん断力が加わると層間で容易に滑りが生じる。そのため、六方晶型の結晶構造を持つ物質の粉末が第2模擬路面に塗布されると、第2模擬路面に潤滑性が生じる。 In addition, examples of powder of a substance having a hexagonal crystal structure include graphite powder and molybdenum disulfide powder. These powders may be applied (sprayed) directly onto the second simulated road surface, or may be applied together with a solvent onto the second simulated road surface. In addition, in a substance having a hexagonal crystal structure, the bond between the layers of the crystal structure is weak, and slippage easily occurs between the layers when shear force is applied. Therefore, when powder of a substance having a hexagonal crystal structure is applied to the second simulated road surface, lubricity is generated on the second simulated road surface.

次に、複数の温度条件下で、ゴム部材を潤滑面上で滑らせて摩擦力を測定する試験が行われる。図5に示すように、潤滑面3上にゴム部材1が配置され、ゴム部材1に対して矢印Aのように上から荷重が負荷された状態で、矢印Bの方向に潤滑面3に沿ってゴム部材1が滑り、そのときの摩擦力が測定される。この測定には既知の装置が使用できる。この試験におけるゴム部材1として、粘着力試験で使用されたものと同じゴム部材1が使用される。 Next, a test is conducted in which the rubber member is slid on a lubricated surface and the frictional force is measured under a plurality of temperature conditions. As shown in FIG. 5, the rubber member 1 is arranged on the lubricating surface 3, and a load is applied to the rubber member 1 from above as shown by arrow A, and the rubber member 1 is moved along the lubricating surface 3 in the direction of arrow B. The rubber member 1 slides, and the frictional force at that time is measured. Known equipment can be used for this measurement. As the rubber member 1 in this test, the same rubber member 1 as that used in the adhesion test is used.

第2試験の試験温度は、粘着力試験のときと同じ常温、低温及び高温である。測定はゴム部材1と潤滑面3とが試験温度に達した状態で行われる。 The test temperatures for the second test are room temperature, low temperature, and high temperature, which are the same as those for the adhesion test. The measurement is performed with the rubber member 1 and the lubricated surface 3 reaching the test temperature.

第2試験において、潤滑面3上で測定される摩擦力はヒステリシス成分のみからなるとみなすことができる。ヒステリシス成分の温度依存性は、凝着成分の温度依存性ほど大きくないが、若干ある。第2試験での測定結果の例を図6に棒グラフとして示す。 In the second test, the frictional force measured on the lubricated surface 3 can be considered to consist only of hysteresis components. The temperature dependence of the hysteresis component is not as great as the temperature dependence of the cohesive component, but there is some. An example of the measurement results in the second test is shown in FIG. 6 as a bar graph.

<温度依存係数b決定工程>
次に、第2試験の結果に基づき、ゴム部材1と第2模擬路面との間の摩擦力のヒステリシス成分の温度依存係数bが決定される。
<Temperature dependence coefficient b i determination process>
Next, the temperature dependence coefficient b i of the hysteresis component of the frictional force between the rubber member 1 and the second simulated road surface is determined based on the results of the second test.

ここで、第2試験で得られたのは潤滑面3とゴム部材1との間の摩擦力のヒステリシス成分の温度依存性だが、この温度依存性は、何も塗布されていない第2模擬路面とゴム部材1との間のヒステリシス成分の温度依存性や、水が塗布された第2模擬路面とゴム部材1との間のヒステリシス成分の温度依存性と、同じであるとみなすことができる。そのため、ゴム部材1と潤滑面3との間の摩擦力のヒステリシス成分の温度依存係数bを求めれば、その温度依存係数bを、何も塗布されていない第2模擬路面とゴム部材1との間のヒステリシス成分の温度依存係数bや、水が塗布された第2模擬路面とゴム部材1との間のヒステリシス成分の温度依存係数bとして扱うことができる。 Here, what was obtained in the second test was the temperature dependence of the hysteresis component of the frictional force between the lubricated surface 3 and the rubber member 1, but this temperature dependence was The temperature dependence of the hysteresis component between the rubber member 1 and the rubber member 1 can be considered to be the same as the temperature dependence of the hysteresis component between the rubber member 1 and the second simulated road surface coated with water. Therefore, if the temperature dependence coefficient b i of the hysteresis component of the frictional force between the rubber member 1 and the lubricated surface 3 is calculated, the temperature dependence coefficient b It can be handled as the temperature dependence coefficient bi of the hysteresis component between the rubber member 1 and the second simulated road surface coated with water, or as the temperature dependence coefficient b i of the hysteresis component between the rubber member 1 and the second simulated road surface coated with water.

この工程では、ゴム部材1と潤滑面3との間の摩擦力のヒステリシス成分の温度依存係数として、ある基準温度Tbaseにおける係数1に対する別の温度Tにおけるそれぞれの係数bが求められる。 In this step, each coefficient b i at another temperature T i is determined as a temperature dependent coefficient of the hysteresis component of the frictional force between the rubber member 1 and the lubricated surface 3 with respect to coefficient 1 at a certain reference temperature T base .

その求め方の一例としては、温度毎の第2試験のデータに対して最小二乗法等による線形回帰が行われ、温度変化に対するヒステリシス成分の変化を近似する関数が求められる(その関数の例を図6に直線で示す)。そして、求まった関数に基づき、ある基準温度Tbaseにおけるヒステリシス成分を1としたときの別の温度Tにおけるヒステリシス成分の割合が、その温度Tにおける係数bとして決定される。 As an example of how to obtain it, linear regression is performed on the data of the second test for each temperature using the least squares method, etc., and a function that approximates the change in the hysteresis component with respect to temperature change is obtained (an example of this function is shown below). (shown as a straight line in Figure 6). Then, based on the obtained function, the ratio of the hysteresis component at another temperature T i when the hysteresis component at a certain reference temperature T base is set to 1 is determined as the coefficient b i at that temperature T i .

ここで、基準温度Tbase及び別の温度Tとして、後述する摩擦力測定のときの温度が選択される。本実施形態では、後述する摩擦力測定が上記の常温、低温及び高温の3点で行われるものとし、基準温度Tbaseとして常温が選択され、別の温度Tとして低温T及び高温Tが選択されるものとする。 Here, as the reference temperature T base and another temperature T i , temperatures at the time of frictional force measurement, which will be described later, are selected. In this embodiment, it is assumed that the frictional force measurement described later is performed at the above-mentioned three points: normal temperature, low temperature, and high temperature, and normal temperature is selected as the reference temperature T base , and low temperature T 1 and high temperature T 2 are selected as other temperatures T i . shall be selected.

以上のようにして求まった温度依存係数bを使用することにより、各温度におけるヒステリシス成分が求められる。すなわち、基準温度Tbaseのときの摩擦力のヒステリシス成分がF3hisだとすると、別の温度Tのときの摩擦力の凝着成分はb×F3hisとして求められる。 By using the temperature dependence coefficient b i determined as described above, the hysteresis component at each temperature is determined. That is, if the hysteresis component of the frictional force at the reference temperature T base is F3 his , the adhesion component of the frictional force at another temperature T i is determined as b i ×F3 his .

<摩擦力測定工程>
次に、ゴム部材と実路面との間の基準温度Tbaseでの摩擦力F1と、ゴム部材と第1模擬路面との間の基準温度Tbaseでの摩擦力F2と、ゴム部材と第2模擬路面との間の基準温度Tbaseでの摩擦力F3baseと、ゴム部材と第2模擬路面との間の温度T(iは1つ又は2つ以上)でのそれぞれの摩擦力F3とが測定される。摩擦力F1、F2、F3base及びF3の測定は、全ての路面(実路面、第1模擬路面及び第2模擬路面)に何も塗布されていない状態で行われても良いし、全ての路面(実路面、第1模擬路面及び第2模擬路面)に水が塗布された状態で行われても良い。
<Friction force measurement process>
Next, the friction force F1 between the rubber member and the actual road surface at the reference temperature T base , the friction force F2 between the rubber member and the first simulated road surface at the reference temperature T base , and the friction force F2 between the rubber member and the second simulated road surface are calculated. The frictional force F3 base between the simulated road surface at the reference temperature T base and the respective frictional force F3 i between the rubber member and the second simulated road surface at the temperature T i (i is one or more than two) is measured. The measurement of the frictional forces F1, F2, F3 base and F3 i may be performed with no coating applied to all road surfaces (actual road surface, first simulated road surface, and second simulated road surface), or with no coating applied to all road surfaces (actual road surface, first simulated road surface, and second simulated road surface). The test may be performed with water applied to the road surface (actual road surface, first simulated road surface, and second simulated road surface).

ここで、本実施形態では温度Tとして上記のように低温T及び高温Tが選択される。従って、本実施形態では、ゴム部材と第2模擬路面との間の摩擦力として、基準温度Tbaseでの摩擦力F3baseと、低温Tでの摩擦力F3と、高温Tでの摩擦力F3とが測定される。 Here, in this embodiment, the low temperature T 1 and the high temperature T 2 are selected as the temperature T i as described above. Therefore, in this embodiment, the frictional force between the rubber member and the second simulated road surface is the frictional force F3base at the reference temperature Tbase , the frictional force F31 at the low temperature T1 , and the frictional force F31 at the high temperature T2 . Frictional force F32 is measured.

測定には既知の摩擦力の測定装置が使用できる。測定は、ゴム部材と各路面とがそれぞれの温度に達した状態で行われる。 A known friction force measuring device can be used for the measurement. The measurement is performed when the rubber member and each road surface have reached their respective temperatures.

測定された摩擦力は凝着成分とヒステリシス成分とからなるものとする。すなわち、
F1=F1adh+F1his・・・(式1)
F2=F2adh+F2his・・・(式2)
F3base=F3adh+F3his・・・(式3)
F3=a×F3adh+b×F3his・・・(式4)
(式1におけるF1adh、式2におけるF2adh、式3におけるF3adh及び式4におけるa×F3adhは各摩擦力における凝着成分、式1におけるF1his、式2におけるF2his、式3におけるF3his及び式4におけるb×F3hisは各摩擦力におけるヒステリシス成分)
が成立するものとする。
It is assumed that the measured frictional force consists of an adhesive component and a hysteresis component. That is,
F1=F1 adh +F1 his ...(Formula 1)
F2=F2 adh +F2 his ...(Formula 2)
F3 base =F3 adh +F3 his ...(Formula 3)
F3 i =a i ×F3 adh +b i ×F3 his ... (Formula 4)
(F1 adh in Equation 1, F2 adh in Equation 2, F3 adh in Equation 3, and a i ×F3 adh in Equation 4 are the adhesion components in each friction force, F1 his in Equation 1, F2 his in Equation 2, Equation 3 F3 his in and b i ×F3 his in equation 4 are hysteresis components in each friction force)
It is assumed that the following holds true.

ここで示されているように、式3と式4とでは摩擦力の測定温度が異なるので、摩擦力の凝着成分及びヒステリシス成分の大きさが異なる。具体的には、基準温度Tbaseのときの摩擦力の凝着成分がF3adh(式3参照)で、別の温度Tのときの摩擦力の凝着成分はa×F3adh(式4参照)である。aは、上記の温度依存係数a決定工程で決定された係数である。また、基準温度Tbaseのときの摩擦力のヒステリシス成分がF3his(式3参照)で、別の温度Tのときの摩擦力のヒステリシス成分はb×F3his(式4参照)である。bは、上記の温度依存係数b決定工程で決定された係数である。 As shown here, since the temperature at which the frictional force is measured is different between Equation 3 and Equation 4, the magnitudes of the adhesion component and the hysteresis component of the frictional force are different. Specifically, the adhesion component of the frictional force at the reference temperature T base is F3 adh (see equation 3), and the adhesion component of the frictional force at another temperature T i is a i ×F3 adh (formula 4). a i is a coefficient determined in the temperature dependent coefficient a i determination step described above. Furthermore, the hysteresis component of the frictional force at the reference temperature T base is F3 his (see equation 3), and the hysteresis component of the frictional force at another temperature T i is b i ×F3 his (see equation 4). . b i is a coefficient determined in the temperature dependent coefficient b i determination step described above.

上記のように本実施形態ではゴム部材と第2模擬路面との間の摩擦力が、基準温度Tbaseの他に低温T及び高温Tで測定されるので、式4は
F3=a×F3adh+b×F3his・・・(式4-1)
F3=a×F3adh+b×F3his・・・(式4-2)
の2つの式からなる。
As described above, in this embodiment, the frictional force between the rubber member and the second simulated road surface is measured at low temperature T 1 and high temperature T 2 in addition to the reference temperature T base , so Equation 4 is expressed as F3 1 = a 1 ×F3 adh +b 1 ×F3 his ... (Formula 4-1)
F3 2 = a 2 × F3 adh + b 2 × F3 his ... (Formula 4-2)
It consists of two equations.

<計算工程>
上記の式1~式4に基づき、ゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisが計算される。この計算は例えばコンピュータが実施する。計算の前提として次のことが仮定される。
<Calculation process>
Based on the above equations 1 to 4, the adhesion component F1 adh and the hysteresis component F1 his of the frictional force between the rubber member and the actual road surface are calculated. This calculation is performed, for example, by a computer. The following assumptions are made for the calculation.

表1に示すように、実路面と第1模擬路面とでは、材質が異なり、表面粗さが同じである。実路面がアスファルト等からなるのに対して第1模擬路面が樹脂からなるので、実路面における摩擦力の凝着成分が基準値だとすると、第1模擬路面における摩擦力の凝着成分はその基準値より大きい。一方、実路面と第1模擬路面とでは、凹凸状態が同じだと言えるので、摩擦力のヒステリシス成分が同じだと仮定できる。 As shown in Table 1, the actual road surface and the first simulated road surface are made of different materials and have the same surface roughness. Since the first simulated road surface is made of resin while the actual road surface is made of asphalt, etc., if the adhesive component of the frictional force on the actual road surface is the reference value, the adhesive component of the frictional force on the first simulated road surface is the reference value. bigger. On the other hand, since it can be said that the actual road surface and the first simulated road surface have the same unevenness, it can be assumed that the hysteresis component of the frictional force is the same.

また、表1に示すように、第1模擬路面と第2模擬路面とでは、材質が同じで、表面粗さが異なる。第1模擬路面も第2模擬路面も同じ樹脂からなるので、これらの路面における摩擦力の凝着成分は同じだと仮定できる。一方、第1模擬路面の表面粗さにはミクロな粗さが含まれるのに対して第2模擬路面の表面粗さにはミクロな粗さが含まれないので、第2模擬路面における摩擦力のヒステリシス成分は、実路面や第1模擬路面における摩擦力のヒステリシス成分と比べて、小さいと仮定できる。 Further, as shown in Table 1, the first simulated road surface and the second simulated road surface are made of the same material but have different surface roughnesses. Since the first simulated road surface and the second simulated road surface are made of the same resin, it can be assumed that the adhesion component of the frictional force on these road surfaces is the same. On the other hand, the surface roughness of the first simulated road surface includes micro-roughness, whereas the surface roughness of the second simulated road surface does not include micro-roughness, so the frictional force on the second simulated road surface It can be assumed that the hysteresis component of is smaller than the hysteresis component of the frictional force on the actual road surface or the first simulated road surface.

Figure 0007359669000001
Figure 0007359669000001

以上の仮定を図示すると図7のようになる。図7の棒グラフにおける格子状の部分は凝着成分を表し、ドット状の部分はヒステリシス成分を表している。以上のことから、式1~式4において、F3adh=F2adhとみなし、F2his=F1hisとみなすことができる。このことを利用してゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisを求めることができる。 The above assumption is illustrated in FIG. 7. In the bar graph of FIG. 7, the lattice-shaped portion represents the adhesion component, and the dot-shaped portion represents the hysteresis component. From the above, in Equations 1 to 4, it can be assumed that F3 adh = F2 adh and F2 his = F1 his . Utilizing this fact, the adhesion component F1 adh and the hysteresis component F1 his of the frictional force between the rubber member and the actual road surface can be determined.

まず、式3と式4とからF3adhとF3hisとが求められる。F3adhとF3hisとが求められる具体的方法の例としては、式3と、温度毎に成立する複数の式4とから、2つの式の組み合わせが全て抽出され、それぞれの組み合わせから暫定的なF3adhと暫定的なF3hisとが求められ、求まった複数の暫定的なF3adhのうちの中央値と、F3adhがその中央値のときのF3hisの値とが、最終的なF3adhとF3hisとされる。 First, F3 adh and F3 his are found from equations 3 and 4. As an example of a specific method for finding F3 adh and F3 his , all combinations of the two equations are extracted from equation 3 and a plurality of equations 4 that hold for each temperature, and a provisional method is extracted from each combination. F3 adh and provisional F3 his are calculated, and the median value of the plurality of provisional F3 adhs found and the value of F3 his when F3 adh is the median value are the final F3 adh and F3 his .

具体例としては、本実施形態では、第2模擬路面における摩擦力の式として、式3、式4-1及び式4-2が存在する。これら3つの式から、2つの式の組み合わせが3つ出来る。すなわち、
F3base=F3adh+F3his・・・(式3)及び
F3=a×F3adh+b×F3his・・・(式4-1)
の第1の組み合わせ、
F3=a×F3adh+b×F3his・・・(式4-1)及び
F3=a×F3adh+b×F3his・・・(式4-2)
の第2の組み合わせ、及び
F3base=F3adh+F3his・・・(式3)及び
F3=a×F3adh+b×F3his・・・(式4-2)
の第3の組み合わせである。
As a specific example, in this embodiment, equations 3, 4-1, and 4-2 exist as equations for the frictional force on the second simulated road surface. From these three equations, there are three combinations of two equations. That is,
F3 base =F3 adh +F3 his ...(Formula 3) and F3 1 =a 1 ×F3 adh +b 1 ×F3 his ...(Formula 4-1)
the first combination of;
F3 1 =a 1 ×F3 adh +b 1 ×F3 his ... (Formula 4-1) and F3 2 =a 2 ×F3 adh +b 2 ×F3 his ... (Formula 4-2)
and F3 base = F3 adh + F3 his ... (Formula 3) and F3 2 = a 2 × F3 adh + b 2 × F3 his ... (Formula 4-2)
This is the third combination of

F3base、F3及びF3、が測定で明らかになっており、a、a、b及びbが求まっているので、第1の組み合わせの連立方程式を解いて、暫定的なF3adh及び暫定的なF3hisを求めることができる。同様に、第2の組み合わせの連立方程式から暫定的なF3adh及び暫定的なF3hisが求まり、第3の組み合わせの連立方程式からも暫定的なF3adh及び暫定的なF3hisが求まる。 Since F3 base , F3 1 and F3 2 have been clarified by measurement, and a 1 , a 2 , b 1 and b 2 have been determined, the first combination of simultaneous equations is solved and the provisional F3 adh and provisional F3 his can be determined. Similarly, provisional F3 adh and provisional F3 his are found from the second combination of simultaneous equations, and provisional F3 adh and provisional F3 his are also found from the third combination of simultaneous equations.

理想的には、第1~第3の組み合わせのどの連立方程式を解いても、暫定的なF3adh及び暫定的なF3hisは同じ値となる。しかし、実際には摩擦力の測定誤差等が原因で、連立方程式毎に、求まる暫定的なF3adh及び暫定的なF3hisが異なる。 Ideally, the provisional F3 adh and provisional F3 his have the same value no matter which simultaneous equations among the first to third combinations are solved. However, in reality, the provisional F3 adh and provisional F3 his determined for each simultaneous equation differ due to measurement errors in the frictional force and the like.

そこで、求まった3つの暫定的なF3adhのうちの中央値が最終的な(言い換えれば正式な)F3adhとされる。そして、F3adhがその値(すなわち上記の中央値)のときのF3hisが式3(式4-1又は式4-2でも良い)から計算され、最終的なF3hisとされる。 Therefore, the median value of the three provisional F3 adhs determined is determined as the final (in other words, official) F3 adh . Then, F3 his when F3 adh is at that value (that is, the above median value) is calculated from Formula 3 (or Formula 4-1 or Formula 4-2), and is determined as the final F3 his .

次に、上記のようにF3adh=F2adhとみなすことができるので、式2のF2adhとしてF3adhの値を入れ、F2-F3adhを計算してF2hisを求めることができる。 Next, since F3 adh = F2 adh can be considered as described above, F2 his can be obtained by entering the value of F3 adh as F2 adh in equation 2 and calculating F2-F3 adh .

次に、上記のようにF2his=F1hisとみなすことができるので、式1のF1hisとしてF2hisの値を入れ、F1-F2hisを計算してF1adhを求めることができる。 Next, since F2 his = F1 his can be considered as described above, F1 adh can be obtained by entering the value of F2 his as F1 his in Equation 1 and calculating F1 - F2 his .

以上のようにして、ゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisが求まる。 As described above, the adhesion component F1 adh and the hysteresis component F1 his of the frictional force between the rubber member and the actual road surface are determined.

以上のように、本実施形態の方法によれば、ゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisを明らかにすることができる。 As described above, according to the method of this embodiment, the adhesion component F1 adh and the hysteresis component F1 his of the frictional force between the rubber member and the actual road surface can be clarified.

<変更例1>
変更例について説明する。この変更例では、ゴム部材と樹脂製の面との間の摩擦力の凝着成分の温度依存係数aとして、ある基準温度Tbaseにおける係数1に対する別の1つの温度Tにおける係数aが求められる。また、ゴム部材と第2模擬路面との間の摩擦力のヒステリシス成分の温度依存係数bとして、ある基準温度Tbaseにおける係数1に対する別の1つの温度Tにおける係数bが求められる。また、ゴム部材と第2模擬路面との間の摩擦力として、基準温度Tbaseでの摩擦力F3baseと、別の温度低温Tでの摩擦力F3とが測定される。
<Change example 1>
An example of the change will be explained. In this modified example, the temperature dependent coefficient a i of the adhesion component of the frictional force between the rubber member and the resin surface is a coefficient a 1 at another temperature T 1 for a coefficient 1 at a certain reference temperature T base . is required. Furthermore, as the temperature-dependent coefficient b i of the hysteresis component of the frictional force between the rubber member and the second simulated road surface, a coefficient b 1 at another temperature T 1 is determined with respect to coefficient 1 at a certain reference temperature T base . Further, as the friction force between the rubber member and the second simulated road surface, a friction force F3 base at a reference temperature T base and a friction force F3 1 at another low temperature T 1 are measured.

従って、
F3base=F3adh+F3his・・・(式3)
F3=a×F3adh+b×F3his・・・(式4)
の2つの式が出来る。F3baseとF3とが測定されており、係数a、bが求められているので、これら2つの連立方程式を解けばF3adhとF3hisとが求まる。F3adhとF3hisとが求まれば、上記実施形態の計算工程と同様にして、式1及び式2に基づき、ゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisが求まる。
Therefore,
F3 base =F3 adh +F3 his ...(Formula 3)
F3 1 =a 1 ×F3 adh +b 1 ×F3 his ... (Formula 4)
Two formulas are possible. Since F3 base and F3 1 have been measured and the coefficients a 1 and b 1 have been determined, F3 adh and F3 his can be determined by solving these two simultaneous equations. Once F3 adh and F3 his are determined, the adhesion component F1 adh and the hysteresis component of the frictional force between the rubber member and the actual road surface are calculated based on Equations 1 and 2 in the same way as the calculation process of the above embodiment. Find F1 his .

摩擦力の測定誤差が小さい場合は、上記の2つの式の連立方程式を解くだけでも十分精度の良いF3adhとF3hisとが求まり、F1adhとF1hisとを明らかにすることができる。 If the measurement error of the frictional force is small, F3 adh and F3 his can be determined with sufficient accuracy just by solving the simultaneous equations of the above two equations, and F1 adh and F1 his can be clarified.

<変更例2>
別の変更例について説明する。この変更例では、ゴム部材と第2模擬路面との間の摩擦力として、基準温度Tbaseでの摩擦力F3baseと、別の3点以上の温度Ti(i=1、2、3・・・)でのそれぞれの摩擦力F3i(i=1、2、3・・・)とが測定される。また、それぞれの温度における、ゴム部材と樹脂製の面との間の摩擦力の凝着成分の温度依存係数a(i=1、2、3・・・)及びゴム部材と第2模擬路面との間の摩擦力のヒステリシス成分の温度依存係数b(i=1、2、3・・・)が求められる。
<Change example 2>
Another modification example will be explained. In this modification example, the friction force between the rubber member and the second simulated road surface is a friction force F3 base at the reference temperature T base and another temperature T i (i=1, 2, 3, ), the respective frictional forces F3 i (i=1, 2, 3...) are measured. Also, at each temperature, the temperature dependence coefficient a i (i=1, 2, 3...) of the adhesive component of the frictional force between the rubber member and the resin surface, and the rubber member and the second simulated road surface. The temperature dependent coefficient b i (i=1, 2, 3...) of the hysteresis component of the frictional force between the two is determined.

従って、
F3base=F3adh+F3his・・・(式3)
F3=a×F3adh+b×F3his(i=1、2、3・・・)・・・(式4)
という4つ以上の式が出来る。これらの式から2つの式の組み合わせが全て抽出され、それぞれの組み合わせから暫定的なF3adhと暫定的なF3hisとが求められる。そして、求まった複数の暫定的なF3adhのうちの中央値と、F3adhがその中央値のときのF3hisの値とが、最終的なF3adhとF3hisとされる。
Therefore,
F3 base =F3 adh +F3 his ...(Formula 3)
F3 i =a i ×F3 adh +b i ×F3 his (i=1, 2, 3...) (Formula 4)
Four or more expressions can be created. All combinations of two formulas are extracted from these formulas, and provisional F3 adh and provisional F3 his are determined from each combination. Then, the median value of the plurality of provisional F3 adhs found and the value of F3 his when F3 adh is the median value are set as the final F3 adh and F3 his .

<変更例3>
上記実施形態の第2模擬路面を使用しなくても、ゴム部材と実路面との間の摩擦力の凝着成分及びヒステリシス成分を明らかにすることができる。
<Change example 3>
Even without using the second simulated road surface of the above embodiment, it is possible to clarify the adhesion component and hysteresis component of the frictional force between the rubber member and the actual road surface.

具体的には、まず、上記実施形態と同じ第1模擬路面作成工程(S1)、粘着力試験工程(S3)及び温度依存係数a決定工程(S4)が行われる。 Specifically, first, the same first simulated road surface creation step (S1), adhesion test step (S3), and temperature dependence coefficient a i determination step (S4) as in the above embodiment are performed.

次に、オイル又は六方晶型の結晶構造を持つ物質の粉末を塗布した潤滑面上で、複数の温度条件下でゴム部材を滑らせて摩擦力を測定する第2試験が、上記実施形態のような第2模擬路面ではなく、第1模擬路面において行われる。つまり、第1模擬路面を潤滑面としたうえで摩擦力の測定が行われる。そして、この第2試験の結果に基づき、ゴム部材と潤滑面(第1模擬路面)との間の摩擦力のヒステリシス成分の温度依存係数bとして、基準温度Tbaseにおける係数1に対する別の1又は2以上の温度Tにおけるそれぞれの係数bが求められる。 Next, a second test was conducted in which the frictional force was measured by sliding a rubber member under a plurality of temperature conditions on a lubricated surface coated with oil or powder of a substance having a hexagonal crystal structure. The test is performed on the first simulated road surface rather than on the second simulated road surface. That is, the frictional force is measured using the first simulated road surface as a lubricated surface. Based on the results of this second test, the temperature dependence coefficient b i of the hysteresis component of the frictional force between the rubber member and the lubricated surface (first simulated road surface) is set to another 1 with respect to the coefficient 1 at the reference temperature T base . Alternatively, each coefficient b i at two or more temperatures T i is determined.

次に、摩擦力測定工程が行われるが、本変更例ではゴム部材と実路面との間の基準温度Tbaseでの摩擦力F1と、ゴム部材と第1模擬路面との間の基準温度Tbaseでの摩擦力F2と、ゴム部材と第1模擬路面との間の温度T(iは1つ又は2つ以上)でのそれぞれの摩擦力F2とが測定される。ここでは温度Tとして低温T及び高温Tが選択されるものとする。 Next, a frictional force measurement step is performed, and in this modified example, the frictional force F1 at the reference temperature T base between the rubber member and the actual road surface and the reference temperature T between the rubber member and the first simulated road surface The friction force F2 at the base and the friction force F2 i at each temperature T i (i is one or more) between the rubber member and the first simulated road surface are measured. Here, it is assumed that a low temperature T 1 and a high temperature T 2 are selected as the temperature T i .

測定された摩擦力について以下の式が成立するものとみなせる。 It can be assumed that the following equation holds true for the measured frictional force.

F1=F1adh+F1his・・・(式5)
F2base=F2adh+F2his・・・(式6)
F2=a×F2adh+b×F2his・・・(式7)
(式5におけるF1adh、式6におけるF2adh、式7におけるa×F2adhは各摩擦力における凝着成分、式5におけるF1his、式6におけるF2his、式7におけるb×F2hisは各摩擦力におけるヒステリシス成分)
次に、測定されたそれぞれの摩擦力及び前記温度依存係数a、bを使用して摩擦力の凝着成分及びヒステリシス成分を求める計算工程が行われる。具体的には、まず、式6と式7からF2adhとF2hisが求められる。その具体的な方法は、上記実施形態において式3及び式4からF3adh及びF3hisを求めた方法と同じである。
F1=F1 adh +F1 his ...(Formula 5)
F2 base =F2 adh +F2 his ...(Formula 6)
F2 i =a i ×F2 adh +b i ×F2 his ... (Formula 7)
(F1 adh in Equation 5, F2 adh in Equation 6, a i ×F2 adh in Equation 7 is the adhesion component in each friction force, F1 his in Equation 5, F2 his in Equation 6 , b i ×F2 his in Equation 7 is the hysteresis component of each friction force)
Next, a calculation step is performed in which the adhesion and hysteresis components of the frictional force are determined using the respective measured frictional forces and the temperature-dependent coefficients a i , b i . Specifically, first, F2 adh and F2 his are found from equations 6 and 7. The specific method is the same as the method of determining F3 adh and F3 his from equations 3 and 4 in the above embodiment.

次に、上記のようにF2his=F1hisとみなすことができるので、式5のF1hisとしてF2hisの値を入れ、F1-F2hisを計算してF1adhを求めることができる。 Next, since F2 his = F1 his can be considered as described above, F1 adh can be obtained by entering the value of F2 his as F1 his in equation 5 and calculating F1 - F2 his .

以上のようにして、ゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisが求まる。 As described above, the adhesion component F1 adh and the hysteresis component F1 his of the frictional force between the rubber member and the actual road surface are determined.

<変更例4>
上記実施形態はゴム部材と実路面との間の摩擦力の凝着成分及びヒステリシス成分の大きさを明らかにする実施形態であり、その実施形態の中でヒステリシス成分の温度依存性を求めたが、そのような実施形態から離れて独立してヒステリシス成分の温度依存性だけを求めても良い。
<Change example 4>
The above embodiment is an embodiment in which the magnitude of the adhesion component and hysteresis component of the frictional force between the rubber member and the actual road surface is clarified, and in the embodiment, the temperature dependence of the hysteresis component was determined. , apart from such an embodiment, only the temperature dependence of the hysteresis component may be determined independently.

オイルが塗布された潤滑面又は六方晶型の結晶構造を持つ物質の粉末が塗布された潤滑面の上でゴム部材を滑らせて摩擦力を測定すれば、測定される摩擦力はヒステリシス成分のみからなるとみなすことができる。そのような測定を複数の異なる温度条件下で行えば、測定される摩擦力の温度依存性はヒステリシス成分の温度依存性に等しいとみなすことができる。 If you measure the frictional force by sliding a rubber member on a lubricated surface coated with oil or a lubricated surface coated with powder of a substance with a hexagonal crystal structure, the measured frictional force will only contain the hysteresis component. It can be considered to consist of If such measurements are performed under a plurality of different temperature conditions, the temperature dependence of the measured frictional force can be considered to be equal to the temperature dependence of the hysteresis component.

ヒステリシス成分の温度依存性を求めるこの方法は、上記実施形態の他にも様々な実施形態の中で利用することができる。 This method of determining the temperature dependence of the hysteresis component can be used in various embodiments other than the above embodiments.

<変更例5>
上記実施形態ではゴム部材と実路面との間の摩擦力について調べたが、ゴム部材だけでなく、樹脂製の部材と実路面との間の摩擦力についても上記実施形態と同様にして調べることができる。
<Change example 5>
In the above embodiment, the friction force between the rubber member and the actual road surface was investigated, but it is also possible to investigate the friction force between not only the rubber member but also the resin member and the actual road surface in the same manner as in the above embodiment. I can do it.

<変更例6>
上記実施形態では潤滑剤としてオイル又は六方晶型の結晶構造を持つ物質の粉末が第2模擬路面に塗布されたが、潤滑剤としてオイルと六方晶型の結晶構造を持つ物質の粉末との両方が第2模擬路面に塗布されても良い。
<Change example 6>
In the above embodiment, oil or powder of a substance having a hexagonal crystal structure is applied as a lubricant to the second simulated road surface, but both oil and powder of a substance having a hexagonal crystal structure are used as a lubricant. may be applied to the second simulated road surface.

1…ゴム部材、2…粘着力試験面、3…潤滑面 1...Rubber member, 2...Adhesion test surface, 3...Lubricating surface

Claims (4)

ゴム製又は樹脂製の部材と摩擦面との間の摩擦力における凝着成分とヒステリシス成分とを求める摩擦評価方法において、
前記摩擦面としての実路面の凹凸を再現した樹脂製の第1模擬路面を作成する工程と、
前記第1模擬路面からミクロな凹凸を除去した第2模擬路面を作成する工程と、
前記部材と前記の樹脂製の面との間の粘着力の温度依存性を調べる第1試験を行う工程と、
前記第1試験の結果に基づき、前記部材と前記の樹脂製の面との間の摩擦力の凝着成分の温度依存係数として、基準温度Tbaseにおける係数1に対する別の1又は2以上の温度Tにおけるそれぞれの係数aを求める工程と、
前記第2模擬路面にオイルと六方晶型の結晶構造を持つ物質の粉末との少なくとも一方を塗布して潤滑面とし、複数の温度条件下で前記部材を前記潤滑面上で滑らせて摩擦力を測定する第2試験を行う工程と、
前記第2試験の結果に基づき、前記部材と前記潤滑面との間の摩擦力のヒステリシス成分の温度依存係数として、基準温度Tbaseにおける係数1に対する別の1又は2以上の温度Tにおけるそれぞれの係数bを求める工程と、
前記部材と前記実路面との間の前記基準温度Tbaseでの摩擦力F1と、
前記部材と前記第1模擬路面との間の前記基準温度Tbaseでの摩擦力F2と、
前記部材と前記第2模擬路面との間の前記基準温度Tbaseでの摩擦力F3baseと、
前記部材と前記第2模擬路面との間の前記の1又は2以上の温度Tでのそれぞれの摩擦力F3とを測定する工程と、
F1=F1adh+F1his・・・(式1)
F2=F2adh+F2his・・・(式2)
F3base=F3adh+F3his・・・(式3)
F3=a×F3adh+b×F3his・・・(式4)
(式1におけるF1adh、式2におけるF2adh、式3におけるF3adh及び式4におけるa×F3adhは各摩擦力における凝着成分、式1におけるF1his、式2におけるF2his、式3におけるF3his及び式4におけるb×F3hisは各摩擦力におけるヒステリシス成分)
とみなし、式3と式4とからF3adhとF3hisとを求める工程と、
F3adh=F2adhとみなし、式2に基づきF2-F3adhを計算してF2hisを求める工程と、
F2his=F1hisとみなし、式1に基づきF1-F2hisを計算してF1adhを求める工程と、
を含むことを特徴とする摩擦評価方法。
In a friction evaluation method for determining an adhesive component and a hysteresis component in the frictional force between a rubber or resin member and a friction surface,
creating a first simulated road surface made of resin that reproduces the unevenness of an actual road surface as the friction surface;
creating a second simulated road surface by removing microscopic irregularities from the first simulated road surface;
conducting a first test to examine the temperature dependence of the adhesive force between the member and the resin surface;
Based on the results of the first test, as the temperature dependent coefficient of the adhesion component of the frictional force between the member and the resin surface, one or more temperatures other than the coefficient 1 at the reference temperature T base are determined. determining each coefficient a i in T i ;
The second simulated road surface is coated with at least one of oil and powder of a substance having a hexagonal crystal structure to provide a lubricated surface, and the member is slid on the lubricated surface under a plurality of temperature conditions to generate friction. a step of conducting a second test to measure the
Based on the results of the second test, as the temperature dependent coefficient of the hysteresis component of the frictional force between the member and the lubricated surface, a coefficient of 1 at the reference temperature T base is determined at one or more other temperatures T i , respectively. a step of determining the coefficient b i of
a frictional force F1 between the member and the actual road surface at the reference temperature T base ;
a frictional force F2 between the member and the first simulated road surface at the reference temperature T base ;
a frictional force F3 base between the member and the second simulated road surface at the reference temperature T base ;
a step of measuring each frictional force F3 i at the one or more temperatures T i between the member and the second simulated road surface;
F1=F1 adh +F1 his ...(Formula 1)
F2=F2 adh +F2 his ...(Formula 2)
F3 base =F3 adh +F3 his ...(Formula 3)
F3 i =a i ×F3 adh +b i ×F3 his ... (Formula 4)
(F1 adh in Equation 1, F2 adh in Equation 2, F3 adh in Equation 3, and a i ×F3 adh in Equation 4 are the adhesion components in each friction force, F1 his in Equation 1, F2 his in Equation 2, Equation 3 F3 his in and b i ×F3 his in equation 4 are hysteresis components in each friction force)
and calculating F3 adh and F3 his from equations 3 and 4;
A step of determining F2 his by considering F3 adh = F2 adh and calculating F2- F3 adh based on equation 2;
a step of determining F1 adh by assuming that F2 his = F1 his and calculating F1 - F2 his based on equation 1;
A friction evaluation method characterized by comprising:
ゴム製又は樹脂製の部材と摩擦面との間の摩擦力における凝着成分とヒステリシス成分とを求める摩擦評価方法において、
前記摩擦面としての実路面の凹凸を再現した樹脂製の第1模擬路面を作成する工程と、
前記部材と前記の樹脂製の面との間の粘着力の温度依存性を調べる第1試験を行う工程と、
前記第1試験の結果に基づき、前記部材と前記の樹脂製の面との間の摩擦力の凝着成分の温度依存係数として、基準温度Tbaseにおける係数1に対する別の1又は2以上の温度
におけるそれぞれの係数aを求める工程と、
前記第1模擬路面にオイルと六方晶型の結晶構造を持つ物質の粉末との少なくとも一方を塗布して潤滑面とし、複数の温度条件下で前記部材を前記潤滑面上で滑らせて摩擦力を測定する第2試験を行う工程と、
前記第2試験の結果に基づき、前記部材と前記潤滑面との間の摩擦力のヒステリシス成分の温度依存係数として、基準温度Tbaseにおける係数1に対する別の1又は2以上の温度Tにおけるそれぞれの係数bを求める工程と、
前記部材と前記実路面との間の前記基準温度Tbaseでの摩擦力F1と、
前記部材と前記第1模擬路面との間の前記基準温度Tbaseでの摩擦力F2と、
前記部材と前記第1模擬路面との間の前記の1又は2以上の温度Tでのそれぞれの摩擦力F2とを測定する工程と、
F1=F1adh+F1his・・・(式5)
F2base=F2adh+F2his・・・(式6)
F2=a×F2adh+b×F2his・・・(式7)
(式5におけるF1adh、式6におけるF2adh、式7におけるa×F2adhは各摩擦力における凝着成分、式5におけるF1his、式6におけるF2his、式7におけるb×F2hisは各摩擦力におけるヒステリシス成分)
とみなし、式6と式7とからF2adhとF2hisとを求める工程と、
F2his=F1hisとみなし、式5に基づきF1-F2hisを計算してF1adhを求める工程と、
を含むことを特徴とする摩擦評価方法。
In a friction evaluation method for determining an adhesive component and a hysteresis component in the frictional force between a rubber or resin member and a friction surface,
creating a first simulated road surface made of resin that reproduces the unevenness of an actual road surface as the friction surface;
conducting a first test to examine the temperature dependence of the adhesive force between the member and the resin surface;
Based on the results of the first test, as the temperature dependent coefficient of the adhesion component of the frictional force between the member and the resin surface, one or more temperatures other than the coefficient 1 at the reference temperature T base are determined. determining each coefficient a i in T i ;
The first simulated road surface is coated with at least one of oil and powder of a substance having a hexagonal crystal structure to provide a lubricated surface, and the member is slid on the lubricated surface under a plurality of temperature conditions to generate friction. a step of conducting a second test to measure the
Based on the results of the second test, as the temperature dependent coefficient of the hysteresis component of the frictional force between the member and the lubricated surface, a coefficient of 1 at the reference temperature T base is determined at one or more other temperatures T i , respectively. a step of determining the coefficient b i of
a frictional force F1 between the member and the actual road surface at the reference temperature T base ;
a frictional force F2 between the member and the first simulated road surface at the reference temperature T base ;
a step of measuring each frictional force F2 i at the one or more temperatures T i between the member and the first simulated road surface;
F1=F1 adh +F1 his ...(Formula 5)
F2 base =F2 adh +F2 his ...(Formula 6)
F2 i =a i ×F2 adh +b i ×F2 his ... (Formula 7)
(F1 adh in Equation 5, F2 adh in Equation 6, a i ×F2 adh in Equation 7 is the adhesion component in each friction force, F1 his in Equation 5, F2 his in Equation 6 , b i ×F2 his in Equation 7 is the hysteresis component of each friction force)
and calculating F2 adh and F2 his from equations 6 and 7;
A step of determining F1 adh by assuming that F2 his = F1 his and calculating F1 - F2 his based on equation 5;
A friction evaluation method characterized by comprising:
前記潤滑面を、粘度が50~500cstの植物油が塗布された潤滑面とする、請求項1又は2に記載の摩擦評価方法。 The friction evaluation method according to claim 1 or 2 , wherein the lubricated surface is a lubricated surface coated with vegetable oil having a viscosity of 50 to 500 cst. 前記潤滑面を、グラファイト粉末又は二硫化モリブデン粉末が塗布された潤滑面とする、請求項1又は2に記載の摩擦評価方法。
The friction evaluation method according to claim 1 or 2 , wherein the lubricated surface is a lubricated surface coated with graphite powder or molybdenum disulfide powder.
JP2019219754A 2019-12-04 2019-12-04 Friction evaluation method Active JP7359669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019219754A JP7359669B2 (en) 2019-12-04 2019-12-04 Friction evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019219754A JP7359669B2 (en) 2019-12-04 2019-12-04 Friction evaluation method

Publications (2)

Publication Number Publication Date
JP2021089210A JP2021089210A (en) 2021-06-10
JP7359669B2 true JP7359669B2 (en) 2023-10-11

Family

ID=76220135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019219754A Active JP7359669B2 (en) 2019-12-04 2019-12-04 Friction evaluation method

Country Status (1)

Country Link
JP (1) JP7359669B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292005A (en) 2004-04-01 2005-10-20 Toyota Central Res & Dev Lab Inc Damage evaluation testing method and damage evaluation testing apparatus in ironing
JP2006103618A (en) 2004-10-08 2006-04-20 Yokohama Rubber Co Ltd:The Method of predicting temperature dependency of friction coefficient of tire
JP2011180096A (en) 2010-03-03 2011-09-15 Bridgestone Corp Rubber friction testing machine
JP2017096759A (en) 2015-11-24 2017-06-01 住友ゴム工業株式会社 Method for evaluating the on-ice brake performance of tire
JP2017156276A (en) 2016-03-03 2017-09-07 住友ゴム工業株式会社 Method for evaluating on-ice grip performance of rubber member
WO2018185625A1 (en) 2017-04-07 2018-10-11 Istituto Nazionale Di Ricerca Metrologica (I.N.Ri.M.) A probe for the measurement of tribological properties
JP2020085843A (en) 2018-11-30 2020-06-04 Toyo Tire株式会社 Method for evaluating friction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292005A (en) 2004-04-01 2005-10-20 Toyota Central Res & Dev Lab Inc Damage evaluation testing method and damage evaluation testing apparatus in ironing
JP2006103618A (en) 2004-10-08 2006-04-20 Yokohama Rubber Co Ltd:The Method of predicting temperature dependency of friction coefficient of tire
JP2011180096A (en) 2010-03-03 2011-09-15 Bridgestone Corp Rubber friction testing machine
JP2017096759A (en) 2015-11-24 2017-06-01 住友ゴム工業株式会社 Method for evaluating the on-ice brake performance of tire
JP2017156276A (en) 2016-03-03 2017-09-07 住友ゴム工業株式会社 Method for evaluating on-ice grip performance of rubber member
WO2018185625A1 (en) 2017-04-07 2018-10-11 Istituto Nazionale Di Ricerca Metrologica (I.N.Ri.M.) A probe for the measurement of tribological properties
JP2020085843A (en) 2018-11-30 2020-06-04 Toyo Tire株式会社 Method for evaluating friction

Also Published As

Publication number Publication date
JP2021089210A (en) 2021-06-10

Similar Documents

Publication Publication Date Title
Maegawa et al. Effect of normal load on friction coefficient for sliding contact between rough rubber surface and rigid smooth plane
Kartal et al. Determination of the frictional properties of titanium and nickel alloys using the digital image correlation method
Chen et al. Fractal and spectral analysis of aggregate surface profile in polishing process
Zappone et al. Role of nanometer roughness on the adhesion and friction of a rough polymer surface and a molecularly smooth mica surface
Tiwari et al. Rubber friction: The contribution from the area of real contact
Sergici et al. Adhesion in the contact of a spherical indenter with a layered elastic half-space
Kanafi et al. Rubber friction on 3D-printed randomly rough surfaces at low and high sliding speeds
Yang Indentation of an incompressible elastic film
Stan et al. Adhesive contact between a rigid spherical indenter and an elastic multi-layer coated substrate
JP5075965B2 (en) Prediction method of friction coefficient
Espinosa-Marzal et al. Understanding the role of viscous solvent confinement in the tribological behavior of polymer brushes: A bioinspired approach
Singh et al. Evolution of coefficient of friction between tire and pavement under wet conditions using surface free energy technique
Mokhtari et al. On the friction of carbon black-and silica-reinforced BR and S-SBR elastomers
Vieira et al. Evaluation of friction mechanisms and wear rates on rubber tire materials by low-cost laboratory tests
Emami et al. Asperity-based modification on theory of contact mechanics and rubber friction for self-affine fractal surfaces
JP7359669B2 (en) Friction evaluation method
Persson et al. Multiscale contact mechanics with application to seals and rubber friction on dry and lubricated surfaces
Yan et al. The influence of flow confinement on the rheological properties of complex fluids
He et al. Optical surface characterization with the area structure function
Genovese et al. Analysis of multiscale theories for viscoelastic rubber friction
Persson Functional properties of rough surfaces from an analytical theory of mechanical contact
Gao et al. Role of capillary adhesion in the friction peak during the tacky transition
Fricker et al. How different lubricants affect the wear of steel counterfaces in radial lip sealing systems
JP4956834B2 (en) Hardness test method
Moyle et al. Increased sliding friction of a lubricated soft solid using an embedded structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230703

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20230830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230928

R150 Certificate of patent or registration of utility model

Ref document number: 7359669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150