JP2021089210A - Method for evaluating friction - Google Patents

Method for evaluating friction Download PDF

Info

Publication number
JP2021089210A
JP2021089210A JP2019219754A JP2019219754A JP2021089210A JP 2021089210 A JP2021089210 A JP 2021089210A JP 2019219754 A JP2019219754 A JP 2019219754A JP 2019219754 A JP2019219754 A JP 2019219754A JP 2021089210 A JP2021089210 A JP 2021089210A
Authority
JP
Japan
Prior art keywords
adh
road surface
temperature
frictional force
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019219754A
Other languages
Japanese (ja)
Other versions
JP7359669B2 (en
Inventor
直生 諫山
Naoki Isayama
直生 諫山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd, Toyo Tire Corp filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2019219754A priority Critical patent/JP7359669B2/en
Publication of JP2021089210A publication Critical patent/JP2021089210A/en
Application granted granted Critical
Publication of JP7359669B2 publication Critical patent/JP7359669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

To clarify the dependency of the hysteresis component of a frictional force on a temperature.SOLUTION: The method for evaluating a friction according to an embodiment is a method for measuring a frictional force when a rubber member or a resin member is let slide on a test surface. In the method, the test surface is a lubricated surface on which at least one of oil and powder of a material having a hexagonal crystal structure is applied, and the measurement is done at different temperatures.SELECTED DRAWING: Figure 1

Description

本発明は摩擦評価方法に関する。 The present invention relates to a friction evaluation method.

ゴム部材(例えば空気入りタイヤのトレッド部)と摩擦面(例えば路面)との間で生じる摩擦力が凝着成分とヒステリシス成分とからなることが知られている。そして、近年、摩擦力における凝着成分の大きさやヒステリシス成分の大きさを明らかにすることが要求されている。 It is known that the frictional force generated between a rubber member (for example, a tread portion of a pneumatic tire) and a friction surface (for example, a road surface) is composed of an adhesion component and a hysteresis component. In recent years, it has been required to clarify the size of the adhesion component and the size of the hysteresis component in the frictional force.

この要求に応えるため、特許文献1に記載のように、界面活性剤含有水(界面活性剤が含有された水)が散水された摩擦面でゴム材料を摩擦させたときの摩擦係数を計測する第1ステップと、界面活性剤非含有水(界面活性剤が含有されていない水)が散水された摩擦面でゴム材料を摩擦させたときの摩擦係数を計測する第2ステップと、第1ステップで計測された摩擦係数と第2ステップで計測された摩擦係数との差を算出する第3ステップとからなる摩擦評価方法が提案されている。 In order to meet this demand, as described in Patent Document 1, the friction coefficient when the rubber material is rubbed on the friction surface sprinkled with surfactant-containing water (water containing a surfactant) is measured. The first step, the second step of measuring the friction coefficient when the rubber material is rubbed on the friction surface sprinkled with water containing no surfactant (water containing no surfactant), and the first step. A friction evaluation method including a third step of calculating the difference between the friction coefficient measured in the above step and the friction coefficient measured in the second step has been proposed.

この方法によれば、第1ステップでヒステリシス摩擦に起因する摩擦係数が計測され、第2ステップで粘着摩擦とヒステリシス摩擦に起因する摩擦係数が計測されるので、第3ステップで粘着摩擦成分が算出されるとされている。 According to this method, the friction coefficient caused by the hysteresis friction is measured in the first step, and the friction coefficient caused by the adhesive friction and the hysteresis friction is measured in the second step. Therefore, the adhesive friction component is calculated in the third step. It is supposed to be done.

特開2016−200563号公報Japanese Unexamined Patent Publication No. 2016-200563

しかし、実際には、摩擦面を界面活性剤含有水等で濡らしても、摩擦力の凝着成分を完全に除去することはできず、ヒステリシス成分の大きさを知ることができない。また近年、摩擦力のヒステリシス成分の温度依存性に関心が持たれているが、特許文献1の方法ではそれを知ることができない。 However, in reality, even if the friction surface is wetted with water containing a surfactant or the like, the adhesion component of the frictional force cannot be completely removed, and the magnitude of the hysteresis component cannot be known. Further, in recent years, there has been interest in the temperature dependence of the hysteresis component of the frictional force, but this cannot be known by the method of Patent Document 1.

そこで本発明は、摩擦力のヒステリシス成分の温度依存性を明らかにすることができる方法を提供することを課題とする。 Therefore, it is an object of the present invention to provide a method capable of clarifying the temperature dependence of the hysteresis component of the frictional force.

実施形態の摩擦評価方法は、ゴム製又は樹脂製の部材を試験面上で滑らせたときの摩擦力を測定して行う摩擦評価方法において、前記試験面を、オイルと六方晶型の結晶構造を持つ物質の粉末との少なくとも一方が塗布された潤滑面とし、複数の異なる温度においてそれぞれ前記測定を行うことを特徴とする。 The friction evaluation method of the embodiment is a friction evaluation method performed by measuring the frictional force when a rubber or resin member is slid on a test surface, and the test surface is formed of an oil and a hexagonal crystal structure. It is characterized in that the lubrication surface is coated with at least one of the powder of the substance having the above, and the measurement is carried out at a plurality of different temperatures.

上記実施形態によれば、潤滑面上でゴム部材を滑らせることによって凝着成分が除去された摩擦力を測定することができ、複数の異なる温度においてそれぞれ測定することによってヒステリシス成分の温度依存性を明らかにすることができる。 According to the above embodiment, the frictional force from which the adhesive component is removed can be measured by sliding the rubber member on the lubricating surface, and the temperature dependence of the hysteresis component can be measured by measuring at a plurality of different temperatures. Can be clarified.

実施形態の摩擦評価方法のフローチャート。The flowchart of the friction evaluation method of an embodiment. 適正な第2模擬路面が作成されたことを確認するフローチャート。A flowchart confirming that a proper second simulated road surface has been created. 粘着力試験の概略を示す図。The figure which shows the outline of the adhesive strength test. 粘着力試験の測定結果の例を示す図。The figure which shows the example of the measurement result of the adhesive strength test. 第2試験の概略を示す図。The figure which shows the outline of the 2nd test. 第2試験の測定結果の例を示す図。The figure which shows the example of the measurement result of the 2nd test. 路面の違いによる凝着成分とヒステリシス成分について示す図。The figure which shows the adhesion component and the hysteresis component by the difference of a road surface.

実施形態について図面に基づき説明する。なお、以下で説明する実施形態は一例に過ぎず、本発明の趣旨を逸脱しない範囲で適宜変更されたものについては、本発明の範囲に含まれるものとする。 The embodiment will be described with reference to the drawings. It should be noted that the embodiments described below are merely examples, and those which have been appropriately modified without departing from the spirit of the present invention shall be included in the scope of the present invention.

<全体工程>
本実施形態は、ゴム部材と実路面との間の摩擦力の凝着成分の大きさ及びヒステリシス成分の大きさを明らかにする実施形態である。
<Overall process>
This embodiment is an embodiment for clarifying the size of the adhesion component and the size of the hysteresis component of the frictional force between the rubber member and the actual road surface.

図1に示すように、実施形態の摩擦評価方法は、実路面の凹凸を再現した樹脂製の第1模擬路面を作成する第1模擬路面作成工程(S1)と、マクロな凹凸及びミクロな凹凸を有する第1模擬路面からミクロな凹凸を除去して第2模擬路面を作成する第2模擬路面作成工程(S2)と、ゴム部材と樹脂製の面との間の粘着力の温度依存性を調べる試験を行う粘着力試験(第1試験)工程(S3)と、粘着力試験(第1試験)の結果に基づきゴム部材と樹脂製の面との間の摩擦力の凝着成分の温度依存係数aを決定する温度依存係数a決定工程(S4)と、第2模擬路面を潤滑面としたうえで複数の温度条件下で潤滑面上でゴム部材を滑らせて摩擦力を測定する第2試験工程(S5)と、第2試験の結果に基づきゴム部材と第2模擬路面との間の摩擦力のヒステリシス成分の温度依存係数bを決定する温度依存係数b決定工程(S6)と、実路面、第1模擬路面及び第2模擬路面のそれぞれに対するゴム部材の摩擦力を基準温度において測定するとともに、第2模擬路面に対するゴム部材の摩擦力を基準温度以外の温度において測定する摩擦力測定工程(S7)と、測定されたそれぞれの摩擦力及び前記温度依存係数a、bを使用して摩擦力の凝着成分及びヒステリシス成分を求める計算工程(S8)と、を含む。 As shown in FIG. 1, the friction evaluation method of the embodiment includes a first simulated road surface creating step (S1) for creating a first simulated road surface made of resin that reproduces the unevenness of the actual road surface, and macro unevenness and micro unevenness. The temperature dependence of the adhesive force between the rubber member and the resin surface in the second simulated road surface creation step (S2) in which the second simulated road surface is created by removing microscopic irregularities from the first simulated road surface having the above. Based on the results of the adhesive strength test (first test) step (S3) and the adhesive strength test (first test), the frictional force between the rubber member and the resin surface depends on the temperature of the adhesion component. the temperature-dependent coefficient a i determination step of determining the coefficients a i (S4), to measure the frictional force by sliding the rubber member on the bearing surface at a plurality of temperature conditions upon which the second simulated road surface and bearing surface a second test step (S5), the temperature dependence coefficient b i determination step of determining the temperature-dependent coefficient b i of the hysteresis component of friction force between the rubber member and the second simulated road surface based on the second test result (S6 ), And the frictional force of the rubber member against each of the actual road surface, the first simulated road surface and the second simulated road surface is measured at the reference temperature, and the frictional force of the rubber member with respect to the second simulated road surface is measured at a temperature other than the reference temperature. including friction force measuring step and (S7), and measured each frictional force and the temperature-dependent coefficient a i, using the b i seek adhesion component and hysteresis component of friction force calculating step (S8), the ..

<第1模擬路面作成工程>
第1模擬路面作成工程では、アスファルト等からなる実路面の凹凸を再現した樹脂製の第1模擬路面が作成される。作成方法の具体例としては、実路面の凹凸がシリコンゴムで型取りされ、そのシリコンゴムの型に樹脂が流し込まれ、その樹脂が硬化して第1模擬路面となる。使用される樹脂としては例えば二液混合型の樹脂が挙げられ、より具体的な例としては二液混合型のウレタン樹脂が挙げられる。
<First simulated road surface creation process>
In the first simulated road surface creating step, a resin-made first simulated road surface that reproduces the unevenness of the actual road surface made of asphalt or the like is created. As a specific example of the production method, the unevenness of the actual road surface is molded with silicon rubber, the resin is poured into the silicon rubber mold, and the resin is cured to become the first simulated road surface. Examples of the resin used include a two-component mixed type resin, and a more specific example thereof includes a two-component mixed type urethane resin.

ここで、第1模擬路面ひいては後述する第2模擬路面が樹脂で形成される理由は、ゴムと樹脂との間の粘着力が温度に依存して大きく変化するからであり、そのことにより、ゴム部材と樹脂性の第2模擬路面との間の摩擦力の凝着成分が温度に依存して大きく変化するからである。後述するようにこの温度依存性が本実施形態において利用される。すなわち、樹脂性の同じ面において温度を変化させながら摩擦力を測定すると、温度によって摩擦力が変化するが、この摩擦力の変化は凝着成分の温度変化に起因するとみなせる。そのことから、摩擦力の凝着成分とヒステリシス成分とを求めることができる。なお、アスファルト等からなる実路面とゴムとの間の粘着力の温度依存性は小さい。 Here, the reason why the first simulated road surface and the second simulated road surface, which will be described later, is formed of resin is that the adhesive force between the rubber and the resin changes greatly depending on the temperature, and as a result, the rubber This is because the adhesion component of the frictional force between the member and the resin-based second simulated road surface changes greatly depending on the temperature. This temperature dependence is utilized in this embodiment as will be described later. That is, when the frictional force is measured while changing the temperature on the same surface of the resin property, the frictional force changes depending on the temperature, and this change in the frictional force can be regarded as being caused by the temperature change of the adhesive component. From this, it is possible to obtain the adhesion component and the hysteresis component of the frictional force. The temperature dependence of the adhesive force between the actual road surface made of asphalt or the like and the rubber is small.

第1模擬路面は、その表面粗さを接針式の表面粗さ計で測定したときに、実路面の表面粗さを1μmオーダーで再現したものであることが好ましい。また、第1模擬路面は、ゴム部材が押し付けられたときに目視上明らかな変形をしない硬度を有することが必要である。具体的には、第1模擬路面のデュロメータタイプD硬さが80以上84以下であることが好ましい。また、第1模擬路面を形成する樹脂の弾性率は、ゴム部材を形成するゴムの弾性率の10倍以上であることが好ましい。また、第1模擬路面を形成する樹脂についてJIS K 7113の方法で測定した引張強さは例えば55MPa以上65MPa以下である。 The surface roughness of the first simulated road surface is preferably reproduced on the order of 1 μm when the surface roughness is measured by a needle-contact type surface roughness meter. Further, the first simulated road surface needs to have a hardness that does not cause a visually obvious deformation when the rubber member is pressed against the road surface. Specifically, it is preferable that the durometer type D hardness of the first simulated road surface is 80 or more and 84 or less. Further, the elastic modulus of the resin forming the first simulated road surface is preferably 10 times or more the elastic modulus of the rubber forming the rubber member. Further, the tensile strength of the resin forming the first simulated road surface measured by the method of JIS K 7113 is, for example, 55 MPa or more and 65 MPa or less.

<第2模擬路面作成工程>
第2模擬路面作成工程では、第1模擬路面の表面が研磨されて、マクロな凹凸及びミクロな凹凸を有していた第1模擬路面からミクロな凹凸が除去され、第2模擬路面とされる。研磨には目の細かい研磨布が使用される。
<Second simulated road surface creation process>
In the second simulated road surface preparation step, the surface of the first simulated road surface is polished to remove the micro unevenness from the first simulated road surface having macro unevenness and micro unevenness, and the second simulated road surface is obtained. .. A fine-grained polishing cloth is used for polishing.

ここで、実路面は、小石等の骨材がアスファルト等の素地に埋め込まれて形成されている。そして、マクロな凹凸とは、骨材の大まかな形状等に基づく大きな凹凸のことである。また、ミクロな凹凸とは、素地の表面の微細な凹凸や骨材の表面の微細な凹凸等に基づく小さな凹凸のことである。摩擦力のヒステリシス成分にはミクロな凹凸が効くことがわかっており、第1模擬路面からミクロな凹凸が除去されることにより、第2模擬路面では摩擦力のヒステリシス成分が小さくなる。 Here, the actual road surface is formed by embedding aggregates such as pebbles in a base material such as asphalt. The macro unevenness is a large unevenness based on the rough shape of the aggregate. Further, the micro unevenness is a small unevenness based on the fine unevenness on the surface of the base material, the fine unevenness on the surface of the aggregate, and the like. It is known that micro-concavities and convexities are effective for the hysteresis component of the frictional force, and by removing the micro-concavities and convexities from the first simulated road surface, the hysteresis component of the frictional force becomes smaller on the second simulated road surface.

<第2模擬路面が適正であることの確認方法>
適正な第2模擬路面が作成されたことは図2に示す方法で確認される。まず、上記の通り第1模擬路面からミクロな凹凸が除去されて第2模擬路面が作成される(S2−1)。
<How to confirm that the second simulated road surface is appropriate>
It is confirmed by the method shown in FIG. 2 that an appropriate second simulated road surface has been created. First, as described above, micro unevenness is removed from the first simulated road surface to create a second simulated road surface (S2-1).

次に、第1模擬路面及び第2模擬路面の表面粗さがそれぞれ表面粗さ計で測定される(S2−2)。測定された表面粗さデータは、周波数分析装置に取り込まれて、周波数分析される(S2−3)。 Next, the surface roughness of the first simulated road surface and the second simulated road surface are measured by a surface roughness meter (S2-2). The measured surface roughness data is taken into the frequency analyzer and frequency-analyzed (S2-3).

ここで、路面の表面粗さデータを周波数分析して得られる波のうち0.1mm以上1.0mm以下の範囲内にある所定波長の波が基準とされ、基準の波の波長より大きな波長の波がマクロな凹凸によるもので、基準の波の波長より小さな波長の波がミクロな凹凸によるものであると考えることとする。この考えに基づき、路面の表面粗さデータを周波数分析して得られる波のうち0.1mm以上1.0mm以下の範囲内にある所定波長の波の周波数が、カットオフ周波数として設定される。カットオフ周波数より低い周波数の成分をほとんど減衰させず、カットオフ周波数より高い周波数の成分を減衰させるフィルタが、ローパスフィルタとして設定される(S2−4)。また、カットオフ周波数より高い周波数の成分をほとんど減衰させず、カットオフ周波数より低い周波数の成分を減衰させるフィルタが、ハイパスフィルタとして設定される(S2−4)。 Here, among the waves obtained by frequency analysis of the surface roughness data of the road surface, a wave having a predetermined wavelength within a range of 0.1 mm or more and 1.0 mm or less is used as a reference, and a wavelength larger than the wavelength of the reference wave is used as a reference. It is considered that the wave is due to macro unevenness and the wave having a wavelength smaller than the reference wave wavelength is due to micro unevenness. Based on this idea, the frequency of a wave having a predetermined wavelength within the range of 0.1 mm or more and 1.0 mm or less among the waves obtained by frequency analysis of the road surface roughness data is set as the cutoff frequency. A filter that attenuates components having a frequency lower than the cutoff frequency and attenuates components having a frequency higher than the cutoff frequency is set as a low-pass filter (S2-4). Further, a filter that hardly attenuates the component having a frequency higher than the cutoff frequency and attenuates the component having a frequency lower than the cutoff frequency is set as a high-pass filter (S2-4).

次に、第1模擬路面の表面粗さの周波数分析結果に対してローパスフィルタがかけられ、波長の大きな波が取得される。このようにして取得された波が合成されて出来た波形は、第1模擬路面のマクロな凹凸を再現しているとみなすことができる。そこで、前記の合成されて出来た波形から表面粗さ(例えば算術平均粗さ)が計算される(S2−5)。その計算結果は第1模擬路面のマクロな凹凸に基づく表面粗さ(マクロな表面粗さ)であるとみなすことができる。同様に、第2模擬路面の表面粗さの周波数分析結果に対してローパスフィルタをかけて得られた波から波形が合成され、合成されて出来た波形から表面粗さ(例えば算術平均粗さ)が計算される(S2−5)。 Next, a low-pass filter is applied to the frequency analysis result of the surface roughness of the first simulated road surface, and a wave having a large wavelength is acquired. The waveform formed by synthesizing the waves acquired in this way can be regarded as reproducing the macro unevenness of the first simulated road surface. Therefore, the surface roughness (for example, arithmetic mean roughness) is calculated from the synthesized waveform (S2-5). The calculation result can be regarded as the surface roughness (macro surface roughness) based on the macro unevenness of the first simulated road surface. Similarly, a waveform is synthesized from the wave obtained by applying a low-pass filter to the frequency analysis result of the surface roughness of the second simulated road surface, and the surface roughness (for example, arithmetic mean roughness) is synthesized from the synthesized waveform. Is calculated (S2-5).

次に、第1模擬路面の表面粗さの周波数分析結果に対してローパスフィルタをかけて得られた波からなる波形の表面粗さ(すなわちマクロな表面粗さ)と、第2模擬路面の表面粗さの周波数分析結果に対してローパスフィルタをかけて得られた波からなる波形の表面粗さ(すなわちマクロな表面粗さ)とが比較される。そして、両者の差が5%以下の場合、すなわち両者の差がいずれか一方の値の5%以下の場合(S2−6のYES)、第1模擬路面と第2模擬路面とでマクロな凹凸がほとんど変化していないと判断され、第2模擬路面のマクロな凹凸が適正であると判断される。 Next, the surface roughness (that is, macro surface roughness) of the waveform composed of waves obtained by applying a low-pass filter to the frequency analysis result of the surface roughness of the first simulated road surface and the surface of the second simulated road surface. The surface roughness (that is, macro surface roughness) of the waveform consisting of waves obtained by applying a low-pass filter to the frequency analysis result of roughness is compared. When the difference between the two is 5% or less, that is, when the difference between the two is 5% or less of either value (YES in S2-6), the first simulated road surface and the second simulated road surface have macro unevenness. Is judged to have hardly changed, and it is judged that the macro unevenness of the second simulated road surface is appropriate.

次に、第2模擬路面の表面粗さの周波数分析結果に対してハイパスフィルタがかけられ、波長の小さな波が取得される。このようにして取得された波が合成されて出来た波形は、第2模擬路面のミクロな凹凸を再現しているとみなすことができる。そこで、前記の合成されて出来た波形から表面粗さ(例えば算術平均粗さ)が計算される(S2−7)。その計算結果は第2模擬路面のミクロな凹凸に基づく表面粗さ(ミクロな表面粗さ)であるとみなすことができる。この表面粗さ(例えば算術平均粗さ)が10μm以下の場合(S2−8のYES)、第2模擬路面がミクロな凹凸が除去されたものであると判断され、第2模擬路面のミクロな凹凸が適正であると判断される。 Next, a high-pass filter is applied to the frequency analysis result of the surface roughness of the second simulated road surface, and a wave having a small wavelength is acquired. The waveform formed by synthesizing the waves acquired in this way can be regarded as reproducing the micro unevenness of the second simulated road surface. Therefore, the surface roughness (for example, arithmetic mean roughness) is calculated from the synthesized waveform (S2-7). The calculation result can be regarded as the surface roughness (micro surface roughness) based on the micro unevenness of the second simulated road surface. When this surface roughness (for example, arithmetic mean roughness) is 10 μm or less (YES in S2-8), it is determined that the second simulated road surface has micro-concavities and convexities removed, and the second simulated road surface is microscopic. It is judged that the unevenness is appropriate.

第2模擬路面のマクロな凹凸又はミクロな凹凸が適正でないと判断された場合(S2−6のNO、S2−8のNO)は、各凹凸が適正になるように第2模擬路面が作成し直される(S2−1)。 When it is determined that the macro unevenness or micro unevenness of the second simulated road surface is not appropriate (NO in S2-6, NO in S2-8), the second simulated road surface is created so that each unevenness becomes appropriate. It will be fixed (S2-1).

S2−3からS2−8までの工程は、周波数分析装置又はそれに接続されたコンピュータにより実行される。なお、S2−5からS2−6までの工程と、S2−7からS2−8までの工程とは、順序が入れ替わっても良い。 The steps S2-3 to S2-8 are performed by a frequency analyzer or a computer connected thereto. The order of the steps from S2-5 to S2-6 and the steps from S2-7 to S2-8 may be interchanged.

<粘着力試験工程>
一方で、ゴム部材と樹脂製の粘着力試験面との間の粘着力の温度依存性を調べる試験が行われる。図3に示すように、この試験では、ゴム部材1が樹脂製の粘着力試験面2に対し所定の荷重で押し付けられた後に引き離され、引き離すのに要した力(N)が測定される。この測定には既知の装置が使用できる。
<Adhesive strength test process>
On the other hand, a test is conducted to examine the temperature dependence of the adhesive force between the rubber member and the adhesive force test surface made of resin. As shown in FIG. 3, in this test, the rubber member 1 is pressed against the resin adhesive force test surface 2 with a predetermined load and then separated, and the force (N) required to separate is measured. A known device can be used for this measurement.

この試験におけるゴム部材1として、最終的な摩擦評価対象のゴム部材が使用される。また、粘着力試験面2は、第1模擬路面及び第2模擬路面を形成する樹脂と同じ樹脂で形成される。その理由は、樹脂が同じであればゴム部材と樹脂製の面との間の粘着力(及び摩擦力の凝着成分)の温度依存性が同じなので、粘着力試験結果(すなわち粘着力試験面2における粘着力の温度依存性)を、第2模擬路面における摩擦力の凝着成分の温度依存性に利用することができるからである。粘着力試験面2は、第2模擬路面そのものであることが好ましいが、第1模擬路面でも良く、また第1模擬路面及び第2模擬路面とは別に作製された樹脂製の路面であっても良い。 As the rubber member 1 in this test, the rubber member to be finally evaluated for friction is used. Further, the adhesive strength test surface 2 is formed of the same resin as the resin forming the first simulated road surface and the second simulated road surface. The reason is that if the resin is the same, the temperature dependence of the adhesive force (and the adhesive component of the frictional force) between the rubber member and the resin surface is the same, so the adhesive force test result (that is, the adhesive force test surface) This is because the temperature dependence of the adhesive force in 2) can be used for the temperature dependence of the adhesion component of the frictional force on the second simulated road surface. The adhesive strength test surface 2 is preferably the second simulated road surface itself, but may be the first simulated road surface, or may be a resin road surface prepared separately from the first simulated road surface and the second simulated road surface. good.

粘着力の温度依存性を調べるための試験温度として、2点以上の温度が選択される必要があり、3点以上の温度が選択されることがより好ましい。3点以上の温度が選択される場合の温度には、例えば、常温(例えば20〜25℃)と、常温時に対して摩擦力の凝着成分が約2倍になると予想される低温(例えば0〜10℃)と、常温時に対して摩擦力の凝着成分が約1/2になると予想される高温(例えば35〜40℃)とが含まれる。そして、それぞれの温度において、上記の測定が行われる。測定は、ゴム部材1と粘着力試験面2とが試験温度に達した状態で行われる。本実施形態においては、常温、低温及び高温の3点で試験が行われるものとする。 As the test temperature for investigating the temperature dependence of the adhesive force, it is necessary to select a temperature of 2 points or more, and it is more preferable to select a temperature of 3 points or more. When three or more temperature points are selected, the temperature is, for example, normal temperature (for example, 20 to 25 ° C.) and low temperature (for example, 0) at which the adhesion component of frictional force is expected to be about twice that at room temperature. 10 ° C.) and high temperature (for example, 35-40 ° C.) where the adhesion component of the frictional force is expected to be about 1/2 of that at room temperature. Then, at each temperature, the above measurement is performed. The measurement is performed in a state where the rubber member 1 and the adhesive strength test surface 2 have reached the test temperature. In this embodiment, the test is performed at three points of normal temperature, low temperature and high temperature.

ゴム部材と樹脂製の面との間の粘着力は温度に依存して大きく変化するため、粘着力試験結果として、温度毎に大きく異なる測定結果が得られる。測定結果の例を図4に棒グラフとして示す。 Since the adhesive force between the rubber member and the resin surface changes greatly depending on the temperature, the adhesive force test result can be obtained as a measurement result that differs greatly depending on the temperature. An example of the measurement result is shown as a bar graph in FIG.

<温度依存係数a決定工程>
次に、粘着力試験結果に基づき、ゴム部材と樹脂製の面との間の摩擦力の凝着成分の温度依存係数aが決定される。
<Temperature dependence coefficient ai determination process>
Next, based on the adhesive force test result, the temperature dependence coefficient ai of the adhesion component of the frictional force between the rubber member and the resin surface is determined.

具体的には、まず、ゴム部材と粘着力試験面との間の粘着力の温度依存係数として、ある基準温度Tbaseにおける係数1に対する別の温度Tにおけるそれぞれの係数aが求められる。 Specifically, first, as the temperature dependence coefficient of adhesion between the rubber member and the adhesion test surface, each of the coefficients a i at another temperature T i for the coefficients 1 at a certain reference temperature T base is determined.

その求め方の一例としては、温度毎の粘着力のデータに対して最小二乗法等による線形回帰が行われ、温度変化に対する粘着力の変化を近似する(図4を例にすれば、棒グラフの複数の棒の頂点を近似する)関数が求められる(その関数の例を図4に直線で示す)。そして、求まった関数に基づき、ある基準温度Tbaseにおける粘着力を1としたときの別の温度Tにおける粘着力の割合が、その温度Tにおける係数aとして決定される。例えば、常温である基準温度Tbaseにおける粘着力が26.0N、低温である温度T(すなわちi=1)における粘着力が48.4N、高温である温度T(すなわちi=2)における粘着力が8.8Nの場合、温度Tにおける係数aは48.4/26.0=1.86、温度Tにおける係数aは8.8/26.0=0.34である。 As an example of how to obtain it, linear regression is performed on the data of the adhesive force for each temperature by the least squares method or the like to approximate the change in the adhesive force with respect to the temperature change (for example, in FIG. 4, a bar graph). A function (which approximates the vertices of a plurality of bars) is obtained (an example of the function is shown by a straight line in FIG. 4). Based on Motoma' function, the proportion of adhesion at another temperature T i of when the adhesive strength at a certain reference temperature T base 1 is determined as the coefficient a i at the temperature T i. For example, the adhesive strength at the reference temperature T base at room temperature is 26.0 N, the adhesive strength at the low temperature T 1 (that is, i = 1) is 48.4 N, and the adhesive strength at the high temperature T 2 (that is, i = 2). If the adhesive strength is 8.8 N, the coefficient a 1 is 48.4 / 26.0 = 1.86 at a temperature T 1, the coefficient a 2 in temperature T 2 is a 8.8 / 26.0 = 0.34 ..

ここで、基準温度Tbase及び別の温度Tとして、後述する摩擦力測定のときの温度が選択される。本実施形態では、後述する摩擦力測定が上記の常温、低温及び高温の3点で行われるものとし、基準温度Tbaseとして常温が選択され、別の温度Tとして低温T及び高温Tが選択されるものとする。 Here, as the reference temperature T base and another temperature T i, the temperature at the time of later-described frictional force measurement is selected. In the present embodiment, the normal temperature frictional force measurements above to be described later, shall be carried out at three points low and high temperature, room temperature is selected as the reference temperature T base, low temperature T 1 and high-temperature T 2 as another temperature T i Suppose that is selected.

ここで、本実施形態において粘着力としている力は上記のように樹脂製の路面に押し付けられたゴム部材を引き離すのに要した力であり、ゴム部材が路面に対し滑るときの摩擦力の凝着成分とは大きさが異なる。しかし、温度依存性に関しては、前記粘着力と前記凝着成分とで同じであるとみなすことができる。そのため、上記のようにして求まったゴム部材と粘着力試験面との間の粘着力の温度依存係数aが、そのまま、ゴム部材と粘着力試験面との間の摩擦力の凝着成分の温度依存係数aとされる。 Here, the adhesive force in the present embodiment is the force required to separate the rubber member pressed against the resin road surface as described above, and the frictional force when the rubber member slides against the road surface is agglomerated. The size is different from the wear component. However, with respect to temperature dependence, the adhesive strength and the adhesive component can be regarded as the same. Therefore, the temperature-dependent coefficient ai of the adhesive force between the rubber member and the adhesive force test surface obtained as described above is the adhesive component of the frictional force between the rubber member and the adhesive force test surface as it is. It is defined as the temperature dependence coefficient ai .

また、粘着力試験面における粘着力(又は摩擦力の凝着成分)の温度依存係数aは、粘着力試験面と同じ樹脂で形成された面全般についてそのまま使用することができる。そして、粘着力試験面を形成する樹脂と第2模擬路面を形成する樹脂とは同じである。そのため、ゴム部材と粘着力試験面との間の摩擦力の凝着成分の温度依存係数aは、ゴム部材と第2模擬路面との間の摩擦力の凝着成分の温度依存性係数aと同じであるとみなすことができる。 Further, the temperature dependence coefficient ai of the adhesive force (or the adhesive component of the frictional force) on the adhesive force test surface can be used as it is for the entire surface formed of the same resin as the adhesive force test surface. The resin forming the adhesive strength test surface and the resin forming the second simulated road surface are the same. Therefore, the temperature dependence coefficient ai of the adhesion component of the frictional force between the rubber member and the adhesive force test surface is the temperature dependence coefficient ai of the adhesion component of the frictional force between the rubber member and the second simulated road surface. It can be regarded as the same as i.

以上のようにして、ゴム部材と樹脂製の面(具体的には粘着力試験面や第2模擬路面)との間の摩擦力の凝着成分の温度依存係数aが決定される。 As described above, the temperature dependence coefficient ai of the adhesion component of the frictional force between the rubber member and the resin surface (specifically, the adhesive force test surface or the second simulated road surface) is determined.

温度依存係数aを使用することにより、各温度における摩擦力の凝着成分が求められる。すなわち、基準温度Tbaseのときの摩擦力の凝着成分がF3adhだとすると、別の温度Tのときの摩擦力の凝着成分はa×F3adhとして求められる。 By using the temperature dependence coefficient ai , the adhesion component of the frictional force at each temperature can be obtained. That is, the adhesion component of friction force Datosuruto F3 adh at a reference temperature T base, adhesion component of friction force when the another temperature T i is determined as a i × F3 adh.

<第2試験工程>
また、第2模擬路面に潤滑剤を塗布して潤滑面とし、複数の温度条件下で潤滑面上でゴム部材1を滑らせて摩擦力を測定する第2試験が行われる。
<Second test process>
Further, a second test is performed in which a lubricant is applied to the second simulated road surface to form a lubricating surface, and the rubber member 1 is slid on the lubricating surface under a plurality of temperature conditions to measure the frictional force.

まず、第2模擬路面に潤滑剤が塗布される。第2模擬路面に塗布される潤滑剤としては、オイル又は六方晶型の結晶構造を持つ物質の粉末が使用される。第2模擬路面にこれらの潤滑剤が塗布されることにより、ゴム部材1と第2模擬路面との間の摩擦力から凝着成分が除去され、摩擦力がヒステリシス成分のみからなるとみなせるようになる。 First, a lubricant is applied to the second simulated road surface. As the lubricant applied to the second simulated road surface, oil or powder of a substance having a hexagonal crystal structure is used. By applying these lubricants to the second simulated road surface, the adhesion component is removed from the frictional force between the rubber member 1 and the second simulated road surface, and the frictional force can be regarded as consisting only of the hysteresis component. ..

オイルとしては、粘度がそれぞれ10cSt以上1000cSt以下の植物油、鉱物油又はシリコンオイルが適している。オイルが塗布されることにより第2模擬路面とゴム部材1との間に油膜ができるが、オイルの粘度が10cSt以上であれば第2模擬路面の凸部によって油膜が破れる現象が起こりにくく、また1000cSt以下であれば油膜の粘性抵抗が摩擦力の測定に影響しにくい。 As the oil, vegetable oil, mineral oil or silicone oil having a viscosity of 10 cSt or more and 1000 cSt or less is suitable. An oil film is formed between the second simulated road surface and the rubber member 1 by applying the oil, but if the viscosity of the oil is 10 cSt or more, the phenomenon that the oil film is not easily broken by the convex portion of the second simulated road surface is unlikely to occur, and If it is 1000 cSt or less, the viscous resistance of the oil film does not easily affect the measurement of the frictional force.

特に好ましいオイルは粘度が50cSt以上500cSt以下の植物油である。植物油としてはサラダオイルやオリーブオイル等が挙げられる。なおcStはセンチストークスのことで、1cSt=1mm/sである。粘度はJISZ8803の方法で測定される。 A particularly preferable oil is a vegetable oil having a viscosity of 50 cSt or more and 500 cSt or less. Examples of vegetable oils include salad oil and olive oil. Note that cSt stands for Centistokes, and 1 cSt = 1 mm 2 / s. Viscosity is measured by the method of JISZ8803.

また、六方晶型の結晶構造を持つ物質の粉末としては、グラファイト粉末又は二硫化モリブデン粉末等が挙げられる。これらの粉末は、そのまま第2模擬路面に塗布(散布)されても良いし、溶媒とともに第2模擬路面に塗布されても良い。なお、六方晶型の結晶構造を持つ物質では、結晶構造の層と層との結合が弱く、せん断力が加わると層間で容易に滑りが生じる。そのため、六方晶型の結晶構造を持つ物質の粉末が第2模擬路面に塗布されると、第2模擬路面に潤滑性が生じる。 Examples of the powder of the substance having a hexagonal crystal structure include graphite powder and molybdenum disulfide powder. These powders may be applied (sprayed) to the second simulated road surface as they are, or may be applied to the second simulated road surface together with the solvent. In a substance having a hexagonal crystal structure, the bond between the layers of the crystal structure is weak, and when a shearing force is applied, slippage easily occurs between the layers. Therefore, when a powder of a substance having a hexagonal crystal structure is applied to the second simulated road surface, lubricity occurs in the second simulated road surface.

次に、複数の温度条件下で、ゴム部材を潤滑面上で滑らせて摩擦力を測定する試験が行われる。図5に示すように、潤滑面3上にゴム部材1が配置され、ゴム部材1に対して矢印Aのように上から荷重が負荷された状態で、矢印Bの方向に潤滑面3に沿ってゴム部材1が滑り、そのときの摩擦力が測定される。この測定には既知の装置が使用できる。この試験におけるゴム部材1として、粘着力試験で使用されたものと同じゴム部材1が使用される。 Next, under a plurality of temperature conditions, a test is performed in which the rubber member is slid on the lubricating surface to measure the frictional force. As shown in FIG. 5, the rubber member 1 is arranged on the lubricating surface 3, and a load is applied to the rubber member 1 from above as shown by arrow A, along the lubricating surface 3 in the direction of arrow B. The rubber member 1 slides, and the frictional force at that time is measured. A known device can be used for this measurement. As the rubber member 1 in this test, the same rubber member 1 used in the adhesive strength test is used.

第2試験の試験温度は、粘着力試験のときと同じ常温、低温及び高温である。測定はゴム部材1と潤滑面3とが試験温度に達した状態で行われる。 The test temperature of the second test is the same room temperature, low temperature and high temperature as in the adhesive strength test. The measurement is performed in a state where the rubber member 1 and the lubricating surface 3 have reached the test temperature.

第2試験において、潤滑面3上で測定される摩擦力はヒステリシス成分のみからなるとみなすことができる。ヒステリシス成分の温度依存性は、凝着成分の温度依存性ほど大きくないが、若干ある。第2試験での測定結果の例を図6に棒グラフとして示す。 In the second test, the frictional force measured on the lubrication surface 3 can be considered to consist only of the hysteresis component. The temperature dependence of the hysteresis component is not as great as the temperature dependence of the adhesion component, but it is slight. An example of the measurement result in the second test is shown as a bar graph in FIG.

<温度依存係数b決定工程>
次に、第2試験の結果に基づき、ゴム部材1と第2模擬路面との間の摩擦力のヒステリシス成分の温度依存係数bが決定される。
<Temperature-dependent coefficient b i determining step>
Then, based on the second test result, the temperature dependence coefficient b i of the hysteresis component of friction force between the rubber member 1 and the second simulated road surface is determined.

ここで、第2試験で得られたのは潤滑面3とゴム部材1との間の摩擦力のヒステリシス成分の温度依存性だが、この温度依存性は、何も塗布されていない第2模擬路面とゴム部材1との間のヒステリシス成分の温度依存性や、水が塗布された第2模擬路面とゴム部材1との間のヒステリシス成分の温度依存性と、同じであるとみなすことができる。そのため、ゴム部材1と潤滑面3との間の摩擦力のヒステリシス成分の温度依存係数bを求めれば、その温度依存係数bを、何も塗布されていない第2模擬路面とゴム部材1との間のヒステリシス成分の温度依存係数bや、水が塗布された第2模擬路面とゴム部材1との間のヒステリシス成分の温度依存係数bとして扱うことができる。 Here, what was obtained in the second test was the temperature dependence of the hysteresis component of the frictional force between the lubricating surface 3 and the rubber member 1, but this temperature dependence is the second simulated road surface to which nothing is applied. It can be considered to be the same as the temperature dependence of the hysteresis component between the rubber member 1 and the temperature dependence of the hysteresis component between the second simulated road surface coated with water and the rubber member 1. Therefore, by obtaining the temperature dependency coefficient b i of the hysteresis component of friction force between the rubber member 1 and the bearing surface 3, the temperature dependence coefficient b i, second simulated road surface and the rubber member Nothing is applied 1 it can be treated as the temperature dependence coefficient b i hysteresis components between and temperature dependence coefficients b i of the hysteresis component and the second simulated road surface and the rubber member 1 the water is applied between.

この工程では、ゴム部材1と潤滑面3との間の摩擦力のヒステリシス成分の温度依存係数として、ある基準温度Tbaseにおける係数1に対する別の温度Tにおけるそれぞれの係数bが求められる。 In this step, as the temperature dependence coefficient of the hysteresis component of friction force between the rubber member 1 and the bearing surface 3, each of the coefficients b i in another temperature T i for the coefficients 1 at a certain reference temperature T base is determined.

その求め方の一例としては、温度毎の第2試験のデータに対して最小二乗法等による線形回帰が行われ、温度変化に対するヒステリシス成分の変化を近似する関数が求められる(その関数の例を図6に直線で示す)。そして、求まった関数に基づき、ある基準温度Tbaseにおけるヒステリシス成分を1としたときの別の温度Tにおけるヒステリシス成分の割合が、その温度Tにおける係数bとして決定される。 As an example of how to obtain it, linear regression is performed on the data of the second test for each temperature by the least squares method or the like, and a function that approximates the change of the hysteresis component with respect to the temperature change is obtained (example of the function). (Shown by a straight line in FIG. 6). Based on Motoma' function, the ratio of the hysteresis component in another temperature T i of when the 1 hysteresis component at a reference temperature T base is determined as the coefficient b i at the temperature T i.

ここで、基準温度Tbase及び別の温度Tとして、後述する摩擦力測定のときの温度が選択される。本実施形態では、後述する摩擦力測定が上記の常温、低温及び高温の3点で行われるものとし、基準温度Tbaseとして常温が選択され、別の温度Tとして低温T及び高温Tが選択されるものとする。 Here, as the reference temperature T base and another temperature T i, the temperature at the time of later-described frictional force measurement is selected. In the present embodiment, the normal temperature frictional force measurements above to be described later, shall be carried out at three points low and high temperature, room temperature is selected as the reference temperature T base, low temperature T 1 and high-temperature T 2 as another temperature T i Suppose that is selected.

以上のようにして求まった温度依存係数bを使用することにより、各温度におけるヒステリシス成分が求められる。すなわち、基準温度Tbaseのときの摩擦力のヒステリシス成分がF3hisだとすると、別の温度Tのときの摩擦力の凝着成分はb×F3hisとして求められる。 By using the temperature-dependent coefficient b i with Motoma' as described above, the hysteresis component is obtained at each temperature. That is, the hysteresis component of friction force F3 Datosuruto his at a reference temperature T base, adhesion component of friction force when the another temperature T i is determined as b i × F3 his.

<摩擦力測定工程>
次に、ゴム部材と実路面との間の基準温度Tbaseでの摩擦力F1と、ゴム部材と第1模擬路面との間の基準温度Tbaseでの摩擦力F2と、ゴム部材と第2模擬路面との間の基準温度Tbaseでの摩擦力F3baseと、ゴム部材と第2模擬路面との間の温度T(iは1つ又は2つ以上)でのそれぞれの摩擦力F3とが測定される。摩擦力F1、F2、F3base及びF3の測定は、全ての路面(実路面、第1模擬路面及び第2模擬路面)に何も塗布されていない状態で行われても良いし、全ての路面(実路面、第1模擬路面及び第2模擬路面)に水が塗布された状態で行われても良い。
<Friction force measurement process>
Next, the frictional force F1 at the reference temperature T base between the rubber member and the actual road surface, the frictional force F2 at the reference temperature T base between the rubber member and the first simulated road surface, and the rubber member and the second reference temperature T and the frictional force F3 base at base, a rubber member and the temperature T i (i is one or more) each of the frictional force F3 i in between the second simulated road surface between the simulated road surface And are measured. The frictional forces F1, F2, F3 base and F3 i may be measured with nothing applied to all road surfaces (actual road surface, first simulated road surface and second simulated road surface), or all. It may be carried out in a state where water is applied to the road surface (actual road surface, first simulated road surface and second simulated road surface).

ここで、本実施形態では温度Tとして上記のように低温T及び高温Tが選択される。従って、本実施形態では、ゴム部材と第2模擬路面との間の摩擦力として、基準温度Tbaseでの摩擦力F3baseと、低温Tでの摩擦力F3と、高温Tでの摩擦力F3とが測定される。 Here, in this embodiment the low temperature T 1 and high temperature T 2 as described above is selected as the temperature T i. Accordingly, in the present embodiment, as a friction force between the rubber member and the second simulated road surface, a frictional force F3 base at a reference temperature T base, and the frictional force F3 1 at low temperature T 1, at a high temperature T 2 The frictional force F3 2 is measured.

測定には既知の摩擦力の測定装置が使用できる。測定は、ゴム部材と各路面とがそれぞれの温度に達した状態で行われる。 A known friction force measuring device can be used for the measurement. The measurement is performed in a state where the rubber member and each road surface have reached their respective temperatures.

測定された摩擦力は凝着成分とヒステリシス成分とからなるものとする。すなわち、
F1=F1adh+F1his・・・(式1)
F2=F2adh+F2his・・・(式2)
F3base=F3adh+F3his・・・(式3)
F3=a×F3adh+b×F3his・・・(式4)
(式1におけるF1adh、式2におけるF2adh、式3におけるF3adh及び式4におけるa×F3adhは各摩擦力における凝着成分、式1におけるF1his、式2におけるF2his、式3におけるF3his及び式4におけるb×F3hisは各摩擦力におけるヒステリシス成分)
が成立するものとする。
The measured frictional force shall consist of an adhesion component and a hysteresis component. That is,
F1 = F1 adh + F1 his ... (Equation 1)
F2 = F2 adh + F2 his ... (Equation 2)
F3 base = F3 adh + F3 his ... (Equation 3)
F3 i = a i × F3 adh + b i × F3 his ··· ( Equation 4)
(F1 adh in formula 1, F2 adh in formula 2, F3 adh in formula 3 and ai × F3 adh in formula 4 are adhesion components in each frictional force, F1 his in formula 1, F2 his in formula 2, formula 3 b i × F3 his hysteresis component in the friction force in the F3 his-and formula 4 in)
Shall hold.

ここで示されているように、式3と式4とでは摩擦力の測定温度が異なるので、摩擦力の凝着成分及びヒステリシス成分の大きさが異なる。具体的には、基準温度Tbaseのときの摩擦力の凝着成分がF3adh(式3参照)で、別の温度Tのときの摩擦力の凝着成分はa×F3adh(式4参照)である。aは、上記の温度依存係数a決定工程で決定された係数である。また、基準温度Tbaseのときの摩擦力のヒステリシス成分がF3his(式3参照)で、別の温度Tのときの摩擦力のヒステリシス成分はb×F3his(式4参照)である。bは、上記の温度依存係数b決定工程で決定された係数である。 As shown here, since the measurement temperature of the frictional force is different between the formula 3 and the formula 4, the magnitudes of the adhesion component and the hysteresis component of the frictional force are different. Specifically, in the frictional force of adhesion component F3 adh at a reference temperature T base (see Equation 3), adhesion component of friction force when the another temperature T i is a i × F3 adh (formula 4). ai is a coefficient determined in the above-mentioned temperature dependence coefficient ai determination step. Further, at the reference temperature T base hysteresis component of friction force F3 his-time (see Equation 3), the hysteresis component of friction force when the another temperature T i is the b i × F3 his (see Equation 4) .. b i is a coefficient determined by the temperature dependence coefficient b i determining step.

上記のように本実施形態ではゴム部材と第2模擬路面との間の摩擦力が、基準温度Tbaseの他に低温T及び高温Tで測定されるので、式4は
F3=a×F3adh+b×F3his・・・(式4−1)
F3=a×F3adh+b×F3his・・・(式4−2)
の2つの式からなる。
As described above, in the present embodiment, the frictional force between the rubber member and the second simulated road surface is measured at the low temperature T 1 and the high temperature T 2 in addition to the reference temperature T base , so that the equation 4 is F3 1 = a. 1 x F3 adh + b 1 x F3 his ... (Equation 4-1)
F3 2 = a 2 x F3 adh + b 2 x F3 his ... (Equation 4-2)
It consists of two equations.

<計算工程>
上記の式1〜式4に基づき、ゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisが計算される。この計算は例えばコンピュータが実施する。計算の前提として次のことが仮定される。
<Calculation process>
Based on the above equations 1 to 4, the adhesion component F1 adh and the hysteresis component F1 his of the frictional force between the rubber member and the actual road surface are calculated. This calculation is performed, for example, by a computer. The following are assumed as the premise of the calculation.

表1に示すように、実路面と第1模擬路面とでは、材質が異なり、表面粗さが同じである。実路面がアスファルト等からなるのに対して第1模擬路面が樹脂からなるので、実路面における摩擦力の凝着成分が基準値だとすると、第1模擬路面における摩擦力の凝着成分はその基準値より大きい。一方、実路面と第1模擬路面とでは、凹凸状態が同じだと言えるので、摩擦力のヒステリシス成分が同じだと仮定できる。 As shown in Table 1, the actual road surface and the first simulated road surface are made of different materials and have the same surface roughness. Since the actual road surface is made of asphalt or the like, the first simulated road surface is made of resin, so if the adhesion component of the frictional force on the actual road surface is the reference value, the adhesion component of the frictional force on the first simulated road surface is the reference value. Greater. On the other hand, since it can be said that the actual road surface and the first simulated road surface have the same uneven state, it can be assumed that the hysteresis component of the frictional force is the same.

また、表1に示すように、第1模擬路面と第2模擬路面とでは、材質が同じで、表面粗さが異なる。第1模擬路面も第2模擬路面も同じ樹脂からなるので、これらの路面における摩擦力の凝着成分は同じだと仮定できる。一方、第1模擬路面の表面粗さにはミクロな粗さが含まれるのに対して第2模擬路面の表面粗さにはミクロな粗さが含まれないので、第2模擬路面における摩擦力のヒステリシス成分は、実路面や第1模擬路面における摩擦力のヒステリシス成分と比べて、小さいと仮定できる。 Further, as shown in Table 1, the first simulated road surface and the second simulated road surface have the same material but different surface roughness. Since both the first simulated road surface and the second simulated road surface are made of the same resin, it can be assumed that the adhesion components of the frictional forces on these road surfaces are the same. On the other hand, the surface roughness of the first simulated road surface includes micro-roughness, whereas the surface roughness of the second simulated road surface does not include micro-roughness, so that the frictional force on the second simulated road surface is included. It can be assumed that the hysteresis component of is smaller than the hysteresis component of the frictional force on the actual road surface or the first simulated road surface.

Figure 2021089210
Figure 2021089210

以上の仮定を図示すると図7のようになる。図7の棒グラフにおける格子状の部分は凝着成分を表し、ドット状の部分はヒステリシス成分を表している。以上のことから、式1〜式4において、F3adh=F2adhとみなし、F2his=F1hisとみなすことができる。このことを利用してゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisを求めることができる。 The above assumption is illustrated in FIG. 7. The grid-like portion in the bar graph of FIG. 7 represents the adhesion component, and the dot-shaped portion represents the hysteresis component. From the above, in Equations 1 to 4, F3 adh = F2 adh can be regarded as, and F2 his = F1 his can be regarded as. Utilizing this, the adhesion component F1 adh and the hysteresis component F1 his of the frictional force between the rubber member and the actual road surface can be obtained.

まず、式3と式4とからF3adhとF3hisとが求められる。F3adhとF3hisとが求められる具体的方法の例としては、式3と、温度毎に成立する複数の式4とから、2つの式の組み合わせが全て抽出され、それぞれの組み合わせから暫定的なF3adhと暫定的なF3hisとが求められ、求まった複数の暫定的なF3adhのうちの中央値と、F3adhがその中央値のときのF3hisの値とが、最終的なF3adhとF3hisとされる。 First, F3 adh and F3 his are obtained from Equations 3 and 4. As an example of a specific method for obtaining F3 adh and F3 his , all combinations of the two equations are extracted from the equation 3 and a plurality of equations 4 that hold for each temperature, and provisional from each combination. F3 adh and provisional F3 his are obtained, and the median value of the obtained plurality of provisional F3 adh and the value of F3 his when F3 adh is the median value are the final F3 adh. And F3 his .

具体例としては、本実施形態では、第2模擬路面における摩擦力の式として、式3、式4−1及び式4−2が存在する。これら3つの式から、2つの式の組み合わせが3つ出来る。すなわち、
F3base=F3adh+F3his・・・(式3)及び
F3=a×F3adh+b×F3his・・・(式4−1)
の第1の組み合わせ、
F3=a×F3adh+b×F3his・・・(式4−1)及び
F3=a×F3adh+b×F3his・・・(式4−2)
の第2の組み合わせ、及び
F3base=F3adh+F3his・・・(式3)及び
F3=a×F3adh+b×F3his・・・(式4−2)
の第3の組み合わせである。
As a specific example, in the present embodiment, there are equations 3, equation 4-1 and equation 4-2 as equations for the frictional force on the second simulated road surface. From these three formulas, three combinations of the two formulas can be made. That is,
F3 base = F3 adh + F3 his ... (Equation 3) and F3 1 = a 1 x F3 adh + b 1 x F3 his ... (Equation 4-1)
The first combination of
F3 1 = a 1 x F3 adh + b 1 x F3 his ... (Equation 4-1) and F3 2 = a 2 x F3 adh + b 2 x F3 his ... (Equation 4-2)
The second combination of, and F3 base = F3 adh + F3 his ... (Equation 3) and F3 2 = a 2 x F3 adh + b 2 x F3 his ... (Equation 4-2)
Is the third combination of.

F3base、F3及びF3、が測定で明らかになっており、a、a、b及びbが求まっているので、第1の組み合わせの連立方程式を解いて、暫定的なF3adh及び暫定的なF3hisを求めることができる。同様に、第2の組み合わせの連立方程式から暫定的なF3adh及び暫定的なF3hisが求まり、第3の組み合わせの連立方程式からも暫定的なF3adh及び暫定的なF3hisが求まる。 Since F3 base , F3 1 and F3 2 have been clarified by measurement and a 1 , a 2 , b 1 and b 2 have been obtained, the simultaneous equations of the first combination are solved to provide a provisional F3. Adh and provisional F3 his can be determined. Similarly, Motomari is provisional F3 adh and provisional F3 his-from simultaneous equations of the second combination, provisional F3 adh and provisional F3 his-is determined from simultaneous equations of the third combination.

理想的には、第1〜第3の組み合わせのどの連立方程式を解いても、暫定的なF3adh及び暫定的なF3hisは同じ値となる。しかし、実際には摩擦力の測定誤差等が原因で、連立方程式毎に、求まる暫定的なF3adh及び暫定的なF3hisが異なる。 Ideally, the provisional F3 adh and the provisional F3 his will have the same value regardless of which simultaneous equations of the first to third combinations are solved. However, in reality, the provisional F3 adh and the provisional F3 his to be obtained are different for each simultaneous equation due to the measurement error of the frictional force and the like.

そこで、求まった3つの暫定的なF3adhのうちの中央値が最終的な(言い換えれば正式な)F3adhとされる。そして、F3adhがその値(すなわち上記の中央値)のときのF3hisが式3(式4−1又は式4−2でも良い)から計算され、最終的なF3hisとされる。 Therefore, the median of the three provisional F3 adhs obtained is the final (in other words, formal) F3 adh . Then, when F3 adh is that value (that is, the median value described above), F3 his is calculated from Equation 3 (may be Equation 4-1 or Equation 4-2), and is used as the final F3 his .

次に、上記のようにF3adh=F2adhとみなすことができるので、式2のF2adhとしてF3adhの値を入れ、F2−F3adhを計算してF2hisを求めることができる。 Next, since F3 adh = F2 adh can be regarded as described above, the value of F3 adh can be entered as F2 adh in Equation 2, and F2-F3 adh can be calculated to obtain F2 his .

次に、上記のようにF2his=F1hisとみなすことができるので、式1のF1hisとしてF2hisの値を入れ、F1−F2hisを計算してF1adhを求めることができる。 Next, since F2 his = F1 his can be regarded as described above, the value of F2 his can be entered as F1 his in Equation 1, and F1-F2 his can be calculated to obtain F1 adh .

以上のようにして、ゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisが求まる。 As described above, the adhesion component F1 adh and the hysteresis component F1 his of the frictional force between the rubber member and the actual road surface can be obtained.

以上のように、本実施形態の方法によれば、ゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisを明らかにすることができる。 As described above, according to the method of the present embodiment, the adhesion component F1 adh and the hysteresis component F1 his of the frictional force between the rubber member and the actual road surface can be clarified.

<変更例1>
変更例について説明する。この変更例では、ゴム部材と樹脂製の面との間の摩擦力の凝着成分の温度依存係数aとして、ある基準温度Tbaseにおける係数1に対する別の1つの温度Tにおける係数aが求められる。また、ゴム部材と第2模擬路面との間の摩擦力のヒステリシス成分の温度依存係数bとして、ある基準温度Tbaseにおける係数1に対する別の1つの温度Tにおける係数bが求められる。また、ゴム部材と第2模擬路面との間の摩擦力として、基準温度Tbaseでの摩擦力F3baseと、別の温度低温Tでの摩擦力F3とが測定される。
<Change example 1>
An example of modification will be described. In this modification, as the temperature dependence coefficient a i of adhesion component of friction force between the rubber member and the resin surface, the coefficient a 1 in another one temperatures T 1 for the coefficients 1 at a certain reference temperature T base Is required. Further, as a temperature dependence coefficient b i of the hysteresis component of friction force between the rubber member and the second simulated road surface, the coefficient b 1 of the one temperature T 1 of the alternative for the coefficients 1 at a certain reference temperature T base is determined. Further, as a friction force between the rubber member and the second simulated road surface, a frictional force F3 base at a reference temperature T base, and the frictional force F3 1 at another temperature low T 1 is measured.

従って、
F3base=F3adh+F3his・・・(式3)
F3=a×F3adh+b×F3his・・・(式4)
の2つの式が出来る。F3baseとF3とが測定されており、係数a、bが求められているので、これら2つの連立方程式を解けばF3adhとF3hisとが求まる。F3adhとF3hisとが求まれば、上記実施形態の計算工程と同様にして、式1及び式2に基づき、ゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisが求まる。
Therefore,
F3 base = F3 adh + F3 his ... (Equation 3)
F3 1 = a 1 x F3 adh + b 1 x F3 his ... (Equation 4)
There are two formulas. Since F3 base and F3 1 are measured and the coefficients a 1 and b 1 are obtained, F3 adh and F3 his can be obtained by solving these two simultaneous equations. If F3 adh and F3 his are obtained, the adhesion component F1 adh and the hysteresis component of the frictional force between the rubber member and the actual road surface are obtained based on the formulas 1 and 2 in the same manner as in the calculation step of the above embodiment. F1 his is required.

摩擦力の測定誤差が小さい場合は、上記の2つの式の連立方程式を解くだけでも十分精度の良いF3adhとF3hisとが求まり、F1adhとF1hisとを明らかにすることができる。 When the measurement error of the frictional force is small, F3 adh and F3 his with sufficiently high accuracy can be obtained by solving the simultaneous equations of the above two equations, and F1 adh and F1 his can be clarified.

<変更例2>
別の変更例について説明する。この変更例では、ゴム部材と第2模擬路面との間の摩擦力として、基準温度Tbaseでの摩擦力F3baseと、別の3点以上の温度Ti(i=1、2、3・・・)でのそれぞれの摩擦力F3i(i=1、2、3・・・)とが測定される。また、それぞれの温度における、ゴム部材と樹脂製の面との間の摩擦力の凝着成分の温度依存係数a(i=1、2、3・・・)及びゴム部材と第2模擬路面との間の摩擦力のヒステリシス成分の温度依存係数b(i=1、2、3・・・)が求められる。
<Change example 2>
Another example of modification will be described. In this modification, as a friction force between the rubber member and the second simulated road surface, a frictional force F3 base at a reference temperature T base, or another three-point temperature T i (i = 1,2,3 · The respective frictional forces F3 i (i = 1, 2, 3 ...) At) are measured. Further, at each temperature, the temperature dependence coefficient ai (i = 1, 2, 3 ...) Of the adhesion component of the frictional force between the rubber member and the resin surface, and the rubber member and the second simulated road surface. temperature dependence coefficient of hysteresis component of friction force between the b i (i = 1,2,3 ···) is obtained.

従って、
F3base=F3adh+F3his・・・(式3)
F3=a×F3adh+b×F3his(i=1、2、3・・・)・・・(式4)
という4つ以上の式が出来る。これらの式から2つの式の組み合わせが全て抽出され、それぞれの組み合わせから暫定的なF3adhと暫定的なF3hisとが求められる。そして、求まった複数の暫定的なF3adhのうちの中央値と、F3adhがその中央値のときのF3hisの値とが、最終的なF3adhとF3hisとされる。
Therefore,
F3 base = F3 adh + F3 his ... (Equation 3)
F3 i = a i × F3 adh + b i × F3 his (i = 1,2,3 ···) ··· ( Equation 4)
You can make four or more formulas. All combinations of the two equations are extracted from these equations, and a provisional F3 adh and a provisional F3 his are obtained from each combination. Then, the median value of the obtained plurality of provisional F3 adh and the value of F3 his when F3 adh is the median value are defined as the final F3 adh and F3 his .

<変更例3>
上記実施形態の第2模擬路面を使用しなくても、ゴム部材と実路面との間の摩擦力の凝着成分及びヒステリシス成分を明らかにすることができる。
<Change example 3>
Even if the second simulated road surface of the above embodiment is not used, the adhesion component and the hysteresis component of the frictional force between the rubber member and the actual road surface can be clarified.

具体的には、まず、上記実施形態と同じ第1模擬路面作成工程(S1)、粘着力試験工程(S3)及び温度依存係数a決定工程(S4)が行われる。 Specifically, first, the same first simulated road surface preparation step (S1), adhesive strength test step (S3), and temperature dependence coefficient ai determination step (S4) as in the above embodiment are performed.

次に、オイル又は六方晶型の結晶構造を持つ物質の粉末を塗布した潤滑面上で、複数の温度条件下でゴム部材を滑らせて摩擦力を測定する第2試験が、上記実施形態のような第2模擬路面ではなく、第1模擬路面において行われる。つまり、第1模擬路面を潤滑面としたうえで摩擦力の測定が行われる。そして、この第2試験の結果に基づき、ゴム部材と潤滑面(第1模擬路面)との間の摩擦力のヒステリシス成分の温度依存係数bとして、基準温度Tbaseにおける係数1に対する別の1又は2以上の温度Tにおけるそれぞれの係数bが求められる。 Next, the second test of measuring the frictional force by sliding the rubber member under a plurality of temperature conditions on the lubricating surface coated with oil or powder of a substance having a hexagonal crystal structure is the above-described embodiment. It is performed not on the second simulated road surface as in the above, but on the first simulated road surface. That is, the frictional force is measured with the first simulated road surface as the lubricating surface. Then, based on the results of the second test, as the temperature dependence coefficient b i of the hysteresis component of friction force between the rubber member and the bearing surface (first simulated road surface), another for the coefficients 1 at the reference temperature T base 1 or each of the coefficients b i in two or more temperature T i is determined.

次に、摩擦力測定工程が行われるが、本変更例ではゴム部材と実路面との間の基準温度Tbaseでの摩擦力F1と、ゴム部材と第1模擬路面との間の基準温度Tbaseでの摩擦力F2と、ゴム部材と第1模擬路面との間の温度T(iは1つ又は2つ以上)でのそれぞれの摩擦力F2とが測定される。ここでは温度Tとして低温T及び高温Tが選択されるものとする。 Next, the frictional force measurement step is performed. In this modified example, the frictional force F1 at the reference temperature T base between the rubber member and the actual road surface and the reference temperature T between the rubber member and the first simulated road surface The frictional force F2 at the base and each frictional force F2 i at the temperature Ti (i is one or two or more) between the rubber member and the first simulated road surface are measured. Here, it is assumed that the low temperature T 1 and high-temperature T 2 is selected as the temperature T i.

測定された摩擦力について以下の式が成立するものとみなせる。 It can be considered that the following equation holds for the measured frictional force.

F1=F1adh+F1his・・・(式5)
F2base=F2adh+F2his・・・(式6)
F2=a×F2adh+b×F2his・・・(式7)
(式5におけるF1adh、式6におけるF2adh、式7におけるa×F2adhは各摩擦力における凝着成分、式5におけるF1his、式6におけるF2his、式7におけるb×F2hisは各摩擦力におけるヒステリシス成分)
次に、測定されたそれぞれの摩擦力及び前記温度依存係数a、bを使用して摩擦力の凝着成分及びヒステリシス成分を求める計算工程が行われる。具体的には、まず、式6と式7からF2adhとF2hisが求められる。その具体的な方法は、上記実施形態において式3及び式4からF3adh及びF3hisを求めた方法と同じである。
F1 = F1 adh + F1 his ... (Equation 5)
F2 base = F2 adh + F2 his ... (Equation 6)
F2 i = a i × F2 adh + b i × F2 his ··· ( Equation 7)
(F1 adh in equation 5, F2 adh in Equation 6, the adhesion component in a i × F2 adh Each frictional force in Equation 7, F1 his-in equation 5, b i × F2 his in F2 his-, Formula 7 in the formula 6 Is the hysteresis component at each frictional force)
Next, each of the friction force measured and the temperature-dependent coefficient a i, computation step of obtaining the adhesion component and hysteresis component of friction force using the b i is performed. Specifically, first, F2 adh and F2 his are obtained from Equations 6 and 7. The specific method is the same as the method for obtaining F3 adh and F3 his from the formulas 3 and 4 in the above embodiment.

次に、上記のようにF2his=F1hisとみなすことができるので、式5のF1hisとしてF2hisの値を入れ、F1−F2hisを計算してF1adhを求めることができる。 Next, since F2 his = F1 his can be regarded as described above, the value of F2 his can be entered as F1 his in Equation 5, and F1-F2 his can be calculated to obtain F1 adh .

以上のようにして、ゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisが求まる。 As described above, the adhesion component F1 adh and the hysteresis component F1 his of the frictional force between the rubber member and the actual road surface can be obtained.

<変更例4>
上記実施形態はゴム部材と実路面との間の摩擦力の凝着成分及びヒステリシス成分の大きさを明らかにする実施形態であり、その実施形態の中でヒステリシス成分の温度依存性を求めたが、そのような実施形態から離れて独立してヒステリシス成分の温度依存性だけを求めても良い。
<Change example 4>
The above embodiment is an embodiment for clarifying the magnitudes of the adhesion component and the hysteresis component of the frictional force between the rubber member and the actual road surface, and the temperature dependence of the hysteresis component was obtained in the embodiment. , Apart from such embodiments, only the temperature dependence of the hysteresis component may be determined independently.

オイルが塗布された潤滑面又は六方晶型の結晶構造を持つ物質の粉末が塗布された潤滑面の上でゴム部材を滑らせて摩擦力を測定すれば、測定される摩擦力はヒステリシス成分のみからなるとみなすことができる。そのような測定を複数の異なる温度条件下で行えば、測定される摩擦力の温度依存性はヒステリシス成分の温度依存性に等しいとみなすことができる。 If the frictional force is measured by sliding the rubber member on the lubricated surface coated with oil or the lubricating surface coated with powder of a substance having a hexagonal crystal structure, the measured frictional force is only the hysteresis component. Can be considered to consist of. If such measurements are made under a number of different temperature conditions, the temperature dependence of the measured frictional force can be considered equal to the temperature dependence of the hysteresis component.

ヒステリシス成分の温度依存性を求めるこの方法は、上記実施形態の他にも様々な実施形態の中で利用することができる。 This method of determining the temperature dependence of the hysteresis component can be used in various embodiments other than the above-described embodiment.

<変更例5>
上記実施形態ではゴム部材と実路面との間の摩擦力について調べたが、ゴム部材だけでなく、樹脂製の部材と実路面との間の摩擦力についても上記実施形態と同様にして調べることができる。
<Change example 5>
In the above embodiment, the frictional force between the rubber member and the actual road surface is investigated, but not only the rubber member but also the frictional force between the resin member and the actual road surface is investigated in the same manner as in the above embodiment. Can be done.

<変更例6>
上記実施形態では潤滑剤としてオイル又は六方晶型の結晶構造を持つ物質の粉末が第2模擬路面に塗布されたが、潤滑剤としてオイルと六方晶型の結晶構造を持つ物質の粉末との両方が第2模擬路面に塗布されても良い。
<Change example 6>
In the above embodiment, oil or a powder of a substance having a hexagonal crystal structure was applied to the second simulated road surface as a lubricant, but both oil and a powder of a substance having a hexagonal crystal structure were applied as a lubricant. May be applied to the second simulated road surface.

1…ゴム部材、2…粘着力試験面、3…潤滑面 1 ... Rubber member, 2 ... Adhesive strength test surface, 3 ... Lubricating surface

Claims (5)

ゴム製又は樹脂製の部材を試験面上で滑らせたときの摩擦力を測定して行う摩擦評価方法において、
前記試験面を、オイルと六方晶型の結晶構造を持つ物質の粉末との少なくとも一方が塗布された潤滑面とし、
複数の異なる温度においてそれぞれ前記測定を行うことを特徴とする、摩擦評価方法。
In a friction evaluation method performed by measuring the frictional force when a rubber or resin member is slid on a test surface.
The test surface was used as a lubricating surface to which at least one of oil and powder of a substance having a hexagonal crystal structure was applied.
A friction evaluation method, characterized in that the measurement is performed at a plurality of different temperatures.
ゴム製又は樹脂製の部材と摩擦面との間の摩擦力における凝着成分とヒステリシス成分とを求める摩擦評価方法において、
前記摩擦面としての実路面の凹凸を再現した樹脂製の第1模擬路面を作成する工程と、
前記第1模擬路面からミクロな凹凸を除去した第2模擬路面を作成する工程と、
前記部材と前記の樹脂製の面との間の粘着力の温度依存性を調べる第1試験を行う工程と、
前記第1試験の結果に基づき、前記部材と前記の樹脂製の面との間の摩擦力の凝着成分の温度依存係数として、基準温度Tbaseにおける係数1に対する別の1又は2以上の温度Tにおけるそれぞれの係数aを求める工程と、
前記第2模擬路面にオイルと六方晶型の結晶構造を持つ物質の粉末との少なくとも一方を塗布して潤滑面とし、複数の温度条件下で前記部材を前記潤滑面上で滑らせて摩擦力を測定する第2試験を行う工程と、
前記第2試験の結果に基づき、前記部材と前記潤滑面との間の摩擦力のヒステリシス成分の温度依存係数として、基準温度Tbaseにおける係数1に対する別の1又は2以上の温度Tにおけるそれぞれの係数bを求める工程と、
前記部材と前記実路面との間の前記基準温度Tbaseでの摩擦力F1と、
前記部材と前記第1模擬路面との間の前記基準温度Tbaseでの摩擦力F2と、
前記部材と前記第2模擬路面との間の前記基準温度Tbaseでの摩擦力F3baseと、
前記部材と前記第2模擬路面との間の前記の1又は2以上の温度Tでのそれぞれの摩擦力F3とを測定する工程と、
F1=F1adh+F1his・・・(式1)
F2=F2adh+F2his・・・(式2)
F3base=F3adh+F3his・・・(式3)
F3=a×F3adh+b×F3his・・・(式4)
(式1におけるF1adh、式2におけるF2adh、式3におけるF3adh及び式4におけるa×F3adhは各摩擦力における凝着成分、式1におけるF1his、式2におけるF2his、式3におけるF3his及び式4におけるb×F3hisは各摩擦力におけるヒステリシス成分)
とみなし、式3と式4とからF3adhとF3hisとを求める工程と、
F3adh=F2adhとみなし、式2に基づきF2−F3adhを計算してF2hisを求める工程と、
F2his=F1hisとみなし、式1に基づきF1−F2hisを計算してF1adhを求める工程と、
を含むことを特徴とする摩擦評価方法。
In a friction evaluation method for obtaining an adhesion component and a hysteresis component in the frictional force between a rubber or resin member and a friction surface.
A process of creating a first simulated road surface made of resin that reproduces the unevenness of the actual road surface as the friction surface, and
A step of creating a second simulated road surface by removing microscopic irregularities from the first simulated road surface, and
A step of performing a first test for examining the temperature dependence of the adhesive force between the member and the resin surface, and
Based on the result of the first test, another temperature of 1 or 2 or more with respect to the coefficient 1 at the reference temperature T base as the temperature dependence coefficient of the adhesion component of the frictional force between the member and the resin surface. a step of obtaining the respective coefficients a i in T i,
At least one of oil and powder of a substance having a hexagonal crystal structure is applied to the second simulated road surface to form a lubricating surface, and the member is slid on the lubricating surface under a plurality of temperature conditions to provide a frictional force. And the process of performing the second test to measure
Based on the second test result, as the temperature dependence coefficient of the hysteresis component of friction force between the member and the bearing surface, each in a different one or more of the temperature T i for the coefficients 1 at the reference temperature T base a step of determining the coefficients b i of
The frictional force F1 between the member and the actual road surface at the reference temperature T base,
The frictional force F2 between the member and the first simulated road surface at the reference temperature T base,
The frictional force F3 base between the member and the second simulated road surface at the reference temperature T base ,
And measuring the respective frictional force F3 i in said one or more temperature T i between the second simulated road surface and the member,
F1 = F1 adh + F1 his ... (Equation 1)
F2 = F2 adh + F2 his ... (Equation 2)
F3 base = F3 adh + F3 his ... (Equation 3)
F3 i = a i × F3 adh + b i × F3 his ··· ( Equation 4)
(F1 adh in formula 1, F2 adh in formula 2, F3 adh in formula 3 and ai × F3 adh in formula 4 are adhesion components in each frictional force, F1 his in formula 1, F2 his in formula 2, formula 3 b i × F3 his hysteresis component in the friction force in the F3 his-and formula 4 in)
The process of obtaining F3 adh and F3 his from Eqs. 3 and 4 and the process of obtaining F3 adh and F3 his.
The process of calculating F2-F3 adh based on Equation 2 to obtain F2 his , assuming that F3 adh = F2 adh.
The process of assuming that F2 his = F1 his and calculating F1-F2 his based on Equation 1 to obtain F1 adh, and
A friction evaluation method comprising.
ゴム製又は樹脂製の部材と摩擦面との間の摩擦力における凝着成分とヒステリシス成分とを求める摩擦評価方法において、
前記摩擦面としての実路面の凹凸を再現した樹脂製の第1模擬路面を作成する工程と、
前記部材と前記の樹脂製の面との間の粘着力の温度依存性を調べる第1試験を行う工程と、
前記第1試験の結果に基づき、前記部材と前記の樹脂製の面との間の摩擦力の凝着成分の温度依存係数として、基準温度Tbaseにおける係数1に対する別の1又は2以上の温度Tにおけるそれぞれの係数aを求める工程と、
前記第1模擬路面にオイルと六方晶型の結晶構造を持つ物質の粉末との少なくとも一方を塗布して潤滑面とし、複数の温度条件下で前記部材を前記潤滑面上で滑らせて摩擦力を測定する第2試験を行う工程と、
前記第2試験の結果に基づき、前記部材と前記潤滑面との間の摩擦力のヒステリシス成分の温度依存係数として、基準温度Tbaseにおける係数1に対する別の1又は2以上の温度Tにおけるそれぞれの係数bを求める工程と、
前記部材と前記実路面との間の前記基準温度Tbaseでの摩擦力F1と、
前記部材と前記第1模擬路面との間の前記基準温度Tbaseでの摩擦力F2と、
前記部材と前記第1模擬路面との間の前記の1又は2以上の温度Tでのそれぞれの摩擦力F2とを測定する工程と、
F1=F1adh+F1his・・・(式5)
F2base=F2adh+F2his・・・(式6)
F2=a×F2adh+b×F2his・・・(式7)
(式5におけるF1adh、式6におけるF2adh、式7におけるa×F2adhは各摩擦力における凝着成分、式5におけるF1his、式6におけるF2his、式7におけるb×F2hisは各摩擦力におけるヒステリシス成分)
とみなし、式6と式7とからF2adhとF2hisとを求める工程と、
F2his=F1hisとみなし、式5に基づきF1−F2hisを計算してF1adhを求める工程と、
を含むことを特徴とする摩擦評価方法。
In a friction evaluation method for obtaining an adhesion component and a hysteresis component in the frictional force between a rubber or resin member and a friction surface.
A process of creating a first simulated road surface made of resin that reproduces the unevenness of the actual road surface as the friction surface, and
A step of performing a first test for examining the temperature dependence of the adhesive force between the member and the resin surface, and
Based on the result of the first test, another temperature of 1 or 2 or more with respect to the coefficient 1 at the reference temperature T base as the temperature dependence coefficient of the adhesion component of the frictional force between the member and the resin surface. a step of obtaining the respective coefficients a i in T i,
At least one of oil and powder of a substance having a hexagonal crystal structure is applied to the first simulated road surface to form a lubricating surface, and the member is slid on the lubricating surface under a plurality of temperature conditions to provide a frictional force. And the process of performing the second test to measure
Based on the second test result, as the temperature dependence coefficient of the hysteresis component of friction force between the member and the bearing surface, each in a different one or more of the temperature T i for the coefficients 1 at the reference temperature T base a step of determining the coefficients b i of
The frictional force F1 between the member and the actual road surface at the reference temperature T base,
The frictional force F2 between the member and the first simulated road surface at the reference temperature T base,
And measuring the respective frictional force F2 i in said one or more temperature T i between the first simulated road surface and the member,
F1 = F1 adh + F1 his ... (Equation 5)
F2 base = F2 adh + F2 his ... (Equation 6)
F2 i = a i × F2 adh + b i × F2 his ··· ( Equation 7)
(F1 adh in equation 5, F2 adh in Equation 6, the adhesion component in a i × F2 adh Each frictional force in Equation 7, F1 his-in equation 5, b i × F2 his in F2 his-, Formula 7 in the formula 6 Is the hysteresis component at each frictional force)
The process of obtaining F2 adh and F2 his from Eqs. 6 and 7 and the process of obtaining F2 adh and F2 his.
The process of assuming that F2 his = F1 his and calculating F1-F2 his based on Equation 5 to obtain F1 adh, and
A friction evaluation method comprising.
前記潤滑面を、粘度が50〜500cstの植物油が塗布された潤滑面とする、請求項1〜3のいずれか1項に記載の摩擦評価方法。 The friction evaluation method according to any one of claims 1 to 3, wherein the lubricated surface is a lubricated surface coated with a vegetable oil having a viscosity of 50 to 500 cst. 前記潤滑面を、グラファイト粉末又は二硫化モリブデン粉末が塗布された潤滑面とする、請求項1〜3のいずれか1項に記載の摩擦評価方法。 The friction evaluation method according to any one of claims 1 to 3, wherein the lubricating surface is a lubricating surface coated with graphite powder or molybdenum disulfide powder.
JP2019219754A 2019-12-04 2019-12-04 Friction evaluation method Active JP7359669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019219754A JP7359669B2 (en) 2019-12-04 2019-12-04 Friction evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019219754A JP7359669B2 (en) 2019-12-04 2019-12-04 Friction evaluation method

Publications (2)

Publication Number Publication Date
JP2021089210A true JP2021089210A (en) 2021-06-10
JP7359669B2 JP7359669B2 (en) 2023-10-11

Family

ID=76220135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019219754A Active JP7359669B2 (en) 2019-12-04 2019-12-04 Friction evaluation method

Country Status (1)

Country Link
JP (1) JP7359669B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292005A (en) * 2004-04-01 2005-10-20 Toyota Central Res & Dev Lab Inc Damage evaluation testing method and damage evaluation testing apparatus in ironing
JP2006103618A (en) * 2004-10-08 2006-04-20 Yokohama Rubber Co Ltd:The Method of predicting temperature dependency of friction coefficient of tire
JP2011180096A (en) * 2010-03-03 2011-09-15 Bridgestone Corp Rubber friction testing machine
JP2017096759A (en) * 2015-11-24 2017-06-01 住友ゴム工業株式会社 Method for evaluating the on-ice brake performance of tire
JP2017156276A (en) * 2016-03-03 2017-09-07 住友ゴム工業株式会社 Method for evaluating on-ice grip performance of rubber member
WO2018185625A1 (en) * 2017-04-07 2018-10-11 Istituto Nazionale Di Ricerca Metrologica (I.N.Ri.M.) A probe for the measurement of tribological properties
JP2020085843A (en) * 2018-11-30 2020-06-04 Toyo Tire株式会社 Method for evaluating friction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292005A (en) * 2004-04-01 2005-10-20 Toyota Central Res & Dev Lab Inc Damage evaluation testing method and damage evaluation testing apparatus in ironing
JP2006103618A (en) * 2004-10-08 2006-04-20 Yokohama Rubber Co Ltd:The Method of predicting temperature dependency of friction coefficient of tire
JP2011180096A (en) * 2010-03-03 2011-09-15 Bridgestone Corp Rubber friction testing machine
JP2017096759A (en) * 2015-11-24 2017-06-01 住友ゴム工業株式会社 Method for evaluating the on-ice brake performance of tire
JP2017156276A (en) * 2016-03-03 2017-09-07 住友ゴム工業株式会社 Method for evaluating on-ice grip performance of rubber member
WO2018185625A1 (en) * 2017-04-07 2018-10-11 Istituto Nazionale Di Ricerca Metrologica (I.N.Ri.M.) A probe for the measurement of tribological properties
JP2020085843A (en) * 2018-11-30 2020-06-04 Toyo Tire株式会社 Method for evaluating friction

Also Published As

Publication number Publication date
JP7359669B2 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
Maegawa et al. Effect of normal load on friction coefficient for sliding contact between rough rubber surface and rigid smooth plane
Kartal et al. Determination of the frictional properties of titanium and nickel alloys using the digital image correlation method
Chen et al. Fractal and spectral analysis of aggregate surface profile in polishing process
Sergici et al. Adhesion in the contact of a spherical indenter with a layered elastic half-space
Xiao et al. A study on the effect of surface topography on rough friction in roller contact
Woldman et al. The influence of abrasive body dimensions on single asperity wear
Mokhtari et al. On the friction of carbon black-and silica-reinforced BR and S-SBR elastomers
Singh et al. Evolution of coefficient of friction between tire and pavement under wet conditions using surface free energy technique
Kanafi et al. Rubber friction on 3D-printed randomly rough surfaces at low and high sliding speeds
Emami et al. Asperity-based modification on theory of contact mechanics and rubber friction for self-affine fractal surfaces
Carreon et al. Material specific nanoscratch ploughing friction coefficient
Sato et al. High friction mechanism of ZDDP tribofilm based on in situ AFM observation of nano-friction and adhesion properties
Eifler et al. Comparison of material measures for the determination of transfer characteristics of surface topography measuring instruments
Edjeou et al. Multiscale analyses of pavement texture during polishing
Genovese et al. Analysis of multiscale theories for viscoelastic rubber friction
JP7359669B2 (en) Friction evaluation method
Moyle et al. Increased sliding friction of a lubricated soft solid using an embedded structure
Persson Functional properties of rough surfaces from an analytical theory of mechanical contact
Huang et al. Effects of pavement texture on pavement friction: a review
Veltkamp et al. Lubricated friction and the Hersey number
Tanaka et al. Prediction of the friction coefficient of filled rubber sliding on dry and wet surfaces with self-affine large roughness
Chaomleffel et al. Experimental results and analytical film thickness predictions in EHD rolling point contacts
Ding et al. Going beyond traditional roughness metrics for floor tiles: Measuring topography down to the nanoscale
Grzywacz et al. Quantitative measurement of nanofriction between PMMA thin films and various AFM probes
JP7174605B2 (en) Friction evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230703

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20230830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230928

R150 Certificate of patent or registration of utility model

Ref document number: 7359669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150