JP2020085843A - Method for evaluating friction - Google Patents

Method for evaluating friction Download PDF

Info

Publication number
JP2020085843A
JP2020085843A JP2018225291A JP2018225291A JP2020085843A JP 2020085843 A JP2020085843 A JP 2020085843A JP 2018225291 A JP2018225291 A JP 2018225291A JP 2018225291 A JP2018225291 A JP 2018225291A JP 2020085843 A JP2020085843 A JP 2020085843A
Authority
JP
Japan
Prior art keywords
road surface
adh
simulated road
temperature
frictional force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018225291A
Other languages
Japanese (ja)
Other versions
JP7174605B2 (en
Inventor
直生 諫山
Naoki Isayama
直生 諫山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd, Toyo Tire Corp filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2018225291A priority Critical patent/JP7174605B2/en
Publication of JP2020085843A publication Critical patent/JP2020085843A/en
Application granted granted Critical
Publication of JP7174605B2 publication Critical patent/JP7174605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Tires In General (AREA)

Abstract

To clarify a magnitude of an adhesion component and a hysteresis component of friction force.SOLUTION: A method for evaluating friction includes the steps of: creating a first simulated road surface made of resin that reproduces irregularities of an actual road surface; preparing a second simulated road surface by removing micro irregularities from the first simulated road surface; examining temperature dependency of adhesive force between a rubber member and a resin surface; determining a temperature dependency coefficient of an adhesion component of frictional force between the rubber member and the resin surface based on results of an adhesive friction test; measuring friction force of the rubber member relative to each of a real road surface, the first simulated road surface, and the second simulated road surface at reference temperature, and measuring friction force of the rubber member relative to the second simulated road surface at temperature other than the reference temperature; and obtaining an adhesion component and a hysteresis component of the friction force using measured friction force and the temperature dependency coefficient.SELECTED DRAWING: Figure 1

Description

本発明は摩擦評価方法に関する。 The present invention relates to a friction evaluation method.

ゴム部材(例えば空気入りタイヤのトレッド部)と摩擦面(例えば路面)との間で生じる摩擦力が凝着成分とヒステリシス成分とからなることが知られている。そして、近年、摩擦力における凝着成分の大きさとヒステリシス成分の大きさとを明らかにすることが要求されている。凝着成分の大きさとヒステリシス成分の大きさとを明らかにすることができれば、例えばゴム部材のゴムの種類が変わったときに凝着成分とヒステリシス成分のどちらがどれだけ変わったかを知ることができ、タイヤの設計等に生かすことができる。 It is known that the frictional force generated between a rubber member (for example, a tread portion of a pneumatic tire) and a friction surface (for example, a road surface) is composed of an adhesion component and a hysteresis component. In recent years, it has been required to clarify the magnitude of the adhesion component and the magnitude of the hysteresis component in the frictional force. If the size of the cohesive component and the size of the hysteresis component can be clarified, it is possible to know how much the cohesive component or the hysteresis component has changed when the type of rubber of the rubber member has changed. Can be used for designing.

この要求に応えるため、特許文献1に記載のように、界面活性剤含有水(界面活性剤が含有された水)が散水された摩擦面でゴム材料を摩擦させたときの摩擦係数を計測する第1ステップと、界面活性剤非含有水(界面活性剤が含有されていない水)が散水された摩擦面でゴム材料を摩擦させたときの摩擦係数を計測する第2ステップと、第1ステップで計測された摩擦係数と第2ステップで計測された摩擦係数との差を算出する第3ステップとからなる摩擦評価方法が提案されている。 In order to meet this demand, as described in Patent Document 1, a friction coefficient when a rubber material is rubbed on a friction surface on which water containing a surfactant (water containing a surfactant) is sprayed is measured. A first step, a second step of measuring a friction coefficient when a rubber material is rubbed on a friction surface on which water containing no surfactant (water containing no surfactant) is sprayed, and a first step A friction evaluation method has been proposed, which includes a third step of calculating a difference between the friction coefficient measured in (1) and the friction coefficient measured in the second step.

この方法によれば、第1ステップでヒステリシス摩擦に起因する摩擦係数が計測され、第2ステップで粘着摩擦とヒステリシス摩擦に起因する摩擦係数が計測されるので、第3ステップで粘着摩擦成分が算出されるとされている。 According to this method, the friction coefficient caused by the hysteresis friction is measured in the first step, and the friction coefficients caused by the adhesive friction and the hysteresis friction are measured in the second step. Therefore, the adhesive friction component is calculated in the third step. It is supposed to be done.

また、非特許文献1にも特許文献1と同様の考え方に基づく方法が記載されている。具体的には、摩擦面である金網をシリコーンオイルで濡らすことにより摩擦力の凝着成分を除去しようとしている。 Further, Non-Patent Document 1 also describes a method based on the same idea as Patent Document 1. Specifically, we try to remove the cohesive component of the frictional force by wetting the metal mesh, which is the friction surface, with silicone oil.

特開2016−200563号公報JP, 2016-200563, A

網野直也ら、「シリカ配合およびカーボン配合SBRの摩擦機構に関する研究」、日本ゴム協会誌、第77巻第5号(2004)173−179頁Naoya Amino et al., "Study on friction mechanism of silica-blended and carbon-blended SBR", Journal of Japan Rubber Association, Vol. 77, No. 5 (2004), pp. 173-179.

しかし、実際には、摩擦面を界面活性剤含有水等で濡らしても、摩擦力の凝着成分を完全に除去することはできない。そのため上記の従来技術では凝着成分の大きさとヒステリシス成分の大きさとを明らかにすることはできなかった。 However, actually, even if the friction surface is wetted with water containing a surfactant or the like, the cohesive component of the frictional force cannot be completely removed. Therefore, it was not possible to clarify the size of the adhesion component and the size of the hysteresis component by the above-mentioned conventional technique.

そこで実施形態では、摩擦力の凝着成分の大きさとヒステリシス成分の大きさとを明らかにすることを課題とする。 Therefore, in the embodiment, it is an object to clarify the size of the adhesion component and the size of the hysteresis component of the frictional force.

実施形態の摩擦評価方法は、ゴム部材と摩擦面との間の摩擦力における凝着成分とヒステリシス成分とを求める摩擦評価方法において、前記摩擦面としての実路面の凹凸を再現した樹脂製の第1模擬路面を作成する工程と、前記第1模擬路面からミクロな凹凸を除去した第2模擬路面を作成する工程と、前記ゴム部材と前記の樹脂製の面との間の粘着力の温度依存性を調べる試験を行う工程と、前記試験の結果に基づき、前記ゴム部材と前記の樹脂製の面との間の摩擦力の凝着成分の温度依存係数として、基準温度Tbaseにおける係数1に対する別の1又は2以上の温度Tにおけるそれぞれの係数aを求める工程と、前記ゴム部材と前記実路面との間の前記基準温度Tbaseでの摩擦力F1と、前記ゴム部材と前記第1模擬路面との間の前記基準温度Tbaseでの摩擦力F2と、前記ゴム部材と前記第2模擬路面との間の前記基準温度Tbaseでの摩擦力F3baseと、前記ゴム部材と前記第2模擬路面との間の前記の1又は2以上の温度Tでのそれぞれの摩擦力F3とを測定する工程と、
F1=F1adh+F1his・・・(式1)
F2=F2adh+F2his・・・(式2)
F3base=F3adh+F3his・・・(式3)
F3=a×F3adh+F3his・・・(式4)
(式1におけるF1adh、式2におけるF2adh、式3におけるF3adh及び式4におけるa×F3adhは各摩擦力における凝着成分、式1におけるF1his、式2におけるF2his、式3におけるF3his及び式4におけるF3hisは各摩擦力におけるヒステリシス成分)
とみなし、式3と式4とからF3adhとF3hisとを求める工程と、F3adh=F2adhとみなし、式2に基づきF2−F3adhを計算してF2hisを求める工程と、F2his=F1hisとみなし、式1に基づきF1−F2hisを計算してF1adhを求める工程と、を含むことを特徴とする。
The friction evaluation method of the embodiment, in the friction evaluation method for obtaining the adhesion component and the hysteresis component in the frictional force between the rubber member and the friction surface, the resin-made first surface unevenness as the friction surface is reproduced. 1 step of creating a simulated road surface, step of creating a second simulated road surface in which micro irregularities are removed from the first simulated road surface, and temperature dependence of the adhesive force between the rubber member and the resin surface Based on the step of conducting a test for examining the property and the result of the test, as a temperature dependent coefficient of the adhesion component of the frictional force between the rubber member and the resin surface, with respect to the coefficient 1 at the reference temperature T base . Another step of obtaining each coefficient a i at a temperature T i of 1 or 2 or more, a frictional force F1 between the rubber member and the actual road surface at the reference temperature T base , the rubber member and the first Friction force F2 at the reference temperature T base between the first simulated road surface, friction force F3 base at the reference temperature T base between the rubber member and the second simulated road surface, the rubber member and the Measuring the respective frictional forces F3 i at one or more temperatures T i with the second simulated road surface;
F1=F1 adh +F1 his ... (Equation 1)
F2=F2 adh +F2 his ... (Equation 2)
F3 base =F3 adh +F3 his ... (Equation 3)
F3 i =a i ×F3 adh +F3 his ... (Equation 4)
(F1 adh in Formula 1, F2 adh in Formula 2, F3 adh in Formula 3, and a i ×F3 adh in Formula 4 are adhesion components at each frictional force, F1 his in Formula 1, F2 his in Formula 2, and Formula 3 hysteresis component in F3 his-each frictional force in F3 his-and formula 4 in)
And regarded, a step of determining the F3 adh and F3 his-from equations 3 and 4 which, regarded as F3 adh = F2 adh, a step of determining the F2 his-calculates the F2-F3 adh based on equation 2, F2 his- =F1 his, and calculating F1-F2 his based on Equation 1 to obtain F1 adh .

上記の手段によれば、摩擦力の凝着成分の大きさとヒステリシス成分の大きさとを明らかにすることができる。 According to the above means, it is possible to clarify the size of the adhesion component and the size of the hysteresis component of the frictional force.

実施形態の摩擦評価方法のフローチャート。The flowchart of the friction evaluation method of embodiment. 適正な第2模擬路面が作成されたことを確認するフローチャート。The flowchart which confirms that the suitable 2nd simulated road surface was created. 粘着力試験の概略を示す図。The figure which shows the outline of an adhesive force test. 粘着力試験の測定結果の例を示す図。The figure which shows the example of the measurement result of an adhesive force test. 路面の違いによる凝着成分とヒステリシス成分について示す図。The figure which shows the adhesion component and the hysteresis component by the difference of the road surface.

実施形態について図面に基づき説明する。なお、以下で説明する実施形態は一例に過ぎず、本発明の趣旨を逸脱しない範囲で適宜変更されたものについては、本発明の範囲に含まれるものとする。 Embodiments will be described with reference to the drawings. The embodiments described below are merely examples, and those appropriately modified without departing from the gist of the present invention are included in the scope of the present invention.

<全体工程>
図1に示すように、実施形態の摩擦評価方法は、実路面の凹凸を再現した樹脂製の第1模擬路面を作成する第1模擬路面作成工程(S1)と、マクロな凹凸及びミクロな凹凸を有する第1模擬路面からミクロな凹凸を除去して第2模擬路面を作成する第2模擬路面作成工程(S2)と、ゴム部材と樹脂製の面との間の粘着力の温度依存性を調べる試験を行う粘着力試験工程(S3)と、粘着力試験の結果に基づきゴム部材と樹脂製の面との間の摩擦力の凝着成分の温度依存係数を決定する温度依存係数決定工程(S4)と、実路面、第1模擬路面及び第2模擬路面のそれぞれに対するゴム部材の摩擦力を基準温度において測定するとともに、第2模擬路面に対するゴム部材の摩擦力を基準温度以外の温度において測定する摩擦力測定工程(S5)と、測定されたそれぞれの摩擦力及び前記温度依存係数を使用して摩擦力の凝着成分及びヒステリシス成分を求める計算工程(S6)とを含む。
<Overall process>
As shown in FIG. 1, in the friction evaluation method of the embodiment, a first simulated road surface creating step (S1) of creating a resin first simulated road surface that reproduces the unevenness of an actual road surface, and macro unevenness and micro unevenness. The second simulated road surface creating step (S2) of removing the micro unevenness from the first simulated road surface having the step S2 and the temperature dependence of the adhesive force between the rubber member and the resin surface. Adhesion test step (S3) of conducting a test to be examined, and temperature dependence coefficient determination step of determining the temperature dependence coefficient of the cohesive component of the frictional force between the rubber member and the resin surface based on the result of the adhesion test ( S4) and the frictional force of the rubber member on each of the actual road surface, the first simulated road surface and the second simulated road surface is measured at the reference temperature, and the frictional force of the rubber member on the second simulated road surface is measured at a temperature other than the reference temperature. The frictional force measurement step (S5) and the calculation step (S6) of obtaining the adhesion component and the hysteresis component of the frictional force by using the measured frictional force and the temperature-dependent coefficient.

<第1模擬路面作成工程>
第1模擬路面作成工程では、アスファルト等からなる実路面の凹凸を再現した樹脂製の第1模擬路面が作成される。作成方法の具体例としては、実路面の凹凸がシリコンゴムで型取りされ、そのシリコンゴムの型に樹脂が流し込まれ、その樹脂が硬化して第1模擬路面となる。使用される樹脂としては例えば二液混合型の樹脂が挙げられ、より具体的な例としては二液混合型のウレタン樹脂が挙げられる。
<First simulated road surface creation process>
In the first simulated road surface creating step, a resin-made first simulated road surface that reproduces the unevenness of the actual road surface made of asphalt or the like is created. As a specific example of the forming method, the unevenness of the actual road surface is molded with silicon rubber, a resin is poured into the mold of the silicon rubber, and the resin is cured to form a first simulated road surface. The resin used is, for example, a two-component mixed type resin, and a more specific example is a two-component mixed type urethane resin.

ここで、第1模擬路面ひいては後述する第2模擬路面が樹脂で形成される理由は、ゴムと樹脂との間の粘着力が温度に依存して大きく変化するからであり、そのことにより、ゴム部材と樹脂性の第2模擬路面との間の摩擦力の凝着成分が温度に依存して大きく変化するからである。後述するようにこの温度依存性が本実施形態において利用される。すなわち、樹脂性の同じ面において温度を変化させながら摩擦力を測定すると、温度によって摩擦力が変化するが、この摩擦力の変化は凝着成分の温度変化に起因するとみなせる。そのことから、摩擦力の凝着成分とヒステリシス成分とを求めることができる。なお、アスファルト等からなる実路面とゴムとの間の粘着力の温度依存性は小さい。 Here, the reason why the first simulated road surface, and thus the second simulated road surface, which will be described later, is made of resin is that the adhesive force between the rubber and the resin greatly changes depending on the temperature. This is because the adhesion component of the frictional force between the member and the second simulated road surface made of resin changes greatly depending on the temperature. As will be described later, this temperature dependence is used in this embodiment. That is, when the frictional force is measured while changing the temperature on the same resinous surface, the frictional force changes depending on the temperature, and it can be considered that the change in the frictional force is due to the temperature change of the adhesion component. From this, the adhesion component and the hysteresis component of the frictional force can be obtained. The temperature dependence of the adhesive force between the actual road surface made of asphalt or the like and the rubber is small.

第1模擬路面は、その表面粗さを接針式の表面粗さ計で測定したときに、実路面の表面粗さを1μmオーダーで再現したものであることが好ましい。また、第1模擬路面は、ゴム部材が押し付けられたときに目視上明らかな変形をしない硬度を有することが必要である。具体的には、第1模擬路面のデュロメータタイプD硬さが80以上84以下であることが好ましい。また、第1模擬路面を形成する樹脂の弾性率は、ゴム部材を形成するゴムの弾性率の10倍以上であることが好ましい。また、第1模擬路面を形成する樹脂についてJIS K 7113の方法で測定した引張強さは例えば55MPa以上65MPa以下である。 It is preferable that the first simulated road surface reproduce the surface roughness of the actual road surface in the order of 1 μm when the surface roughness is measured by a needle contact type surface roughness meter. In addition, the first simulated road surface needs to have a hardness that does not cause visible deformation when the rubber member is pressed. Specifically, the durometer type D hardness of the first simulated road surface is preferably 80 or more and 84 or less. The elastic modulus of the resin forming the first simulated road surface is preferably 10 times or more the elastic modulus of the rubber forming the rubber member. The tensile strength of the resin forming the first simulated road surface measured by the method of JIS K 7113 is, for example, 55 MPa or more and 65 MPa or less.

<第2模擬路面作成工程>
第2模擬路面作成工程では、第1模擬路面の表面が研磨されて、マクロな凹凸及びミクロな凹凸を有していた第1模擬路面からミクロな凹凸が除去され、第2模擬路面とされる。研磨には目の細かい研磨布が使用される。
<Second simulated road surface creation process>
In the second simulated road surface creating step, the surface of the first simulated road surface is polished to remove the micro unevenness from the first simulated road surface having the macro unevenness and the micro unevenness, and the second simulated road surface is obtained. .. A fine polishing cloth is used for polishing.

ここで、実路面は、小石等の骨材がアスファルト等の素地に埋め込まれて形成されている。そして、マクロな凹凸とは、骨材の大まかな形状等に基づく大きな凹凸のことである。また、ミクロな凹凸とは、素地の表面の微細な凹凸や骨材の表面の微細な凹凸等に基づく小さな凹凸のことである。摩擦力のヒステリシス成分にはミクロな凹凸が効くことがわかっており、第1模擬路面からミクロな凹凸が除去されることにより、第2模擬路面では摩擦力のヒステリシス成分が小さくなる。 Here, the actual road surface is formed by embedding aggregates such as pebbles in a base material such as asphalt. The macroscopic unevenness is a large unevenness based on the rough shape of the aggregate. Further, the microscopic unevenness is a small unevenness based on the fine unevenness on the surface of the base material or the fine unevenness on the surface of the aggregate. It is known that the microscopic unevenness works on the hysteresis component of the frictional force, and by removing the microscopic unevenness from the first simulated road surface, the hysteresis component of the frictional force decreases on the second simulated road surface.

<第2模擬路面が適正であることの確認方法>
適正な第2模擬路面が作成されたことは図2に示す方法で確認される。まず、上記の通り第1模擬路面からミクロな凹凸が除去されて第2模擬路面が作成される(S2−1)。
<How to confirm that the second simulated road surface is proper>
It is confirmed by the method shown in FIG. 2 that the proper second simulated road surface is created. First, as described above, the micro unevenness is removed from the first simulated road surface to create the second simulated road surface (S2-1).

次に、第1模擬路面及び第2模擬路面の表面粗さがそれぞれ表面粗さ計で測定される(S2−2)。測定された表面粗さデータは、周波数分析装置に取り込まれて、周波数分析される(S2−3)。 Next, the surface roughness of each of the first simulated road surface and the second simulated road surface is measured by a surface roughness meter (S2-2). The measured surface roughness data is loaded into the frequency analysis device and subjected to frequency analysis (S2-3).

ここで、路面の表面粗さデータを周波数分析して得られる波のうち0.1mm以上1.0mm以下の範囲内にある所定波長の波が基準とされ、基準の波の波長より大きな波長の波がマクロな凹凸によるもので、基準の波の波長より小さな波長の波がミクロな凹凸によるものであると考えることとする。この考えに基づき、路面の表面粗さデータを周波数分析して得られる波のうち0.1mm以上1.0mm以下の範囲内にある所定波長の波の周波数が、カットオフ周波数として設定される。カットオフ周波数より低い周波数の成分をほとんど減衰させず、カットオフ周波数より高い周波数の成分を減衰させるフィルタが、ローパスフィルタとして設定される(S2−4)。また、カットオフ周波数より高い周波数の成分をほとんど減衰させず、カットオフ周波数より低い周波数の成分を減衰させるフィルタが、ハイパスフィルタとして設定される(S2−4)。 Here, of the waves obtained by frequency-analyzing the surface roughness data of the road surface, a wave having a predetermined wavelength within a range of 0.1 mm or more and 1.0 mm or less is used as a reference, and a wavelength of a wavelength larger than the wavelength of the reference wave is used. It is considered that the waves are due to macro unevenness, and the waves having a wavelength smaller than the wavelength of the reference wave are due to micro unevenness. Based on this idea, the frequency of the wave of a predetermined wavelength within the range of 0.1 mm or more and 1.0 mm or less among the waves obtained by frequency-analyzing the surface roughness data of the road surface is set as the cutoff frequency. A filter that attenuates components having a frequency lower than the cutoff frequency and attenuates components having a frequency higher than the cutoff frequency is set as a low-pass filter (S2-4). In addition, a filter that attenuates components having a frequency lower than the cutoff frequency while hardly attenuating components having a frequency higher than the cutoff frequency is set as the high-pass filter (S2-4).

次に、第1模擬路面の表面粗さの周波数分析結果に対してローパスフィルタがかけられ、波長の大きな波が取得される。このようにして取得された波が合成されて出来た波形は、第1模擬路面のマクロな凹凸を再現しているとみなすことができる。そこで、前記の合成されて出来た波形から表面粗さ(例えば算術平均粗さ)が計算される(S2−5)。その計算結果は第1模擬路面のマクロな凹凸に基づく表面粗さ(マクロな表面粗さ)であるとみなすことができる。同様に、第2模擬路面の表面粗さの周波数分析結果に対してローパスフィルタをかけて得られた波から波形が合成され、合成されて出来た波形から表面粗さ(例えば算術平均粗さ)が計算される(S2−5)。 Next, a low-pass filter is applied to the frequency analysis result of the surface roughness of the first simulated road surface, and a wave having a large wavelength is acquired. The waveform obtained by synthesizing the waves thus obtained can be regarded as reproducing the macro unevenness of the first simulated road surface. Therefore, the surface roughness (for example, the arithmetic mean roughness) is calculated from the above-mentioned synthesized waveform (S2-5). The calculation result can be regarded as the surface roughness (macro surface roughness) based on the macro unevenness of the first simulated road surface. Similarly, a waveform is synthesized from a wave obtained by applying a low pass filter to the frequency analysis result of the surface roughness of the second simulated road surface, and the surface roughness (for example, arithmetic mean roughness) is obtained from the synthesized waveform. Is calculated (S2-5).

次に、第1模擬路面の表面粗さの周波数分析結果に対してローパスフィルタをかけて得られた波からなる波形の表面粗さ(すなわちマクロな表面粗さ)と、第2模擬路面の表面粗さの周波数分析結果に対してローパスフィルタをかけて得られた波からなる波形の表面粗さ(すなわちマクロな表面粗さ)とが比較される。そして、両者の差が5%以下の場合、すなわち両者の差がいずれか一方の値の5%以下の場合(S2−6のYES)、第1模擬路面と第2模擬路面とでマクロな凹凸がほとんど変化していないと判断され、第2模擬路面のマクロな凹凸が適正であると判断される。 Next, the surface roughness (that is, macro surface roughness) of a waveform formed by applying a low-pass filter to the frequency analysis result of the surface roughness of the first simulated road surface and the surface of the second simulated road surface. The frequency analysis result of the roughness is compared with the surface roughness (that is, macroscopic surface roughness) of the waveform formed of the waves obtained by low-pass filtering. When the difference between the two is 5% or less, that is, when the difference between the two is 5% or less of either value (YES in S2-6), the macro unevenness on the first simulated road surface and the second simulated road surface. Is determined to be almost unchanged, and the macro unevenness of the second simulated road surface is determined to be appropriate.

次に、第2模擬路面の表面粗さの周波数分析結果に対してハイパスフィルタがかけられ、波長の小さな波が取得される。このようにして取得された波が合成されて出来た波形は、第2模擬路面のミクロな凹凸を再現しているとみなすことができる。そこで、前記の合成されて出来た波形から表面粗さ(例えば算術平均粗さ)が計算される(S2−7)。その計算結果は第2模擬路面のミクロな凹凸に基づく表面粗さ(ミクロな表面粗さ)であるとみなすことができる。この表面粗さ(例えば算術平均粗さ)が10μm以下の場合(S2−8のYES)、第2模擬路面がミクロな凹凸が除去されたものであると判断され、第2模擬路面のミクロな凹凸が適正であると判断される。 Next, a high-pass filter is applied to the frequency analysis result of the surface roughness of the second simulated road surface, and a wave with a small wavelength is acquired. The waveform obtained by synthesizing the waves acquired in this way can be regarded as reproducing the microscopic unevenness of the second simulated road surface. Therefore, the surface roughness (for example, the arithmetic mean roughness) is calculated from the above-mentioned synthesized waveform (S2-7). The calculation result can be regarded as the surface roughness (micro surface roughness) based on the micro unevenness of the second simulated road surface. When this surface roughness (for example, arithmetic mean roughness) is 10 μm or less (YES in S2-8), it is determined that the second simulated road surface has microscopic unevenness, and the second simulated road surface is microscopic. The unevenness is judged to be appropriate.

第2模擬路面のマクロな凹凸又はミクロな凹凸が適正でないと判断された場合(S2−6のNO、S2−8のNO)は、各凹凸が適正になるように第2模擬路面が作成し直される(S2−1)。 When it is determined that the macro unevenness or the micro unevenness of the second simulated road surface is not appropriate (NO in S2-6, NO in S2-8), the second simulated road surface is created so that each unevenness is appropriate. It is fixed (S2-1).

S2−3からS2−8までの工程は、周波数分析装置又はそれに接続されたコンピュータにより実行される。なお、S2−5からS2−6までの工程と、S2−7からS2−8までの工程とは、順序が入れ替わっても良い。 The steps from S2-3 to S2-8 are executed by the frequency analyzer or a computer connected thereto. The order of the steps S2-5 to S2-6 and the steps S2-7 to S2-8 may be interchanged.

<粘着力試験工程>
一方で、ゴム部材と樹脂製の粘着力試験面との間の粘着力の温度依存性を調べる試験が行われる。図3に示すように、この試験では、ゴム部材1が樹脂製の粘着力試験面2に対し所定の荷重で押し付けられた後に引き離され、引き離すのに要した力(N)が測定される。この測定には既知の装置が使用できる。
<Adhesion test process>
On the other hand, a test is conducted to examine the temperature dependence of the adhesive force between the rubber member and the resin-made adhesive force test surface. As shown in FIG. 3, in this test, the rubber member 1 is pressed against the resin adhesive strength test surface 2 with a predetermined load and then separated, and the force (N) required for the separation is measured. Known devices can be used for this measurement.

この試験におけるゴム部材1として、最終的な摩擦評価対象のゴム部材が使用される。また、粘着力試験面2は、第1模擬路面及び第2模擬路面を形成する樹脂と同じ樹脂で形成される。その理由は、樹脂が同じであればゴム部材と樹脂製の面との間の粘着力(及び摩擦力の凝着成分)の温度依存性が同じなので、粘着力試験結果(すなわち粘着力試験面2における粘着力の温度依存性)を、第2模擬路面における摩擦力の凝着成分の温度依存性に利用することができるからである。粘着力試験面2は、第2模擬路面そのものであることが好ましいが、第1模擬路面でも良く、また第1模擬路面及び第2模擬路面とは別に作製された樹脂製の路面であっても良い。 As the rubber member 1 in this test, a rubber member to be finally evaluated for friction is used. The adhesive strength test surface 2 is formed of the same resin as the resin forming the first simulated road surface and the second simulated road surface. The reason is that if the resin is the same, the temperature dependence of the adhesive force (and the adhesive component of the frictional force) between the rubber member and the resin surface is the same, so the adhesive strength test results (that is, the adhesive strength test surface) This is because the temperature dependence of the adhesive force in 2) can be used for the temperature dependence of the adhesion component of the frictional force on the second simulated road surface. The adhesive strength test surface 2 is preferably the second simulated road surface itself, but may be the first simulated road surface, or may be a resin-made road surface prepared separately from the first simulated road surface and the second simulated road surface. good.

粘着力の温度依存性を調べるための試験温度として、2点以上の温度が選択される必要があり、3点以上の温度が選択されることがより好ましい。その場合に選択される温度として、例えば、常温(例えば20〜25℃)と、常温時に対して摩擦力の凝着成分が約2倍になると予想される低温(例えば0〜10℃)と、常温時に対して摩擦力の凝着成分が約1/2になると予想される高温(例えば35〜40℃)とが含まれる。そして、それぞれの温度において、上記の測定が行われる。測定は、ゴム部材1と粘着力試験面2とが試験温度に達した状態で行われる。本実施形態においては、常温、低温及び高温の3点で試験が行われるものとする。 As the test temperature for investigating the temperature dependence of the adhesive strength, it is necessary to select a temperature of 2 points or more, and it is more preferable to select a temperature of 3 points or more. The temperature selected in that case is, for example, normal temperature (for example, 20 to 25° C.), and a low temperature (for example, 0 to 10° C.) at which the cohesive component of the frictional force is expected to be approximately twice that at normal temperature A high temperature (for example, 35 to 40° C.) at which the cohesive component of the frictional force is expected to be about ½ of the normal temperature is included. Then, the above measurement is performed at each temperature. The measurement is performed in a state where the rubber member 1 and the adhesive strength test surface 2 have reached the test temperature. In the present embodiment, the test is performed at three points, that is, room temperature, low temperature, and high temperature.

ゴム部材と樹脂製の面との間の粘着力は温度に依存して大きく変化するため、粘着力試験結果として、温度毎に大きく異なる測定結果が得られる。測定結果の例を図4に棒グラフとして示す。 Since the adhesive force between the rubber member and the resin surface greatly changes depending on the temperature, as an adhesive force test result, a measurement result that greatly differs depending on the temperature can be obtained. An example of the measurement result is shown as a bar graph in FIG.

<温度依存係数決定工程>
次に、粘着力試験結果に基づき、ゴム部材と樹脂製の面との間の摩擦力の凝着成分の温度依存係数が決定される。
<Temperature dependence coefficient determination process>
Next, the temperature-dependent coefficient of the cohesive component of the frictional force between the rubber member and the resin surface is determined based on the result of the adhesive strength test.

具体的には、まず、ゴム部材と粘着力試験面との間の粘着力の温度依存係数として、ある基準温度Tbaseにおける係数1に対する別の温度Tにおけるそれぞれの係数aが求められる。 Specifically, first, as a temperature-dependent coefficient of the adhesive force between the rubber member and the adhesive force test surface, each coefficient a i at another temperature T i with respect to the coefficient 1 at a certain reference temperature T base is obtained.

その求め方の一例としては、温度毎の粘着力のデータに対して最小二乗法等による線形回帰が行われ、温度変化に対する粘着力の変化を近似する(図4を例にすれば、棒グラフの複数の棒の頂点を近似する)関数が求められる(その関数の例を図4に直線で示す)。そして、求まった関数に基づき、ある基準温度Tbaseにおける粘着力を1としたときの別の温度Tにおける粘着力の割合が、その温度Tにおける係数aとして決定される。例えば、常温である基準温度Tbaseにおける粘着力が26.0N、低温である温度T(すなわちi=1)における粘着力が48.4N、高温である温度T(すなわちi=2)における粘着力が8.8Nの場合、温度Tにおける係数aは48.4/26.0=1.86、温度Tにおける係数aは8.8/26.0=0.34である。 As an example of how to obtain it, linear regression by the method of least squares or the like is performed on the data of the adhesive force for each temperature to approximate the change of the adhesive force with respect to the temperature change (in the case of FIG. 4, the bar graph A function (approximating the vertices of a plurality of bars) is obtained (an example of the function is shown by a straight line in FIG. 4). Then, based on the obtained function, the ratio of the adhesive force at another temperature T i when the adhesive force at a certain reference temperature T base is set to 1 is determined as the coefficient a i at the temperature T i . For example, the adhesive force at the reference temperature T base that is room temperature is 26.0 N, the adhesive force at the low temperature T 1 (that is, i=1) is 48.4 N, and the adhesive force at the high temperature T 2 (that is, i=2). If the adhesive strength is 8.8 N, the coefficient a 1 is 48.4 / 26.0 = 1.86 at a temperature T 1, the coefficient a 2 in temperature T 2 is a 8.8 / 26.0 = 0.34 .

ここで、基準温度Tbase及び別の温度Tとして、後述する摩擦力測定のときの温度が選択される。本実施形態では、後述する摩擦力測定が上記の常温、低温及び高温の3点で行われるものとし、基準温度Tbaseとして常温が選択され、別の温度Tとして低温T及び高温Tが選択されるものとする。 Here, as the reference temperature T base and the other temperature T i , the temperature at the time of measuring the frictional force described later is selected. In the present embodiment, it is assumed that the frictional force measurement described below is performed at the above-mentioned three points of normal temperature, low temperature and high temperature, normal temperature is selected as the reference temperature T base , and low temperature T 1 and high temperature T 2 are set as different temperatures T i. Shall be selected.

ここで、本実施形態において粘着力としている力は上記のように樹脂製の路面に押し付けられたゴム部材を引き離すのに要した力であり、ゴム部材が路面に対し滑るときの摩擦力の凝着成分とは大きさが異なる。しかし、温度依存性に関しては、前記粘着力と前記凝着成分とで同じであるとみなすことができる。そのため、上記のようにして求まったゴム部材と粘着力試験面との間の粘着力の温度依存係数が、そのまま、ゴム部材と粘着力試験面との間の摩擦力の凝着成分の温度依存係数とされる。 Here, the force referred to as the adhesive force in the present embodiment is the force required to separate the rubber member pressed against the resin road surface as described above, and is the coagulation of the frictional force when the rubber member slides on the road surface. The size is different from the wearing component. However, regarding the temperature dependence, it can be considered that the adhesive force and the adhesive component are the same. Therefore, the temperature dependence coefficient of the adhesive force between the rubber member and the adhesion test surface obtained as described above is the same as the temperature dependence of the cohesive component of the frictional force between the rubber member and the adhesion test surface. It is a coefficient.

また、粘着力試験面における粘着力(又は摩擦力の凝着成分)の温度依存係数は、粘着力試験面と同じ樹脂で形成された面全般についてそのまま使用することができる。そして、粘着力試験面を形成する樹脂と第2模擬路面を形成する樹脂とは同じである。そのため、ゴム部材と粘着力試験面との間の摩擦力の凝着成分の温度依存係数は、ゴム部材と第2模擬路面との間の摩擦力の凝着成分の温度依存性係数と同じであるとみなすことができる。 Further, the temperature dependence coefficient of the adhesive force (or the adhesive component of the frictional force) on the adhesive force test surface can be used as it is for the entire surface formed of the same resin as the adhesive force test surface. The resin forming the adhesion test surface and the resin forming the second simulated road surface are the same. Therefore, the temperature dependence coefficient of the adhesion component of the frictional force between the rubber member and the adhesion test surface is the same as the temperature dependence coefficient of the adhesion component of the frictional force between the rubber member and the second simulated road surface. Can be considered to be.

以上のようにして、ゴム部材と樹脂製の面(具体的には粘着力試験面や第2模擬路面)との間の摩擦力の凝着成分の温度依存係数が決定される。 As described above, the temperature dependence coefficient of the adhesion component of the frictional force between the rubber member and the resin surface (specifically, the adhesive strength test surface or the second simulated road surface) is determined.

温度依存係数を使用することにより、各温度における摩擦力の凝着成分が求められる。すなわち、基準温度Tbaseのときの摩擦力の凝着成分がF3adhだとすると、別の温度Tのときの摩擦力の凝着成分はa×F3adhとして求められる。 The cohesive component of the frictional force at each temperature is determined by using the temperature dependence coefficient. That is, if the adhesion component of the frictional force at the reference temperature T base is F3 adh , the adhesion component of the frictional force at another temperature T i is obtained as a i ×F3 adh .

<摩擦力測定工程>
次に、ゴム部材と実路面との間の基準温度Tbaseでの摩擦力F1と、ゴム部材と第1模擬路面との間の基準温度Tbaseでの摩擦力F2と、ゴム部材と第2模擬路面との間の基準温度Tbaseでの摩擦力F3baseと、ゴム部材と第2模擬路面との間の温度T(iは1つ又は2つ以上)でのそれぞれの摩擦力F3とが測定される。
<Friction force measurement process>
Next, the frictional force F1 between the rubber member and the actual road surface at the reference temperature T base , the frictional force F2 between the rubber member and the first simulated road surface at the reference temperature T base , and the rubber member and the second reference temperature T and the frictional force F3 base at base, a rubber member and the temperature T i (i is one or more) each of the frictional force F3 i in between the second simulated road surface between the simulated road surface And are measured.

ここで、本実施形態では温度Tとして上記のように低温T及び高温Tが選択される。従って、本実施形態では、ゴム部材と第2模擬路面との間の摩擦力として、基準温度Tbaseでの摩擦力F3baseと、低温Tでの摩擦力F3と、高温Tでの摩擦力F3とが測定される。 Here, in the present embodiment, the low temperature T 1 and the high temperature T 2 are selected as the temperature T i as described above. Accordingly, in the present embodiment, as a friction force between the rubber member and the second simulated road surface, a frictional force F3 base at a reference temperature T base, and the frictional force F3 1 at low temperature T 1, at a high temperature T 2 a frictional force F3 2 is measured.

測定には既知の摩擦力の測定装置が使用できる。測定は、ゴム部材と各路面とがそれぞれの温度に達した状態で行われる。 A known friction force measuring device can be used for the measurement. The measurement is performed in a state where the rubber member and each road surface reach their respective temperatures.

測定された摩擦力は凝着成分とヒステリシス成分とからなるものとする。すなわち、
F1=F1adh+F1his・・・(式1)
F2=F2adh+F2his・・・(式2)
F3base=F3adh+F3his・・・(式3)
F3=a×F3adh+F3his・・・(式4)
(式1におけるF1adh、式2におけるF2adh、式3におけるF3adh及び式4におけるa×F3adhは各摩擦力における凝着成分、式1におけるF1his、式2におけるF2his、式3におけるF3his及び式4におけるF3hisは各摩擦力におけるヒステリシス成分)
が成立するものとする。
The measured frictional force shall consist of an adhesion component and a hysteresis component. That is,
F1=F1 adh +F1 his ... (Equation 1)
F2=F2 adh +F2 his ... (Equation 2)
F3 base =F3 adh +F3 his ... (Equation 3)
F3 i =a i ×F3 adh +F3 his ... (Equation 4)
(F1 adh in Formula 1, F2 adh in Formula 2, F3 adh in Formula 3, and a i ×F3 adh in Formula 4 are adhesion components at each frictional force, F1 his in Formula 1, F2 his in Formula 2, and Formula 3 hysteresis component in F3 his-each frictional force in F3 his-and formula 4 in)
Shall hold.

ここで示されているように、式3と式4とでは摩擦力の測定温度が異なるので、摩擦力の凝着成分が異なる。具体的には、基準温度Tbaseのときの摩擦力の凝着成分がF3adh(式3参照)で、別の温度Tのときの摩擦力の凝着成分はa×F3adh(式4参照)である。aは、上記の温度依存係数決定工程で決定された係数である。 As shown here, since the measurement temperature of the frictional force is different between the formula 3 and the formula 4, the adhesion component of the frictional force is different. Specifically, the adhesion component of the frictional force at the reference temperature T base is F3 adh (see Formula 3), and the adhesion component of the frictional force at another temperature T i is a i ×F3 adh (Formula 3) 4)). a i is a coefficient determined in the above temperature-dependent coefficient determination step.

一方、摩擦力の測定温度が異なっても路面の凹凸が同じであればヒステリシス成分はほぼ同じだという仮定のもと、式3と式4とではヒステリシス成分が同じとなっている。 On the other hand, assuming that the unevenness of the road surface is the same even if the temperature at which the frictional force is measured is different, the hysteresis components are almost the same, assuming that the hysteresis components are the same.

なお、厳密には、摩擦力の測定温度が異なるとヒステリシス成分も僅かに異なると考えられる。しかし、第2模擬路面からはミクロな凹凸が除去されているため、第2模擬路面における摩擦力のヒステリシス成分は小さい(図5参照)。従って、第2模擬路面における摩擦力のヒステリシス成分の大きさやその変化量は、凝着成分の大きさやその変化量と比べて、非常に小さい。そのため、第2模擬路面における摩擦力に関しては、測定温度の違いによるヒステリシス成分の違いを無視することができる。その点、第1模擬路面にはミクロな凹凸がありヒステリシス成分が大きいため(図5参照)、第1模擬路面においては測定温度の違いによるヒステリシス成分の違いを無視できない。 Strictly speaking, it is considered that the hysteresis component is slightly different when the frictional force measurement temperature is different. However, since the micro unevenness is removed from the second simulated road surface, the hysteresis component of the frictional force on the second simulated road surface is small (see FIG. 5). Therefore, the magnitude of the hysteresis component of the frictional force on the second simulated road surface and its change amount are much smaller than the magnitude of the adhesion component and its change amount. Therefore, regarding the frictional force on the second simulated road surface, the difference in hysteresis component due to the difference in measured temperature can be ignored. In that respect, since the first simulated road surface has micro unevenness and a large hysteresis component (see FIG. 5), the difference in the hysteresis component due to the difference in the measured temperature cannot be ignored on the first simulated road surface.

上記のように本実施形態ではゴム部材と第2模擬路面との間の摩擦力が、基準温度Tbaseの他に低温T及び高温Tで測定されるので、式4は
F3=a×F3adh+F3his・・・(式4−1)
F3=a×F3adh+F3his・・・(式4−2)
の2つの式からなる。
As described above, in the present embodiment, the frictional force between the rubber member and the second simulated road surface is measured at the low temperature T 1 and the high temperature T 2 in addition to the reference temperature T base. Therefore, the equation 4 is F3 1 =a 1 ×F3 adh +F3 his ... (Equation 4-1)
F3 2 =a 2 ×F3 adh +F3 his ... (Equation 4-2)
It consists of two expressions.

<計算工程>
上記の式1〜式4に基づき、ゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisが計算される。この計算は例えばコンピュータが実施する。計算の前提として次のことが仮定される。
<Calculation process>
Based on the above equations 1 to 4, the adhesion component F1 adh and the hysteresis component F1 his of the frictional force between the rubber member and the actual road surface are calculated. This calculation is performed by a computer, for example. The following is assumed as the premise of the calculation.

表1に示すように、実路面と第1模擬路面とでは、材質が異なり、表面粗さが同じである。実路面がアスファルト等からなるのに対して第1模擬路面が樹脂からなるので、実路面における摩擦力の凝着成分が基準値だとすると、第1模擬路面における摩擦力の凝着成分はその基準値より大きい。一方、実路面と第1模擬路面とでは、凹凸状態が同じだと言えるので、摩擦力のヒステリシス成分が同じだと仮定できる。 As shown in Table 1, the actual road surface and the first simulated road surface are made of different materials and have the same surface roughness. Since the first simulated road surface is made of resin while the actual road surface is made of asphalt, assuming that the adhesion component of the friction force on the actual road surface is the reference value, the adhesion component of the friction force on the first simulated road surface is the reference value. Greater than On the other hand, since it can be said that the actual road surface and the first simulated road surface have the same unevenness, it can be assumed that the hysteresis components of the frictional force are the same.

また、表1に示すように、第1模擬路面と第2模擬路面とでは、材質が同じで、表面粗さが異なる。第1模擬路面も第2模擬路面も同じ樹脂からなるので、これらの路面における摩擦力の凝着成分は同じだと仮定できる。一方、第1模擬路面の表面粗さにはミクロな粗さが含まれるのに対して第2模擬路面の表面粗さにはミクロな粗さが含まれないので、第2模擬路面における摩擦力のヒステリシス成分は、実路面や第1模擬路面における摩擦力のヒステリシス成分と比べて、小さいと仮定できる。 Further, as shown in Table 1, the first simulated road surface and the second simulated road surface are made of the same material but different in surface roughness. Since the first simulated road surface and the second simulated road surface are made of the same resin, it can be assumed that the adhesion components of the frictional force on these road surfaces are the same. On the other hand, since the surface roughness of the first simulated road surface includes micro roughness, the surface roughness of the second simulated road surface does not include micro roughness, so that the friction force on the second simulated road surface is included. It can be assumed that the hysteresis component of is smaller than the hysteresis component of the frictional force on the actual road surface or the first simulated road surface.

Figure 2020085843
Figure 2020085843

以上の仮定を図示すると図5のようになる。図5の棒グラフにおける格子状の部分は凝着成分を表し、ドット状の部分はヒステリシス成分を表している。以上のことから、式1〜式4において、F3adh=F2adhとみなし、F2his=F1hisとみなすことができる。このことを利用してゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisを求めることができる。 The above assumption is illustrated in FIG. In the bar graph of FIG. 5, the grid-shaped portion represents the adhesion component, and the dot-shaped portion represents the hysteresis component. From the above, in Expressions 1 to 4, it can be considered that F3 adh =F2 adh and F2 his =F1 his . Utilizing this fact, the adhesion component F1 adh and the hysteresis component F1 his of the frictional force between the rubber member and the actual road surface can be obtained.

まず、式3と式4とからF3adhとF3hisとが求められる。F3adhとF3hisとが求められる具体的方法の例としては、式3と、温度毎に成立する複数の式4とから、2つの式の組み合わせが全て抽出され、それぞれの組み合わせから暫定的なF3adhと暫定的なF3hisとが求められ、求まった複数の暫定的なF3adhのうちの中央値と、F3adhがその中央値のときのF3hisの値とが、最終的なF3adhとF3hisとされる。 First, F3 adh and F3 his are obtained from the equations 3 and 4. As an example of a specific method for obtaining F3 adh and F3 his , all combinations of two formulas are extracted from formula 3 and a plurality of formulas 4 that are satisfied for each temperature, and provisional combinations are obtained from the respective combinations. F3 adh and provisional F3 his are obtained, and the median value of the plurality of provisional F3 adh obtained and the value of F3 his when the F3 adh is the median value are the final F3 adh And F3 his .

具体例としては、本実施形態では、第2模擬路面における摩擦力の式として、式3、式4−1及び式4−2が存在する。これら3つの式から、2つの式の組み合わせが3つ出来る。すなわち、
F3base=F3adh+F3his・・・(式3)及び
F3=a×F3adh+F3his・・・(式4−1)
の第1の組み合わせ、
F3=a×F3adh+F3his・・・(式4−1)及び
F3=a×F3adh+F3his・・・(式4−2)
の第2の組み合わせ、及び
F3base=F3adh+F3his・・・(式3)及び
F3=a×F3adh+F3his・・・(式4−2)
の第3の組み合わせである。
As a specific example, in the present embodiment, there are Formula 3, Formula 4-1 and Formula 4-2 as the formula of the frictional force on the second simulated road surface. From these three expressions, three combinations of two expressions can be made. That is,
F3 base =F3 adh +F3 his ... (Equation 3) and F3 1 =a 1 ×F3 adh +F3 his ... (Equation 4-1)
The first combination of
F3 1 =a 1 ×F3 adh +F3 his ... (Equation 4-1) and F3 2 =a 2 ×F3 adh +F3 his ... (Equation 4-2)
, And F3 base =F3 adh +F3 his ... (Equation 3) and F3 2 =a 2 ×F3 adh +F3 his ... (Equation 4-2)
Is a third combination.

F3base、F3及びF3、が測定で明らかになっており、a及びaが求まっているので、第1の組み合わせの連立方程式を解いて、暫定的なF3adh及び暫定的なF3hisを求めることができる。同様に、第2の組み合わせの連立方程式から暫定的なF3adh及び暫定的なF3hisが求まり、第3の組み合わせの連立方程式からも暫定的なF3adh及び暫定的なF3hisが求まる。 Since F3 base , F3 1 and F3 2 are clarified by the measurement, and a 1 and a 2 are obtained, the simultaneous equations of the first combination are solved, and the provisional F3 adh and the provisional F3 are solved. You can ask for his . Similarly, Motomari is provisional F3 adh and provisional F3 his-from simultaneous equations of the second combination, provisional F3 adh and provisional F3 his-is determined from simultaneous equations of the third combination.

理想的には、第1〜第3の組み合わせのどの連立方程式を解いても、暫定的なF3adh及び暫定的なF3hisは同じ値となる。しかし、実際には摩擦力の測定誤差等が原因で、連立方程式毎に、求まる暫定的なF3adh及び暫定的なF3hisが異なる。 Ideally, the provisional F3 adh and the provisional F3 his have the same value regardless of which simultaneous equations of the first to third combinations are solved. However, in practice, the provisional F3 adh and the provisional F3 his that are obtained differ for each simultaneous equation due to an error in measuring the frictional force or the like.

そこで、求まった3つの暫定的なF3adhのうちの中央値が最終的な(言い換えれば正式な)F3adhとされる。そして、F3adhがその値(すなわち上記の中央値)のときのF3hisが式3(式4−1又は式4−2でも良い)から計算され、最終的なF3hisとされる。 Therefore, the median value of the three provisional F3 adh obtained is set as the final (in other words, official) F3 adh . Then, when F3 adh is that value (that is, the above-mentioned median value), F3 his is calculated from Equation 3 (Equation 4-1 or Equation 4-2 may be used), and the final F3 his is obtained.

次に、上記のようにF3adh=F2adhとみなすことができるので、式2のF2adhとしてF3adhの値を入れ、F2−F3adhを計算してF2hisを求めることができる。 Next, since it can be considered that F3 adh =F2 adh as described above, the value of F3 adh can be input as F2 adh in Expression 2, and F2-F3 adh can be calculated to obtain F2 his .

次に、上記のようにF2his=F1hisとみなすことができるので、式1のF1hisとしてF2hisの値を入れ、F1−F2hisを計算してF1adhを求めることができる。 Then, it is possible to, as described above regarded as F2 his = F1 his, putting the value of F2 his-as F1 his-formula 1, can be obtained F1 adh calculates the F1-F2 his.

以上のようにして、ゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisが求まる。 As described above, the adhesion component F1 adh and the hysteresis component F1 his of the frictional force between the rubber member and the actual road surface are obtained.

以上のように、本実施形態の方法によれば、ゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisを明らかにすることができる。 As described above, according to the method of this embodiment, the adhesion component F1 adh and the hysteresis component F1 his of the frictional force between the rubber member and the actual road surface can be clarified.

<変更例1>
変更例について説明する。この変更例では、ゴム部材と樹脂製の面との間の摩擦力の凝着成分の温度依存係数として、ある基準温度Tbaseにおける係数1に対する別の1つの温度Tにおける係数aが求められる。また、ゴム部材と第2模擬路面との間の摩擦力として、基準温度Tbaseでの摩擦力F3baseと、別の温度低温Tでの摩擦力F3とが測定される。
<Modification 1>
A modification example will be described. In this modification, as the temperature dependence coefficient of adhesion component of friction force between the rubber member and the resin surface, the coefficient a 1 in one temperature T 1 of the alternative for the coefficients 1 at a certain reference temperature T base is determined Be done. Further, as a friction force between the rubber member and the second simulated road surface, a frictional force F3 base at a reference temperature T base, and the frictional force F3 1 at another temperature low T 1 is measured.

従って、
F3base=F3adh+F3his・・・(式3)
F3=a×F3adh+F3his・・・(式4)
の2つの式が出来る。F3baseとF3とが測定されており、係数aが求められているので、これら2つの連立方程式を解けばF3adhとF3hisとが求まる。F3adhとF3hisとが求まれば、上記実施形態の計算工程と同様にして、式1及び式2に基づき、ゴム部材と実路面との間の摩擦力の凝着成分F1adh及びヒステリシス成分F1hisが求まる。
Therefore,
F3 base =F3 adh +F3 his ... (Equation 3)
F3 1 =a 1 ×F3 adh +F3 his ... (Equation 4)
There are two expressions. Since F3 base and F3 1 are measured and the coefficient a 1 is obtained, F3 adh and F3 his can be obtained by solving these two simultaneous equations. If F3 adh and F3 his are obtained, the adhesion component F1 adh and the hysteresis component of the frictional force between the rubber member and the actual road surface are calculated based on the equations 1 and 2 in the same manner as the calculation process of the above embodiment. F1 his is required.

摩擦力の測定誤差が小さい場合は、上記の2つの式の連立方程式を解くだけでも十分精度の良いF3adhとF3hisとが求まり、F1adhとF1hisとを明らかにすることができる。 When the measurement error of the frictional force is small, F3 adh and F3 his with sufficient accuracy can be obtained by solving the simultaneous equations of the above two equations, and F1 adh and F1 his can be clarified.

<変更例2>
別の変更例について説明する。この変更例では、ゴム部材と第2模擬路面との間の摩擦力として、基準温度Tbaseでの摩擦力F3baseと、別の3点以上の温度Ti(i=1、2、3・・・)でのそれぞれの摩擦力F3i(i=1、2、3・・・)とが測定される。また、それぞれの温度における、ゴム部材と樹脂製の面との間の摩擦力の凝着成分の温度依存係数a(i=1、2、3・・・)が求められる。
<Modification 2>
Another modification will be described. In this modified example, as the frictional force between the rubber member and the second simulated road surface, the frictional force F3 base at the reference temperature T base and the temperatures T i at three or more different points (i=1, 2, 3,... ..) and the respective frictional forces F3 i (i=1, 2, 3...) are measured. Further, the temperature dependence coefficient a i (i=1, 2, 3,...) Of the adhesive component of the frictional force between the rubber member and the resin surface at each temperature is obtained.

従って、
F3base=F3adh+F3his・・・(式3)
F3=a×F3adh+F3his(i=1、2、3・・・)・・・(式4)
という4つ以上の式が出来る。これらの式から2つの式の組み合わせが全て抽出され、それぞれの組み合わせから暫定的なF3adhと暫定的なF3hisとが求められる。そして、求まった複数の暫定的なF3adhのうちの中央値と、F3adhがその中央値のときのF3hisの値とが、最終的なF3adhとF3hisとされる。
Therefore,
F3 base =F3 adh +F3 his ... (Equation 3)
F3 i =a i ×F3 adh +F3 his (i=1, 2, 3,...) (Equation 4)
You can do more than four expressions. All combinations of two expressions are extracted from these expressions, and provisional F3 adh and provisional F3 his are obtained from each combination. Then, a median of a plurality of provisional F3 adh which Motoma', F3 adh there is a F3 his-the value at the center value is the final F3 adh and F3 his-.

1…ゴム部材、2…粘着力試験面 1...rubber member, 2...adhesive strength test surface

Claims (5)

ゴム部材と摩擦面との間の摩擦力における凝着成分とヒステリシス成分とを求める摩擦評価方法において、
前記摩擦面としての実路面の凹凸を再現した樹脂製の第1模擬路面を作成する工程と、
前記第1模擬路面からミクロな凹凸を除去した第2模擬路面を作成する工程と、
前記ゴム部材と前記の樹脂製の面との間の粘着力の温度依存性を調べる試験を行う工程と、
前記試験の結果に基づき、前記ゴム部材と前記の樹脂製の面との間の摩擦力の凝着成分の温度依存係数として、基準温度Tbaseにおける係数1に対する別の1又は2以上の温度Tにおけるそれぞれの係数aを求める工程と、
前記ゴム部材と前記実路面との間の前記基準温度Tbaseでの摩擦力F1と、
前記ゴム部材と前記第1模擬路面との間の前記基準温度Tbaseでの摩擦力F2と、
前記ゴム部材と前記第2模擬路面との間の前記基準温度Tbaseでの摩擦力F3baseと、
前記ゴム部材と前記第2模擬路面との間の前記の1又は2以上の温度Tでのそれぞれの摩擦力F3とを測定する工程と、
F1=F1adh+F1his・・・(式1)
F2=F2adh+F2his・・・(式2)
F3base=F3adh+F3his・・・(式3)
F3=a×F3adh+F3his・・・(式4)
(式1におけるF1adh、式2におけるF2adh、式3におけるF3adh及び式4におけるa×F3adhは各摩擦力における凝着成分、式1におけるF1his、式2におけるF2his、式3におけるF3his及び式4におけるF3hisは各摩擦力におけるヒステリシス成分)
とみなし、式3と式4とからF3adhとF3hisとを求める工程と、
F3adh=F2adhとみなし、式2に基づきF2−F3adhを計算してF2hisを求める工程と、
F2his=F1hisとみなし、式1に基づきF1−F2hisを計算してF1adhを求める工程と、
を含むことを特徴とする摩擦評価方法。
In the friction evaluation method for obtaining the adhesion component and the hysteresis component in the friction force between the rubber member and the friction surface,
A step of creating a resin-made first simulated road surface that reproduces the unevenness of the actual road surface as the friction surface;
Creating a second simulated road surface from which microscopic irregularities have been removed from the first simulated road surface;
A step of conducting a test for examining the temperature dependence of the adhesive force between the rubber member and the resin surface;
Based on the result of the test, as a temperature-dependent coefficient of the adhesion component of the frictional force between the rubber member and the resin surface, another temperature T of 1 or 2 or more with respect to the coefficient 1 at the reference temperature T base . a step of obtaining the respective coefficients a i in i,
A frictional force F1 at the reference temperature T base between the rubber member and the actual road surface;
A frictional force F2 between the rubber member and the first simulated road surface at the reference temperature T base ;
A frictional force F3 base at the reference temperature T base between the rubber member and the second simulated road surface;
Measuring each frictional force F3 i between the rubber member and the second simulated road surface at the temperature T i of 1 or 2 or more;
F1=F1 adh +F1 his ... (Equation 1)
F2=F2 adh +F2 his ... (Equation 2)
F3 base =F3 adh +F3 his ... (Equation 3)
F3 i =a i ×F3 adh +F3 his ... (Equation 4)
(F1 adh in Formula 1, F2 adh in Formula 2, F3 adh in Formula 3, and a i ×F3 adh in Formula 4 are adhesion components at each frictional force, F1 his in Formula 1, F2 his in Formula 2, and Formula 3 hysteresis component in F3 his-each frictional force in F3 his-and formula 4 in)
And a step of obtaining F3 adh and F3 his from Equation 3 and Equation 4,
F3 adh =F2 adh, and F2-F3 adh is calculated based on Equation 2 to obtain F2 his .
F2 his =F1 his, and calculating F1-F2 his based on Equation 1 to obtain F1 adh ;
A friction evaluation method comprising:
前記係数aとして、前記基準温度Tbaseにおける係数1に対する別の1つの温度Tにおける係数aを求め、
前記ゴム部材と前記第2模擬路面との間の摩擦力として、
前記ゴム部材と前記第2模擬路面との間の前記温度基準温度Tbaseでの摩擦力F3baseと、
前記ゴム部材と前記第2模擬路面との間の前記温度Tでの摩擦力F3とを測定し、
F3=a×F3adh+F3his・・・(式4)
とみなし、式3と式4との連立方程式を解いてF3adhとF3hisとを求める、
請求項1に記載の摩擦評価方法。
Examples coefficients a i, obtains the coefficients a 1 in one temperature T 1 of the alternative for the coefficients 1 of the reference temperature T base,
As a frictional force between the rubber member and the second simulated road surface,
A frictional force F3 base at the temperature reference temperature T base between the rubber member and the second simulated road surface;
The frictional force F3 1 at the temperature T 1 between the rubber member and the second simulated road surface is measured,
F3 1 =a 1 ×F3 adh +F3 his ... (Equation 4)
And F3 adh and F3 his are obtained by solving the simultaneous equations of Equation 3 and Equation 4,
The friction evaluation method according to claim 1.
前記係数aとして、前記基準温度Tbaseにおける係数1に対する別の2以上の温度Tにおけるそれぞれの係数aを求め、
前記ゴム部材と前記第2模擬路面との間の摩擦力として、
前記ゴム部材と前記第2模擬路面との間の前記基準温度Tbaseでの摩擦力F3baseと、
前記ゴム部材と前記第2模擬路面との間の前記の2以上の温度Tでのそれぞれの摩擦力F3とを測定し、
式3と、温度毎に成立する複数の式4とから、2つの式の組み合わせを全て抽出し、それぞれの組み合わせから暫定的なF3adhと暫定的なF3hisとを求め、
求まった複数の暫定的なF3adhのうちの中央値と、F3adhがその中央値のときのF3hisの値とを、最終的なF3adhとF3hisとする、
請求項1に記載の摩擦評価方法。
As the coefficient a i , each coefficient a i at another two or more temperatures T i with respect to the coefficient 1 at the reference temperature T base is obtained,
As a frictional force between the rubber member and the second simulated road surface,
A frictional force F3 base at the reference temperature T base between the rubber member and the second simulated road surface;
The respective frictional forces F3 i between the rubber member and the second simulated road surface at the above-mentioned two or more temperatures T i are measured,
All the combinations of the two expressions are extracted from the expression 3 and the plurality of expressions 4 that are satisfied for each temperature, and the provisional F3 adh and the provisional F3 his are obtained from the respective combinations,
The median value of the obtained provisional F3 adh and the value of F3 his when the median value of F3 adh is the final F3 adh and F3 his .
The friction evaluation method according to claim 1.
前記第1模擬路面及び前記第2模擬路面のデュロメータタイプD硬さが80〜84である、請求項1〜3のいずれか1項に記載の摩擦評価方法。 The friction evaluation method according to any one of claims 1 to 3, wherein the durometer type D hardness of the first simulated road surface and the second simulated road surface is 80 to 84. 模擬路面の表面粗さデータを周波数分析して得られる波のうち0.1mm以上1.0mm以下の範囲内にある所定波長の波の周波数をカットオフ周波数としてローパスフィルタ及びハイパスフィルタを設定し、
測定で得られた前記第1模擬路面の表面粗さの周波数分析結果に対してローパスフィルタをかけて得られた波からなる波形の表面粗さと、測定で得られた前記第2模擬路面の表面粗さの周波数分析結果に対してローパスフィルタをかけて得られた波からなる波形の表面粗さとの差が5%以下であり、かつ、測定で得られた前記第2模擬路面の表面粗さの周波数分析結果に対してハイパスフィルタをかけて得られた波からなる波形の表面粗さが10μm以下となるように、
前記第1模擬路面からミクロな凹凸を除去して前記第2模擬路面を作成する、
請求項1〜4のいずれか1項に記載の摩擦評価方法。
Of the waves obtained by frequency-analyzing the surface roughness data of the simulated road surface, the low-pass filter and the high-pass filter are set with the frequency of the wave having a predetermined wavelength within the range of 0.1 mm or more and 1.0 mm or less as the cutoff frequency,
A surface roughness of a waveform formed of a wave obtained by applying a low-pass filter to the frequency analysis result of the surface roughness of the first simulated road surface obtained by the measurement, and the surface of the second simulated road surface obtained by the measurement. The difference between the frequency analysis result of the roughness and the surface roughness of the waveform formed by the low-pass filter is 5% or less, and the surface roughness of the second simulated road surface obtained by the measurement. The surface roughness of the waveform composed of the waves obtained by applying the high-pass filter to the frequency analysis result of 10 μm or less,
Removing the micro unevenness from the first simulated road surface to create the second simulated road surface,
The friction evaluation method according to claim 1.
JP2018225291A 2018-11-30 2018-11-30 Friction evaluation method Active JP7174605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018225291A JP7174605B2 (en) 2018-11-30 2018-11-30 Friction evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018225291A JP7174605B2 (en) 2018-11-30 2018-11-30 Friction evaluation method

Publications (2)

Publication Number Publication Date
JP2020085843A true JP2020085843A (en) 2020-06-04
JP7174605B2 JP7174605B2 (en) 2022-11-17

Family

ID=70908372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018225291A Active JP7174605B2 (en) 2018-11-30 2018-11-30 Friction evaluation method

Country Status (1)

Country Link
JP (1) JP7174605B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089210A (en) * 2019-12-04 2021-06-10 Toyo Tire株式会社 Method for evaluating friction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472546A (en) * 1990-07-13 1992-03-06 Yokohama Rubber Co Ltd:The Tackiness meter equipped with constant temperature bath
JP2007203809A (en) * 2006-01-31 2007-08-16 Yokohama Rubber Co Ltd:The Method for predicting temperature dependency of friction coefficient of tire
JP2016200563A (en) * 2015-04-14 2016-12-01 住友ゴム工業株式会社 Evaluation method for sticking friction of rubber material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472546A (en) * 1990-07-13 1992-03-06 Yokohama Rubber Co Ltd:The Tackiness meter equipped with constant temperature bath
JP2007203809A (en) * 2006-01-31 2007-08-16 Yokohama Rubber Co Ltd:The Method for predicting temperature dependency of friction coefficient of tire
JP2016200563A (en) * 2015-04-14 2016-12-01 住友ゴム工業株式会社 Evaluation method for sticking friction of rubber material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
網野直也、内山吉隆、岩井智昭、前田真人: ""シリカ配合およびカーボン配合SBRの摩擦機構に関する研究"", 日本ゴム協会誌, vol. 第77巻,第5号, JPN6022037177, 2004, JP, pages 173 - 179, ISSN: 0004866840 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089210A (en) * 2019-12-04 2021-06-10 Toyo Tire株式会社 Method for evaluating friction
JP7359669B2 (en) 2019-12-04 2023-10-11 Toyo Tire株式会社 Friction evaluation method

Also Published As

Publication number Publication date
JP7174605B2 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
Yoo et al. Effect of transient dynamic loading on flexible pavements
Kartal et al. Determination of the frictional properties of titanium and nickel alloys using the digital image correlation method
US8555698B2 (en) Engineered surfaces for laboratory tread wear testing of tires
Al-Qadi et al. Effect of surface tangential contact stresses on flexible pavement response
Bureau et al. Shear response of a frictional interface to a normal load modulation
Zeng et al. Vickers indentations in glass—I. Residual stress fields and iso-stress contour maps
JP2020085843A (en) Method for evaluating friction
Kanafi et al. Rubber friction on 3D-printed randomly rough surfaces at low and high sliding speeds
Xie et al. Evaluation of polishing behavior of fine aggregates using an accelerated polishing machine with real tires
Wang et al. Evaluation of the decay characteristics of pavement skid resistance using three-dimensional texture from accelerated abrasion test
Turner et al. Effect of nanotopography in direct wafer bonding: modeling and measurements
Han et al. Mechanical properties of Au thin film for application in MEMS/NENS using microtensile test
Xia et al. Strength characterization of Al/Si interfaces: A hybrid method of nanoindentation and finite element analysis
JP7359669B2 (en) Friction evaluation method
Knoll Nanoscale contact-radius determination by spectral analysis of polymer roughness images
JP7137455B2 (en) Friction evaluation method
Ardito et al. Multiscale finite-element models for predicting spontaneous adhesion in MEMS
Yalagach et al. Influence of environmental factors like temperature and humidity on MEMS packaging materials
CN109596290B (en) Method for measuring Young modulus of MEMS micro-beam material in situ
GB2550331A (en) Process
Wu Using far-field measurements for determining mixed-mode interactions at interfaces
Low et al. Proposed definition for the Brinell hardness indentation edge
Rajaei et al. Pavement surface characterization for optimization of tradeoff between grip and rolling resistance
JP6993201B2 (en) Evaluation method of contact characteristics
JP2017067453A (en) Method for evaluating friction performance of rubber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221107

R150 Certificate of patent or registration of utility model

Ref document number: 7174605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150