JP7358796B2 - Conductive fiber and its manufacturing method - Google Patents

Conductive fiber and its manufacturing method Download PDF

Info

Publication number
JP7358796B2
JP7358796B2 JP2019114169A JP2019114169A JP7358796B2 JP 7358796 B2 JP7358796 B2 JP 7358796B2 JP 2019114169 A JP2019114169 A JP 2019114169A JP 2019114169 A JP2019114169 A JP 2019114169A JP 7358796 B2 JP7358796 B2 JP 7358796B2
Authority
JP
Japan
Prior art keywords
mass
thermoplastic resin
carbon black
less
metal phthalocyanine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019114169A
Other languages
Japanese (ja)
Other versions
JP2021001406A (en
Inventor
敏樹 木村
真司 竹歳
陽介 都留
昌隆 杉本
サティシュ クマル スクマラン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2019114169A priority Critical patent/JP7358796B2/en
Publication of JP2021001406A publication Critical patent/JP2021001406A/en
Application granted granted Critical
Publication of JP7358796B2 publication Critical patent/JP7358796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

特許法第30条第2項適用 平成30年6月20日に学会(第29回プラスチック成形加工年次大会)での発表により公開 平成30年11月26日に学会(プラスチック成形加工シンポジア 第26回秋季大会)での発表により公開Application of Article 30, Paragraph 2 of the Patent Act Published as a presentation at an academic conference (29th Annual Conference on Plastic Molding Processing) on June 20th, 2018 Published at an academic conference (26th Plastic Molding Processing Symposium) on November 26th, 2018 Published by presentation at the Annual Autumn Conference)

本発明は、導電性繊維およびその製造方法に関する。 TECHNICAL FIELD The present invention relates to conductive fibers and methods for manufacturing the same.

導電性カーボンブラックを使用した導電性繊維が知られている(例えば、特許文献1)。このような導電性繊維の繊維横断面においては、導電層が非導電層に完全に包まれている非露出タイプと、導電層が繊維表面の一部または繊維表面全体に露出している露出タイプがあるが、露出タイプのほうが制電性能に優れ、その中でも繊維表面全体に露出しているタイプが特に制電性能が優れている。 Conductive fibers using conductive carbon black are known (for example, Patent Document 1). In the fiber cross section of such conductive fibers, there are two types: a non-exposed type in which the conductive layer is completely wrapped in a non-conductive layer, and an exposed type in which the conductive layer is exposed on a part of the fiber surface or the entire fiber surface. However, the exposed type has better antistatic performance, and among these, the type where the entire fiber surface is exposed has particularly excellent antistatic performance.

上述のような繊維表面全体に導電層が露出している導電性繊維を製造する方法として、樹脂組成物に高ストラクチャー化したカーボンブラック凝集体を多量に配合して溶融成形する方法が考えられる。 As a method for producing a conductive fiber having a conductive layer exposed over the entire surface of the fiber as described above, a method can be considered in which a large amount of highly structured carbon black aggregate is blended into a resin composition and then melt-molded.

しかし、そのような樹脂組成物は溶融流動性が悪いため、表面に導電層が露出する細い導電性繊維細に成形することは困難であった。また、溶融流動性を上げるために、樹脂組成物に高剪断をかけるとカーボンブラックのネットワークが壊れ、導電性が低下するおそれがある。 However, since such a resin composition has poor melt flowability, it has been difficult to form it into thin conductive fibers with a conductive layer exposed on the surface. Furthermore, if high shear is applied to the resin composition in order to increase melt fluidity, the carbon black network may be broken and the conductivity may be reduced.

特開2018-193648公報JP 2018-193648 Publication

そこで本発明が解決しようとする課題は、高い導電性を有する、表面に導電層が露出した細い導電性繊維およびその製造方法を提供することを特徴とする。 Therefore, the problem to be solved by the present invention is to provide a thin conductive fiber having high conductivity and having a conductive layer exposed on its surface, and a method for manufacturing the same.

本発明者らは、上記課題を解決するべく、鋭意検討を行った。その結果、特定の量のカーボンブラックと金属フタロシアニンを配合することで上記課題が解決されうることを見出し、本発明を完成させるに至った。 The present inventors conducted extensive studies in order to solve the above problems. As a result, the inventors discovered that the above problems could be solved by blending specific amounts of carbon black and metal phthalocyanine, and completed the present invention.

すなわち、本発明は、熱可塑性樹脂(A)と、カーボンブラック(B)と、金属フタロシアニン(C)とを配合してなる導電性繊維であって、前記カーボンブラック(B)がpH5以上であり、前記カーボンブラック(B)100質量部に対する前記金属フタロシアニン(C)の配合量が0.1質量部以上から50質量部以下までの範囲であり、前記熱可塑性樹脂(A)と前記カーボンブラック(B)と前記金属フタロシアニン(C)の合計配合量における前記カーボンブラック(B)と前記金属フタロシアニン(C)の合計配合量が、5質量%以上から20質量%以下までの範囲であり、繊維径が10μm以下である。 That is, the present invention provides a conductive fiber formed by blending a thermoplastic resin (A), carbon black (B), and metal phthalocyanine (C), wherein the carbon black (B) has a pH of 5 or more. , the blending amount of the metal phthalocyanine (C) with respect to 100 parts by mass of the carbon black (B) ranges from 0.1 parts by mass or more to 50 parts by mass or less, and the thermoplastic resin (A) and the carbon black ( The total blending amount of the carbon black (B) and the metal phthalocyanine (C) in the total blending amount of B) and the metal phthalocyanine (C) ranges from 5% by mass or more to 20% by mass or less, and the fiber diameter is 10 μm or less.

また、本発明は、熱可塑性樹脂(A)と、カーボンブラック(B)と、金属フタロシアニン(C)とを配合してなる導電性繊維の製造方法であって、少なくとも前記熱可塑性樹脂(A)と、前記カーボンブラック(B)と、前記金属フタロシアニン(C)と、前記熱可塑性樹脂(A)以外の熱可塑性樹脂(D)とを溶融混練し、熱可塑性樹脂組成物を得る工程1と、前記熱可塑性樹脂組成物を溶融紡糸する工程2と、前記熱可塑性樹脂(D)を溶解させるが前記熱可塑性樹脂(A)を溶解させない溶剤を前記熱可塑性樹脂(D)に接触させて、前記熱可塑性樹脂(D)を選択的に除去して導電性繊維を得る工程3と、を有し、前記カーボンブラック(B)がpH5以上であり、前記導電性繊維中の前記カーボンブラック(B)100質量部に対する前記金属フタロシアニン(C)の配合量が0.1質量部以上から50質量部以下までの範囲であり、前記熱可塑性樹脂(A)と前記カーボンブラック(B)と前記金属フタロシアニン(C)の合計配合量における前記カーボンブラック(B)と前記金属フタロシアニン(C)の合計配合量が、5質量%以上から20質量%以下までの範囲であり、前記導電性繊維の繊維径が10μm以下のである。 The present invention also provides a method for producing a conductive fiber comprising a thermoplastic resin (A), carbon black (B), and metal phthalocyanine (C), wherein at least the thermoplastic resin (A) A step 1 of obtaining a thermoplastic resin composition by melt-kneading the carbon black (B), the metal phthalocyanine (C), and a thermoplastic resin (D) other than the thermoplastic resin (A); Step 2 of melt-spinning the thermoplastic resin composition, and contacting the thermoplastic resin (D) with a solvent that dissolves the thermoplastic resin (D) but does not dissolve the thermoplastic resin (A). Step 3 of selectively removing the thermoplastic resin (D) to obtain conductive fibers, wherein the carbon black (B) has a pH of 5 or more, and the carbon black (B) in the conductive fibers The blending amount of the metal phthalocyanine (C) with respect to 100 parts by mass ranges from 0.1 parts by mass or more to 50 parts by mass or less, and the thermoplastic resin (A), the carbon black (B), and the metal phthalocyanine ( The total blending amount of the carbon black (B) and the metal phthalocyanine (C) in the total blending amount of C) ranges from 5% by mass to 20% by mass, and the fiber diameter of the conductive fiber is 10 μm. The following is.

本発明により、高い導電性を有する、表面に導電層が露出した細い導電性繊維およびその製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to the present invention, it is possible to provide a thin conductive fiber having high conductivity and having a conductive layer exposed on its surface, and a method for producing the same.

以下、本発明を実施するための形態について詳細に説明する。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated in detail.

本発明の一実施形態において、導電性繊維は、熱可塑性樹脂(A)と、カーボンブラック(B)と、金属フタロシアニン(C)とを配合してなる導電性繊維であって、前記カーボンブラック(B)がpH5以上であり、前記カーボンブラック(B)100質量部に対する前記金属フタロシアニン(C)の配合量が0.1質量部以上から50質量部以下までの範囲であり、前記熱可塑性樹脂(A)と前記カーボンブラック(B)と前記金属フタロシアニン(C)の合計配合量における前記カーボンブラック(B)と前記金属フタロシアニン(C)の合計配合量が、5質量%以上から20質量%以下までの範囲であり、繊維径が10μm以下である。 In one embodiment of the present invention, the conductive fiber is a conductive fiber formed by blending a thermoplastic resin (A), carbon black (B), and metal phthalocyanine (C), B) has a pH of 5 or more, the amount of the metal phthalocyanine (C) blended in a range from 0.1 parts by mass to 50 parts by mass with respect to 100 parts by mass of the carbon black (B), and the thermoplastic resin ( The total blending amount of the carbon black (B) and the metal phthalocyanine (C) in the total blending amount of A), the carbon black (B), and the metal phthalocyanine (C) is from 5% by mass or more to 20% by mass or less. The fiber diameter is 10 μm or less.

前記導電性繊維によれば、高い導電性を有する、表面に導電層が露出した細い導電性繊維を提供することができる。このような効果が得られる理由は必ずしも明らかではないが、以下のメカニズムによるものと推測される。 According to the conductive fiber, it is possible to provide a thin conductive fiber having high conductivity and having a conductive layer exposed on the surface. The reason why such an effect is obtained is not necessarily clear, but it is presumed to be due to the following mechanism.

特定量が配合された前記カーボンブラック(B)と前記金属フタロシアニン(C)は疑似凝集を形成し、当該疑似凝集が導電ネットワーク形成するため、高い導電性を発現すると考えられる。また、導電性繊維の原料である熱可塑性樹脂組成物を成形する際、高剪断をかけると当該導電ネットワークは一時的に崩れて熱可塑性樹脂組成物の流動性が発現するため、小さい繊維径への加工が容易になる。また、前記カーボンブラック(B)と前記金属フタロシアニン(C)は成形固化時に再度凝集して導電ネットワークを形成するため、上記課題を解決できると考えられる。 The carbon black (B) and the metal phthalocyanine (C) blended in specific amounts form pseudo-agglomerations, and the pseudo-agglomerations form a conductive network, so it is thought that high conductivity is exhibited. In addition, when molding the thermoplastic resin composition that is the raw material for conductive fibers, if high shear is applied, the conductive network will temporarily collapse and the fluidity of the thermoplastic resin composition will develop, resulting in smaller fiber diameters. processing becomes easier. Moreover, since the carbon black (B) and the metal phthalocyanine (C) aggregate again during molding and solidification to form a conductive network, it is thought that the above problem can be solved.

前記熱可塑性樹脂(A)としては、本発明の効果を損ねない限り特に限定されないが、例えば、ポリアミド樹脂、ポリカーボネート樹脂、ゴム強化スチレン系樹脂、ポリエステル樹脂、ポリエーテルケトン樹脂、ポリエーテル樹脂、ポリイミド樹脂、ポリアリーレンスルフィド樹脂、ポリアリーレンエーテル樹脂、シリコーン化合物などが挙げられ、このうち、ポリアミド樹脂が好ましく挙げられる。当該ポリアミド樹脂は、主鎖に酸アミド結合(-CONH-)を有する重合体である。このようなポリアミド樹脂としては、ナイロン6(「ポリ(カプロラクタム)」ともいう)、ナイロン11(「ポリ(11-アミノウンデカン酸)」ともいう)、ナイロン12(「ポリ(ラウリルラクタム)」または「ポリ(12-7ミノドデカン酸)」ともいう)、ナイロン6.6(「ポリ(ヘキサメチレン・アジパミド)」ともいう)、ナイロン6.9(「ポリ(ヘキサメチレン・アゼラミド)あるいはポリ(ヘキサメチレン・ノナンジアミド)」ともいう)、ナイロン6.10(「ポリ(ヘキサメチレン・セバカミド)」あるいは「ポリ(ヘキサンメチレン・デカンジアミド)」ともいう)、ナイロン6.12(「ポリ(ヘキサメチレン・ドデカノジアミド)」ともいう)、ナイロン4(「ポリ(δ-ブチロラクタム)」ともいう)、ナイロン7(「ポリ(7-アミノへブタン酸)」あるいは「ポリ(7-アミノカプリル酸)」ともいう)、ナイロン8(「ポリ(8-アミノカプリル酸)」あるいは「ポリ(8-アミノオクタン酸)」ともいう)、ナイロン10,6(「ポリ(デカメチレン・アジパミド)」、部分芳香族ナイロン(PARNS)等が挙げられる。 The thermoplastic resin (A) is not particularly limited as long as it does not impair the effects of the present invention, but examples include polyamide resin, polycarbonate resin, rubber-reinforced styrene resin, polyester resin, polyether ketone resin, polyether resin, and polyimide. Examples include resins, polyarylene sulfide resins, polyarylene ether resins, silicone compounds, and among these, polyamide resins are preferred. The polyamide resin is a polymer having an acid amide bond (-CONH-) in the main chain. Such polyamide resins include nylon 6 (also called "poly(caprolactam)"), nylon 11 (also called "poly(11-aminoundecanoic acid)"), nylon 12 ("poly(lauryllactam)" or " Poly(12-7 minododecanoic acid)), Nylon 6.6 (also referred to as Poly(hexamethylene adipamide)), Nylon 6.9 (Poly(hexamethylene azeramide) or Poly(hexamethylene adipamide)). nylon 6.10 (also referred to as ``poly(hexamethylene sebacamide)'' or ``poly(hexamethylene decanediamide)''), nylon 6.12 (also referred to as ``poly(hexamethylene dodecanediamide)'') ”), nylon 4 (also referred to as “poly(δ-butyrolactam)”), nylon 7 (also referred to as “poly(7-aminohbutanoic acid)” or “poly(7-aminocaprylic acid)”), nylon 8 (also called "poly(8-aminocaprylic acid)" or "poly(8-aminooctanoic acid)"), nylon 10,6 ("poly(decamethylene adipamide)", partially aromatic nylon (PARNS), etc. Can be mentioned.

前記導電性繊維中の前記熱可塑性樹脂(A)の配合割合は特に限定されないが、高導電性を発現させる観点から、好ましくは80質量%以上、より好ましくは85質量%以上から、好ましくは95質量%以下、より好ましくは90質量%以下までの範囲である。 The blending ratio of the thermoplastic resin (A) in the conductive fibers is not particularly limited, but from the viewpoint of developing high conductivity, it is preferably 80% by mass or more, more preferably 85% by mass or more, and preferably 95% by mass or more. The range is 90% by mass or less, more preferably 90% by mass or less.

前記カーボンブラック(B)は、特に限定なく公知のコンタクト法、ファーネス法、サーマル法等の方法によって製造された、顔料として使用されているカーボンブラックを使用することができる。例えば三菱化学社製の#2600シリーズ、#2300シリーズ、#1000シリーズ、#900シリーズ、MAシリーズ、オリオンエンジニアドカーボンズ社製のCOLOR-BLACKシリーズ、SPESIAL-BLACKシリーズ、PRINTEXシリーズ、HIBLACKシリーズ、NEROXシリーズ、NIPexシリーズ、旭カーボン社製のSUNBLACKシリーズ、#70シリーズ、#80シリーズ、東海カーボン社製のトーカブラック#7000シリーズ、#8000シリーズ、などが挙げられる。中でも高導電性を発現させる観点から、導電カーボンと呼ばれている高ストラクチャーのカーボンブラックが好ましい。 As the carbon black (B), carbon black used as a pigment, which is produced by a known method such as a contact method, a furnace method, or a thermal method, can be used without particular limitation. For example, Mitsubishi Chemical's #2600 series, #2300 series, #1000 series, #900 series, MA series, Orion Engineered Carbons' COLOR-BLACK series, SPECIAL-BLACK series, PRINTEX series, HIBLACK series, NEROX. series, NIPex series, SUNBLACK series, #70 series, and #80 series manufactured by Asahi Carbon Co., Ltd., and Toka Black #7000 series and #8000 series manufactured by Tokai Carbon Co., Ltd., and the like. Among them, carbon black with a high structure called conductive carbon is preferred from the viewpoint of exhibiting high conductivity.

前記カーボンブラック(B)のpHは、高導電性を発現させる観点から、5以上、好ましくは6以上、好ましくは10以下、より好ましくは8以下の範囲である。 The pH of the carbon black (B) is in the range of 5 or more, preferably 6 or more, preferably 10 or less, and more preferably 8 or less, from the viewpoint of developing high conductivity.

前記カーボンブラック(B)の揮発分量は、高導電性を発現させる観点から、好ましくは1.5%以下の範囲である。 The volatile content of the carbon black (B) is preferably in the range of 1.5% or less from the viewpoint of exhibiting high conductivity.

前記カーボンブラック(B)の平均粒径は特に限定されないが、小さい繊維径への加工を可能にする成形性を発現させる観点、および高導電性を発現させる観点から、好ましくは30nm以下の範囲であり、さらに好ましくは28nm以下の範囲である。その下限値は特に限定されないが、好ましくは10nm以上の範囲であり、さらに好ましくは15nm以上の範囲である。 The average particle size of the carbon black (B) is not particularly limited, but is preferably in the range of 30 nm or less from the viewpoint of developing formability that enables processing into small fiber diameters and from the viewpoint of developing high conductivity. The range is more preferably 28 nm or less. The lower limit is not particularly limited, but is preferably in the range of 10 nm or more, more preferably in the range of 15 nm or more.

前記カーボンブラック(B)は、表面を物理的、または化学的に処理されたものであってもよい。なお、前記カーボンブラック(B)の表面積は特に限定されないが、好ましくはBET比表面積〔m/g〕が30以上、より好ましくは50以上、さらに好ましくは80以上から、好ましくは300以下、より好ましくは200以下、さらに好ましくは150以下までの範囲である。 The surface of the carbon black (B) may be physically or chemically treated. The surface area of the carbon black (B) is not particularly limited, but preferably has a BET specific surface area [m 2 /g] of 30 or more, more preferably 50 or more, still more preferably 80 or more, preferably 300 or less, and more. The range is preferably 200 or less, more preferably 150 or less.

前記導電性繊維中の前記カーボンブラック(B)の配合割合は特に限定されないが、高導電性を発現させる観点から、好ましくは1質量%以上、より好ましくは5質量%以上から、好ましくは20質量%以下、より好ましくは15質量%以下までの範囲である。 The blending ratio of the carbon black (B) in the conductive fiber is not particularly limited, but from the viewpoint of developing high conductivity, it is preferably 1% by mass or more, more preferably 5% by mass or more, and preferably 20% by mass. % or less, more preferably 15% by mass or less.

前記金属フタロシアニン(C)としては、フタロシアニン骨格を有する顔料が挙げられ、このうち、フタロシアニンブルー、フタロシアニングリーンが好ましいものとして挙げられる。前記金属フタロシアニン(C)としては、例えば、Colour Index Generic NameにおけるPigment Blue 15、同15:1、同15:2、同15:3、同15:4、同15:6、同17:1に代表される銅フタロシアニン;Pigment Green 7、同36に代表されるハロゲン化フタロシアニン;中心金属元素がアルミニウム、ニッケル、コバルト、鉄、マグネシウム、亜鉛等から選ばれる少なくとも1種の金属フタロシアニン化合物等が挙げられる。これらは1種単独でもよいが2以上を混合して用いることもできる。 Examples of the metal phthalocyanine (C) include pigments having a phthalocyanine skeleton, and among these, phthalocyanine blue and phthalocyanine green are preferred. Examples of the metal phthalocyanine (C) include Pigment Blue 15, 15:1, 15:2, 15:3, 15:4, 15:6, and 17:1 in Color Index Generic Name. Representative copper phthalocyanine; Halogenated phthalocyanine represented by Pigment Green 7 and Pigment Green 36 ; At least one metal phthalocyanine compound whose central metal element is selected from aluminum, nickel, cobalt, iron, magnesium, zinc, etc. It will be done. These may be used alone or in combination of two or more.

前記金属フタロシアニン(C)の平均粒径は特に限定されないが、小さい繊維径への加工を可能にする成形性を発現させる観点、および高導電性を発現させる観点から、好ましくは800nm以下の範囲であり、さらに好ましくは500nm以下の範囲である。その下限値は特に限定されないが、好ましくは10nm以上の範囲であり、さらに好ましくは30nm以上の範囲である。 The average particle size of the metal phthalocyanine (C) is not particularly limited, but is preferably in the range of 800 nm or less from the viewpoint of developing formability that enables processing into small fiber diameters and from the viewpoint of developing high conductivity. The range is more preferably 500 nm or less. The lower limit is not particularly limited, but is preferably in the range of 10 nm or more, more preferably in the range of 30 nm or more.

前記導電性繊維中の前記金属フタロシアニン(C)の配合割合は特に限定されないが、高導電性を発現させる観点から、好ましくは0.1質量%以上、より好ましくは0.5質量%以上から、好ましくは5質量%以下、より好ましくは2質量%以下までの範囲である。 The blending ratio of the metal phthalocyanine (C) in the conductive fiber is not particularly limited, but from the viewpoint of developing high conductivity, it is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, The content is preferably 5% by mass or less, more preferably 2% by mass or less.

前記カーボンブラック(B)100質量部に対する前記金属フタロシアニン(C)の配合量は、小さい繊維径への加工を可能にする成形性を発現させる観点、および高導電性を発現させる観点から、0.1質量部以上、好ましくは1質量部以上から、50質量部以下、好ましくは20質量部以下までの範囲である。 The amount of the metal phthalocyanine (C) to be blended with respect to 100 parts by mass of the carbon black (B) is 0.05% from the viewpoint of developing moldability that enables processing into small fiber diameters and from the viewpoint of developing high conductivity. The amount ranges from 1 part by weight or more, preferably 1 part by weight or more, to 50 parts by weight or less, preferably 20 parts by weight or less.

前記熱可塑性樹脂(A)と前記カーボンブラック(B)と前記金属フタロシアニン(C)の合計配合量における前記カーボンブラック(B)と前記金属フタロシアニン(C)の合計配合量は、小さい繊維径への加工を可能にする成形性を発現させる観点、および高導電性を発現させる観点から、5質量%以上、好ましくは7質量%以上から、20質量%以下、好ましくは15質量%以下までの範囲である。 The total blending amount of the carbon black (B) and the metal phthalocyanine (C) in the total blending amount of the thermoplastic resin (A), the carbon black (B), and the metal phthalocyanine (C) is the same as the total blending amount of the carbon black (B) and the metal phthalocyanine (C). From the viewpoint of developing formability to enable processing and high conductivity, the content ranges from 5% by mass or more, preferably 7% by mass or more, to 20% by mass or less, preferably 15% by mass or less. be.

前記導電性繊維には、前記熱可塑性樹脂(A)、前記カーボンブラック(B)及び前記金属フタロシアニン(C)を除く、公知の添加剤を任意の原料成分として用いることもできる。そのような公知の添加剤としては、ハロゲン系難燃剤、窒素系難燃剤、リン酸エステル系難燃剤、金属水酸化物や酸化物などの無機系難燃剤、シリコーン系難燃剤、有機リン酸金属塩などの難燃剤や、ヒンダードフェノール系化合物、ヒドロキノン系化合物、ホスファイト系化合物及びこれらの置換体等の酸化防止剤や、レゾルシノール系化合物、サリシレート系化合物、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、ヒンダードアミン系化合物等の耐候剤や、脂肪族アルコール、脂肪族アミド、脂肪族ビスアミド、ビス尿素化合物、ポリエチレンワックス等の離型剤または滑剤や、タルク、シリカ、カオリン、クレー等の結晶核剤や、p-オキシ安息香酸オクチル、N-ブチルベンゼンスルホンアミド等などの可塑剤や、アルキルサルフェート型アニオン系帯電防止剤、4級アンモニウム塩型カチオン系帯電防止剤、ポリオキシエチレンソルビタンモノステアレート等の非イオン系帯電防止剤、ベタイン系両性帯電防止剤等の帯電防止剤や、グラファイト、硫酸バリウム、硫酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化アンチモン、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化鉄、硫化亜鉛、亜鉛、鉛、ニッケル、アルミニウム、銅、鉄、ステンレス、ベントナイト、モンモリロナイト、合成雲母等の粒子状、針状、板状の各種充填剤や、ガラス繊維、ガラスフレーク、炭素繊維、窒化硼素、チタン酸カリウム、硼酸アルミニウム等の強化材などが挙げられる。これらの添加剤を任意成分として用いる場合、前記導電性繊維中の配合割合は、小さい繊維径への加工を可能にする成形性を発現させる観点、および高導電性を発現させる観点から、25質量%以下の範囲である。換言すると、前記導電性繊維中の前記熱可塑性樹脂(A)、前記カーボンブラック(B)および前記金属フタロシアニン(C)の合計割合は75質量%超の範囲である。 Known additives other than the thermoplastic resin (A), the carbon black (B), and the metal phthalocyanine (C) can also be used as arbitrary raw material components in the conductive fiber. Such known additives include halogen flame retardants, nitrogen flame retardants, phosphate ester flame retardants, inorganic flame retardants such as metal hydroxides and oxides, silicone flame retardants, and organic metal phosphates. Flame retardants such as salts, antioxidants such as hindered phenol compounds, hydroquinone compounds, phosphite compounds and substituted products thereof, resorcinol compounds, salicylate compounds, benzotriazole compounds, benzophenone compounds, Weathering agents such as hindered amine compounds, mold release agents or lubricants such as aliphatic alcohols, aliphatic amides, aliphatic bisamides, bisurea compounds, polyethylene wax, crystal nucleating agents such as talc, silica, kaolin, clay, etc. Plasticizers such as octyl p-oxybenzoate, N-butylbenzenesulfonamide, etc., non-plasticizers such as alkyl sulfate type anionic antistatic agents, quaternary ammonium salt type cationic antistatic agents, polyoxyethylene sorbitan monostearate, etc. Antistatic agents such as ionic antistatic agents and betaine amphoteric antistatic agents, graphite, barium sulfate, magnesium sulfate, calcium carbonate, magnesium carbonate, antimony oxide, titanium oxide, aluminum oxide, zinc oxide, iron oxide, zinc sulfide. , zinc, lead, nickel, aluminum, copper, iron, stainless steel, bentonite, montmorillonite, synthetic mica, and other particulate, acicular, and plate-shaped fillers, as well as glass fiber, glass flakes, carbon fiber, boron nitride, and titanium. Examples include reinforcing materials such as potassium acid and aluminum borate. When these additives are used as optional components, the blending ratio in the conductive fiber is 25% by mass from the viewpoint of developing formability that enables processing into small fiber diameters and from the viewpoint of developing high conductivity. % or less. In other words, the total proportion of the thermoplastic resin (A), the carbon black (B), and the metal phthalocyanine (C) in the conductive fiber is in a range of more than 75% by mass.

前記導電性繊維の電気抵抗率は、好ましくは10Ω・cm以上、より好ましくは10Ω・cm以上から、好ましくは10Ω・cm以下、より好ましくは10Ω・cm以下までの範囲である。なお、導電性繊維の電気抵抗率は、実施例に記載の方法により測定する。 The electrical resistivity of the conductive fiber is preferably from 10 2 Ω·cm or more, more preferably 10 3 Ω·cm or more, to preferably 10 9 Ω·cm or less, more preferably 10 8 Ω·cm or less. range. Note that the electrical resistivity of the conductive fiber is measured by the method described in Examples.

前記導電性繊維は、高導電性を有しながら小さい繊維径への加工を可能にする成形性を有することから、繊維径が好ましくは10μm以下、より好ましくは8μm以下のマイクロファイバーとすることもできる。 Since the conductive fiber has high conductivity and moldability that allows processing into small fiber diameters, it may be microfibers with a fiber diameter of preferably 10 μm or less, more preferably 8 μm or less. can.

本発明の一実施形態において、導電性繊維の製造方法は、前記熱可塑性樹脂(A)と、前記カーボンブラック(B)と、前記金属フタロシアニン(C)とを配合してなる前記導電性繊維の製造方法であって、少なくとも前記熱可塑性樹脂(A)と、前記カーボンブラック(B)と、前記金属フタロシアニン(C)と、前記熱可塑性樹脂(A)以外の熱可塑性樹脂(D)とを溶融混練し、熱可塑性樹脂組成物を得る工程1と、前記熱可塑性樹脂組成物を溶融紡糸する工程2と、前記熱可塑性樹脂(D)を溶解させるが前記熱可塑性樹脂(A)を溶解させない溶剤を前記熱可塑性樹脂(D)に接触させて、前記熱可塑性樹脂(D)を選択的に除去して導電性繊維を得る工程3と、を有し、前記カーボンブラック(B)がpH5以上であり、前記導電性繊維中の前記カーボンブラック(B)100質量部に対する前記金属フタロシアニン(C)の配合量が0.1質量部以上から50質量部以下までの範囲であり、前記熱可塑性樹脂(A)と前記カーボンブラック(B)と前記金属フタロシアニン(C)の合計配合量における前記カーボンブラック(B)と前記金属フタロシアニン(C)の合計配合量が、5質量%以上から20質量%以下までの範囲であり、繊維径が10μm以下である。 In one embodiment of the present invention, the method for producing a conductive fiber includes the method of manufacturing a conductive fiber comprising the thermoplastic resin (A), the carbon black (B), and the metal phthalocyanine (C). A manufacturing method, comprising: melting at least the thermoplastic resin (A), the carbon black (B), the metal phthalocyanine (C), and a thermoplastic resin (D) other than the thermoplastic resin (A). Step 1 of kneading to obtain a thermoplastic resin composition; Step 2 of melt-spinning the thermoplastic resin composition; and a solvent that dissolves the thermoplastic resin (D) but does not dissolve the thermoplastic resin (A). contacting the thermoplastic resin (D) to selectively remove the thermoplastic resin (D) to obtain conductive fibers, the carbon black (B) having a pH of 5 or more. The content of the metal phthalocyanine (C) based on 100 parts by mass of the carbon black (B) in the conductive fiber is in the range from 0.1 parts by mass to 50 parts by mass, and the thermoplastic resin ( The total blending amount of the carbon black (B) and the metal phthalocyanine (C) in the total blending amount of A), the carbon black (B), and the metal phthalocyanine (C) is from 5% by mass or more to 20% by mass or less. The fiber diameter is 10 μm or less.

前記工程1において、前記カーボンブラック(B)の形状は、粒子状であることが好ましい。平均粒径は、小さい繊維径への加工を可能にする成形性を発現させる観点、および高導電性を発現させる観点から、好ましくは30nm以下、より好ましくは28nm以下、さらに好ましくは25nm以下の範囲である。平均粒径の範囲の下限値は特に設定されないが、好ましくは10nm以上、より好ましくは15nm以上、さらに好ましくは18nm以上の範囲である。 In the step 1, the carbon black (B) preferably has a particulate shape. The average particle size is preferably in the range of 30 nm or less, more preferably 28 nm or less, still more preferably 25 nm or less, from the viewpoint of developing formability that enables processing into small fiber diameters and from the viewpoint of developing high conductivity. It is. Although the lower limit of the average particle diameter range is not particularly set, it is preferably 10 nm or more, more preferably 15 nm or more, and still more preferably 18 nm or more.

前記工程1において、前記金属フタロシアニン(C)の形状は、粒子状であることが好ましい。平均粒径は、特に限定されないが、小さい繊維径への加工を可能にする成形性を発現させる観点、および高導電性を発現させる観点から、好ましくは平均粒径10nm以上、より好ましくは30nm以上、さらに好ましくは、40nm以上から、好ましくは800nm以下、より好ましくは500nm以下、さらに好ましくは300nm以下までの範囲である。 In the step 1, the shape of the metal phthalocyanine (C) is preferably particulate. The average particle size is not particularly limited, but from the viewpoint of developing formability that enables processing into small fiber diameters and from the viewpoint of developing high conductivity, the average particle size is preferably 10 nm or more, more preferably 30 nm or more. , more preferably from 40 nm or more to 800 nm or less, more preferably 500 nm or less, even more preferably 300 nm or less.

前記熱可塑性樹脂(D)は、工程3で選択的に除去できる熱可塑性樹脂であれば特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリスチレン等が挙げられる。 The thermoplastic resin (D) is not particularly limited as long as it is a thermoplastic resin that can be selectively removed in step 3, and examples thereof include polyethylene, polypropylene, polystyrene, and the like.

前記工程1において、前記熱可塑性樹脂(A)と前記カーボンブラック(B)と前記金属フタロシアニン(C)の合計配合量100質量部に対する前記熱可塑性樹脂(D)の配合割合は特に限定されないが、好ましくは50質量部以上、より好ましくは70質量部以上から、好ましくは100質量部以下、より好ましくは90質量部以下までの範囲である。 In step 1, the blending ratio of the thermoplastic resin (D) to 100 parts by mass of the total blend of the thermoplastic resin (A), the carbon black (B), and the metal phthalocyanine (C) is not particularly limited; The amount ranges from preferably 50 parts by weight or more, more preferably 70 parts by weight or more, to preferably 100 parts by weight or less, more preferably 90 parts by weight or less.

前記工程1において、前記熱可塑性樹脂(A)、前記カーボンブラック(B)、および前記金属フタロシアニン(C)、および前記熱可塑性樹脂(D)、並びに必要に応じて任意の原料成分である前記その他の着色剤及び前記その他の添加剤(以下、単に「任意の原料成分」と称する)を、バルク状、ペレット状、チップ状などの様々な形態で、必要に応じて予備混合した後に、溶融混練機に投入して、該熱可塑性樹脂(A)および前記熱可塑性樹脂(D)の融点以上に加熱して、溶融混練する。溶融混練物の形態は本発明の効果を損ねなければ特に限定されず、溶融状態のまま後述する工程2へ供することもできるが、一旦、ストランド状に押出した後に切断してペレット状、チップ状などの顆粒状とすることが好ましい。 In the step 1, the thermoplastic resin (A), the carbon black (B), the metal phthalocyanine (C), the thermoplastic resin (D), and the other optional raw material components as necessary. The colorant and the other additives (hereinafter simply referred to as "optional raw material components") are premixed as necessary in various forms such as bulk, pellets, and chips, and then melt-kneaded. The mixture is put into a machine and heated to a temperature higher than the melting point of the thermoplastic resin (A) and the thermoplastic resin (D) to melt and knead. The form of the melt-kneaded product is not particularly limited as long as it does not impair the effects of the present invention, and it can be submitted to step 2 described below in a molten state, but it can be extruded into strands and then cut into pellets or chips. It is preferable to make it into granules such as.

前記工程1において、前記予備混合は、本発明の効果を損ねなければ特に限定されないが、リボンブレンター、ヘンシェルミキサー、Vブレンターなどを用いるドライブレンドを挙げることができる。また、前記溶融混練機としては、本発明の効果を損ねなければ特に限定されないが、バンバリーミキサー、ミキシングロール、単軸または2軸の押出機およびニーダーなどの加熱機構が備えられた溶融混練機を挙げることができる。なお、前記工程1の溶融混練機は、装置内に好ましくは100μm以下、より好ましくは50μm以下、さらに好ましくは30μm以下の範囲の目開きを有するフィルターを装填していてもよい。 In the step 1, the premixing is not particularly limited as long as it does not impair the effects of the present invention, but dry blending using a ribbon blender, Henschel mixer, V blender, etc. can be used. Further, the melt kneading machine is not particularly limited as long as it does not impair the effects of the present invention, but melt kneading machines equipped with a heating mechanism such as a Banbury mixer, a mixing roll, a single-screw or twin-screw extruder, and a kneader can be used. can be mentioned. Note that the melt-kneading machine used in Step 1 may be equipped with a filter having an opening in the range of preferably 100 μm or less, more preferably 50 μm or less, and still more preferably 30 μm or less.

前記工程2において、前記工程1で得られた前記熱可塑性樹脂組成物を溶融紡糸し、導電性材料を得る。また、本発明は、前記導電性材料を延伸してもよい。 In step 2, the thermoplastic resin composition obtained in step 1 is melt-spun to obtain a conductive material. Further, in the present invention, the conductive material may be stretched.

前記工程3において用いられる溶剤は、前記熱可塑性樹脂(D)を溶解させるが前記熱可塑性樹脂(A)を溶解させない溶剤であり、前記熱可塑性樹脂(D)に接触させて、前記導電性材料から前記熱可塑性樹脂(D)を選択的に除去できるものであれば特に限定されない。 The solvent used in the step 3 is a solvent that dissolves the thermoplastic resin (D) but does not dissolve the thermoplastic resin (A), and is a solvent that is brought into contact with the thermoplastic resin (D) to dissolve the conductive material. There is no particular limitation as long as the thermoplastic resin (D) can be selectively removed from the resin.

なお、本発明において繊維の形状としては特に限定されず、繊維長が長い、いわゆるフィラメント(長繊維)や、繊維長が短い、いわゆるステープル(短繊維)であってよい。前記繊維の繊維径(直径)は、用途に応じて異なり、任意の細さとすることができるが、通常、平均直径が、好ましくは0.01μm以上、より好ましくは0.05μm以上、さらに好ましくは0.1μm以上、最も好ましくは0.5μm以上から、10μm以下、好ましくは8μm以下、より好ましくは3μm以下、さらに好ましくは1μm以下までの範囲である。従来、繊維径が10μm以下、好ましくは8μm以下の範囲の繊維(本発明ではマイクロファイバーという)で、高い導電性を有するものは製造することは困難であったが、本発明によれば、高い導電性を有するマイクロファイバーを製造することができる。 In the present invention, the shape of the fiber is not particularly limited, and may be a so-called filament (long fiber) having a long fiber length, or a so-called staple (short fiber) having a short fiber length. The fiber diameter (diameter) of the fibers varies depending on the use and can be arbitrarily thin, but usually the average diameter is preferably 0.01 μm or more, more preferably 0.05 μm or more, and even more preferably The range is from 0.1 μm or more, most preferably 0.5 μm or more, to 10 μm or less, preferably 8 μm or less, more preferably 3 μm or less, and even more preferably 1 μm or less. Conventionally, it has been difficult to produce fibers with a fiber diameter of 10 μm or less, preferably 8 μm or less (referred to as microfibers in the present invention), which have high conductivity. Microfibers with electrical conductivity can be manufactured.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 The present invention will be explained in more detail below based on Examples, but the present invention is not limited by these Examples.

(実施例1)
6-ナイロン(宇部興産株式会社製「UBE NYLON 1013B」)が67質量%、カーボンブラック(三菱化学株式会社製#3050:pH7.0、揮発分0.5%、BET比表面積50m/g)が30質量%、銅フタロシアニンブルー(DIC株式会社製_Fastogen Blue PA5380)が3質量%となるように配合した原料を2軸押出機を用いて溶融混練し、マスターバッチを作成した。当該マスターバッチが16質量%、低密度ポリエチレンが42質量%、6-ナイロンが42質量%となるように配合、混合し、280℃で溶融紡糸を行い3倍延伸により5dtexのフィラメントを得た。得られたフィラメントを、トルエンを使いポリエチレンを溶出させてマイクロファイバーを作成し、抵抗率を測定したところ10Ω・cmとなる導電糸を得た。
(Example 1)
6-Nylon (“UBE NYLON 1013B” manufactured by Ube Industries, Ltd.) 67% by mass, carbon black (Mitsubishi Chemical Corporation #3050: pH 7.0, volatile content 0.5%, BET specific surface area 50 m 2 /g) and 30% by mass of copper phthalocyanine blue (Fastogen Blue PA5380 manufactured by DIC Corporation) were melt-kneaded using a twin-screw extruder to create a masterbatch. They were blended and mixed so that the masterbatch was 16% by mass, low-density polyethylene was 42% by mass, and 6-nylon was 42% by mass, melt-spun at 280° C., and 5 dtex filaments were obtained by drawing 3 times. The polyethylene was eluted from the obtained filament using toluene to prepare a microfiber, and when the resistivity was measured, a conductive thread having a resistivity of 10 6 Ω·cm was obtained.

(実施例2)
6-ナイロン(宇部興産株式会社製「UBE NYLON 1013B」)が72質量%、カーボンブラック(東海カーボン製トーカブラック#4300:pH5.0、揮発分0.7%、BET比表面積33m/g)が25質量%、銅フタロシアニンブルー(DIC株式会社製_Fastogen Blue PA5380)が3質量%となるように配合した原料を2軸押出機を用いて溶融混練し、マスターバッチを作成した。当該マスターバッチが16質量%、低密度ポリエチレンが42質量%、6-ナイロンが42質量%となるように配合、混合し、280℃で溶融紡糸を行い3倍延伸により5dtexのフィラメントを得た。得られたフィラメントを、トルエンを使いポリエチレンを溶出させてマイクロファイバーを作成し、抵抗率を測定したところ10Ω・cmとなる導電糸を得た。
(Example 2)
6-Nylon (“UBE NYLON 1013B” manufactured by Ube Industries, Ltd.) 72% by mass, carbon black (Tokai Carbon Toka Black #4300: pH 5.0, volatile content 0.7%, BET specific surface area 33 m 2 /g) A masterbatch was prepared by melt-kneading raw materials containing 25% by mass of copper phthalocyanine blue (Fastogen Blue PA5380 manufactured by DIC Corporation) and 3% by mass using a twin-screw extruder. They were blended and mixed so that the masterbatch was 16% by mass, low-density polyethylene was 42% by mass, and 6-nylon was 42% by mass, melt-spun at 280° C., and 5 dtex filaments were obtained by drawing 3 times. Microfibers were prepared by eluting polyethylene from the obtained filaments using toluene, and when the resistivity was measured, a conductive thread having a resistivity of 10 6 Ω·cm was obtained.

(実施例3)
6-ナイロン(宇部興産株式会社製「UBE NYLON 1013B」)が72質量%、カーボンブラック(オリオンエンジニアドカーボンズ製HIBLACK40B1:pH8.0、揮発分1.5%、BET比表面積150m/g)が25質量%、銅フタロシアニンブルー(DIC株式会社製_Fastogen Blue PA5380)が3質量%となるように配合した原料を2軸押出機を用いて溶融混練し、マスターバッチを作成した。当該マスターバッチが16質量%、低密度ポリエチレンが42質量%、6-ナイロンが42質量%となるように配合、混合し、280℃で溶融紡糸を行い3倍延伸により5dtexのフィラメントを得た。得られたフィラメントを、トルエンを使いポリエチレンを溶出させてマイクロファイバーを作成し、抵抗率を測定したところ10Ω・cmとなる導電糸を得た。
(Example 3)
6-72% by mass of nylon (“UBE NYLON 1013B” manufactured by Ube Industries, Ltd.), carbon black (HIBLACK40B1 manufactured by Orion Engineered Carbons: pH 8.0, volatile content 1.5%, BET specific surface area 150 m 2 /g) A masterbatch was prepared by melt-kneading raw materials containing 25% by mass of copper phthalocyanine blue (Fastogen Blue PA5380 manufactured by DIC Corporation) and 3% by mass using a twin-screw extruder. They were blended and mixed so that the masterbatch was 16% by mass, low-density polyethylene was 42% by mass, and 6-nylon was 42% by mass, melt-spun at 280° C., and 5 dtex filaments were obtained by drawing 3 times. Microfibers were prepared by eluting polyethylene from the obtained filaments using toluene, and when the resistivity was measured, a conductive thread having a resistivity of 10 6 Ω·cm was obtained.

(比較例1)
6-ナイロン(宇部興産株式会社製「UBE NYLON 1013B」)が70質量%、カーボンブラック(三菱化学製#3050:pH7.0、揮発分0.5%、BET比表面積50m/g)が30質量%となるように配合した原料を2軸押出機を用いて溶融混練し、マスターバッチを作成した。当該マスターバッチが16質量%、低密度ポリエチレンが42質量%、6-ナイロンが42質量%となるように配合、混合し、280℃で溶融紡糸を行い3倍延伸により5dtexのフィラメントを得た。得られたフィラメントを、トルエンを使いポリエチレンを溶出させてマイクロファイバーを作成し、抵抗率を測定したところ1012Ω・cmとなる導電糸を得た。
(Comparative example 1)
6-Nylon (“UBE NYLON 1013B” manufactured by Ube Industries, Ltd.) is 70% by mass, carbon black (Mitsubishi Chemical #3050: pH 7.0, volatile content 0.5%, BET specific surface area 50 m 2 /g) is 30% by mass. A masterbatch was prepared by melt-kneading the raw materials blended in mass % using a twin-screw extruder. They were blended and mixed so that the masterbatch was 16% by mass, low-density polyethylene was 42% by mass, and 6-nylon was 42% by mass, melt-spun at 280° C., and 5 dtex filaments were obtained by drawing 3 times. Microfibers were prepared by eluting the polyethylene from the obtained filaments using toluene, and when the resistivity was measured, a conductive thread having a resistivity of 10 12 Ω·cm was obtained.

(比較例2)
6-ナイロン(宇部興産株式会社製「UBE NYLON 1013B」)が67質量%、カーボンブラック(三菱化学製MA11:pH3.5、揮発分1.6%、BET比表面積92m/g)が30質量%、銅フタロシアニンブルー(DIC株式会社製_Fastogen Blue PA5380)が3質量%となるように配合した原料を2軸押出機を用いて溶融混練し、マスターバッチを作成した。当該マスターバッチが16質量%、低密度ポリエチレンが42質量%、6-ナイロンが42質量%となるように配合、混合し、280℃で溶融紡糸を行い3倍延伸により5dtexのフィラメントを得た。得られたフィラメントを、トルエンを使いポリエチレンを溶出させてマイクロファイバーを作成し、抵抗率を測定したところ1014Ω・cmとなる導電糸を得た。
(Comparative example 2)
6-67% by mass of nylon (“UBE NYLON 1013B” manufactured by Ube Industries, Ltd.), 30% by mass of carbon black (MA11 manufactured by Mitsubishi Chemical: pH 3.5, volatile content 1.6%, BET specific surface area 92 m 2 /g) % and copper phthalocyanine blue (Fastogen Blue PA5380 manufactured by DIC Corporation) at 3% by mass, the raw materials were melt-kneaded using a twin-screw extruder to create a masterbatch. They were blended and mixed so that the masterbatch was 16% by mass, low-density polyethylene was 42% by mass, and 6-nylon was 42% by mass, melt-spun at 280° C., and 5 dtex filaments were obtained by drawing 3 times. Microfibers were prepared by eluting the polyethylene from the obtained filaments using toluene, and when the resistivity was measured, a conductive thread having a resistivity of 10 14 Ω·cm was obtained.

なお、上記の評価結果は以下の測定例による。 Note that the above evaluation results are based on the following measurement examples.

(測定例1)抵抗率
巾2cm長さ4cmに切って試験片とし、長さ方向の両端1.5cmに導電性接着剤を塗布し、その部分を金属電極で挟み、直流1kVを印加して抵抗を測定した。
(Measurement example 1) Resistivity A test piece was cut into 2 cm width and 4 cm length. Conductive adhesive was applied to 1.5 cm of both ends in the length direction, and the part was sandwiched between metal electrodes, and a DC voltage of 1 kV was applied. Resistance was measured.

Claims (4)

熱可塑性樹脂(A)と、カーボンブラック(B)と、金属フタロシアニン(C)とを配合してなる導電性繊維であって、
前記カーボンブラック(B)がpH5以上であり、
前記カーボンブラック(B)100質量部に対する前記金属フタロシアニン(C)の配合量が0.1質量部以上から50質量部以下までの範囲であり、
前記熱可塑性樹脂(A)と前記カーボンブラック(B)と前記金属フタロシアニン(C)の合計配合量における前記カーボンブラック(B)と前記金属フタロシアニン(C)の合計配合量が、5質量%以上から20質量%以下までの範囲であり、
繊維径が10μm以下である、導電性繊維。
A conductive fiber formed by blending a thermoplastic resin (A), carbon black (B), and metal phthalocyanine (C),
The carbon black (B) has a pH of 5 or more,
The blending amount of the metal phthalocyanine (C) with respect to 100 parts by mass of the carbon black (B) ranges from 0.1 parts by mass or more to 50 parts by mass or less,
The total blending amount of the carbon black (B) and the metal phthalocyanine (C) in the total blending amount of the thermoplastic resin (A), the carbon black (B), and the metal phthalocyanine (C) is 5% by mass or more. The range is up to 20% by mass,
A conductive fiber having a fiber diameter of 10 μm or less.
前記カーボンブラック(B)がpH5~10であり、かつ揮発分量が1.5%以下である、カーボンブラックを含む、請求項1に記載の導電性繊維。 The conductive fiber according to claim 1, wherein the carbon black (B) contains carbon black having a pH of 5 to 10 and a volatile content of 1.5% or less. 電気抵抗率が10Ω・cm以上から10Ω・cm以下までの範囲である、請求項1又は2に記載の導電性繊維。 The conductive fiber according to claim 1 or 2, having an electrical resistivity in a range from 10 2 Ω·cm to 10 9 Ω·cm. 熱可塑性樹脂(A)と、カーボンブラック(B)と、金属フタロシアニン(C)とを配合してなる導電性繊維の製造方法であって、
少なくとも前記熱可塑性樹脂(A)と、前記カーボンブラック(B)と、前記金属フタロシアニン(C)と、前記熱可塑性樹脂(A)以外の熱可塑性樹脂(D)とを溶融混練し、熱可塑性樹脂組成物を得る工程1と、
前記熱可塑性樹脂組成物を溶融紡糸する工程2と、
前記熱可塑性樹脂(D)を溶解させるが前記熱可塑性樹脂(A)を溶解させない溶剤を前記熱可塑性樹脂(D)に接触させて、前記熱可塑性樹脂(D)を選択的に除去して導電性繊維を得る工程3と、を有し、
前記カーボンブラック(B)がpH5以上であり、
前記導電性繊維中の前記カーボンブラック(B)100質量部に対する前記金属フタロシアニン(C)の配合量が0.1質量部以上から50質量部以下までの範囲であり、
前記熱可塑性樹脂(A)と前記カーボンブラック(B)と前記金属フタロシアニン(C)の合計配合量における前記カーボンブラック(B)と前記金属フタロシアニン(C)の合計配合量が、5質量%以上から20質量%以下までの範囲である、繊維径が10μm以下の導電性繊維の製造方法。
A method for producing a conductive fiber comprising a thermoplastic resin (A), carbon black (B), and metal phthalocyanine (C), the method comprising:
At least the thermoplastic resin (A), the carbon black (B), the metal phthalocyanine (C), and a thermoplastic resin (D) other than the thermoplastic resin (A) are melt-kneaded to form a thermoplastic resin. Step 1 of obtaining a composition;
Step 2 of melt-spinning the thermoplastic resin composition;
A solvent that dissolves the thermoplastic resin (D) but does not dissolve the thermoplastic resin (A) is brought into contact with the thermoplastic resin (D) to selectively remove the thermoplastic resin (D) and thereby conduct the thermoplastic resin (D). Step 3 of obtaining sexual fibers,
The carbon black (B) has a pH of 5 or more,
The amount of the metal phthalocyanine (C) mixed with respect to 100 parts by mass of the carbon black (B) in the conductive fiber is in the range of 0.1 parts by mass or more and 50 parts by mass or less,
The total blending amount of the carbon black (B) and the metal phthalocyanine (C) in the total blending amount of the thermoplastic resin (A), the carbon black (B), and the metal phthalocyanine (C) is 5% by mass or more. A method for producing conductive fibers having a fiber diameter of 10 μm or less, in a range of up to 20% by mass.
JP2019114169A 2019-06-19 2019-06-19 Conductive fiber and its manufacturing method Active JP7358796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019114169A JP7358796B2 (en) 2019-06-19 2019-06-19 Conductive fiber and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019114169A JP7358796B2 (en) 2019-06-19 2019-06-19 Conductive fiber and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021001406A JP2021001406A (en) 2021-01-07
JP7358796B2 true JP7358796B2 (en) 2023-10-11

Family

ID=73993868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019114169A Active JP7358796B2 (en) 2019-06-19 2019-06-19 Conductive fiber and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7358796B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146624A (en) 2000-11-06 2002-05-22 Teijin Ltd Spun-dyed ultrafine fiber and method for producing the same
JP2004525276A (en) 2001-04-20 2004-08-19 ソリユテイア・インコーポレイテツド Carbon black pigmented yarn with improved physical properties
JP2005273054A (en) 2004-03-24 2005-10-06 Nippon Zeon Co Ltd Electrically conductive fiber, raised fabric for electrically conductive brush, and electrically conductive brush
JP2020176192A (en) 2019-04-17 2020-10-29 Dic株式会社 Masterbatch for resin coloration, aromatic polyester resin composition, molding and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841293B2 (en) * 1978-12-15 1983-09-10 大日本インキ化学工業株式会社 How to color thermoplastic resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146624A (en) 2000-11-06 2002-05-22 Teijin Ltd Spun-dyed ultrafine fiber and method for producing the same
JP2004525276A (en) 2001-04-20 2004-08-19 ソリユテイア・インコーポレイテツド Carbon black pigmented yarn with improved physical properties
JP2005273054A (en) 2004-03-24 2005-10-06 Nippon Zeon Co Ltd Electrically conductive fiber, raised fabric for electrically conductive brush, and electrically conductive brush
JP2020176192A (en) 2019-04-17 2020-10-29 Dic株式会社 Masterbatch for resin coloration, aromatic polyester resin composition, molding and method for producing the same

Also Published As

Publication number Publication date
JP2021001406A (en) 2021-01-07

Similar Documents

Publication Publication Date Title
JP5216009B2 (en) Improved thermally conductive polymer PTC composition
EP2176328A1 (en) Thermally conductive and electrically insulating thermoplastic compounds
WO2009040774A1 (en) Thermoplastic composition and method for making' thereof
JP5460717B2 (en) Poly (arylene ether) / polyamide composition and production method
WO2013125280A1 (en) Production method for conductive resin composition, and conductive resin composition
JP2005015573A (en) Antistatic resin composition
JP7358796B2 (en) Conductive fiber and its manufacturing method
CN111607222A (en) Master batch for resin coloring, polyamide resin composition, molded article, and methods for producing these
Fu et al. Preparation and properties of poly (ether‐ester‐amide)/poly (acrylonitrile‐co‐butadiene‐co‐styrene) antistatic blends
JP3960096B2 (en) Conductive resin composition and method for producing the same
JP5132899B2 (en) Liquid crystalline resin composition
JP2021001240A (en) Resin coloring masterbatch, polyamide resin composition, molded article, and production methods of these
JP2009197117A (en) Thermoplastic resin composition and molded article thereof
JP6852223B2 (en) Conductive resin composition and its manufacturing method
CN115594974A (en) Compatibilized polymer composition
JP2017179369A (en) Electroconductive resin composite and electroconductive resin composition having excellent impact strength, and method of producing the same
CN109071937B (en) Compatibilized polymer composition
JPH1017771A (en) Polyphenylene sulfide resin composition
JP4310133B2 (en) the film
JP4235878B2 (en) Method for producing heat-resistant polyamide resin composition
JP4429706B2 (en) Conductive thermoplastic resin composition and molded article using the same
JPH05194842A (en) Flame-retarding polyamide resin composition
JPH056587B2 (en)
KR100732320B1 (en) A method of preparing conductive resin composition and molded articles using it
CN104693739A (en) PC and PET alloy material with glass fiber enhanced antistatic performance

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230911

R151 Written notification of patent or utility model registration

Ref document number: 7358796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151