JP7358699B2 - 可逆的固体酸化物電池用プロトン導電性電解質 - Google Patents
可逆的固体酸化物電池用プロトン導電性電解質 Download PDFInfo
- Publication number
- JP7358699B2 JP7358699B2 JP2022580107A JP2022580107A JP7358699B2 JP 7358699 B2 JP7358699 B2 JP 7358699B2 JP 2022580107 A JP2022580107 A JP 2022580107A JP 2022580107 A JP2022580107 A JP 2022580107A JP 7358699 B2 JP7358699 B2 JP 7358699B2
- Authority
- JP
- Japan
- Prior art keywords
- bhcyyb
- bahf
- bzcyyb
- electrolyte
- proton
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
- H01M8/126—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
- Fuel Cell (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
本明細書に開示されるのは、固体酸化物燃料電池で使用するためのプロトン導電性電解質を含むバリウムハフニウム酸塩である。開示される電解質はまた、電気分解動作及び二酸化炭素耐性に有用である。
本明細書に記載の材料、化合物、組成物、物品、及び方法は、開示された主題の特定の態様の以下の詳細な説明及びそれに含まれる実施例を参照することによって、より容易に理解することができる。
本明細書及び以下の特許請求の範囲では、以下の意味を有するように定義されるいくつかの用語を参照する。
本明細書における全てのパーセンテージ、比率、及び割合は、別段の指定がない限り、重量比である。全ての温度は、特に明記しない限り、摂氏(℃)である。
BaHfxCe0.8-xY0.1Yb0.1O3-δ
式中、添え字xは、約0.1~約0.5であり、便宜上、開示されるバリウム-ハフネートはBHCYYbとも表される。図2Aに示されるように、BHCYYbは、類似のドーパントレベルでのBZCYYb(ジルコニウム類似体)よりも高い安定性を有し、低ドーパントレベルでの同様の又はより高い導電率を有する。
BaMO3+CO2→BaCO3+MO2(1)
調製
BaHfxCe0.8-xY0.1Yb0.1O3(BHCYYb)及びBaZrxCe0.8-xY0.1Yb0.1O3(BZCYYB)粉末を、固体反応プロセスを使用して合成した(L.Yang et al.,Science(80).2009,326,126参照)。適切なモル比のBaCO3、HfO2又はZrO2、CeO2、Y2O3、及びYb2O3を十分に混合し、大きなパックにプレスし、1100℃で12時間焼成した。得られた粉末を、それぞれ5分の4サイクル、各サイクル間10分の休憩で、850RPMで高エネルギーボールミルした。ボールミルした粉末を再び大きなパックに押し付け、1100℃で10時間焼成し、続いて1450℃で5時間焼成した。最後に、各サイクル間10分の休憩で、粉末を各5分の6サイクルにわたって850RPMで高エネルギーボールミルした。1重量%のNiOを焼結助剤として添加した。粉末を590MPaで13ミリメートルのダイに押し込むことによって緻密ペレットが得られた。次いで、グリーンペレットを1450℃で5時間焼成した。
イオン導電率を求めるために、銀ペースト(燃料電池材料)で試料に銀電極を付着させ、2時間にわたり800℃に焼成した。導電率を、EG&G263Aポテンショスタット及びSolartron SI1255周波数応答分析器を使用して測定した。TGA測定は、1℃/分の冷却速度でCO2雰囲気中のTA Instruments SDT Q600で行った。CuKα1放射線を使用したPanalytical X’Pert Pro Alpha-1及び20~80の2θの範囲のXCelerator検出器で、0.013のo2θのステップサイズ及びステップ当たり68.6秒の有効期間でX線回折測定を行った。絞り込みは、Panalytical HighScore Plusソフトウェアを使用して実施した。走査型電子顕微鏡(SEM,Hitachi SU8010)を使用して、完全電池の断面顕微構造及び形態を調査した。
Ni-BHCYYb/BZCYYb負極支持層、Ni-BHCYYb/BZCYYb負極機能層、及びBHCYYb/BZCYYb電解質層の構成を有する半電池を、共テープ鋳造及び共焼結技術によって作製した。具体的には、BHCYYb/BZCYYb電解質粉末とBHCYYb/BZCYYb及びNiO粉末(NiO:電解質粉末=6:4重量比)との混合物を溶媒中で混合し、それぞれのスラリーを形成した。テープ鋳造用のスラリーはエタノール系であり、粉末に加えて分散剤、結合剤、可塑剤及び他の添加剤が含まれていた。電解質層を最初にマイラフィルム上に鋳造した。乾燥後、負極機能層を電解質層の上に鋳造し、続いて負極支持層を鋳造した。次いで、三層テープを乾燥させ、空気中で、1400℃で5時間共焼成した。有効面積が0.28cm2のPrBa0.5Sr0.5Co1.5Fe0.5O5+δ(PBSCF)陽極を、PBSCF粉末及びテルピネオール(5wt%エチルセルロース)の混合物を電解質層にスクリーン印刷し、950℃で2時間、空気中で焼成することによって調製した。PBSCF粉末を燃焼法により合成した。化学量論量のPr(NO3)3・6H2O、Ba(NO3)2、Sr(NO3)2、Co(NO3)2・6H2O,及びFe(NO3)3・6H2Oを、適切な量のエチレングリコール及び無水クエン酸(1:1比)を有する蒸留水に溶解した。溶液を空気中で350℃まで加熱し、続いて燃焼させて微粉末を形成した。次いで、得られた粉末を粉砕し、900℃で2時間再びか焼した。
Claims (4)
- 以下の式を有するプロトン導電性電解質であって、
BaHfxCe0.8-xY0.1Yb0.1O3-δ
式中、添え字xが、0.1~0.5である、プロトン導電性電解質。 - BaHf0.1Ce0.7Y0.1Yb0.1O3、BaHf0.2Ce0.6Y0.1Yb0.1O3、BaHf0.3Ce0.5Y0.1Yb0.1O3、BaHf0.4Ce0.4Y0.1Yb0.1O3、又はBaHf0.5Ce0.3Y0.1Yb0.1O3から選択される、請求項1に記載の電解質。
- 以下の式を有するバリウムハフニウムプロトン導電性電解質を含む固体燃料電池であって、
BaHfxCe0.8-xY0.1Yb0.1O3-δ
式中、添え字xが、0.1~0.5である、固体燃料電池。 - 前記バリウムハフニウムプロトン導電性電解質が、BaHf0.1Ce0.7Y0.1Yb0.1O3、BaHf0.2Ce0.6Y0.1Yb0.1O3、BaHf0.3Ce0.5Y0.1Yb0.1O3、BaHf0.4Ce0.4Y0.1Yb0.1O3、又はBaHf0.5Ce0.3Y0.1Yb0.1O3から選択される、請求項3に記載の固体燃料電池。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063042599P | 2020-06-23 | 2020-06-23 | |
US63/042,599 | 2020-06-23 | ||
PCT/US2021/035570 WO2021262410A1 (en) | 2020-06-23 | 2021-06-03 | Proton-conducting electrolytes for reversible solid oxide cells |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023529014A JP2023529014A (ja) | 2023-07-06 |
JP7358699B2 true JP7358699B2 (ja) | 2023-10-11 |
Family
ID=79281712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022580107A Active JP7358699B2 (ja) | 2020-06-23 | 2021-06-03 | 可逆的固体酸化物電池用プロトン導電性電解質 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11495818B2 (ja) |
EP (1) | EP4147288A4 (ja) |
JP (1) | JP7358699B2 (ja) |
KR (1) | KR102575165B1 (ja) |
CA (1) | CA3185740C (ja) |
WO (1) | WO2021262410A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008239353A (ja) | 2007-03-23 | 2008-10-09 | Toyota Central R&D Labs Inc | 多孔質支持体/水素選択透過膜基板及び多孔体支持型燃料電池 |
JP2017076520A (ja) | 2015-10-14 | 2017-04-20 | 株式会社ノリタケカンパニーリミテド | 固体酸化物形燃料電池用の電極材料とこれを用いた固体酸化物形燃料電池 |
CN110970148A (zh) | 2019-12-24 | 2020-04-07 | 东北大学 | 一种复合氧化物质子导体材料及其制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2717285A1 (en) | 2010-02-09 | 2011-08-09 | The Governors Of The University Of Alberta | Solid oxide fuel cell reactor |
WO2013048654A1 (en) * | 2011-09-28 | 2013-04-04 | Phillips 66 Company | Composite solid oxide fuel cell electrolyte |
WO2019107194A1 (ja) | 2017-11-29 | 2019-06-06 | 国立大学法人京都大学 | プロトン伝導体、プロトン伝導型セル構造体、水蒸気電解セルおよび水素極-固体電解質層複合体の製造方法 |
-
2021
- 2021-06-03 CA CA3185740A patent/CA3185740C/en active Active
- 2021-06-03 KR KR1020237001895A patent/KR102575165B1/ko active IP Right Grant
- 2021-06-03 US US17/337,463 patent/US11495818B2/en active Active
- 2021-06-03 EP EP21830226.3A patent/EP4147288A4/en active Pending
- 2021-06-03 WO PCT/US2021/035570 patent/WO2021262410A1/en unknown
- 2021-06-03 JP JP2022580107A patent/JP7358699B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008239353A (ja) | 2007-03-23 | 2008-10-09 | Toyota Central R&D Labs Inc | 多孔質支持体/水素選択透過膜基板及び多孔体支持型燃料電池 |
JP2017076520A (ja) | 2015-10-14 | 2017-04-20 | 株式会社ノリタケカンパニーリミテド | 固体酸化物形燃料電池用の電極材料とこれを用いた固体酸化物形燃料電池 |
CN110970148A (zh) | 2019-12-24 | 2020-04-07 | 东北大学 | 一种复合氧化物质子导体材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20230018527A (ko) | 2023-02-07 |
EP4147288A1 (en) | 2023-03-15 |
CA3185740A1 (en) | 2021-12-30 |
KR102575165B1 (ko) | 2023-09-07 |
JP2023529014A (ja) | 2023-07-06 |
US20220123341A1 (en) | 2022-04-21 |
EP4147288A4 (en) | 2024-07-10 |
WO2021262410A1 (en) | 2021-12-30 |
US11495818B2 (en) | 2022-11-08 |
CA3185740C (en) | 2023-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Murphy et al. | A new family of proton‐conducting electrolytes for reversible solid oxide cells: BaHfxCe0. 8− xY0. 1Yb0. 1O3− δ | |
Lyagaeva et al. | A detailed analysis of thermal and chemical compatibility of cathode materials suitable for BaCe0. 8Y0. 2O3− δ and BaZr0. 8Y0. 2O3− δ proton electrolytes for solid oxide fuel cell application | |
Fabbri et al. | Tailoring the chemical stability of Ba (Ce0. 8− xZrx) Y0. 2O3− δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs) | |
Tang et al. | Understanding of A-site deficiency in layered perovskites: promotion of dual reaction kinetics for water oxidation and oxygen reduction in protonic ceramic electrochemical cells | |
Zuo et al. | Ba (Zr0. 1Ce0. 7Y0. 2) O3–δ as an electrolyte for low‐temperature solid‐oxide fuel cells | |
Leonard et al. | Efficient intermediate-temperature steam electrolysis with Y: SrZrO 3–SrCeO 3 and Y: BaZrO 3–BaCeO 3 proton conducting perovskites | |
Liu et al. | Enhancing sinterability and electrochemical properties of Ba (Zr0. 1Ce0. 7Y0. 2) O3-δ proton conducting electrolyte for solid oxide fuel cells by addition of NiO | |
Yang et al. | Electrical conductivity and electrochemical performance of cobalt-doped BaZr0. 1Ce0. 7Y0. 2O3− δ cathode | |
Danilov et al. | Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes | |
WO2010051441A1 (en) | Chemical compositions, methods of making the chemical compositions, and structures made from the chemical compositions | |
Zhang et al. | Acceptor-doped La1. 9M0. 1Ce2O7 (M= Nd, Sm, Dy, Y, In) proton ceramics and in-situ formed electron-blocking layer for solid oxide fuel cells applications | |
Li et al. | Defects evolution of Ca doped La2NiO4+ δ and its impact on cathode performance in proton-conducting solid oxide fuel cells | |
Tang et al. | The effect of an anode functional layer on the steam electrolysis performances of protonic solid oxide cells | |
WO2013048722A1 (en) | Optimization of bzcyyb synthesis | |
Ullah et al. | Tri-doped ceria (M0. 2Ce0. 8O2-δ, M= Sm0. 1, Ca0. 05, Gd0. 05) electrolyte for hydrogen and ethanol-based fuel cells | |
Wang et al. | Nano-LaCoO3 infiltrated BaZr0. 8Y0. 2O3− δ electrodes for steam splitting in protonic ceramic electrolysis cells | |
JP5598920B2 (ja) | 固体酸化物燃料電池用電解質緻密材料の製造方法 | |
Dai et al. | Manipulating Nb-doped SrFeO 3-δ with excellent performance for proton-conducting solid oxide fuel cells. | |
Lee et al. | Proton-conducting Ba1− xKxCe0. 6Zr0. 2Y0. 2O3− δ oxides synthesized by sol–gel combined with composition-exchange method | |
Akbar et al. | Tuning an ionic-electronic mixed conductor NdBa0. 5Sr0. 5Co1. 5Fe0. 5O5+ δ for electrolyte functions of advanced fuel cells | |
JP5196502B2 (ja) | Socにおける電極材料としての使用に適した複合材料 | |
Xie et al. | The chemical stability and conductivity of BaCe0. 9− xYxNb0. 1O3− σ proton-conductive electrolyte for SOFC | |
Almar et al. | Synthesis and characterization of robust, mesoporous electrodes for solid oxide fuel cells | |
Oh et al. | Recent progress in oxygen electrodes for protonic ceramic electrochemical cells | |
JP7358699B2 (ja) | 可逆的固体酸化物電池用プロトン導電性電解質 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230105 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20230105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230711 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230816 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230901 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7358699 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |