JP7357067B2 - ロータリエンコーダ校正のためのデバイスおよび方法 - Google Patents

ロータリエンコーダ校正のためのデバイスおよび方法 Download PDF

Info

Publication number
JP7357067B2
JP7357067B2 JP2021550198A JP2021550198A JP7357067B2 JP 7357067 B2 JP7357067 B2 JP 7357067B2 JP 2021550198 A JP2021550198 A JP 2021550198A JP 2021550198 A JP2021550198 A JP 2021550198A JP 7357067 B2 JP7357067 B2 JP 7357067B2
Authority
JP
Japan
Prior art keywords
platform
axis
sensor
magnets
output signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021550198A
Other languages
English (en)
Other versions
JP2022524310A (ja
Inventor
ロビンソン,クレイグ
バーグ,アレック
Original Assignee
ウェイモ エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウェイモ エルエルシー filed Critical ウェイモ エルエルシー
Publication of JP2022524310A publication Critical patent/JP2022524310A/ja
Application granted granted Critical
Publication of JP7357067B2 publication Critical patent/JP7357067B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/001Calibrating encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/22Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

関連出願の相互参照
本出願は、2019年3月14日に出願された米国仮特許出願第62/818,738号の優先権を主張し、その全体が参照により本明細書に組み込まれる。
本明細書に別段の指示がない限り、本項に記載の資料は、本出願の特許請求の範囲に対する先行技術ではなく、本項に含めることよって先行技術であると認められるものではない。
回転継手デバイスは、2つの構造(例えば、ステータとロータ)の間に相対回転を引き起こすことによって動作する電気機械システムにおける1つの構造と別の構造との間の動力および/または電気信号の伝達によく使用される。回転継手デバイスを採用する例示的なシステムとしては、とりわけ、リモート感知システム(例えば、RADAR、LIDARなど)およびロボットシステム(例えば、マイクロフォン、スピーカ、ロボット構成要素などを方向付けるための)が挙げられる。
一例では、方法が開示される。本方法は、アクチュエータを制御するための校正制御信号を生成することを伴う。アクチュエータは、回転軸を中心に第1のプラットフォームを回転させるように構成されている。校正制御信号により、アクチュエータは、軸を中心に完全に少なくとも1回転、第1のプラットフォームを回転させる。本方法はまた、エンコーダからエンコーダ出力信号を受信することを伴う。エンコーダ出力信号は、軸を中心とした第1のプラットフォームの角度位置を示す。本方法はまた、第1のプラットフォームに取り付けられた配向センサーからセンサー出力信号を受信することを伴う。センサー出力信号は、配向センサーの配向の変化の速度を示す。本方法はまた、完全な少なくとも1回の回転中に配向センサーから受信された所与のセンサー出力信号に基づいて校正データを判定することを伴う。校正データは、エンコーダ出力信号を、軸を中心とした第1のプラットフォームの角度位置の校正された測定値にマッピングするためのものである。
別の例では、システムが開示される。本システムは、第1のプラットフォームと、軸を中心に第1のプラットフォームを回転させるように構成されているアクチュエータとを含む。本システムはまた、軸を中心とした第1のプラットフォームの角度位置を示すエンコーダ出力信号を提供するように構成されているエンコーダを含む。本システムはまた、第1のプラットフォームに取り付けられ、かつ配向センサーの配向の変化の速度を示すセンサー出力信号を提供するように構成されている配向センサーを含む。本システムはまた、システムに動作を実行させるように構成されているコントローラを含む。動作は、アクチュエータを制御するための校正制御信号の生成することを含む。校正制御信号により、アクチュエータは、軸を中心に完全に少なくとも1回、第1のプラットフォームを回転させる。動作はまた、完全な少なくとも1回の回転中に配向センサーから受信した所与のセンサー出力信号に基づいて較正データを判定することを含む。校正データは、エンコーダ出力信号を、軸を中心とした第1のプラットフォームの角度位置の校正された測定値にマッピングするためのものである。
さらに別の例では、非一時的なコンピュータ可読媒体が開示される。非一時的なコンピュータ可読媒体は、コンピューティングシステムの1つ以上のプロセッサによって実行されると、コンピューティングシステムに動作を実行させる命令を記憶する。動作は、軸を中心にプラットフォームを回転させるように構成されているアクチュエータを制御するための校正制御信号を生成することを含む。校正制御信号により、アクチュエータに、軸を中心に完全に少なくとも1回転、プラットフォームを回転させる。動作はまた、エンコーダからエンコーダ出力信号を受信することを含む。エンコーダ出力信号は、軸を中心としたプラットフォームの角度位置を示す。動作はまた、プラットフォームに取り付けられた配向センサーからセンサー出力信号を受信することを含む。センサー出力信号は、配向センサーの配向の変化の速度を示す。動作はまた、完全な少なくとも1回の回転中に配向センサーによって提供される所与のセンサー出力信号に基づいて校正データを判定することを含む。校正データは、エンコーダ出力信号を、軸を中心としたプラットフォームの角度位置の校正された測定値にマッピングするためのものである。
さらに別の例では、システムが開示される。本システムは、アクチュエータを制御するための校正制御信号を生成するための手段を含む。アクチュエータは、回転軸を中心に第1のプラットフォームを回転させるように構成されている。校正制御信号により、アクチュエータに、軸を中心に完全に少なくとも1回転、第1のプラットフォームを回転させる。本システムはまた、エンコーダからエンコーダ出力信号を受信するための手段を含む。エンコーダ出力信号は、軸を中心とした第1のプラットフォームの角度位置を示す。本システムはまた、第1のプラットフォームに取り付けられた配向センサーからセンサー出力信号を受信するための手段を含む。センサー出力信号は、配向センサーの配向の変化の速度を示す。本システムはまた、完全な少なくとも1回の回転中に配向センサーから受信された所与のセンサー出力信号に基づいて校正データを判定するための手段を備える。校正データは、エンコーダ出力信号を、軸を中心とした第1のプラットフォームの角度位置の校正された測定値にマッピングするためのものである。
これらの態様および他の態様、利点、ならびに代替物は、当業者には、以下の詳細な説明を添付の図を適宜参照して読み取ることにより明らかになるであろう。
例示的な実施形態による車両を示す。 図1Aの車両の別の例示である。 例示的な実施形態による、車両の簡略ブロック図である。 例示的な実施形態による、回転継手を含むデバイスの簡略ブロック図である。 例示的な実施形態による、回転継手を含むデバイスの側面図を示す。 図4Aのデバイスの断面図を示す。 図4Aのデバイスの別の断面図を示す。 図4Aのデバイスのさらに別の断面図を示す。 例示的な実施形態による、ロータプラットフォームの配向と磁場センサーからの出力との間の関係の概念図である。 例示的な実施形態による、回転継手を含む別のデバイスの断面図である。 例示的な実施形態による、回転継手を含むさらに別のデバイスの断面図である。 例示的な実施形態による、回転継手を含むさらに別のデバイスの断面図である。 例示的な実施形態による、調整可能なセンサープラットフォームを含むセンサーユニットの簡略ブロック図である。 例示的な実施形態による、方法のフローチャートである。 例示的な実施形態による、別の方法のフローチャートである。
以下の詳細な説明は、添付の図を参照して、開示された実装形態の様々な特徴および機能を記載する。図では、特に文脈が規定しない限り、同様の記号は、同様の構成要素を特定する。本明細書に記載される例示的な実装形態は、限定することを意図していない。開示された実装形態の特定の態様を、多種多様な異なる構成で配置および組み合わせ得ることが当業者には容易に理解され得る。
I.概要
一部のシナリオでは、例えば、ジャイロスコープなどの配向センサーによって示される測定値は、誤差が発生しやすい可能性がある。ジャイロスコープの測定誤差またはオフセットの例には、とりわけ、スケールファクタ誤差および/またはバイアス誤差が含まれることがある。バイアス誤差には、ジャイロスコープによって示される測定値とは独立した誤差またはオフセットが含まれることがある。スケールファクタ誤差には、ジャイロスコープによって示される測定値が増加するにつれて(線形または非線形に)増加する誤差またはオフセットが含まれることがある。センサー測定誤差は、他の要因中でもとりわけ、センサーの物理的特性(例えば、半導体の特性、機械的特性など)、個々のセンサー間の製造上のばらつき、および/またはセンサー動作に影響を与える環境要因(例えば、温度、湿度など)に起因することがある。
いくつかの実装形態では、センサーは、そのような誤差またはオフセットを測定または他の方法でモデル化するように校正することができる。次に、得られた校正データを使用して、センサーからの将来の出力を修正し、これらの誤差の影響を軽減することができる。しかしながら、一部の例では、これらの誤差の範囲、大きさ、および/または他の特性は、経時的に変化することがある(例えば、ドリフト)。その結果、例えば、校正されたセンサー測定値は、校正プロセスが実行された時点から特定の時間が経過した後、場合によっては、誤差が発生しやすくなることがある。
さらに、一部のシナリオでは、センサー校正プロセスは、時間がかかり、および/または高い校正(例えば、メンテナンス)コストに関連する可能性がある。例として、センサーが車、トラック、ボート、または他の車両などの車両に取り付けられているシナリオを考える。このシナリオにおいてセンサーを校正することは、例えば、車両をメンテナンス場所まで運転するか、他の方法で輸送すること、車両からセンサーを取り外すこと、センサーを校正またはテストプラットフォームに取り付けること、一連のセンサー入力をセンサーに適用して(例えば、所定の回転速度のシーケンスに従って配向センサーを回転させるなど)校正データを生成すること、テストプラットフォームからセンサーを取り外すこと、センサーを車両に再度取り付けること、および車両をメンテナンス場所から移動させるか、他の方法で輸送することを伴うことがある。
したがって、本開示は、センサー測定誤差の校正および/または軽減のための追加および/または代替の実装形態を含み得る。
一実装形態では、回転継手デバイスは、第1のプラットフォーム(例えば、ロータプラットフォーム)の第1の側が、第1のプラットフォームの回転に応答して、第2のプラットフォーム(例えば、ステータプラットフォーム)の第2の側に対して所与の距離内に留まるように配置された2つのプラットフォームを含む。一例では、2つのプラットフォームは、2つのプラットフォームの共通軸を中心とした第1のプラットフォームの回転に応答して、(所与の距離だけ離れた)2つのそれぞれの側の間の重なりを維持するために、共通軸を中心に同心に配置された円形ディスクを含み得る。
いくつかの例では、デバイスはまた、プラットフォーム軸を中心に第1のプラットフォームを回転させるアクチュエータと、プラットフォーム軸を中心に第1のプラットフォームの角度位置を測定するエンコーダと、第1のプラットフォームに取り付けられた配向センサーと、を含む。配向センサーは、配向センサーの配向の変化の速度の指示を提供するように構成されている。例えば、配向センサーは、第1のプラットフォームの回転軸と整列され、および/またはそれと実質的に平行である基準軸を有するジャイロスコープを含み得る。したがって、この例では、ジャイロスコープの出力は、プラットフォーム軸を中心とした第1のプラットフォームの角度位置の変化も示し得る。
いくつかの例では、デバイスはまた、デバイスを感知モードまたは校正モードで動作させるように構成されているコントローラ(例えば、コンピューティングデバイス、論理回路、制御システムなど)を含む。
第1の例では、感知モードにある間、コントローラは、アクチュエータを制御するためのセンサーモード制御信号を生成してもよい。感知モード制御信号は、アクチュエータに、(i)センサー出力信号によって示される配向センサーの配向の変化の速度の方向と反対の回転方向に沿って、および(ii)配向センサーの配向の変化の速度に基づいた回転速度で第1のプラットフォームを回転させることができる。例えば、コントローラは、感知モード制御信号を変調して、アクチュエータに、センサー出力信号によって示されるその基準軸を中心とした配向センサーの回転に対してプラットフォームを回転させ、それによって、配向センサーによる測定値の大きさをゼロの値(または他の目標値)に向かって駆動することができる。例えば、コントローラは、配向センサーから目標値に向かって測定値を駆動するための比例積分(PI)コントローラまたは他の制御ループフィードバックメカニズムを含み得る。この配置では、配向センサーによる測定値の大きさは比較的低いままであり得る(例えば、ゼロの値に近い)。その結果、例えば、これらの測定値の大きさに依存するスケールファクタ誤差を低減することができる。さらに、この例では、コントローラは、エンコーダ出力信号によって示される、(アクチュエータによって引き起こされる回転中にエンコーダによって収集される)プラットフォーム軸を中心とした第1のプラットフォームの角度位置の測定値に基づいて、デバイスの方向または配向を推定することができる。
しかしながら、いくつかのシナリオでは、エンコーダ出力信号によって示される、プラットフォーム軸を中心とした第1のプラットフォームの角度位置の測定値はまた、エンコーダ測定誤差を起こしやすいことがある。例えば、本明細書に開示されるエンコーダの1つの例示的な実装形態では、エンコーダは、第1のプラットフォーム上に配設され、かつ実質的に円形配置でプラットフォーム軸を中心として配置された複数の磁石を含む。エンコーダはまた、複数の磁石の反対側の第2のプラットフォーム上に配設された磁場センサー(例えば、ホール効果センサーなど)を含む。この実装形態では、エンコーダ出力信号は、複数の磁石によって生成され、かつ磁場センサーによって測定された第1の磁場の測定値に基づくことができる。したがって、エンコーダ測定誤差は、エンコーダで発生する可能性のある物理的な欠陥の中でもとりわけ、複数の磁石の配置の真円度に関するエンコーダ欠陥、(例えば、磁場センサーが取り付けられている第2のプラットフォームの表面で)プラットフォームの回転軸に対する第1の磁場の同心性に関するエンコーダ欠陥によって引き起こされる誤差を含み得る。したがって、本明細書のいくつかの実装形態は、エンコーダ出力信号を校正することも伴うことがある。
例えば、コントローラが校正モードでデバイスを操作している第2の例では、コントローラは、アクチュエータを制御するための校正制御信号を生成するように構成され得る。校正制御信号は、アクチュエータに、所定の方式(例えば、所定の回転速度および/または回転方向など)でプラットフォーム軸を中心に第1のプラットフォームを回転させることができる。第1のプラットフォームが校正モードで回転している間、コントローラは配向センサーから所与のセンサー出力信号を受信することができる。次に、所与のセンサー出力信号に基づいて、コントローラは、エンコーダ出力信号によって示されたプラットフォーム軸を中心とした第1のプラットフォームの角度位置を、プラットフォーム軸を中心とした第1のプラットフォームの角度位置の校正された測定値にマッピングするための校正データを判定することができる。
他の例示的な配置、構成、機能、および動作も可能であり、本明細書の例示的な実装形態の中でより詳細に記載されている。
II.例示的な電気機械システムおよびデバイス
次に、例示的な実施形態が実装され得るシステムおよびデバイスについて、より詳細に記載する。概して、本明細書に開示される実施形態は、可動構成要素を含む任意の電気機械システムで使用することができる。例示的なシステムは、可動構成要素とシステムの他の部品との間の電力および/または信号の伝達を提供することができる。本明細書において記載される例示的な実施形態は、車両の他の構成要素および/または互いに通信するセンサーおよびホイールなどの可動構成要素を有する車両を含む。しかしながら、例示的な電気機械システムはまた、とりわけ、センサープラットフォーム(例えば、RADARプラットフォーム、LIDARプラットフォーム、方向感知プラットフォームなど)、ロボットデバイス、産業システム(例えば、組立ラインなど)医療デバイス(例えば、医療画像化デバイスなど)、または移動通信システムなど他のデバイスで実装されるか、またはその形態をとることができる。
さらに、「車両」という用語は、本明細書では、とりわけ、例えば、航空機、ウォータークラフト、宇宙船、車、トラック、バン、セミトレーラートラック、オートバイ、ゴルフカート、オフロード車両、倉庫輸送車両、農用車両、または線路に乗るキャリア(例えば、ローラーコースター、トロリー、トラム、電車など)を含む任意の移動物体をカバーするように広く解釈されることに留意する。
図1Aは、例示的な実施形態による車両100を示す。特に、図1Aは、車両100の右側面図、前面図、背面図、および上面図を示す。車両100は、上で論じたように、図1Aに自動車として示されているが、他の実施形態が可能である。さらに、例示的な車両100は、自律モードで動作するように構成され得る車両として示されているが、本明細書に記載される実施形態は、自律的に動作するように構成されていないか、または半自律的に動作するように構成されている車両にも適用可能である。したがって、例示的な車両100は、限定することを意味するものではない。図示のように、車両100は、5つのセンサーユニット102、104、106、108、および110と、ホイール112によって例示される4つのホイールとを含む。
いくつかの実施形態では、センサーユニット102~110は、他の可能性の中でもとりわけ、全地球測位システムセンサー、慣性測定ユニット、無線検出および測距(RADAR)ユニット、カメラ、レーザー距離計、LIDAR、および/または音響センサーなどのセンサーの任意の組み合わせを含み得る。
図示のように、センサーユニット102は、ホイール112が取り付けられている車両100の下面とは反対側の車両100の上面に取り付けられている。さらに、センサーユニット104~110は、車両100の上面以外の各側にそれぞれ取り付けられている。図示のように、センサーユニット104は、車両100の前側に位置決めされ、センサー106は、車両100の後側に位置決めされ、センサーユニット108は、車両100の右側に位置決めされ、センサーユニット110は、車両100の左側に位置決めされている。
センサーユニット102~110は、車両100の特定の場所に取り付けられるように示されているが、いくつかの実施形態では、センサーユニット102~110は、代替的には、車両100の内側または外側のいずれかの異なる場所に取り付けられ得る。例えば、図1Aは、車両100のバックミラーに取り付けられたセンサーユニット108を示しているが、センサーユニット108は、代替的には、車両100の右側に沿った別の場所に位置付けられてもよい。別の例として、車両100は、車両100の屋根(例えば、上面)に沿って取り付けられたより多くのセンサーユニットを含み、車両100の他の側(例えば、右側、左側など)に沿って取り付けられたセンサーをより少なく含むか、または全く含まないように実装され得る。センサーユニット102~110の他の配置および構成も可能である。したがって、5つのセンサーユニットが示されているが、いくつかの実施形態では、より多くのまたはより少ないセンサーユニットが車両100に含まれ得る。しかしながら、例のために、センサーユニット102~110は、図1Aに示すように位置決めされている。
いくつかの実施形態では、センサーユニット102~110のうちの1つ以上は、センサーが可動に取り付けられ得る1つ以上の可動マウントを含み得る。例えば、可動マウントは、回転プラットフォームを含み得る。代替的または追加的に、可動マウントは、傾斜プラットフォームを含み得る。傾斜プラットフォームに取り付けられたセンサーは、所与の範囲の角度および/または方位角内で傾斜させることができる。可動マウントは、他の形式も取り得る。
さらに、いくつかの実施形態において、センサーユニット102~110のうちの1つ以上は、センサーおよび/または可動マウントを動かすことによってセンサーユニットにおけるセンサーの位置および/または配向を調整するように構成されている1つ以上のアクチュエータを含み得る。例示的なアクチュエータは、モータ、空気圧アクチュエータ、油圧ピストン、リレー、ソレノイド、および/または圧電アクチュエータを含む。他のクチュエータも可能である。
図示のように、車両100は、車両を走行面に沿って移動させるように回転するように構成されているホイール112などの1つ以上のホイールを含む。いくつかの実施形態では、ホイール112は、ホイール112のリムに結合された少なくとも1つのタイヤを含み得る。この目的のため、ホイール112は、金属とゴムの任意の組み合わせ、または他の材料の組み合わせを含み得る。車両100は、これら示されたものに加えて、またはその代わりに1つ以上の他の構成要素を含み得る。
図1Bは、車両100の別の上面図を例示する。いくつかのシナリオでは、車両100は、車両100の1つ以上の回転軸を中心に回転することができ、回転軸は、ヨー軸114、ピッチ軸116、およびロール軸118として示されている。ヨー軸114は、車両の上部を通って(そして紙面の外に)延在する高さ方向の軸に対応し得る。例示的なシナリオでは、ヨー軸114を中心とした車両100のヨー回転は、車両100のポインティングまたは進行方向(例えば、走行面に沿った運動または移動の方向など)を調整することに対応し得る。
ピッチ軸116は、車両100の右側および左側を通って幅方向に延在する回転軸に対応し得る。例示的なシナリオでは、ピッチ軸116を中心とした車両100のピッチ回転は、車両100の加速または減速(例えば、ブレーキの適用など)から生じ得る。例えば、車両の減速は、車両を車両の前側に向かって傾斜させることがある(すなわち、ピッチ軸116を中心としたピッチ回転)。このシナリオでは、車両100の前ホイールショック(図示せず)が圧縮して車両の運動量の変化による力を吸収し得、後ホイールショック(図示せず)が膨張して車両を前側に傾けることを可能にし得る。別の例示的なシナリオでは、ピッチ軸116を中心とした車両100のピッチ回転は、車両100が傾斜した走行面(例えば、丘など)に沿って移動し、それによって車両100を走行面の傾斜に応じて上向きまたは下向き(すなわち、ピッチ方向)に傾斜させることから生じ得る。他のシナリオが同様に可能である。
ロール軸118は、車両100の前側および後側を通って長手方向に延在する回転軸に対応し得る。例示的なシナリオでは、ロール軸118を中心とした車両100のロール回転は、車両が旋回操作を実行することに応答して発生し得る。例えば、車両が突然の右折操作を実行する場合、車両の運動量の変化によって引き起こされる力または右折操作により車両に作用する求心力などに応答して、車両は左側に向かってバンクすることがある(すなわち、ロール軸118を中心としたロール回転)。別の例示的なシナリオでは、車両100が湾曲した走行面(例えば、道路の反りなど)に沿って移動する結果として、ロール軸118を中心とした車両100のロール回転が発生することがあり、これは、走行面の曲率に応じて、車両100を横方向(すなわち、ロール方向)に傾斜させることがある。他のシナリオが同様に可能である。
様々な回転軸114、116、118の位置は、車両の重心の位置、車両のホイールの場所および/または取り付け位置など、車両100の様々な物理的特性に応じて変動し得ることに留意する。したがって、様々な軸114、116、118が例のためにのみ図示されるように示されている。例えば、ロール軸118は、車両118の前側と後側を通る異なる経路を有するように代替的に位置決めすることができ、ヨー軸114は、示されているものとは異なる車両100の上面の領域を通って延在することができる、など。
図2は、例示的な実施形態による、車両200の簡略ブロック図である。車両200は、例えば、車両100と同様であり得る。図示のように、車両200は、推進システム202、センサーシステム204、制御システム206、周辺機器208、およびコンピュータシステム210を含む。他の実施形態において、車両200は、より多くの、より少ない、または異なるシステムを含んでもよく、各システムは、より多くの、より少ない、または異なる構成要素を含んでもよい。さらに、示されたシステムおよび構成要素は、あらゆる方法で組み合わされるか、または分割され得る。
推進システム202は、車両200に動力運動を提供するように構成され得る。図示のように、推進システム202は、エンジン/モータ218、エネルギー源220、トランスミッション222、およびホイール/タイヤ224を含む。
エンジン/モータ218は、内燃機関、電気モータ、蒸気エンジン、およびスターリングエンジンであり得るか、またはそれらの任意の組み合わせを含み得る。他のモータやエンジンも可能である。いくつかの実施形態において、推進システム202は、複数のタイプのエンジンおよび/またはモータを含み得る。例えば、ガソリン-電気ハイブリッド車は、ガソリンエンジンおよび電気モータを含むことができる。他の例も可能である。
エネルギー源220は、エンジン/モータ218に全体的または部分的に動力を供給するエネルギー源であり得る。すなわち、エンジン/モータ218は、エネルギー源220を機械的エネルギーに変換するように構成され得る。エネルギー源220の例は、ガソリン、ディーゼル、プロパン、他の圧縮ガスベースの燃料、エタノール、ソーラパネル、バッテリー、および他の電力源を含む。エネルギー源220は、追加的または代替的に、燃料タンク、バッテリー、コンデンサ、および/またはフライホイールの任意の組み合わせを含むことができる。いくつかの実施形態では、エネルギー源220は、車両200の他のシステムにもエネルギーを提供し得る。
トランスミッション222は、機械的動力をエンジン/モータ218からホイール/タイヤ224に伝達するように構成され得る。この目的ため、トランスミッション222は、ギアボックス、クラッチ、ディファレンシャル、駆動シャフト、および/または他の要素を含み得る。トランスミッション222が駆動シャフトを含む実施形態において、駆動シャフトは、ホイール/タイヤ224に結合されるように構成された1つ以上の軸を含むことができる。
車両200のホイール/タイヤ224は、一輪車、自転車/オートバイ、三輪車、または車/トラックの四輪形態を含む様々な形態で構成され得る。6輪以上を含むものなど、他のホイール/タイヤ形態も、可能である。いずれによせ、ホイール/タイヤ224は、他のホイール/タイヤ224に関して差動的に回転するように構成され得る。いくつかの実施形態では、ホイール/タイヤ224は、トランスミッション222に固定的に取り付けられた少なくとも1つのホイールと、走行面と接触することができるホイールのリムに結合された少なくとも1つのタイヤとを含み得る。ホイール/タイヤ224は、金属とゴムの任意の組み合わせ、または他の材料の組み合わせを含み得る。推進システム202は、追加的または代替的に、示されているもの以外の構成要素を含み得る。
センサーシステム204は、車両200および/または車両200が位置する環境に関する情報を感知するように構成されている任意の数のセンサー、ならびにセンサーの位置および/または配向を修正するように構成されている1つ以上のアクチュエータ236を含み得る。図示のように、センサーシステム204は、全地球測位システム(GPS)226、慣性測定ユニット(IMU)228、RADARユニット230、レーザー距離計および/またはLIDARユニット232、およびカメラ234を含む。センサーシステム204は、例えば、車両200の内部システム(例えば、Oモニタ、燃料計、エンジンオイル温度など)を監視するセンサーを含む追加のセンサーも含み得る。他のセンサーも可能である。いくつかの例では、センサーシステム204は、各々がそれぞれの位置(例えば、上面、下面、前側、後側、右側、左側など)で車両に取り付けられた複数のセンサーユニットとして実装され得る。
GPS226は、車両200の地理的場所を推定するように構成されている任意のセンサー(例えば、ロケーションセンサー)を含み得る。この目的のため、例えば、GPS226は、地球に対する車両200の位置を推定するように構成されているトランシーバを含み得る。IMU228は、慣性加速度に基づいて車両200の位置および配向の変化を感知するように構成されている方向センサーの任意の組み合わせを含み得る。例示的なIMUセンサーは、加速度計、ジャイロスコープ、他の方向センサーなどを含む。RADARユニット230は、無線信号を使用して車両200が位置する環境内の物体を感知するように構成されている任意のセンサーを含み得る。いくつかの実施形態では、物体を感知することに加えて、RADARユニット230は、物体の速度および/または進行方向を感知するように構成され得る。
レーザー距離計またはLIDARユニット232は、光を使用して車両200が位置する環境内の物体を感知するように構成されている任意のセンサーを含み得る。特に、レーザー距離計またはLIDARユニット232は、1つ以上の光線を放出するように構成されている1つ以上の光源と、1つ以上の光線の反射を検出するように構成されている検出器とを含み得る。レーザー距離計/LIDARユニット232は、(例えば、ヘテロダイン検出を使用して)コヒーレントまたはインコヒーレント検出モードで動作するように構成され得る。いくつかの例では、LIDARユニット232は、複数のLIDARを含んでもよく、各LIDARは、車両200を中心とした環境の特定の領域をスキャンするのに好適な特定の位置および/または構成を有する。
カメラ234は、車両200の環境の画像をキャプチャすることができる任意のカメラ(例えば、スチルカメラ、ビデオカメラなど)を含み得る。アクチュエータ236は、システム204の1つ以上のセンサーの位置、配向、および/またはポインティング方向を調整するように構成されている任意のタイプのアクチュエータを含み得る。例示的なアクチュエータは、例の中でもとりわけ、モータ、空気圧アクチュエータ、油圧ピストン、リレー、ソレノイド、および圧電アクチュエータを含む。センサーシステム204は、追加的または代替的に、示されたもの以外の構成要素を含み得る。
制御システム206は、車両200および/またはその構成要素の動作を制御するように構成され得る。この目的のため、制御システム206は、ステアリングユニット238、スロットル240、ブレーキユニット242、センサーフュージョンアルゴリズム244、コンピュータビジョンシステム246、ナビゲーションまたは経路設定システム248、および障害物回避システム250を含み得る。
ステアリングユニット238は、車両200の進行方向を調整するように構成されている機構の任意の組み合わせであり得る。スロットル240は、エンジン/モータ218の動作速度、ひいては、車両200の速度を制御するように構成されている機構の任意の組み合わせであり得る。ブレーキユニット242は、車両200を減速するように構成されている機構の任意の組み合わせであり得る。例えば、ブレーキユニット242は、ホイール/タイヤ224を遅くするように、摩擦を使用してもよい。いくつかの例では、ブレーキユニット242はまた、ホイール/タイヤ224の運動エネルギーを電流に変換することができる。
センサーフュージョンアルゴリズム244は、センサーシステム204からのデータを入力として受け入れるように構成されているアルゴリズム(またはアルゴリズムを記憶するコンピュータプログラム製品)であり得る。データは、例えば、センサーシステム204のセンサーで感知された情報を表すデータを含み得る。センサーフュージョンアルゴリズム244は、例えば、Kalmanフィルタ、Bayesianネットワーク、本明細書の方法のいくつかの機能のためのアルゴリズム、または任意の他のアルゴリズムを含み得る。センサーフュージョンアルゴリズム244はさらに、例えば、車両100が位置する環境における個々の物体および/または特徴の査定、特定の状況の査定、および/または特定の状況に基づいて考えられる影響の査定を含む、センサーシステム204からのデータに基づく様々な評価を提供するように構成され得る。
コンピュータビジョンシステム246は、例えば、交通信号、および障害物を含む、車両200が位置する環境における物体および/または特徴を識別するために、カメラ234によって捕捉された画像を処理および分析するように構成された任意のシステムであり得る。この目的のため、コンピュータビジョンシステム246は、物体認識アルゴリズム、Structure From Motion(SFM)アルゴリズム、ビデオ追跡、または他のコンピュータビジョン技術を使用し得る。いくつかの実施形態において、コンピュータビジョンシステム246は、追加的に、環境をマッピングし、物体を追跡し、物体の速度を推定するなどのために構成され得る。
ナビゲーションおよび経路設定システム248は、車両200の走行経路を判定するように構成されている任意のシステムであり得る。ナビゲーションおよび経路設定システム248は、追加的に、車両200が動作中に、動的に走行経路を更新するように構成され得る。いくつかの実施形態では、ナビゲーションおよび経路設定システム248は、車両200の走行経路を判定するために、センサーフュージョンアルゴリズム244、GPS226、LIDARユニット232、および/または車両200の環境の1つ以上の所定のマップからのデータを組み込むように構成され得る。障害物回避システム250は、車両200が位置する環境における障害物を識別、査定、および回避、または他の方法で通り抜けるように構成されている任意のシステムであり得る。制御システム206は、追加的または代替的に、示されたもの以外の構成要素を含み得る。
周辺機器208(例えば、入力インターフェース、出力インターフェースなど)は、車両200が外部センサー、他の車両、外部コンピューティングデバイス、および/またはユーザーと相互作用することを可能にするように構成され得る。この目的のため、周辺機器208は、例えば、無線通信システム252、タッチスクリーン254、マイクロフォン256、および/またはスピーカ258を含み得る。
無線通信システム252は、直接または通信ネットワークを介して、1つ以上の他の車両、センサー、または他のエンティティに無線で結合するように構成されている任意のシステムであり得る。この目的のために、通信インターフェース252は、他の車両、センサー、サーバ、または他のエンティティと直接または通信ネットワークを介して通信するためのアンテナまたはチップセットを含み得る。チップセットまたは無線通信システム252は、概して、他の可能性の中でもとりわけ、Bluetooth、IEEE802.11(任意のIEEE802.11改訂版を含む)に記載される通信プロトコル、セルラー技術(GSM、CDMA、UMTS、EV-DO、WiMAX、またはLTEなど)、Zigbee、専用狭域通信(DSRC)、および無線周波数識別(RFID)通信などの1つ以上のタイプの無線通信(例えば、プロトコル)に従って通信するように配置され得る。無線通信システム252は、他の形式も取り得る。
タッチスクリーン254は、車両200にコマンドを入力するための入力インターフェースとしてユーザーによって使用され得る。この目的のため、タッチスクリーン254は、他の可能性の中でもとりわけ、静電容量感知、抵抗感知、または弾性表面波プロセスを介して、ユーザーの指の位置および動きのうちの少なくとも1つを感知するように構成され得る。タッチスクリーン254は、タッチスクリーン表面に平行または平面的な方向、タッチスクリーン表面に垂直な方向、またはその両方における指の動きを感知することが可能であり得、またタッチスクリーン表面に加えられる圧力のレベルを感知することも可能であり得る。タッチスクリーン254は、1つ以上の半透明または透明の絶縁層と、1つ以上の半透明または透明の導電層とで形成され得る。タッチスクリーン254は、他の形式も取り得る。
マイクロフォン256は、車両200のユーザーから音声(例えば、音声コマンドまたは他の音声入力)を受信するように構成され得る。同様に、スピーカ258は、車両200のユーザーに音声を出力するように構成され得る。周辺機器208は、追加的または代替的に、示されたもの以外の構成要素を含み得る。
コンピュータシステム210は、推進システム202、センサーシステム204、制御システム206、および周辺機器208のうちの1つ以上にデータを送信する、それからデータを受信する、それと相互作用する、および/またはそれを制御するように構成され得る。この目的のため、コンピュータシステム210は、システムバス、ネットワーク、および/または他の接続メカニズム(図示せず)によって、推進システム202、センサーシステム204、制御システム206、および周辺機器208のうちの1つ以上に通信可能にリンクされ得る。
一例では、コンピュータシステム210は、燃料効率を改善するためにトランスミッション122の動作を制御するように構成され得る。別の例として、コンピュータシステム210は、カメラ234に環境の画像を捕捉させるように構成され得る。さらに別の例として、コンピュータシステム210は、センサーフュージョンアルゴリズム244に対応する命令を記憶および実行するように構成され得る。他の例も、同様に可能である。
図示のように、コンピュータシステム210は、プロセッサ212およびデータストレージ214を含む。プロセッサ212は、1つ以上の汎用プロセッサおよび/または1つ以上の専用プロセッサを含み得る。プロセッサ212が2つ以上のプロセッサを含む限り、そのようなプロセッサは、別々にまたは組み合わせて動作することができる。データストレージ214は、次に、他の可能性の中でもとりわけ、光学的、磁気的、および/または有機的ストレージなどの1つ以上の揮発性および/または1つ以上の不揮発性ストレージ構成要素を備えてもよく、データストレージ214は、全体的に、または部分的にプロセッサ212と統合されてもよい。
いくつかの実施形態では、データストレージ214は、様々な車両機能を実行するためにプロセッサ212によって実行可能な命令216(例えば、プログラムロジック)を含む。データストレージ214は、推進システム202、センサーシステム204、制御システム206、および/または周辺機器208のうちの1つ以上にデータを送信する、それからデータを受信する、それと相互作用する、および/またはそれを制御するための命令を含む追加の命令も含み得る。いくつかの実施形態では、データストレージ214はまた、センサーシステム204内の1つ以上のセンサーの校正データを含む。例えば、校正データは、以前に取得されたセンサー測定値と、センサーへの1つ以上の所定の入力との間のマッピングを含み得る。コンピュータシステム210は、追加的または代替的に、示されたもの以外の構成要素を含み得る。
電源260は、車両200の構成要素の一部またはすべてに電力を供給するように構成され得る。この目的のため、電源260は、例えば、再充電可能なリチウムイオンまたは鉛酸バッテリーを含み得る。いくつかの実施形態では、バッテリーの1つ以上のバンクが、電力を提供するように構成され得る。他の電源材料および構成も可能である。いくつかの実施形態において、電源260およびエネルギー源220は、例えば、一部の全電気自動車のように、1つの構成要素としてまとめて実装されてもよい。
いくつかの実施形態において、車両200は、示されているものに加えて、またはその代わりに、1つ以上の要素を含み得る。例えば、車両200は、1つ以上の追加のインターフェースおよび/または電源を含んでもよい。他の追加の構成要素も可能である。このような実施形態において、データストレージ214は、追加の構成要素を制御および/またはそれと通信するように、プロセッサ212によって実行可能な命令をさらに含み得る。まださらに、構成要素およびシステムの各々が車両200に統合されるように示されているが、いくつかの実施形態において、1つ以上の構成要素またはシステムは、有線または無線接続を使用して車両200に取り外し可能に取り付けられるか、または他の方法で(機械的または電気的に)接続され得る。
III.例示的な回転継手構成
例の中で、回転継手は、電気機械システムの2つの構造間のインターフェースとして構成されてもよく、2つの構造の一方または両方は、他の構造に対して回転するか、他の方法で動くように構成されている。その目的のため、いくつかの実装形態では、回転継手の一部(例えば、ロータ)は、例示的なシステムの1つの構造に結合されてもよく、別の部分(例えば、ステータ)は、例示的なシステムの他の構造に結合されてもよい。追加的または代替的に、いくつかの実装形態では、回転継手は、互いに対して回転する(または動く)2つの構造の間に配置された構造内に含まれてもよい。例えば、例示的な回転継手は、2つのロボットリンクを結合するロボット関節に配設されてもよい。他の実装形態も、同様に可能である。
図3は、例示的な実施形態による、回転継手を含むデバイス300の簡略ブロック図である。例えば、デバイス300は、車両100、200、および/または任意の他の電気機械システムのいずれかなどの電気機械システムの可動構成要素間のインターフェースとして使用することができる。したがって、例えば、デバイス300は、他の例の中でもとりわけ、センサーユニット102、104、106、108、110、センサーシステム204に含まれるセンサーを取り付ける回転プラットフォームなど、システム(またはサブシステム)の2つの可動構成要素間の動力伝達を容易にする回転継手として物理的に実装され得る。図示のように、デバイス300は、第1のプラットフォーム310および第2のプラットフォーム330を含む。
第1のプラットフォーム310は、ロータまたは他の可動構成要素を含み得るか、またはそれらに結合され得る。例えば、プラットフォーム310は、プラットフォーム330に対して、およびプラットフォーム310の回転軸(例えば、ロータ軸)を中心に回転するように構成され得る。したがって、例の中で、プラットフォーム310は、回転継手構成における回転プラットフォームとして構成することができる。図示のように、プラットフォーム310は、センサー312、コントローラ314、通信インターフェース316、電力インターフェース318、および1つ以上の磁石320を含む。
いくつかの例では、プラットフォーム310は、プラットフォーム310の様々な構成要素を支持するおよび/または取り付けるのに適切な任意の固体材料を含み得る。例えば、プラットフォーム310は、通信インターフェース316および/またはプラットフォーム310の他の構成要素を取り付けるプリント回路基板(PCB)を含み得る。この場合のPCBはまた、プラットフォーム310の構成要素(例えば、センサー312、コントローラ314、通信インターフェース316、電力インターフェース318など)のうちの1つ以上を互いに電気的に結合する回路(図示せず)も含むことができる。この場合のPCBは、取り付けられた構成要素が、プラットフォーム330の対応する側に面するか、または対向するプラットフォーム310の側に沿うように位置決めすることができる。この配置では、例えば、プラットフォーム310および330は、プラットフォーム330に対するプラットフォーム310の回転に応答して、互いに所定の距離内に留まり得る。
センサー312は、センサーシステム204の1つ以上のセンサー、車両100に含まれる1つ以上のセンサー、および/またはプラットフォーム310に取り付けることができる任意の他のセンサーなど、プラットフォーム310に取り付けられるセンサーの任意の組み合わせを含み得る。例示的なセンサーの非包括的なリストは、他の例の中でもとりわけ、方向センサー(例えば、ジャイロスコープ)、リモート感知デバイス(例えば、RADAR、LIDARなど)、音センサー(例えば、マイクロフォン)を含み得る。
コントローラ314は、第1のプラットフォーム310の構成要素のうちの1つ以上を動作させるように構成され得る。その目的のため、コントローラ314は、汎用プロセッサ、専用プロセッサ、データストレージ、論理回路、および/またはデバイス300の1つ以上の構成要素を動作させるように構成されている任意の他の回路の任意の組み合わせを含み得る。一実装形態では、コンピューティングシステム210と同様に、コントローラ314は、データストレージ(例えば、データストレージ214)に記憶された命令(例えば、命令216)を実行して、センサー312、インターフェース316などを動作させる1つ以上のプロセッサ(例えば、プロセッサ212)を含む。別の実装形態では、コントローラ314は、代替的または追加的に、デバイス300の1つ以上の構成要素を動作させるために本明細書に記載される機能およびプロセスの1つ以上を実行するように配線された回路を含む。一例では、コントローラ314は、センサー312によって収集されたセンサーデータを受信し、センサーデータを示す変調された電気信号を通信インターフェース316に提供するように構成することができる。例えば、センサーデータは、センサー312の測定された配向、周辺環境のスキャン、検出された音、および/またはセンサー312の任意の他のセンサー出力を示し得る。
通信インターフェース316は、プラットフォーム310と330との間でデータおよび/または命令を送信(例えば、信号302)および/または受信(例えば、信号304)するように構成されている無線または有線通信構成要素(例えば、送信機、受信機、アンテナ、光源、光検出器など)の任意の組み合わせを含み得る。通信インターフェース316が光通信インターフェースである一例では、インターフェース316は、プラットフォーム330に含まれる光検出器による受信のために変調光信号302を放出するように配置された1つ以上の光源を含み得る。例えば、信号302は、センサー312によって収集されたセンサーデータを示し得る。さらに、この例では、インターフェース316は、プラットフォーム330から放出された変調光信号304を受信するための光検出器を含み得る。例えば、信号304は、センサー312および/またはプラットフォーム310に結合された任意の他の構成要素を動作させるための命令を示し得る。この場合、コントローラ314は、インターフェース316を介して検出された受信された命令に基づいて、センサー312を動作させることができる。
電力インターフェース318は、プラットフォーム310と330との間の電力の無線(または有線)伝送のために構成されている1つ以上の構成要素を含み得る。例として、インターフェース318は、トランスコイルを通って延在する磁束を受けるように配置されたトランスコイル(図示せず)を含み、プラットフォーム310の1つ以上の構成要素(例えば、センサー312、コントローラ314、通信インターフェース316など)に電力供給するための電流を誘導し得る。例えば、トランスコイルは、プラットフォーム330に含まれる対応するトランスコイルに対向するプラットフォーム310の中央領域を中心として配置することができる。さらに、例えば、デバイス300はまた、インターフェース318内のトランスコイル(および/またはプラットフォーム330に含まれるトランスコイル)を通って延在する磁気コア(図示せず)も含み、それぞれのトランスコイルを通る磁束を誘導し、それにより、2つのプラットフォーム間の電力伝送の効率を改善することができる。他の構成も同様に可能である。
磁石320は、鉄、強磁性化合物、フェライトなど強磁性材料、および/または磁化されてプラットフォーム310の第1のプラットフォーム磁場を生成する任意の他の材料から形成することができる。
一実装形態では、磁石320は、プラットフォーム310の回転軸を中心に実質的に円形配置にある複数の磁石として実装され得る。例えば、磁石320は、回転軸と同心である円に沿って配置されて、プラットフォーム330に向かっておよび/またはプラットフォーム330を通って延在する結合磁場を生成することができる。さらに、例えば、磁石320の隣接する磁石は、プラットフォーム330に面している所与の磁石の表面に沿った所与の磁石の磁極が、同様の表面に沿った隣接する磁石の磁極と反対になるように交互方向に磁化され得る。例えば、この配置では、磁場は、所与の磁石の表面からプラットフォーム330に向かって、次いで、隣接する磁石の表面に向かって延在し得る。さらに、別の磁場は、所与の磁石の表面からプラットフォーム330に向かって、次いで、別の隣接する磁石に向かって延在し得る。
別の実装形態では、磁石320は、第1のプラットフォームの回転軸と同心である単一のリング磁石として実装され得る。この実装形態では、リング磁石は、上記の複数の磁石と同様の磁化パターンを有するように磁化され得る。例えば、リング磁石は、複数のリングセクター(例えば、それぞれの放射軸間のリング磁石の領域)を有するプリント磁石として実装され得る。この例では、リング磁石の隣接するリングセクターを交互方向に磁化して、プラットフォーム330に面する複数の交互の磁極を画定し得る。
図示のように、磁石320は、任意選択的に、インデックス磁石322を含み得る。インデックス磁石322は、磁石320内の他の磁石の特性とは異なる特性を有するように構成されている磁石(例えば、強磁性材料など)を含み得る。
磁石320が円形配置の複数の磁石を含む第1の例では、インデックス磁石322は、プラットフォーム310の回転軸に対して第1の距離に位置付けることができ、磁石320の他の磁石は、回転軸に対して第1の距離とは異なる第2の距離に位置決めすることができる。追加的または代替的に、例えば、インデックス磁石322は、他の磁石と第2のプラットフォームとの間の実質的に均一な距離に対して、第2のプラットフォームに対してオフセット距離に位置決めすることができる。追加的または代替的に、例えば、インデックス磁石322は、1つ以上の隣接する磁石に対して特定の分離距離で位置決めすることができる。この場合、他の磁石は、特定の分離距離とは異なる実質的に均一な分離距離で離間することができる。
第2の例では、インデックス磁石322は、磁石320の他の磁石の第2のサイズとは異なる第1のサイズ(例えば、幅、長さ、深さなど)を有することができる。
第3の例では、インデックス磁石322は、磁石320内の他の磁石の第2の磁化強度とは異なる第1の磁化強度(例えば、磁束密度、磁場強度など)を有するように磁化することができる。
第4の例では、インデックス磁石322は、磁石320内の他の磁石の磁化パターンと比較して異なる磁化パターンを有するように磁化することができる。例えば、インデックス磁石322の第1の部分は、第1の方向に磁化することができ(例えば、N極はプラットフォーム330を指す)、インデックス磁石322の第2の部分は、第1の方向と反対の第2の方向に磁化することができる(例えば、S極はプラットフォーム330を指す)が、磁石320内の他の磁石は、単一方向に磁化することができる(例えば、N極またはS極のうちの一方のみがプラットフォーム330を指す)。
磁石320が単一のリング磁石を含む第5の例では、インデックス磁石322は、第1の方向に磁化された第1の部分と、反対方向に磁化された第2の部分とを含む磁石320のインデックスリングセクターとして実装され得る。代替的または追加的に、第2の部分は、第1の部分を取り囲み、インデックスリングセクターに隣接する2つのリングセクターに接続する磁石320の磁化領域として物理的に実装され得る。
磁石320が単一のリング磁石を含む第6の例では、複数の磁石を含む実装形態についての上記の様々な差別化特性は、リング磁石の磁化特性を調整することによって同様に実装され得る。一例では、インデックスリングセクターは、他のリングセクターの実質的に均一なサイズと比較して、異なるサイズ(例えば、角度幅など)を有することができる。別の例では、インデックスリングセクターは、他のリングセクター間の対応する実質的に均一な距離とは異なる距離で隣接するリングセクターから分離することができる(例えば、リング磁石の消磁領域によってインデックスリングセクターを囲むなど)。
第2のプラットフォーム330は、上記の議論に沿って、回転継手構成にあるステータプラットフォームとして構成することができる。例えば、プラットフォーム310の回転軸は、プラットフォーム310が、プラットフォーム330に対して所定の距離内に留まりながらプラットフォーム330に対して回転するように、プラットフォーム330を通って延在することができる。図示のように、プラットフォーム330は、コントローラ334、通信インターフェース336、電力インターフェース338、複数の導電性構造340、回路350、および磁場センサー390を含む。したがって、例えば、プラットフォーム330は、プラットフォーム330に取り付けられた、または他の方法で結合された様々な構成要素を支持するのに適切な固体材料の任意の組み合わせから形成することができる。例えば、プラットフォーム330は、1つ以上の構成要素(例えば、インターフェース336、338、センサー390など)を取り付ける回路基板を含み得る。
コントローラ334は、例えば、コントローラ314と同様に、様々な物理的な実装形態(例えば、プロセッサ、論理回路、アナログ回路、データストレージなど)を有することができる。さらに、コントローラ334は、それぞれ、コントローラ314、通信インターフェース316、および信号302と同様に、通信インターフェース336を動作させて、データまたは命令の伝送を示す信号304を送信することができる。例えば、コントローラ334は、インターフェース336(例えば、トランシーバ、アンテナ、光源など)を動作させて、センサー312および/またはプラットフォーム310の任意の他の構成要素を動作させるための命令を示す変調無線信号を提供することができる。さらに、例えば、コントローラ334は、インターフェース336から、プラットフォーム310から送信された変調信号302を示す変調電気信号を受信することができる。
したがって、通信インターフェース336は、インターフェース316と同様に実装され、信号302および304を介したプラットフォーム310と330との間の通信を容易にすることができる。
電力インターフェース338は、電力インターフェース318と同様に構成することができ、したがって、電力インターフェース318とともに動作されて、プラットフォーム310と330との間の電力の伝送を容易にすることができる。例として、インターフェース338は、トランスコイル(図示せず)を含んでもよく、コントローラ334は、トランスコイルを通して電流を流すように構成され得る。次に、電流は、電力インターフェース318の対応するトランスコイル(図示せず)を通って延在する磁束を生成して、対応するトランスコイルを通る電流を誘導し得る。したがって、誘導された電流は、プラットフォーム310の1つ以上の構成要素に電力を提供することができる。さらに、いくつかの例では、デバイス300はまた、プラットフォーム310の回転軸に沿って、そして電力インターフェース318および338のそれぞれのトランスコイル(図示せず)を通って延在する磁気コア(図示せず)を含み得る。例えば、磁気コアは、電力インターフェース338のトランスコイルによって生成された磁束を、電力インターフェース318のトランスコイルを通して案内して、プラットフォーム310と330との間の電力伝送の効率を改善することができる。
導電性構造340は、一緒に電気的に結合されて、プラットフォーム310の回転軸を中心に延在する導電経路を画定して、磁石320によって生成された第1のプラットフォーム磁場と重なる、導電性材料(例えば、銅、他の金属など)の部分を含み得る。例として、導電性構造340は、プラットフォーム310の回転軸と同心である円に沿った第1の同一平面の配置における第1の複数の導電性構造を含み得る。さらに、この例では、導電性構造340はまた、第1の複数の導電性構造に平行に重なり合うように、第2の同一平面の配置における第2の複数の導電性構造を含み得る。例えば、回路基板の実装において、第1の複数の導電性構造は、回路基板の単層に沿って配設またはパターン化され得、第2の複数の導電性構造は、回路基板の別の層に沿って配設またはパターン化され得る。
上記の例を続けると、デバイス300はまた、例えば、回路基板の2つの層間のドリル穴(例えば、ビア)を通って延在する導電性材料などの複数の電気接点(図示せず)を含むことができる。電気接点は、第1の複数の導電性構造を第2の複数の導電性構造に結合して、第1のプラットフォームの磁石320の円形配置と重なるように回転軸を中心に延在する1つ以上の導電性コイルを画定し得る。次に、回路350(および/またはコントローラ334)は、1つ以上の電流を1つ以上のコイルを通して流し、1つ以上のコイル内に延在する第2のプラットフォーム磁場を生成することができる。次に、第1のプラットフォーム磁場は、第2のプラットフォーム磁場と相互作用して、プラットフォーム310に作用する力またはトルクを提供することができる。次に、誘導された力は、プラットフォーム310をその回転軸を中心に回転させ得る。さらに、いくつかの例では、回路350(および/またはコントローラ334)は、コイルを通して流れる電流を調整することによって、第2のプラットフォーム磁場を変調することができる。そうすることにより、例えば、デバイス300は、回転軸を中心としたプラットフォーム310の回転方向または回転速度を制御することができる。
したがって、回路350は、配線、導電性材料、コンデンサ、抵抗器、増幅器、フィルタ、コンパレータ、電圧レギュレータ、コントローラの任意の組み合わせ、および/または導電性構造340を通って流れる電流を提供および変調するように配置された任意の他の回路を含み得る。例えば、回路350は、電流を調整して、第2のプラットフォーム磁場を修正し、それによって、回転するプラットフォーム310の特定の回転特性(例えば、方向、速度など)を達成するように構成され得る。
磁場センサー390は、磁石320に関連付けられた第1のプラットフォーム磁場の1つ以上の特性(例えば、方向、角度、大きさ、磁束密度など)を測定するように構成され得る。例えば、センサー390は、磁石320および/または第1のプラットフォーム磁場に重なるように配置された1つ以上の磁力計を含み得る。例示的なセンサーの非包括的なリストは、他の例の中でもとりわけ、プロトン磁力計、オーバーハウザー効果センサー、セシウム蒸気センサー、カリウム蒸気センサー、回転コイルセンサー、ホール効果センサー、磁気抵抗素子センサー、フラックスゲート磁力計、超伝導量子干渉素子(SQUID)センサー、マイクロエレクトロメカニカルシステム(MEMS)センサー、スピン交換緩和フリー(SERF)原子センサーを含む。一実装形態では、センサー390は、直交座標系表現(例えば、xyz軸成分)または他のベクトル場表現に従って、センサー390の位置における第1のプラットフォーム磁場の角度(および/または大きさ)の指示を出力する3次元(3D)ホール効果センサーを含み得る。
したがって、デバイス300は、回転軸を中心としたプラットフォーム310の配向または位置を判定するための基礎として、センサー390からの出力を使用することができる。例として、センサー390は、磁石320のうちの2つの隣接する磁石の間に延在する第1のプラットフォーム磁場の一部分と重なるように位置決めすることができる。例えば、第1のプラットフォーム310が回転すると、その部分の角度がセンサー390の位置において変化することがあるため、回路350(および/またはコントローラ334)は、センサー390からの出力をサンプリングして、2つの隣接する磁石に対するセンサー390の位置を推定することができる。
したがって、この配置では、デバイス300は、プラットフォーム310を作動させることと、プラットフォーム310(例えば、磁気エンコーダ)の配向を測定することの両方ための構成要素として磁石320を使用することができる。この構成により、コストが削減され、よりコンパクトな設計のアクチュエータおよび磁気エンコーダが提供され得る。
さらに、いくつかの実装形態では、センサー390は、構造340によって画定されたコイルと交差する円形経路に沿って位置決めすることができる。例えば、構造340内の2つの特定の構造は、構造340内の他の隣接する構造間の均一な距離よりも大きい所与の距離だけ離間することができる。さらに、センサー390は、これらの2つの特定の構造の間に位置決めすることができる。この配置により、例えば、センサー390を磁石320に対して近い距離に位置付けながら、第2のプラットフォームの磁場による、センサー390による第1のプラットフォームの磁場の測定との干渉を軽減することができる。
磁石320がインデックス磁石322を含む実装形態では、インデックス磁石322とインデックス磁石322に隣接する1つ以上の磁石との間に延在する第1のプラットフォームの磁場の特定の部分は、第1のプラットフォームの磁場の他の部分に対して、1つ以上の差別化特性を有し得る。例として、インデックス磁石322が、プラットフォーム310の回転軸に対して、その回転軸と磁石320のうちの他の磁石との間の実質的に均一な距離とは異なる距離に位置決めされている場合、第1のプラットフォームの磁場の特定の部分の方向は、他の部分のそれぞれの方向とは異なり得る。したがって、いくつかの例では、回路350(および/またはコントローラ334)は、この差の検出を、センサー390がインデックス磁石322、またはインデックス磁石322と隣接する磁石との間の領域と重なるプラットフォーム310の配向と関連付けることができる。このプロセスを通じて、例えば、デバイス300は、センサー390の出力を、インデックス磁石322の位置に対するプラットフォーム310の配向の範囲にマッピングし得る。
いくつかの実装形態では、デバイス300は、図示されたものよりも少ない構成要素を含み得る。例えば、デバイス300は、インデックス磁石322、センサー390、および/または図示された任意の他の構成要素なしで実装され得る。さらに、いくつかの実装形態では、車両300は、これら図示されたものに加えて、またはその代わりに1つ以上の他の構成要素を含んでもよい。例えば、プラットフォーム310および/または340は、追加または代替のセンサー(例えば、マイクロフォン256など)、コンピューティングサブシステム(例えば、ナビゲーションシステム248など)、および/または車両100および200の構成要素のうちのいずれかなどの任意の他の構成要素を含み得る。加えて、図示された様々な機能ブロックは、図示されたものとは異なる配置で配置され得るか、または組み合わされ得ることに留意する。例えば、プラットフォーム310に含まれる構成要素のいくつかは、代替的に、プラットフォーム330に含まれ得るか、またはデバイス300の別個の構成要素として実装され得る。
図4Aは、例示的な実施形態による、回転継手を含むデバイス400の側面図を示す。例えば、デバイス400は、デバイス300と同様であってもよく、車両100および200などの電気機械システムとともに使用することができる。図示のように、デバイス400は、それぞれプラットフォーム310および330と同様であり得るロータプラットフォーム410およびステータプラットフォーム430を含む。さらに、図示のように、デバイス400は、プラットフォーム410上に配設された配向センサー412を含む。例えば、センサー412は、センサー312と同様であり得る。
センサー412は、基準軸413を中心とした配向センサー412の配向(またはその変化の速度)を示すセンサー出力信号を提供するように構成されている任意の配向または方向センサーを含み得る。例えば、センサー412は、ジャイロスコープセンサーを含んでもよい。図示のように、センサー412は、センサー412の基準軸413がプラットフォーム410の回転の軸406と整列される(例えば、平行になる)ように、プラットフォーム410に取り付けられる。この配置では、例えば、センサー出力信号によって示される配向センサー412の配向への変化の速度の測定値は、軸406を中心としたプラットフォーム410の回転速度にも対応し得る。
いくつかの例では、センサー412は、車両の運動方向(またはその変化の速度)の指示を提供するためのヨーセンサーとして構成することができる。例として、デバイス400が、車両100に取り付けられ、図4Aに示される軸413が、図1Bに示される車両100のヨー軸114に対応するか、または平行であるシナリオを考える。この配置では、センサー412のセンサー出力信号は、車両100のヨー方向(またはその変化)を示し得る。上記のシナリオを続けると、センサー412の最初のヨー方向は、軸413に垂直であり、紙面の外に向かう方向に対応し得る。このシナリオでは、車両100が軸114を中心に回転する場合、センサー412は、軸413を中心とした同様の回転を経験し得、したがって、軸413を中心としたセンサー412(「ヨーセンサー」)の配向は、ヨー軸114を中心とした車両のヨー方向の変化と同様に変化し得る。
代替的または追加的に、他の例では、センサー412は、ピッチセンサー(例えば、軸413を車両100の軸116と整列させることによって)、またはロールセンサー(例えば、軸413を車両100の軸118と整列させることによって)として構成することができる。
図示された例では、プラットフォーム410の側面410aは、プラットフォーム430の側面430aに対して所与の距離408内に位置決めされている。プラットフォーム410は、回転軸406を中心に回転するロータプラットフォームとして構成することができる。さらに、プラットフォーム430は、軸406を中心としたプラットフォーム410の回転に応答して、プラットフォーム410に対して距離408内に留まるステータプラットフォームとして構成することができる。いくつかの例では、側面410aは、プラットフォーム410の平坦な取り付け面(例えば、回路基板の外層)に対応し得る。同様に、例えば、側面430aは、プラットフォーム430の平坦な取り付け面に対応し得る。説明の便宜上、デバイス400のいくつかの構成要素が図4Aから省略されていることに留意する。
例えば、図4Bに示す断面図では、プラットフォーム410の側面410aが紙面から外に向かっている。図4Bに示すように、デバイス400はまた、マウント428と、磁石420、422、424、426によって例示される複数の磁石とを含む。
磁石420、422、424、426は、磁石320と同様であり得る。例えば、図示のように、磁石420、422、424、426は、回転軸406を中心とした実質的に円形配置で取り付けられている。いくつかの例では、磁石320のように、複数の磁石のうちの隣接する磁石(例えば、420、422、424、426など)は、それぞれ交互の方向に磁化することができる。例えば、図示のように、磁石420は、紙面に向かう方向(例えば、紙面から外へ向かう、文字「S」で示されるS極)に磁化され、磁石422は、紙面から外に向かう方向(例えば、紙面から外に向かう、文字「N」で示されるN極)、磁石424は、磁石420と同じ方向に磁化され、以下同様である。したがって、いくつかの例では、図示のように、複数の磁石(例えば、420、422、424、426など)のそれぞれの磁化方向は、軸406に実質的に平行であり得る。
マウント428は、回転軸406を中心とした円形配置で複数の磁石(例えば、420、422、424、426など)を支持するように構成されている任意の構造を含み得る。その目的のため、マウント428は、複数の磁石を円形配置に支持するのに適切な任意の固体構造(例えば、プラスチック、アルミニウム、他の金属など)を含み得る。例えば、図示のように、マウント428は、(円形の)縁部428aと428bとの間に延在するリング形状を有し得る。さらに、図示のように、マウント428は、複数の磁石を円形配置に収容するくぼみを含み得る。例えば、図示のように、マウント428は、磁石426を収容するように成形された(壁428cと428dとの間の)くぼみを含む。したがって、例えば、組み立て中に、複数の磁石は、マウント428のそれぞれのくぼみに嵌め込まれ、複数の磁石を円形配置に位置付けるのを容易にすることができる。さらに、図示のように、リング形状のマウント428は、軸406(例えば、リング形状のマウント428の中心軸と整列された軸406)に対して同心に配置され得る。したがって、例えば、円形縁部428a、428b、および磁石420、422、424、426などは、軸406を中心としたプラットフォーム410の回転に応答して、軸406に対してそれぞれの所与の距離内に留まり得る。
いくつかの例では、インデックス磁石322と同様に、デバイス400内の少なくとも1つの磁石は、他の磁石の共通の特性とは異なる1つ以上の特性を有するインデックス磁石として構成され得る。図示のように、例えば、磁石422は、軸406に対して、他の磁石(例えば、420、424、426など)と軸406との間の距離とは異なる距離に取り付けられている。これを容易にするために、図示のように、インデックス磁石422を収容するくぼみ(例えば、くぼみを中心に延在する壁428eによって画定される)は、磁石420、424、426などを収容するそれぞれのくぼみよりも短い長さを有することができる。結果として、インデックス磁石422は、取り付けられると、磁石420、424、426などよりも縁部428a(および軸406)により近くなり得る。
プラットフォーム410は、図4Bに示されるものに追加の構成要素を含み得ることに留意する。一実装形態では、マウント428は、プリント回路基板(PCB)または他の回路基板の周辺に沿って配置され得る。別の実装形態では、マウント428は、回路基板の表面または層に沿って配設することができる。実装形態に関係なく、例えば、軸406と縁部428aとの間の側面410aの領域を使用して、プラットフォーム310の構成要素のうちのいずれかなどの1つ以上の構成要素を取り付けることができる。
一例では、図示のように、プラットフォーム410は、縁部410bによって画定される中心ギャップを含み得る。この例では、プラットフォーム410は、縁部410bの周囲に配置されたトランスコイル(図示せず)を含み得る。さらに、この例では、デバイス400は、中心ギャップを通って延在する磁気コア(図示せず)を含み、プラットフォーム430の同様のトランスコイル(図示せず)によって生成される磁束を案内し得る。したがって、例えば、電力は、電力インターフェース318および338についての上記の議論に沿って、2つのプラットフォーム410と430との間で伝送され得る。別の例では、プラットフォーム410は、縁部428aと410bとの間のプラットフォーム410の領域に、1つ以上の無線送信機または受信機(例えば、光源、光検出器、アンテナなど)を含み得る。したがって、例えば、デバイス300と同様に、デバイス400は、プラットフォーム410と430との間で電力および/または通信信号を伝送するように構成することができる。
図4Cに示す断面図では、プラットフォーム430の側面430aは、紙面から外に向かっている。図4Dに示すプラットフォーム430の断面図は、側面430aに実質的に平行であるプラットフォーム430の層のビューに対応し得る。例として図4Aに戻ると、図4Dに示される層は、側面430aと430bとの間の層に対応し得る。別の例では、図4Dに示す層は、プラットフォーム430の側面430b上にパターン化された導電性材料に対応し得る。一実装形態では、プラットフォーム430は、多層回路基板(例えば、PCB)として物理的に実装され得るか、またはその中に埋め込まれた多層PCBを含み得る。その目的のため、図4Cに示す1つ以上の構成要素は、PCBの外層に沿ってパターン化された導電性材料(例えば、トラック、トレース、銅など)に対応してもよいし、図4Dに示す1つ以上の構成要素は、PCBの別の層に沿ってパターン化された導電性材料に対応してもよい。他の実装形態も、同様に可能である。
図4Cおよび図4Dに示すように、デバイス400はまた、リード432、434、436、438によって例示される複数の電力リード、構造442、444、446、448、450、452、454、456、458、459によって例示される第1の複数の隣接する導電性構造、構造472、474、476、478、480、482、484、486、489によって例示される第2の複数の隣接する導電性構造、接点462、464、466、468によって例示される複数の電気接点、磁場センサー490、およびコネクタ492、494を含む。
電力リード432、434、436、438などは、それぞれ第1の複数の導電性構造および第2の複数の導電性構造を、電源、電圧レギュレータ、電流増幅器、またはそれぞれのリードに結合されたそれぞれの導電性トラックを流れる1つ以上の電流を提供または調整する他の回路(例えば、回路350)に電気的に結合するように構成され得る。
第1の複数の導電性構造(442、444、446、448、450、452、454、456、458、459など)は、導電性構造340と同様に、軸406を中心とした円形配置に電気的に導電性材料(例えば、銅など)を含み得る。例えば、図4Cに示すように、第1の複数の導電性構造は、軸406と同心である円440と441との間に延在する。円440と441との間の側面430aの一領域は、例えば、ロータプラットフォーム410の複数の磁石420、422、424、426などと少なくとも部分的に重なり得る。さらに、図4Cに示すように、各導電性構造(例えば、構造442など)は、それぞれの構造が円440と交差する円440(および441)の半径に対して傾斜している。さらに、第1の複数の導電性構造は、実質的に同一平面上配置にある。したがって、例えば、構造442、444、446、448、450、452、454、456、458、459などは、回路基板(例えば、PCB)の単一の層に沿ったパターン化された導電性トラックとして形成され得る。
同様に、図4Dにおいて、第2の複数の導電性構造(472、474、476、478、480、482、484、486、488、489など)は、(例えば、PCBの第2の層に沿って)実質的に同一平面上である円形配置にある。したがって、例えば、第1の複数の導電性構造は、第2の複数の構造と複数の磁石との間の第2の距離未満である、複数の磁石(420、422、424、426など)に対して第1の距離にあり得る。
さらに、構造472、474、476、478、480、482、484、486、488、489などは、それぞれ円470と471の間に延在する。円470および471は、例えば、円440および441と同様であってもよく、したがって、軸406と同心であってもよく、それぞれ、円440および441の半径と同様の半径を有する。さらに、図4Dの各導電性構造(例えば、構造472など)は、それぞれの構造が円470と交差する円470(および471)の半径に対してある傾斜角で位置決めされている。しかし、図4Dにおける第2の複数の構造は、図4Cの第1の複数の構造の傾斜角に対して反対の傾斜角にある。例えば、構造442(図4C)は、時計回りの方向に円440から離れて傾斜するように示されている。一方、構造472(図4D)は、反時計回り方向に円470から離れて傾斜するように示されている。
第1の複数の構造(442、444、446、448、450、452、454、456、458、459など)と第2の複数の構造(472、474、476、478、480、482、484、486、488、489など)との間の電気的な結合を容易にするために、電気接点462、464、466、468などは、PCBを通って紙面に垂直な方向に延在する導電性材料を含み(例えば、ビア)、それぞれの接点のそれぞれの位置で重なるそれぞれの導電性構造を接続することができる。例えば、接点462は、導電性構造442(図4C)を導電性構造472(図4D)に電気的に結合し、接点464は、導電性構造444(図4C)を導電性構造474(図4D)に電気的に結合するなどである。
この配置では、プラットフォーム430の両方の層の導電性構造は、軸406を中心として延在する1つ以上の導電経路を形成することができる。例えば、第1の電流は、第1の電流がリード436に到達するまで、リード432、構造442、接点462、構造472、接点466、構造446などをこの順序で含む第1の導電経路を通って流れることができる。したがって、例えば、第1の電流は、隣接する構造444を通って流れることなく、構造442から構造472に流れることができる。同様に、例えば、第2の電流は、第2の電流がリード438に到達するまで、リード434、構造444、接点464、構造474、接点468、構造448などをこの順序で含む第2の導電経路を通って流れることができる。したがって、第1の導電経路は、軸406を中心として延在する第1のコイルを形成することができ、第2の導電経路は、軸406を中心として延在する第2のコイルを形成することができる。
いくつかの実装形態では、図4Cに示す第1の層のリード432、434などは、電源(図示せず)の第1の端子に(直接的または間接的に)接続することができ、図4Dに示す第2の層のリード436、438などは、電源の第2の端子に接続することができる。結果として、これらの実装形態において、プラットフォーム430の各コイルまたは導電経路は、同じ電流の一部分を搬送することができる。例えば、これらの実装形態における各コイルは、並列回路構成において他のコイルに接続され得る。
実装形態に関係なく、電流が第1および第2の複数の同一平面上の導電性構造を通って流れるときに、ステータプラットフォーム磁場は、電気的に結合された導電性構造によって形成されるコイルを通して生成される。次に、ステータプラットフォーム磁場は、ロータプラットフォーム410内の磁石に関連付けられたロータプラットフォーム磁場と相互作用して、プラットフォーム410を軸406を中心に回転させるトルクまたは力を生じさせることができる。例えば、ステータプラットフォーム磁場は、それぞれの導電経路(またはコイル)を通って流れるそれぞれの電流の方向に応じて、時計回りまたは反時計回りの方向に、上記の第1および第2の導電経路によって画定されるコイル内に延在することができる。
したがって、いくつかの例では、図4Cおよび図4Dに示す導電性構造は、電気的に結合されて、コアレスPCBモータコイルを形成することができる。例えば、図4Cに示す第1の複数の導電性構造は、図4Dに示す第2の複数の導電性構造から、図4Cおよび図4Dに示す2つの層間の電気絶縁層など(例えば、プラスチックなど)の絶縁材料によって分離され得る。この場合、ステータプラットフォーム磁場は、絶縁材料を通って延在することができる。しかしながら、他の例では、図4Cおよび図4Dの2つの層間に透磁コア(図示せず)を挿入して、生成されたステータプラットフォーム磁場を方向付けることができる。例えば、プラットフォーム430の中間層(図示せず)は、図4Cおよび図4Dの2つの層間に配設された導電性材料を含み得る。この場合、中間層の導電性材料はまた、第1の複数の導電性構造および第2の複数の導電性構造と重なり合うことができる。結果として、中間層の導電性材料は、したがって、軸406を中心とし、図4Cおよび図4Dに示す2つの層に沿って延在するそれぞれの導電経路によって画定されるコイルの内側のステータプラットフォーム磁場を方向づけることによって、ステータプラットフォーム磁場を増強する磁気コアとして構成され得る。
磁場センサー490は、センサー390と同様であり得る。その目的のため、センサー490は、プラットフォーム410の磁石(例えば、420、422、424、426など)によって生成されたロータプラットフォーム磁場を測定するように構成されている、ホール効果センサーなど任意の磁力計を含み得る。したがって、例えば、コンピューティングシステム(例えば、コントローラ334、回路350など)は、センサー490からの出力に基づいて、軸406を中心としたプラットフォーム410の配向を判定することができる。
これを容易にするために、いくつかの例では、センサー490は、プラットフォーム410のロータプラットフォーム磁場と実質的に重なるプラットフォーム430内の場所に位置決めされ得る。例えば、図4Cに示すように、センサー490は、円440と441との間の領域(プラットフォーム410の磁石と少なくとも部分的に重なる領域)に位置決めされる。さらに、第1の複数の導電性構造および第2の複数の導電性構造によって画定されるコイルまたは導電経路間に延在するステータプラットフォーム磁場による干渉を軽減するために、プラットフォーム430における、軸406を中心として延在するコイル形状の導電経路の一部分は、センサー490が位置するプラットフォーム430の領域において、中断または修正され得る。
図4Cに示すように、例えば、第1の複数の導電性構造は、実質的に均一な距離だけ離間された複数の離間した導電性構造を含む。例えば、図示のように、構造442、444は、実質的に均一な距離だけ離れ、構造446、448もまた、実質的に均一な距離だけ離れている。しかしながら、図4Cに示す第1の複数の導電性構造は、実質的に均一な距離よりも大きな距離だけ離れている2つの隣接する構造を含み得る。例えば、図示のように、隣接する構造454および456は、より大きな距離だけ離れている。同様に、例えば、(図4Dに示す)第2の複数の導電性構造もまた、第2の複数の構造の他の構造間の実質的に均一な距離よりも大きい距離だけ離れている2つの隣接する構造(例えば、484、486)を含み得る。したがって、図4Cに示すように、センサー490は、構造454と456との間(すなわち、軸406を中心として延在するコイル形状の導電経路における「ギャップ」内)に位置することができる。
この配置を容易にするために、センサー490が位置する領域(例えば、円440と441の間の領域の外側など)から離れるように延在するコネクタ492、494を採用して、コイル形状の導電経路の一部分、およびコイル形状の導電経路の残りの部分を電気的に結合することができる。その目的のため、コネクタ492および494は、センサー490から適切な距離に成形および/または配設される導電性材料(例えば、銅、金属、金属化合物など)を含み、センサー490の場所でのステータプラットフォーム磁場の影響を低減し得る。
図示のように、例えば、コネクタ492は、電気接点を介して、導電性構造454(図4C)を導電性構造489(図4D)に電気的に結合する。同様に、コネクタ494は、導電性構造484(図4D)を導電性構造459(図4C)に電気的に結合する。図示されていないが、プラットフォーム430はまた、センサー490の場所でのステータプラットフォーム磁場を低減しながら、軸406の周囲の追加の導電経路を電気的に接続するように構成されている追加のコネクタ(例えば、コネクタ492または494と同様)を含み得る。第1の例では、コネクタ(図示せず)は、構造452(図4C)を構造488(図4D)に電気的に結合することができる。第2の例では、コネクタ(図示せず)は、構造450(図4C)を構造486(図4D)に電気的に結合することができる。第3の例では、コネクタ(図示せず)は、構造480(図4D)を構造456(図4C)に電気的に結合することができる。第4の例では、コネクタ(図示せず)は、構造482(図4D)を構造458(図4C)に電気的に結合することができる。
さらに、コネクタ492および494は、同じPCB層(例えば、側面430a)に沿って配設されることが示されているが、いくつかの例では、1つ以上のコネクタは、図4Dに示される層またはプラットフォーム430の別の層(図示せず)に沿って交互に配設され得る。さらに、磁気センサー490は、プラットフォーム430の側面430aに取り付けられるように示されているが、いくつかの例では、センサー490は、代替的に、プラットフォーム430の異なる側面(例えば、側面430b)または導電性構造454、456、484、486の間のロータプラットフォーム磁場の一部分内の任意の他の位置に沿って位置決めされ得る。例えば、第2の複数の導電性構造472、474、476、478、480、482、484、486、488、489などが、プラットフォーム430の側面430bに沿って配設される実装形態において、センサー490は、構造484と486の間に代替的に取り付けられ得る。センサー490の他の位置も可能である(例えば、側面430aと430bの間など)。
さらに、いくつかの例では、プラットフォーム430は、例えば、プラットフォーム330に含まれる構成要素(例えば、通信インターフェース335、電力インターフェース338など)のいずれかなど、示されるものよりも多くの構成要素を含んでもよい。例として図4Cに戻って参照すると、プラットフォーム430は、回路基板(例えば、PCB)として実装することができ、軸406と円440との間の領域は、他の可能性の中でもとりわけ、電力インターフェース構成要素(例えば、トランスコイル)、および/または通信インターフェース構成要素(例えば、無線送信機、光源、検出器など)を含むことができる。
デバイス400および/またはその構成要素について図4A~図4Dに示す形状、寸法、および相対位置は、必ずしも縮尺通りである必要はなく、説明の便宜のために示されるように例示されているに過ぎないことに留意する。その目的のため、例えば、デバイス400および/またはその1つ以上の構成要素は、他の形態、形状、配置、および/または寸法も有することができる。また、デバイス400は、とりわけ、デバイス300の構成要素(例えば、インターフェース、センサー、コントローラなど)のいずれかなど、示されるものよりも少ないまたは多い構成要素を含み得ることにも留意する。一例では、図4Cおよび図4Dの各層について6本のリードが示されているが、デバイス400は、代替的には、軸406を中心として延在する異なる数の導電経路に対してより多いまたはより少ないリードを含むことができる。別の例では、デバイス400は、プラットフォーム410に特定の数の磁石を含むことが示されているが、デバイス400は、代替的には、より多くのまたはより少ない磁石を含むことができる。
図5は、例示的な実施形態による、ロータプラットフォームの配向と磁場センサーからの出力との間の関係の概念図500である。図5は、ロータプラットフォーム410が一定の速度で、軸406を中心に時計回りの方向に完全に1回転、回転するシナリオを例示する。その目的のため、図500のプロットの横軸は、プラットフォーム410の最初の配向からプラットフォーム410が軸406を中心に完全に1回転(例えば、360度)、回転するまでの時間(例えば、秒単位)を示し得る。シナリオでは、センサー490は、センサー490の場所でのロータプラットフォーム磁場(例えば、ベクトル場)の3D表現を提供するように構成され得る。したがって、凡例502に示されるX曲線、Y曲線、およびZ曲線は、それぞれ、センサー490によって測定された磁場のx成分、y成分、およびz成分に対応し得る。その目的のため、プロットX、Y、Zに対して、図500のプロットの縦軸は、測定された磁場(例えば、テスラ単位)を示し得る。さらに、凡例502に示される曲線「atan2(Z,X)」は、出力のz成分およびx成分への「atan2」関数の適用に基づいて計算された磁場角に対応し得る。atan2の計算は、z成分の出力をx成分の出力で割ったアークタンジェントの計算に類似し得る。しかしながら、アークタンジェントの計算とは異なり、atan2関数は、平面の正のx軸と平面上の座標(X,Z)によって与えられる点との間の出力角度をラジアンで提供する。例えば、atan2で計算された角度は、反時計回りの角度(例えば、Z>0)の正の値と、時計回りの角度(例えば、Z<0)の負の値とを含み得る。そうすることで、単純なアークタンジェントの計算とは異なり、atan2は-πラジアンからπラジアンの範囲の出力を提供しつつ、ゼロ(例えば、x成分の値がゼロ)による除算の問題も回避できる。その目的のため、「atan2(Z,X)」の曲線に示されているように、縦軸は角度計算(例えば、ラジアン単位)を示し得る。
図4Cに戻って参照すると、Y曲線によって示されるy成分は、センサー490を通って軸406に向かって延在するy軸に沿ったロータプラットフォーム磁場の成分に対応し得る。Z曲線によって示されるz成分は、センサー490を通って紙面の外に延在するz軸に沿ったロータプラットフォーム磁場の成分に対応し得る。Z曲線によって示されるx成分は、y軸およびz軸に垂直な(例えば、直交する)センサー490のx軸に沿ったロータプラットフォーム磁場の成分に対応し得る。
この構成では、例えば、図500に示されるZ曲線の最大値は、センサー490がz軸の正の方向に磁化された磁石(例えば、紙面の外に向かうS極)と整列されたプラットフォーム410の配向に対応し得る。例えば、矢印504のz最大値は、磁石420がセンサー490と整列されたプラットフォーム410の配向を示す。さらに、Z曲線の最小値は、センサー490が、z軸の負の方向に磁化された磁石(例えば、紙面の外に向かうN極)と整列されたプラットフォーム410の配向に対応し得る。例えば、矢印506のz最小値は、磁石426がセンサー490と整列されたプラットフォーム410の配向を示す。
したがって、この配置では、2つの隣接する磁石間のプラットフォーム410の配向の指示を、z成分およびx成分に対するatan2計算として計算することができる(例えば、「atan2(Z,X)」曲線)。この計算は、例えば、コントローラ334および/または回路350によって実行することができる。atan2(Z,X)曲線は、任意の2つの磁石間のプラットフォーム410の正規化された配向を表す。例えば、センサー490が磁石と整列されたプラットフォーム410の各配向は、ゼロラジアンの値またはpiラジアンの値(z軸の方向に応じる)に対応し得る。したがって、本明細書における様々なデバイスおよびシステム(例えば、車両100、200、デバイス300、400)は、任意の2つの磁石に対するプラットフォーム410の配向のマッピングとして、atan2(Z,X)計算を使用することができる。
さらに、上記のように、インデックス磁石を使用して、軸406を中心としたプラットフォーム410の絶対的な配向の計算を容易にすることができる。例として図4Cに戻って参照すると、インデックス磁石422は、プラットフォーム410の他の磁石(例えば、420、424、426など)と比較して、軸406に対してオフセット距離(すなわち、センサー490のy軸に沿ったオフセット)に位置決めされている。結果として、例えば、センサー490によって測定されたロータプラットフォーム磁場のy成分は、センサー490が磁石420と424との間の領域と重なるプラットフォーム410の配向について異常を経験することがある。矢印508は、そのような領域(例えば、磁石420と424の間)にあるセンサー490に関連付けられたy最大値を指す。図示のように、y最大値508は、図500のY曲線の他のy最大値よりも著しく低い。したがって、y成分異常をデバイス400が使用して、プラットフォーム410のインデックス位置を検出し、次に、インデックス位置または配向に対するプラットフォーム410の絶対配向として、磁石の異なるペア間の他の位置をマッピングすることができる。
さらに、示されているように、y成分の異常は、x成分およびz成分の測定値から実質的に独立している。したがって、インデックス磁石422のy軸変位は、デバイス400が、y成分を使用してインデックス配向を検出しながら、(例えば、x成分およびz成分を使用して)プラットフォーム410の配向を測定することを可能にすることができる。
図6は、例示的な実施形態による、回転継手を含む別のデバイス600の断面図である。デバイス600は、例えば、デバイス300および400と同様であり得る。その目的のため、デバイス600は、それぞれロータプラットフォーム410および側面410aと同様である側面610aを有するロータプラットフォーム610を含む。さらに、図示のように、デバイス600は、回転軸606、磁石620、624、626、およびマウント628を含み、これらは、それぞれ、軸406、磁石420、424、426、およびマウント428と同様である。
上記のように、いくつかの例では、インデックス磁石422は、センサー490のy軸に沿った変位(すなわち、軸406までの距離)以外の代替または追加の差別化特性を有し得る。例えば、インデックス磁石422とは異なり、インデックス磁石622は、プラットフォーム610の他の磁石(例えば、620、624、626など)と軸606に対して同じ距離にある。しかしながら、図示のように、インデックス磁石622は、他の磁石と比較して、より小さなサイズ(例えば、長さ)を有する。結果として、インデックス磁石622はまた、デバイス600が軸606を中心としたプラットフォーム610のインデックス配向を識別することを可能にする異常(例えば、y最大値508と同様)を呈示し得る。
図7は、例示的な実施形態による、回転継手を含む別のデバイス700の断面図である。例えば、デバイス700は、デバイス300、400、600と同様であり得る。その目的のため、デバイス700は、それぞれロータプラットフォーム410および側面410aと同様であるロータプラットフォーム710および側面710aを含む。さらに、図示のように、デバイス700は、それぞれ軸406、磁石420、424、426、およびマウント428と同様である回転軸706、磁石720、724、726、およびマウント728を含む。
しかしながら、インデックス磁石422とは異なり、インデックス磁石722は、プラットフォーム710の他の磁石(例えば、720、724、726など)と軸706に対して同じ距離にある。代わりに、図示のように、インデックス磁石722は、(例えば、軸706を中心とした磁石の円形配置において磁石722を収容するくぼみ内で)別の磁石723に隣接して配置される。さらに、磁石723は、磁石722の磁化方向と反対の方向に磁化することができる(例えば、紙面の外に向かうS極「S」によって示される)。したがって、磁石723は、デバイス700が、軸706を中心としたプラットフォーム710のインデックス位置または配向を識別できるようにする異常(例えば、y最大値508と同様)をインデックス磁石722が呈示するように、インデックス磁石722によって提供される磁場を歪めることができる。
代替的には、図示されていないが、磁石722および723は、一方向に沿って磁化される部分(例えば、紙面の外に向かうS極)および反対方向に沿って磁化される別の部分(例えば、紙面の外に向かうN極)を含む単一の磁石(例えば、プリント磁石など)として実装され得る。
図8は、例示的な実施形態による、回転継手を含む別のデバイス800の断面図である。例えば、デバイス800は、デバイス300、400、600、700と同様であり得る。その目的のため、デバイス800は、それぞれロータプラットフォーム410および側面410aと同様であるロータプラットフォーム810および側面810aを含む。さらに、図示のように、デバイス800は、軸406と同様である回転軸806を含む。図示のように、デバイス800はまた、磁石320と同様であるリング磁石820を含む。
上記のように、いくつかの例では、磁石320は、単一のリング磁石として実装され得る。したがって、図示のように、リング磁石820は、デバイス400の複数の磁石420、422、424、426などの代わりに使用することができる例示的な単一磁石の実装形態である。例えば、リング磁石820は、デバイス400内の磁石の配置と同様の磁化パターンを有するプリント磁石として物理的に実装され得る(例えば、交互の方向に磁化された磁石820の隣接領域など)。
例えば、リング磁石820の第1のリングセクター(例えば、環状セクターなど)は、半径822と824との間の角度幅を有する磁石820の領域に対応し得る。図示のように、第1のリングセクターは、紙面に向かう第1の方向(軸806に平行)に磁化されるリング磁石820の磁化された領域であり得る。これは、第1のリングセクターの白い背景と文字「S」(つまり、紙面の外に向かうS極)によって示されている。同様に、例えば、リング磁石820の第2のリングセクター(第1のリングセクターに隣接する)は、半径824と826との間の角度幅を有する磁石820の領域に対応し得る。さらに、図示のように、第2のリングセクターの少なくとも一部分は、第1のリングセクターの方向とは反対の方向に磁化される。これは、第2のリングセクターの異なる背景パターンと文字「N」(つまり、紙面の外に向かうN極)によって示されている。
さらに、第2のリングセクター(半径824と826の間)は、インデックス磁石422の代替の実装形態を示す。図示のように、半径824と826との間の領域は、第1の方向に沿ってインデックスリングセクターの一部分(例えば、紙面の外に向かう「N」N極)および反対方向に沿ったインデックスリングセクターの別の部分(例えば、半径822、824間と半径826、828間の隣接するリングセクターと同じ磁化方向「S」S極を有する白い背景を有する部分)を磁化することによってインデックスリングセクターとして構成される。したがって、リング磁石820のインデックスリングセクターは、磁場センサー(例えば、センサー390、490、など)の出力における(例えば、y最大値508と同様の)異常も提供し、軸806を中心としたロータプラットフォーム810の絶対位置または配向の判定を容易にすることができる、代替的な「インデックス磁石」の実装形態を示す。
さらに、磁石820がデバイス400の磁石420、422、424、426などを置き換える例示的なシナリオでは、導電性構造442、444、446、448、450、452、454、456、458、459などは、軸406を中心としたプラットフォーム410の回転に応答して、磁石820に対して距離408内に留まることができる。さらに、そのシナリオでは、1つ以上の導電性構造によって画定される導電経路は、プラットフォーム410が軸406を中心に回転する際に、リング磁石820に少なくとも部分的に重なり合うままであり得る。
図9は、例示的な実施形態による、調整可能なセンサー取り付けプラットフォーム900を含むセンサーユニットデバイス900の簡略ブロック図である。センサーユニット900は、センサーユニット102、104、106、108、110と同様であってもよく、および/またはセンサーシステム204内の構成要素の任意の組み合わせであってもよい。図示のように、センサーユニット900は、1つ以上のアクチュエータ902、1つ以上のエンコーダ904、センサープラットフォーム906、温度センサー910、コンディショニングデバイス912、およびコントローラ914を含む。センサーユニット900は、図示されるものよりも追加の、またはより少ない構成要素を含み得ることに留意する。一例では、センサーユニット900は、示されている構成要素に加えて、またはその代わりに、車両200の構成要素のうちのいずれかを含み得る。別の例では、デバイス900は、温度センサー910なしで、および/またはコンディショニングデバイス912なしで実装され得る。他の例も、同様に可能である。
アクチュエータ902は、アクチュエータ236と同様の1つ以上のアクチュエータを含み得る。一実装形態では、アクチュエータ902は、車両の回転軸(例えば、ヨー軸、ロール軸、ピッチ軸など)に実質的に平行である回転軸および/または他の回転軸を中心にプラットフォーム906を回転させるように構成され得る。
エンコーダ904は、エンコーダ(例えば、機械的エンコーダ、光学的エンコーダ、磁気エンコーダ、容量性エンコーダなど)の任意の組み合わせを含んでもよく、アクチュエータ902がプラットフォーム906を回転させることに応答して、プラットフォーム906の配向の指示を提供するように構成され得る。したがって、一例では、エンコーダ904は、プラットフォーム906の回転軸を中心としたプラットフォーム906の角度位置を示すエンコーダ出力信号を提供するように構成され得る。
いくつかの例では、アクチュエータ902およびエンコーダ904の両方が、1つ以上の共有物理構成要素を含み得る。例として、アクチュエータ902は、プラットフォーム906上に配設された複数の磁石(例えば、図4Bに示されるデバイス400の磁石と同様)、およびプラットフォーム906の反対側のデバイス900の別のプラットフォーム(図示せず)に配設された複数の導電性構造(例えば、図4Cおよび図4Dに示されるデバイス400の導電性構造と同様)を含み得る。さらに、この例では、エンコーダ904はまた、他の反対側のプラットフォームに配設された磁場エンコーダ(例えば、図4Cに示される磁場センサー490と同様)とともに、プラットフォーム906上に配設された同じ複数の磁石を含み得る。
プラットフォーム906は、センサー(例えば、センサー908)を取り付けるのに適切な任意の固体構造を含み得る。例えば、プラットフォーム906は、回転継手構成においてステータプラットフォームに対して回転するロータプラットフォームを含み得る。
センサー908は、センサーシステム204に含まれるセンサーの任意の組み合わせを含み得る。いくつかの実装形態では、センサー908は、プラットフォーム906に取り付けられ、車両の方向軸(例えば、軸114、116、または118)と整列されて、車両の運動の方向の指示を提供する、例えば、ジャイロスコープなどの配向センサーを含む。例えば、ジャイロスコープセンサー908は、ジャイロスコープの運動(例えば、プラットフォーム906の回転またはセンサーユニット900を含む車両の運動による)に応答して、ジャイロスコープセンサーのポインティング方向(例えば、ヨー方向、ピッチ方向、ロール方向など)の変化の速度を示す出力信号を提供してもよい。したがって、様々な例において、センサー908は、ヨーセンサーのヨー回転速度(例えば、車両100の軸114を中心としたセンサーの回転速度)の指示を提供する「ヨーセンサー」、ピッチ速度の指示を提供する「ピッチセンサー」、またはロール速度の指示を提供する「ロールセンサー」として構成することができる。したがって、一例では、配向センサー908は、プラットフォーム906に取り付けられ、配向センサー908の配向(またはその変化の速度)を示すセンサー出力信号を提供するように構成され得る。
温度センサー910は、とりわけ、温度計、サーミスタ、熱電対、測温抵抗体、シリコンバンドギャップ温度センサーなどの任意のタイプの温度センサーを含み得る。いくつかの例では、温度センサー910は、センサー908の温度および/またはセンサー908を取り巻く空気の温度の指示を提供するために、センサー908に隣接して、またはその近くに配置することができる。例えば、温度センサー910は、校正中に使用されて、測定された温度をセンサー908によって提供された測定値と関連付けることができる。
コンディショニングデバイス912は、他の例の中でもとりわけ、エアコン、加熱素子、抵抗性加熱素子、空冷デバイスなどの任意のタイプの温度コンディショニングデバイスを含むことができる。いくつかの実装形態では、コンディショニングデバイス912は、センサー908の近くに配置され、および/またはセンサー908に結合されて、センサーの温度を調整することができる。一例では、コンディショニングデバイス912を使用して、センサー908の校正中に動作の異なる温度をシミュレートすることができ、したがって、校正を実行する車両が、車両の動作中に予想される様々な環境条件(例えば、温度)に適切な校正データを取得または生成することを可能にする。別の例では、コンディショニングデバイス912を使用して、センサー908の温度を、以前に生成された校正データに適した温度範囲内の所与の温度に調整することができる。例えば、デバイス900は、センサー908が特定の温度にあったときに収集された校正データを記憶することができる。さらに、この場合、デバイス900は、記憶された校正データがセンサー908による測定誤差を軽減するのに適切な温度の閾値範囲の指示を含むか、他の方法でこれにアクセスし得る。したがって、例示的なシナリオでは、デバイス900またはその構成要素(例えば、コントローラ914)は、現在の温度が温度の閾値範囲外にあることを(例えば、温度センサー910を介して)検出し、応答してコンディショニングデバイス912を動作させて、温度の閾値範囲内の所与の温度にセンサー908の温度を調整することができる。
コントローラ914は、本開示における様々な方法の機能を実行するために実行可能な回路および/またはコンピュータ論理の任意の組み合わせを含み得る。一例では、コントローラ914は、車両200のコンピュータシステム210と同様に、1つ以上のプロセッサと、1つ以上のプロセッサによって実行可能な命令を記憶するデータストレージとして実装され得る。別の例では、コントローラ914は、本開示の様々な機能を実行するように配線されたデジタルおよび/またはアナログ回路として実装され得る。他の実装形態(例えば、コンピュータプログラムロジックと回路の組み合わせ)も可能である。
III.例示的な方法およびコンピュータ可読媒体
図10は、例示的な実施形態による方法1000のフローチャートである。図10に示される方法1000は、例えば、車両100、200、および/またはデバイス300、400、600、700、800のうちのいずれかとともに使用され得る方法の実施形態を提示する。方法1000は、ブロック1002~1004のうちの1つ以上によって例示されるように、1つ以上の動作、機能、またはアクションを含み得る。ブロックは連続した順序で示されているが、これらのブロックは、場合によっては、並行して、および/または本明細書で記載されたものとは異なる順序で実行され得る。また、様々なブロックは、所望の実装形態に基づいて、より少ないブロックに結合され、追加のブロックに分割され、および/または削除されてもよい。
さらに、本明細書に開示される方法1000ならびに他のプロセスおよび方法について、フローチャートは、本実施形態の1つの可能な実装形態の機能および動作を示す。この点で、各ブロックは、モジュール、セグメント、製造または動作プロセスの一部分、またはプロセスの特定の論理機能もしくはステップを実装するためにプロセッサによって実行可能な1つ以上の命令を含むプログラムコードの一部分を表し得る。プログラムコードは、例えば、ディスクまたはハードドライブを含むストレージデバイスのような任意のタイプのコンピュータ可読媒体に記憶され得る。コンピュータ可読媒体は、例えば、レジスタメモリ、プロセッサキャッシュ、およびランダムアクセスメモリ(RAM)のような、データを短期間にわたって記憶するコンピュータ可読媒体などの非一時的なコンピュータ可読媒体を含み得る。コンピュータ可読媒体は、例えば、リードオンリーメモリ(ROM)、光ディスクまたは磁気ディスク、コンパクトディスクリードオンリーメモリ(CD-ROM)のような補助ストレージまたは永続長期ストレージなどの非一時的なコンピュータ可読媒体も含み得る。コンピュータ可読媒体は、任意の他の揮発性または不揮発性ストレージシステムとすることもできる。コンピュータ可読媒体は、例えば、コンピュータ可読ストレージ媒体、または有形のストレージデバイスであると考えられ得る。
加えて、方法1000および本明細書で開示される他のプロセスおよび方法について、図10の各ブロックは、プロセスにおける特定の論理機能を実行するために配線される回路を表し得る。
方法1000は、デバイス(例えば、デバイス300など)のロータプラットフォーム(例えば、第1のプラットフォーム310など)を、デバイスのステータプラットフォーム(例えば、第2のプラットフォーム330など)に対して、およびロータプラットフォームの回転軸(例えば、軸406など)を中心に回転させるための例示的な方法である。したがって、いくつかの例では、ロータプラットフォームは、上記の議論に沿って、回転軸を中心としたロータプラットフォームの回転に応答して、ステータプラットフォームに対して所与の距離(例えば、距離408など)内に留まり得る。
ブロック1002において、方法1000は、電流を、ステータプラットフォームに含まれ、かつロータプラットフォームの回転軸を中心として延在する導電経路を通して流すことを伴う。例として、デバイス300は、導電経路に電流を提供する回路350(例えば、電源、電圧レギュレータ、電流増幅器、配線など)を含んでもよい。その目的ため、例えば、導電経路は、互いに電気的に結合されている第1の複数の同一平面上の導電性構造(例えば、構造442、444、446、448、450、452、454、456、458、459、などのうちの1つ以上)によって画定されてもよい。さらに、例えば、導電経路はまた、第1の複数の同一平面上の構造に平行な、かつ電気的に結合された第2の複数の同一平面上の導電性構造(例えば、構造472、474、476、478、480、482、484、486、488、489などのうちの1つ以上)を含み、回転軸を中心として延在するコイルを形成し得る。
したがって、上記のように、コイルを流れる電流(すなわち、平面導電構造の配置)は、ロータプラットフォームのロータプラットフォーム磁場と相互作用するステータプラットフォーム磁場を生成することができ、したがって、ロータプラットフォームは、回転軸を中心に回転する。例えば、磁場の相互作用は、ロータプラットフォームを回転軸を中心に(提供された電流の方向に応じて)時計回りまたは反時計回りの方向に回転させるトルクまたは力を誘導し得る。
ブロック1004において、方法1000は、電流を変調して、回転軸を中心とした第1のプラットフォームの配向を調整して、目標配向を達成することを伴う。例として、センサー312がプラットフォーム310に取り付けられたジャイロスコープ(例えば、方向)センサーであるシナリオを考える。そのシナリオにおいて、コントローラ314(または344)は、センサー312からの出力を処理して、センサー312が特定の目標の方向の変化(例えば、ゼロの値など)を測定するまで、プラットフォーム310を回転させるように構成され得る。このシナリオでは、回路350は、電流を変調して、プラットフォーム310を、センサー312によって測定された方向または速度の変化とは反対の特定の方向および/または速度で回転させることができる。他のシナリオが同様に可能である。
したがって、いくつかの実装形態では、方法1000はまた、ロータプラットフォームの回転の特性(例えば、回転速度、回転の加速、回転の方向など)を変調することを伴う。追加的または代替的に、いくつかの実装形態では、方法1000はまた、上記の議論に沿って、磁場センサー(例えば、センサー490)の出力を取得すること、および磁場センサーの出力に基づいて、回転軸を中心としたロータプラットフォームの配向を判定することを伴う。
図11は、例示的な実施形態による、別の方法1100のフローチャートである。図11に示される方法1100は、例えば、車両100、200、デバイス300、400、600、700、800、900、および/または方法1000のいずれかで使用され得る方法の実施形態を提示する。方法1100は、ブロック1102~1108のうちの1つ以上によって示されるように、1つ以上の動作、機能、またはアクションを含み得る。ブロックは連続した順序で示されているが、これらのブロックは、場合によっては、並行して、および/または本明細書で記載されたものとは異なる順序で実行されてもよい。また、様々なブロックは、所望の実装に基づいて、より少ないブロックに組み合わされ、さらなるブロックに分割され、および/または除去され得る。
ブロック1102において、方法1100は、軸を中心に第1のプラットフォームを回転させるように構成されているアクチュエータを制御するための校正制御信号を生成することを伴う。校正制御信号により、アクチュエータに、軸を中心に完全に少なくとも1回転、第1のプラットフォームを回転させ得る。例として、方法1100のシステムは、(図4C~図4Dに示す)デバイス400の導電性構造を通って流れる変調電流として校正制御信号を生成するように構成されているコントローラ(例えば、コンピュータシステム210、コントローラ314、コントローラ334、コントローラ914など)を含んでもよく、(図4Aに示す)プラットフォーム410が所定の方式で(例えば、軸を中心とした完全な各回転中の特定の回転速度、および/または特定の回転方向で)軸406を中心に回転するようにする。
いくつかの例では、第1のプラットフォームを完全な少なくとも1回の回転のうちの完全な所与の回転だけ回転させることは、アクチュエータが、第1のプラットフォームを、その所与の完全な回転の開始時間および位置において軸を中心とした特定の角度位置から、第1のプラットフォームがその所与の完全な回転の停止時間および位置において再び特定の角度位置となるまで、特定の回転方向で回転させることを含む。図4Aに戻って参照すると、例えば、アクチュエータは、プラットフォーム410を軸406を中心とした特定の角度位置から時計回りの方向に360度回転させることができる(例えば、プラットフォーム410が軸406を中心としたその同じ特定の角度位置に戻るとき、開始位置と停止位置が同じであるか、互いに直接隣接している場合など)。
いくつかの例では、方法1100のシステムは、例えば、図4Bに示すデバイス400の磁石と同様に、第1のプラットフォームに取り付けられ、かつ第1のプラットフォームの回転軸を中心として配置される複数の磁石を含んでもよい。これらの例では、複数の磁石は、回転軸を中心とした複数の磁石の配置に基づいて第1の磁場を生成することができる。さらに、システムは、アクチュエータが軸を中心に第1のプラットフォームを回転させることに応答して、第1のプラットフォームから所与の距離(例えば、距離408)内に留まるように構成された第2のプラットフォーム(例えば、図4Aに示すプラットフォーム430)を含み得る。さらに、いくつかの例では、システムは、図4C~図4Dに示すデバイス400の導電性構造と同様に、第2のプラットフォームに配設され、回転軸を中心として配置された複数の導電性構造を含み得る。例えば、複数の導電性構造は、デバイス400について記載された導電性構造と同様に、複数の導電性構造の配置に基づいて回転軸を中心として延在する導電経路を形成してもよい。したがって、これらの例では、ブロック1102のアクチュエータは、第2のプラットフォームの複数の導電性構造と、第1のプラットフォームの複数の磁石とを含み得る。
いくつかの例では、方法1100はまた、複数の構造によって画定される導電経路に(ブロック1102で生成される)校正制御信号を提供することを伴い得る。したがって、これらの例では、複数の導電性構造は、校正制御信号に基づいて第2の磁場を生成することができ、第1のプラットフォームの第1の磁場は、第2のプラットフォームの第2の磁場と相互作用して、軸を中心に第1のプラットフォームを回転させ得る。
ブロック1104において、方法1100は、エンコーダ(例えば、センサー390、センサー490、エンコーダ904など)から、軸を中心とした第1のプラットフォームの角度位置を示すエンコーダ出力信号を受信することを伴う。例として、LIDAR400のコントローラは、センサー490からエンコーダ出力信号を受信してもよく、これは、軸406を中心としたプラットフォーム410の回転中に、図4Bに示す磁石のどれがセンサー490と重なるかを示し得る。
いくつかの例では、方法1100は、エンコーダ出力信号に基づいて、(例えば、ブロック1102においてアクチュエータによって引き起こされる)軸を中心とした第1のプラットフォームの完全な少なくとも1回の回転のうちの各完全な回転の完了を検出することを伴う。
第1の例では、図4Bおよび図4Cに戻って参照すると、方法1100のシステムは、センサー490がセンサー490の上方にインデックス磁石422の存在を示す特定のエンコーダ出力信号を提供するとき(すなわち、プラットフォーム410が軸406を中心としたインデックス角度位置にあるとき)に、軸406を中心としたプラットフォーム410の各完全な回転の完了を検出し得る。
第2の例では、システムは、センサー490が、完全な回転の開始および完全な回転の終了における特定の角度位置に関連付けられた同じ特定のエンコーダ信号を提供することに基づいて、プラットフォーム410の各完全な回転の完了を検出し得る。したがって、特定のエンコーダ信号は、必ずしも軸406を中心としたプラットフォーム410のインデックス位置に関連付けられる必要はない。
より一般的には、いくつかの例示的なエンコーダ測定誤差は、体系的で再現可能であり得る(すなわち、各完全な回転中に特定の方式で一貫して発生する)。例えば、予想される取り付け位置に対する図4Bに示す磁石のうちの特定の磁石の取り付け位置のオフセットによって引き起こされる誤差は、プラットフォーム410が回転している間にセンサー490がその特定の磁石と重なるたびに同じエンコーダ測定誤差を引き起こすことがある。別の例では、図4Bに示す磁石の配置の真円度または同心性に関連付けられた誤差はまた、軸406を中心としたプラットフォーム410の各完全な回転の間、実質的に一貫し得る。したがって、いくつかの例では、ブロック1104で受信されたエンコーダ出力信号は、軸を中心とした第1のプラットフォームの各完全な(360度)回転の完了を検出するための比較的信頼できるおよび/または再現可能な信号を提供し得る。
ブロック1106において、方法1100は、第1のプラットフォームに取り付けられた配向センサーから、配向センサーの方向の変化の速度を示すセンサー出力信号を受信することを伴う。例えば、図4Aに戻って参照すると、ブロック1106におけるセンサー出力信号は、プラットフォーム410上に配設されたセンサー412によって提供され得る。例えば、センサー412は、軸413を中心としたジャイロスコープ412の配向の変化の速度を測定するジャイロスコープ412を含み得る。
ブロック1108において、方法1100は、完全な少なくとも1回の回転中に配向センサーから受信された所与の出力信号に基づいて、エンコーダ出力信号を、軸を中心とした第1のプラットフォームの角度位置の校正された測定値にマッピングするための校正データを判定することを伴う。
例として、方法1100のシステムは、所与のセンサー出力信号によって示される配向センサーからの測定値を使用して、校正制御信号に従って、アクチュエータによって引き起こされる完全な少なくとも1回の回転のうちの各回転中の第1のプラットフォームの所与の角度位置を推定することができる。次に、システムは、配向センサーによって示される角度位置の推定された測定値を、エンコーダによって示される角度位置の対応する測定値と比較し得る。
理想的には、センサーとエンコーダの両方の測定値が互いに一致するべきである。ただし、シナリオによっては、エンコーダの測定値に様々な測定誤差が含まれることがある。例えば、図4Bに戻って参照すると、エンコーダ測定値は、磁石の予想される位置に対して、プラットフォーム410に取り付けられた複数の磁石のうちの1つ以上のずれによって引き起こされる誤差を含み得る。別の例として、図4Bに示す磁石の配置の真円度は、予想される真円度からオフセットされ得る。とりわけ、予想しない磁気特性など(例えば、分極方向、磁場強度など)、エンコーダ測定誤差の他の例示的な原因が考えられる。したがって、そのようなずれた構成に関連付けられたエンコーダ出力信号は、エンコーダの様々な構成要素の整合構成に関連付けられた予想されるエンコーダ出力信号とは異なることがある。例えば、図5に戻って参照すると、そのようなずれは、図5に示すX、Y、およびZ信号によって示される磁場強度が、示される実質的に均一な正弦波信号形状とは異なる形状を有することを引き起こすことがある。
したがって、いくつかの例では、1100のシステムは、エンコーダによって示される見かけの角度位置を、配向センサーからの所与のセンサー出力信号によって示される第1のプラットフォームの対応する推定角度位置とマッピングすることによって、ブロック1108において校正データ(例えば、ルックアップテーブル、高速フーリエ変換(FFT)係数、または任意の他のタイプの校正データ)を判定し得る。
いくつかの例では、方法1100は、所与のセンサー出力信号に基づいて、軸を中心とした第1のプラットフォームの完全な少なくとも1回の回転中の第1のプラットフォームの回転速度を推定することと、推定された回転速度に基づいて校正制御信号を変調することとを伴う。例えば、図4Aに戻って参照すると、方法1100のシステムは、配向センサー412からのセンサー出力信号を使用して、プラットフォーム410の回転速度を目標回転速度に向けて駆動してもよい。このようにして、例えば、配向センサー412に関連付けられた測定誤差(例えば、スケールファクタ誤差)を制御または低減することができる(例えば、センサー412の配向の変化の速度をゼロの値またはその近くに維持して、スケールファクタ誤差を低減する)。したがって、いくつかの例では、校正制御信号を変調することは、任意選択で、推定された回転速度と目標回転速度との間の差に基づいて校正制御信号を変調することを含む。
いくつかの例では、方法1100は、(ブロック1106において受信される)センサー出力信号および(ブロック1104において受信される)エンコーダ出力信号に基づいて、軸を中心とした第1のプラットフォームの完全な少なくとも1回の回転中に校正制御信号を変調することを伴う。例として、方法1100のシステムは、エンコーダ出力信号を使用して、各完全な回転の開始と終了との間のそれぞれの期間を監視することができ(したがって、それぞれの各期間中の回転速度を制御する)、また、センサー出力信号を使用して、各期間中の第1プラットフォームの回転速度の均一性を制御することができる(例えば、配向センサーの配向の変化の速度の大きさをゼロまたは他の目標速度の近くに維持することなどによって)。
いくつかの例では、ブロック1104のエンコーダは磁気エンコーダである。例えば、磁気エンコーダは、図4Bに示すデバイス400の磁石と同様に、第1のプラットフォームの回転軸を中心として配置された複数の磁石を含んでもよい。さらに、例えば、磁気エンコーダはまた、図4Cに示すセンサー490と同様の磁場センサーを含んでもよい。これらの例では、方法1100はまた、校正データに基づいて磁気エンコーダの欠陥を識別することを伴い得る。
第1の例では、磁気エンコーダの欠陥を識別することは、複数の磁石のうちの特定の磁石を識別することを含み、特定の磁石は、回転軸を中心とした複数の磁石の配置において、特定の磁石の予想位置からオフセットして位置決めされる。例えば、図4Bに戻って参照すると、磁石424が図4Bに示す位置とは異なる位置にある場合、センサー490が磁石422と重なるときの第1の角度位置と、センサー490が426と重なるときの第2の角度位置との間でセンサー490によって測定される磁場角度は、磁石424が正しい位置に取り付けられた場合に測定される予想磁場角度に対応しないことがある。したがって、方法1100のシステムは、プラットフォーム410の第1の角度位置と第2の角度位置との間のセンサー490によって示される所与のエンコーダ出力信号に基づいて、磁石424の実際の位置と予想される位置との間のオフセットを識別し得る。例えば、システムは、校正データを以前に収集された校正データと比較して、欠陥の発生を検出することができる。
第2の例では、磁気エンコーダの欠陥を識別することは、予想される磁気特性からオフセットされた特定の磁気特性を有する特定の磁石に基づいて、複数の磁石のうちの特定の磁石を識別することを含む。例えば、特定の磁気特性は、特定の磁石の磁場強度、磁気分極方向、サイズ、および/または形状のいずれかに対応し得る。例えば、特定の磁石のオフセット取り付け位置についての上記の例と同様に、特定の磁石の様々な磁気特性の他の変動は、関連する所与のエンコーダ出力信号(例えば、プラットフォーム410が、磁石422に関連付けられた第1の角度位置と磁石426に関連付けられた第2の角度位置との間で回転するときのセンサー490からの出力)の対応する変化に基づいて検出され得る。
第3の例では、デバイスは、第1のプラットフォームの反対側の第2のプラットフォームに取り付けられた磁場センサーを含む。この例では、磁気エンコーダの欠陥を識別することは、第1のプラットフォームの回転軸と第2のプラットフォームの法線軸とのずれを識別することを含む。例えば、図4Aに戻って参照すると、ずれは、プラットフォーム410の回転軸406がプラットフォーム430の表面430a(例えば、図4Cに示されるようにセンサー490が取り付けられる表面)に垂直でないシナリオに対応し得る。この例では、軸406に対して表面430aで図4Bに示す複数の磁石によって生成される第1の磁場の同心性は、予想される同心性からオフセットされ得る(例えば、第1の磁場と均一に交差する幾何学的平面は、表面430aと平行ではないことがある)。結果として、各完全な回転中にセンサー490によって示される磁場強度の測定値は、軸406とセンサー490が取り付けられている表面430aの法線軸との間のずれによって引き起こされる第1の磁場の同心性のオフセットに関連付けられた正弦波測定誤差成分を含み得る。次に、方法500のシステムは、例えば、校正データによって示される正弦波測定誤差成分の特性に基づいて、軸406と表面430aの法線軸との間のオフセットを識別し得る。
いくつかの例では、方法1100は、校正データに基づいて、エンコーダ出力信号と、配向センサーからの所与のセンサー出力信号によって示される第1のプラットフォームの角度位置の推定測定値との間のマッピングの正弦波特性を識別することを伴う。
第1の例では、上記のように、正弦波特性は、第1のプラットフォームの回転軸と、第1のプラットフォームの反対側の第2のプラットフォームの法線軸との間のずれを示し得る。
第2の例では、正弦波特性は、第1のプラットフォーム上の複数の磁石の取り付け位置におけるオフセットを示し得る。例えば、図4Bに示す磁石間の実際の距離が予想される均一な距離からオフセットされている場合、センサー490が互いに均一に離れていない2つの磁石間の領域と重なるときに、(例えば、磁石の円形配置で均一に離れた他の磁石のペアと比較して)正弦波測定誤差がセンサー490の出力信号に生じることがある。したがって、そのような測定誤差の正弦波特性は、回転軸と第2のプラットフォームの法線軸とのずれに関連付けられた正弦波特性の判定と同様の方式で判定することができる。
これらの例では、方法110はまた、任意選択で、正弦波特性の識別に基づいて(ブロック1108の)校正データの圧縮表現を生成することと、圧縮された表現をデータストレージに記憶することと、を伴い得る。例えば、方法1100のシステムは、配向センサーによって示される測定値の値とエンコーダによって示される測定値の対応する値との間の非圧縮マッピング(例えば、ルックアップテーブル)を記憶する代わりに、または記憶することに加えて、識別された正弦波特性を示す高速フーリエ変換(FFT)係数を計算してもよい。このようにして、例えば、圧縮された校正データ(例えば、FFT係数)は、縮小されたメモリ空間(例えば、データストレージ214など)に記憶することができ、および/または計算効率の高い方式で、エンコーダ出力信号を校正された角度測定値にマッピングするために使用することができる。
いくつかの例では、方法1100のデバイスは、少なくともデバイスからのデータに基づいて環境をナビゲートするように構成されている車両に搭載され得る。図1Bに戻って参照すると、例えば、車両100は、(図4A~図4Dに示す)デバイス400を使用して、軸114を中心とした車両100のヨー方向を測定するように構成され得る。この例では、車両はまた、ヨー方向の測定値を使用して環境内で(例えば、自律モードなどの)車両をナビゲートするように構成されているナビゲーションシステム(例えば、車両200のナビゲーションシステム248)を含み得る。
いくつかの例では、方法1100は、車両が環境内を動いているかどうかを判定することと、車両が環境内を動いていないという判定に基づいて、デバイスの校正モードを有効にすることとを伴い得る。さらに、これらの例では、ブロック1102において校正制御信号を生成することは、有効にされている校正モードに基づいてもよい。例えば、図2に戻って参照すると、車両200は、車両の運動を測定する1つ以上のセンサー(例えば、GPS226、IMU228など)を含んでもよい。したがって、この例では、車両200は、車両が現在静止していると判定した場合、校正モードを有効にし得る。追加的または代替的に、例えば、車両は、車両が環境内を動いているという判定に応答して、デバイスの感知モードを有効にし、および/または校正モードを無効にしてもよい。
したがって、いくつかの例では、方法1100は、少なくとも車両が環境内を動いているという判定に基づいて、デバイスの校正モードを無効にすること、および/または校正モードが無効にされていることに基づいてアクチュエータを制御するための感知モード制御信号を生成することを伴い得る。これらの例では、感知制御信号は、アクチュエータに、(i)センサー出力信号によって示される配向センサーの配向の変化の方向と反対の回転方向に沿って、および(ii)センサー出力信号によって示される配向センサーの配向の変化の速度に基づいた回転速度で第1のプラットフォームを回転させ得る。例えば、上記の議論に沿って、システム1100のシステムは、感知モード制御信号を変調して、配向センサーによる測定の大きさを低減し、第1のプラットフォームをセンサー出力信号によって示される配向センサーの回転に対して駆動することによって、感知モードでデバイスを動作させてもよい。結果として、例えば、システムは、配向センサーのセンサー出力信号によって示される測定値のスケールファクタ誤差を低減することができる。
本明細書において説明される配置は、例示のみを目的としていることを理解されたい。このようなことから、当業者であれば、他の配置および他の要素(例えば、機械、インターフェース、機能、順序、および機能のグループ化など)が代わりに使用され得、いくつかの要素が所望の結果に応じて一括して省略され得ることを理解するであろう。さらに、説明される要素の多くは、個別の構成要素もしくは分散した構成要素として、または他の構成要素とともに、任意の適切な組み合わせおよび場所で実装してもよく、または独立した構造として説明される他の構造要素を組み合わせてもよい。
様々な態様および実施形態が本明細書において開示されているが、当業者には、他の態様および実施形態が明らかとなるであろう。本明細書において開示される様々な態様および実施形態は、例示を目的とするものであり、限定することを意図するものではなく、真の範囲が、そのような特許請求の範囲が権利を有する同等物の全範囲とともに、以下の特許請求の範囲によって示される。本明細書において使用される専門用語は、特定の実施形態を説明するためのものに過ぎず、限定することを意図するものではないことも理解されたい。

Claims (25)

  1. 回転軸を中心に第1のプラットフォームを回転させるように構成されているアクチュエータを含むデバイスで、前記アクチュエータを制御するための校正制御信号を生成することであって、前記校正制御信号は、アクチュエータに、前記軸を中心に完全に少なくとも1回転、前記第1のプラットフォームを回転させる、生成することと、
    前記第1のプラットフォームと対向するように配置された第2のプラットフォームに取り付けられた磁場センサーを含む磁気エンコーダから、前記軸を中心とした前記第1のプラットフォームの角度位置を示すエンコーダ出力信号を受信することと、
    前記第1のプラットフォームに取り付けられた配向センサーから、前記配向センサーの配向の変化の速度を示すセンサー出力信号を受信することと、
    前記完全な少なくとも1回の回転中に前記配向センサーから受信された所与のセンサー出力信号に基づいて、前記エンコーダ出力信号を前記軸を中心とした前記第1のプラットフォームの前記角度位置の校正された測定値にマッピングするための校正データを判定することと、
    前記校正データに基づいて前記磁気エンコーダの欠陥を識別することと、を含
    前記磁気エンコーダは、前記第1のプラットフォームに取り付けられ、前記第1のプラットフォームの前記回転軸を中心として配置された複数の磁石を含み、前記磁気エンコーダの前記欠陥を識別することは、前記複数の磁石のうちの特定の磁石を識別することを含む、方法。
  2. 前記配向センサーが、ジャイロスコープを含む、請求項1に記載の方法。
  3. 前記エンコーダ出力信号に基づいて、前記軸を中心とした前記第1のプラットフォームの前記完全な少なくとも1回転の各々の完了を検出することをさらに含む、請求項1に記載の方法。
  4. 前記軸を中心とした前記第1のプラットフォームの前記完全な少なくとも1回の回転中に、前記所与のセンサー出力信号に基づいて前記第1のプラットフォームの回転速度を推定することと、
    前記推定された回転速度に基づいて前記校正制御信号を変調することと、をさらに含む、請求項1に記載の方法。
  5. 前記校正制御信号を変調することは、前記推定された回転速度と目標回転速度との間の差に基づいて前記校正制御信号を変調することを含む、請求項4に記載の方法。
  6. 前記軸を中心とした前記第1のプラットフォームの前記完全な少なくとも1回の回転中に、前記センサー出力信号および前記エンコーダ出力信号に基づいて前記校正制御信号を変調することをさらに含む、請求項1に記載の方法。
  7. 記特定の磁石は、前記回転軸を中心とした前記複数の磁石の前記配置において、前記特定の磁石の予想位置からオフセットして位置決めされたものである、請求項に記載の方法。
  8. 記磁気エンコーダの前記欠陥を識別することは、前記複数の磁石のうちの特定の磁石を、前記特定の磁石が予想磁気特性からオフセットした特定の磁気特性を有することに基づいて識別することを含む、請求項に記載の方法。
  9. 前記特定の磁気特性は、前記特定の磁石の磁場強度、磁気分極方向、サイズ、または形状に対応する、請求項に記載の方法。
  10. 前記磁気エンコーダは、前記第1のプラットフォームに取り付けられ、前記第1のプラットフォームの前記回転軸を中心として配置された複数の磁石を含み、前記磁気エンコーダの前記欠陥を識別することは、前記回転軸を中心とした前記複数の磁石の前記配置の真円度と予想真円度との間のオフセットを識別することを含む、請求項に記載の方法。
  11. 前記磁気エンコーダは、前記第1のプラットフォームに取り付けられ、前記第1のプラットフォームの前記回転軸を中心として配置された複数の磁石を含み、前記磁気エンコーダの前記欠陥を識別することは、前記第1のプラットフォームの前記回転軸と前記第2のプラットフォームの法線軸との間のずれを識別することを含む、請求項に記載の方法。
  12. 前記校正データに基づいて、前記エンコーダ出力信号と、前記所与のセンサー出力信号によって示される前記第1のプラットフォームの前記角度位置の推定測定値との間の前記マッピングの正弦波特性を識別することと、
    前記正弦波特性の前記識別に基づいて、前記校正データの圧縮表現を生成することと、
    前記圧縮表現をデータストレージに記憶することと、をさらに含む、請求項1に記載の方法。
  13. 前記校正データの前記圧縮表現を生成することは、前記識別された正弦波特性を示す高速フーリエ変換(FFT)係数を判定することを含む、請求項12に記載の方法。
  14. 前記デバイスは、少なくとも前記デバイスからのデータに基づいて環境をナビゲートするように構成されている車両に取り付けられ
    前記車両が前記環境内を動いているかどうかを判定することと、
    少なくとも前記車両が前記環境内を動いていないという判定に基づいて、前記デバイスの校正モードを有効にすることであって、前記校正制御信号を生成することは、前記校正モードが有効にされていることに基づく、有効にすることと、をさらに含む、請求項1に記載の方法。
  15. 少なくとも前記車両が前記環境内を動いているという判定に基づいて、前記デバイスの前記校正モードを無効にすることと、
    前記校正モードが無効にされていることに基づいて、前記アクチュエータを制御するための感知モード制御信号を生成することと、をさらに含み、
    前記感知モード制御信号は、前記アクチュエータに、(i)前記センサー出力信号によって示される前記配向センサーの前記配向の前記変化の方向と反対の回転方向に沿って、および(ii)前記センサー出力信号によって示される前記配向センサーの前記配向の前記変化の前記速度に基づいた回転速度で第1のプラットフォームを回転させる、請求項14に記載の方法。
  16. システムであって、
    第1のプラットフォームと、
    前記第1のプラットフォームと対向するように配置された第2のプラットフォームと、
    軸を中心に前記第1のプラットフォームを回転させるように構成されているアクチュエータと、
    前記軸を中心とした前記第1のプラットフォームの角度位置を示すエンコーダ出力信号を提供するように構成されている、前記第2のプラットフォームに取り付けられた磁場センサーを含む磁気エンコーダと、
    前記第1のプラットフォームに取り付けられた配向センサーであって、前記配向センサーの配向の変化の速度を示すセンサー出力信号を提供するように構成されている、配向センサーと、
    コントローラと、を含み、前記コントローラは、前記システムに、
    前記アクチュエータを制御するための校正制御信号を生成することであって、前記校正制御信号は、前記アクチュエータに、前記軸を中心に完全に少なくとも1回転、前記第1のプラットフォームを回転させる、生成することと、
    前記完全な少なくとも1回の回転中に前記配向センサーから受信された所与のセンサー出力信号に基づいて、前記エンコーダ出力信号を前記軸を中心とした前記第1のプラットフォームの前記角度位置の校正された測定値にマッピングするための校正データを判定することと、
    前記校正データに基づいて前記磁気エンコーダの欠陥を識別することと、を含む、動作を実行させ、
    前記磁気エンコーダは、前記第1のプラットフォームに取り付けられ、前記第1のプラットフォームの前記回転軸を中心として配置された複数の磁石を含み、前記磁気エンコーダの前記欠陥を識別することは、前記複数の磁石のうちの特定の磁石を識別することを含む、システム。
  17. 前記第1のプラットフォームに取り付けられ、前記第1のプラットフォームの前記回転軸を中心として配置された複数の磁石であって、前記複数の磁石は、前記回転軸を中心とした前記複数の磁石の前記配置に基づいて第1の磁場を生成する、複数の磁石と、
    前記アクチュエータが前記軸を中心に前記第1のプラットフォームを回転させることに応答して、前記第1のプラットフォームから所与の距離内に留まるように構成されている前記第2のプラットフォームと、をさらに含む、請求項16に記載のシステム。
  18. 前記第2のプラットフォームに配設され、前記第1のプラットフォームの前記複数の磁石の反対側の前記第1のプラットフォームの前記回転軸を中心として配置された複数の導電性構造をさらに含み、
    前記アクチュエータは、前記第2のプラットフォームの前記複数の導電性構造と、前記第1のプラットフォームの前記複数の磁石とを含み、
    前記複数の導電性構造は、前記複数の導電性構造の前記配置に基づいて前記回転軸を中心として延在する電気的導電経路を形成し、
    前記コントローラは、前記複数の導電性構造によって画定される前記導電経路に前記校正制御信号を提供するように構成されており、
    前記複数の導電性構造は、前記校正制御信号に基づいて第2の磁場を生成し、
    前記第1のプラットフォームの前記第1の磁場は、前記第2のプラットフォームの前記第2の磁場と相互作用して、前記軸を中心に前記第1のプラットフォームを回転させる、請求項17に記載のシステム。
  19. 記磁場センサーは、前記複数の磁石によって生成された前記第1の磁場を測定するように構成されており、
    前記磁気エンコーダは、前記第1のプラットフォームの前記複数の磁石および前記第2のプラットフォームの前記磁場センサーを含み、
    前記磁気エンコーダは、前記磁場センサーによって示される前記第1の磁場の測定値に基づいて、前記軸を中心とした前記第1のプラットフォームの前記角度位置を示す前記エンコーダ出力信号を提供する、請求項17に記載のシステム。
  20. 前記動作は、
    前記完全な少なくとも1回の回転中に、前記エンコーダ出力信号によって示される前記第1のプラットフォームの前記角度位置の測定値における正弦波測定誤差を判定することと、
    前記正弦波測定誤差が、前記第1のプラットフォームの前記回転軸に対する前記第2のプラットフォームの前記所与の表面での前記第1の磁場の同心性に関連関連付けられているという判定に基づいて、前記第1のプラットフォームと前記第2のプラットフォームの相対的配置における第1のずれを識別することと、
    前記正弦波測定誤差が、前記複数の磁石の前記配置の真円度に関連付けられているという判定に基づいて、前記第1のプラットフォームの前記回転軸を中有心とした前記複数の磁石の前記配置における第2のずれを識別することと、をさらに含む、請求項19に記載のシステム。
  21. 命令を記憶する非一時的なコンピュータ可読媒体であって、前記命令は、コンピューティングシステムの1つ以上のプロセッサによって実行されるときに、前記コンピューティングシステムに、
    軸を中心に第1のプラットフォームを回転させるように構成されているアクチュエータを制御するための校正制御信号を生成することであって、前記校正制御信号は、前記アクチュエータに、前記軸を中心に完全に少なくとも1回転、前記第1のプラットフォームを回転させる、生成することと、
    前記第1のプラットフォームと対向するように配置された第2のプラットフォームに取り付けられた磁場センサーを含む磁気エンコーダから、前記軸を中心とした前記第1のプラットフォームの角度位置を示すエンコーダ出力信号を受信することと、
    前記第1のプラットフォームに取り付けられた配向センサーから、前記配向センサーの配向の変化の速度を示すセンサー出力信号を受信することと、
    前記完全な少なくとも1回の回転中に前記配向センサーによって提供される所与のセンサー出力信号に基づいて、前記エンコーダ出力信号を前記軸を中心とした前記第1のプラットフォームの前記角度位置の校正された測定値にマッピングするための校正データを判定することと、
    前記校正データに基づいて前記磁気エンコーダの欠陥を識別することと、を含む動作を実行させ、
    前記磁気エンコーダは、前記第1のプラットフォームに取り付けられ、前記第1のプラットフォームの前記回転軸を中心として配置された複数の磁石を含み、前記磁気エンコーダの前記欠陥を識別することは、前記複数の磁石のうちの特定の磁石を識別することを含む、非一時的なコンピュータ可読媒体。
  22. 回転軸を中心に第1のプラットフォームを回転させるように構成されているアクチュエータを含むデバイスで、前記アクチュエータを制御するための校正制御信号を生成することであって、前記校正制御信号は、アクチュエータに、前記軸を中心に完全に少なくとも1回転、前記第1のプラットフォームを回転させる、生成することと、
    磁気エンコーダから、前記軸を中心とした前記第1のプラットフォームの角度位置を示すエンコーダ出力信号を受信することと、
    前記第1のプラットフォームに取り付けられた配向センサーから、前記配向センサーの配向の変化の速度を示すセンサー出力信号を受信することと、
    前記完全な少なくとも1回の回転中に前記配向センサーから受信された所与のセンサー出力信号に基づいて、前記エンコーダ出力信号を前記軸を中心とした前記第1のプラットフォームの前記角度位置の校正された測定値にマッピングするための校正データを判定することと、
    前記校正データに基づいて前記磁気エンコーダの欠陥を識別することと、含み、
    前記磁気エンコーダは、前記第1のプラットフォームに取り付けられ、前記第1のプラットフォームの前記回転軸を中心として配置された複数の磁石を含み、前記磁気エンコーダの前記欠陥を識別することは、前記複数の磁石のうちの特定の磁石を識別することであって、前記特定の磁石は、前記回転軸を中心とした前記複数の磁石の前記配置において、前記特定の磁石の予想位置からオフセットして位置決めされたものである、識別することをさらに含む、方法。
  23. 回転軸を中心に第1のプラットフォームを回転させるように構成されているアクチュエータを含むデバイスで、前記アクチュエータを制御するための校正制御信号を生成することであって、前記校正制御信号は、アクチュエータに、前記軸を中心に完全に少なくとも1回転、前記第1のプラットフォームを回転させる、生成することと、
    磁気エンコーダから、前記軸を中心とした前記第1のプラットフォームの角度位置を示すエンコーダ出力信号を受信することと、
    前記第1のプラットフォームに取り付けられた配向センサーから、前記配向センサーの配向の変化の速度を示すセンサー出力信号を受信することと、
    前記完全な少なくとも1回の回転中に前記配向センサーから受信された所与のセンサー出力信号に基づいて、前記エンコーダ出力信号を前記軸を中心とした前記第1のプラットフォームの前記角度位置の校正された測定値にマッピングするための校正データを判定することと、
    前記校正データに基づいて前記磁気エンコーダの欠陥を識別することと、含み、
    前記磁気エンコーダは、前記第1のプラットフォームに取り付けられ、前記第1のプラットフォームの前記回転軸を中心として配置された複数の磁石を含み、前記磁気エンコーダの前記欠陥を識別することは、前記複数のうちの特定の磁石を、前記特定の磁石が予想磁気特性からオフセットした特定の磁気特性を有することに基づいて識別することをさらに含む、方法。
  24. 回転軸を中心に第1のプラットフォームを回転させるように構成されているアクチュエータを含むデバイスで、前記アクチュエータを制御するための校正制御信号を生成することであって、前記校正制御信号は、アクチュエータに、前記軸を中心に完全に少なくとも1回転、前記第1のプラットフォームを回転させる、生成することと、
    エンコーダから、前記軸を中心とした前記第1のプラットフォームの角度位置を示すエンコーダ出力信号を受信することと、
    前記第1のプラットフォームに取り付けられた配向センサーから、前記配向センサーの配向の変化の速度を示すセンサー出力信号を受信することと、
    前記完全な少なくとも1回の回転中に前記配向センサーから受信された所与のセンサー出力信号に基づいて、前記エンコーダ出力信号を前記軸を中心とした前記第1のプラットフォームの前記角度位置の校正された測定値にマッピングするための校正データを判定することと、を含み、
    前記デバイスは、少なくとも前記デバイスからのデータに基づいて環境をナビゲートするように構成されている車両に取り付けられ
    前記車両が前記環境内を動いているかどうかを判定することと、
    少なくとも前記車両が前記環境内を動いていないという判定に基づいて、前記デバイスの校正モードを有効にすることであって、前記校正制御信号を生成することは、前記校正モードが有効にされていることに基づく、有効にすることと、をさらに含み、
    少なくとも前記車両が前記環境内を動いているという判定に基づいて、前記デバイスの前記校正モードを無効にすることと、
    前記校正モードが無効にされていることに基づいて、前記アクチュエータを制御するための感知モード制御信号を生成することと、をさらに含み、
    前記感知モード制御信号は、前記アクチュエータに、(i)前記センサー出力信号によって示される前記配向センサーの前記配向の前記変化の方向と反対の回転方向に沿って、および(ii)前記センサー出力信号によって示される前記配向センサーの前記配向の前記変化の前記速度に基づいた回転速度で第1のプラットフォームを回転させる、方法。
  25. システムであって、
    第1のプラットフォームと、
    軸を中心に前記第1のプラットフォームを回転させるように構成されているアクチュエータと、
    前記軸を中心とした前記第1のプラットフォームの角度位置を示すエンコーダ出力信号を提供するように構成されているエンコーダと、
    前記第1のプラットフォームに取り付けられた配向センサーであって、前記配向センサーの配向の変化の速度を示すセンサー出力信号を提供するように構成されている、配向センサーと、
    コントローラと、を含み、前記コントローラは、前記システムに、
    前記アクチュエータを制御するための校正制御信号を生成することであって、前記校正制御信号は、前記アクチュエータに、前記軸を中心に完全に少なくとも1回転、前記第1のプラットフォームを回転させる、生成することと、
    前記完全な少なくとも1回の回転中に前記配向センサーから受信された所与のセンサー出力信号に基づいて、前記エンコーダ出力信号を前記軸を中心とした前記第1のプラットフォームの前記角度位置の校正された測定値にマッピングするための校正データを判定することと、を含む、動作を実行させ、
    前記第1のプラットフォームに取り付けられ、前記第1のプラットフォームの前記回転軸を中心として配置された複数の磁石であって、前記複数の磁石は、前記回転軸を中心とした前記複数の磁石の前記配置に基づいて第1の磁場を生成する、複数の磁石と、
    前記アクチュエータが前記軸を中心に前記第1のプラットフォームを回転させることに応答して、前記第1のプラットフォームから所与の距離内に留まるように構成されている第2のプラットフォームと、をさらに含み、
    前記第2のプラットフォームの所与の表面に配設された磁場センサーをさらに含み、前記磁場センサーは、前記複数の磁石によって生成された前記第1の磁場を測定するように構成されており、
    前記エンコーダは、前記第1のプラットフォームの前記複数の磁石および前記第2のプラットフォームの前記磁場センサーを含み、
    前記エンコーダは、前記磁場センサーによって示される前記第1の磁場の測定値に基づいて、前記軸を中心とした前記第1のプラットフォームの前記角度位置を示す前記エンコーダ出力信号を提供し、
    前記動作は、
    前記完全な少なくとも1回の回転中に、前記エンコーダ出力信号によって示される前記第1のプラットフォームの前記角度位置の測定値における正弦波測定誤差を判定することと、
    前記正弦波測定誤差が、前記第1のプラットフォームの前記回転軸に対する前記第2のプラットフォームの前記所与の表面での前記第1の磁場の同心性に関連関連付けられているという判定に基づいて、前記第1のプラットフォームと前記第2のプラットフォームの相対的配置における第1のずれを識別することと、
    前記正弦波測定誤差が、前記複数の磁石の前記配置の真円度に関連付けられているという判定に基づいて、前記第1のプラットフォームの前記回転軸を中有心とした前記複数の磁石の前記配置における第2のずれを識別することと、をさらに含む、システム。
JP2021550198A 2019-03-14 2020-03-13 ロータリエンコーダ校正のためのデバイスおよび方法 Active JP7357067B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962818738P 2019-03-14 2019-03-14
US62/818,738 2019-03-14
PCT/US2020/022814 WO2020186242A1 (en) 2019-03-14 2020-03-13 Devices and methods for rotary encoder calibration

Publications (2)

Publication Number Publication Date
JP2022524310A JP2022524310A (ja) 2022-05-02
JP7357067B2 true JP7357067B2 (ja) 2023-10-05

Family

ID=72426048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021550198A Active JP7357067B2 (ja) 2019-03-14 2020-03-13 ロータリエンコーダ校正のためのデバイスおよび方法

Country Status (6)

Country Link
US (1) US11959776B2 (ja)
EP (1) EP3938737A4 (ja)
JP (1) JP7357067B2 (ja)
KR (1) KR102666495B1 (ja)
CN (1) CN113574347A (ja)
WO (1) WO2020186242A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7234737B2 (ja) * 2019-03-28 2023-03-08 株式会社デンソー 検出ユニット
US20220137197A1 (en) * 2020-10-30 2022-05-05 Motional Ad Llc Robust eye safety for lidars
CN115930769B (zh) * 2023-03-13 2023-06-06 中国科学院、水利部成都山地灾害与环境研究所 坡体变形测量装置与监测系统、过程模型构建方法、应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107128A (ja) 2009-11-13 2011-06-02 Sick Sensors Ltd 回転角度センサの校正方法
JP2011247747A (ja) 2010-05-27 2011-12-08 Topcon Corp エンコーダ校正装置
US20180123412A1 (en) 2016-10-28 2018-05-03 Waymo Llc Devices and Methods for Driving a Rotary Platform
JP2019035629A (ja) 2017-08-10 2019-03-07 旭化成エレクトロニクス株式会社 較正装置、較正方法、回転角検出装置およびプログラム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998088A (en) * 1975-11-12 1976-12-21 The United States Of America As Represented By The Secretary Of The Air Force Testing apparatus for incremental shaft encoder
GB9013390D0 (en) * 1990-06-15 1990-08-08 Renishaw Plc Method and apparatus for measurement of angular displacement
GB9119304D0 (en) * 1991-09-10 1991-10-23 Renishaw Transducer Syst Method and apparatus for calibration of angular displacement
WO2008068542A1 (en) 2006-12-04 2008-06-12 Nokia Corporation Auto-calibration method for sensors and auto-calibrating sensor arrangement
US8886471B2 (en) * 2008-06-26 2014-11-11 Infineon Technologies Ag Rotation sensing method and system
DE102013203388B3 (de) * 2013-02-28 2014-03-20 Schaeffler Technologies AG & Co. KG Rotorlagegeber für eine elektronisch kommutierte elektrische Maschine mit einem Referenzgeber
US10261176B2 (en) 2013-05-15 2019-04-16 Flir Systems, Inc. Rotating attitude heading reference systems and methods
US10132647B2 (en) 2013-10-24 2018-11-20 Mtd Products Inc Methods and apparatus for increasing accuracy and reliability of gyrosopic sensors
US9671247B2 (en) 2014-07-16 2017-06-06 Innalabs Limited Method for calibrating vibratory gyroscope
CN105526954B (zh) * 2016-01-15 2017-10-17 中工科安科技有限公司 一种磁阻式旋转变压器的信号处理方法
US9628170B1 (en) * 2016-01-26 2017-04-18 Google Inc. Devices and methods for a rotary joint with multiple wireless links
DE102016101965A1 (de) * 2016-02-04 2017-08-10 Fraba B.V. Verfahren zum Kalibrieren eines Drehgebers und Drehgeber zur Bestimmung einer korrigierten Winkelposition
US10502574B2 (en) 2016-09-20 2019-12-10 Waymo Llc Devices and methods for a sensor platform of a vehicle
US10291319B1 (en) 2016-10-01 2019-05-14 Waymo Llc Devices and methods for optical communication in a rotary platform
US10277084B1 (en) 2016-10-19 2019-04-30 Waymo Llc Planar rotary transformer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107128A (ja) 2009-11-13 2011-06-02 Sick Sensors Ltd 回転角度センサの校正方法
JP2011247747A (ja) 2010-05-27 2011-12-08 Topcon Corp エンコーダ校正装置
US20180123412A1 (en) 2016-10-28 2018-05-03 Waymo Llc Devices and Methods for Driving a Rotary Platform
JP2019035629A (ja) 2017-08-10 2019-03-07 旭化成エレクトロニクス株式会社 較正装置、較正方法、回転角検出装置およびプログラム

Also Published As

Publication number Publication date
CN113574347A (zh) 2021-10-29
EP3938737A1 (en) 2022-01-19
JP2022524310A (ja) 2022-05-02
KR20210126790A (ko) 2021-10-20
US11959776B2 (en) 2024-04-16
EP3938737A4 (en) 2022-11-16
KR102666495B1 (ko) 2024-05-17
WO2020186242A1 (en) 2020-09-17
US20220178726A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
CN109845075B (zh) 用于驱动旋转平台的设备和方法
US11209276B2 (en) Devices and methods for a sensor platform of a vehicle
JP7357067B2 (ja) ロータリエンコーダ校正のためのデバイスおよび方法
JP7266064B2 (ja) 自律乗物の知覚および計画のためのレーダによって生成される占有グリッド
US10971787B1 (en) Devices and methods for a dielectric rotary joint
US9043069B1 (en) Methods and systems for scan matching approaches for vehicle heading estimation
JP2020013588A (ja) 多重無線リンクとの回転ジョイントのための装置および方法
US11909263B1 (en) Planar rotary transformer
CN109828569A (zh) 一种基于2d-slam导航的智能agv叉车

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230718

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7357067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150