JP7356270B2 - powder magnetic core - Google Patents

powder magnetic core Download PDF

Info

Publication number
JP7356270B2
JP7356270B2 JP2019123119A JP2019123119A JP7356270B2 JP 7356270 B2 JP7356270 B2 JP 7356270B2 JP 2019123119 A JP2019123119 A JP 2019123119A JP 2019123119 A JP2019123119 A JP 2019123119A JP 7356270 B2 JP7356270 B2 JP 7356270B2
Authority
JP
Japan
Prior art keywords
magnetic
fatty acid
nanoparticles
magnetic nanoparticles
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019123119A
Other languages
Japanese (ja)
Other versions
JP2021009930A (en
Inventor
邦夫 明渡
理恵 田口
孝則 村崎
英弘 工藤
崇央 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Industries Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Central R&D Labs Inc filed Critical Toyota Industries Corp
Priority to JP2019123119A priority Critical patent/JP7356270B2/en
Publication of JP2021009930A publication Critical patent/JP2021009930A/en
Application granted granted Critical
Publication of JP7356270B2 publication Critical patent/JP7356270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、圧粉磁心に関し、より詳しくは、磁性ナノ粒子を用いた圧粉磁心に関する。 The present invention relates to a powder magnetic core, and more particularly to a powder magnetic core using magnetic nanoparticles.

圧粉磁心は、表面が絶縁被膜で覆われた磁性粒子を圧縮成形することによって得られるものであり、変圧器(トランス)、電動機(モータ)、発電機、スピーカ、誘導加熱器、各種アクチュエータ等の電磁気を利用した様々な製品に用いられている。このような圧粉磁心としては、例えば、鉄基粒子の表面を、チタン等の金属を含む有機酸により形成された絶縁被膜で被覆し、さらに、前記絶縁被膜の表面を、熱可塑性樹脂、熱硬化性樹脂及び高級脂肪酸塩のうちの少なくとも1種により形成された絶縁被膜で被覆した軟磁性材料を加圧成形し、熱処理することによって得られる圧粉磁心(特開2009-57586号公報(特許文献1))が知られている。 Powder magnetic cores are obtained by compression molding magnetic particles whose surfaces are covered with an insulating film, and are used in transformers, electric motors, generators, speakers, induction heaters, various actuators, etc. It is used in various products that utilize electromagnetism. Such a powder magnetic core may be made by, for example, coating the surface of iron-based particles with an insulating film formed from an organic acid containing a metal such as titanium, and further covering the surface of the insulating film with a thermoplastic resin or a thermoplastic resin. A powder magnetic core obtained by pressure-molding a soft magnetic material coated with an insulating film formed of at least one of a curable resin and a higher fatty acid salt and heat-treating it (Japanese Patent Laid-Open No. 2009-57586 (Patent Document 1)) is known.

一方、磁性ナノ粒子は、そのサイズが極めて小さいため、バルクの磁性材料とは異なる性質を示し、例えば、粒径が約100nmを超える範囲では、粒径が小さくなるにつれて保磁力が大きくなり、粒径が約100nm付近で保磁力が最大となるが、粒径が約20nm以下になると、超常磁性現象が発現して保持力が極めて小さくなる。このため、粒径が約20nm以下の磁性ナノ粒子を用いた圧粉磁心においては、ヒステリシス損を極めて小さくすることが可能になると考えられる。また、絶縁性の磁性ナノ粒子や表面に絶縁被膜を有する導電性の磁性ナノ粒子を用いた圧粉磁心において、粒径が約300nm以下の磁性ナノ粒子を用いることによって、高周波において渦電流の経路が制限され、渦電流損を小さくすることが可能になると考えられ、特に、粒径が約20nm以下の磁性ナノ粒子を用いることによって、渦電流損を極めて小さくすることができると考えられる。このように、粒径が約20nm以下の磁性ナノ粒子を用いた圧粉磁心は、ヒステリシス損や渦電流損が極めて小さくなるため、電源用途のトランスコア材として期待されている。 On the other hand, since magnetic nanoparticles are extremely small in size, they exhibit properties different from those of bulk magnetic materials. For example, in a particle size range exceeding about 100 nm, the coercive force increases as the particle size decreases; The coercive force is maximum when the particle size is around 100 nm, but when the particle size is less than about 20 nm, a superparamagnetic phenomenon occurs and the coercive force becomes extremely small. For this reason, it is thought that in a dust core using magnetic nanoparticles having a particle size of about 20 nm or less, it is possible to make the hysteresis loss extremely small. In addition, in powder magnetic cores using insulating magnetic nanoparticles or conductive magnetic nanoparticles with an insulating coating on the surface, by using magnetic nanoparticles with a particle size of approximately 300 nm or less, it is possible to create a path for eddy currents at high frequencies. It is thought that this makes it possible to reduce the eddy current loss, and in particular, by using magnetic nanoparticles with a particle size of about 20 nm or less, the eddy current loss can be made extremely small. As described above, a dust core using magnetic nanoparticles having a particle size of about 20 nm or less has extremely low hysteresis loss and eddy current loss, and is therefore expected to be used as a transformer core material for power supply applications.

特開2009-57586号公報JP2009-57586A

しかしながら、従来の磁性マイクロ粒子を用いた圧粉磁心においては、加圧成形によって磁性マイクロ粒子が大きく変形し、粒子同士が複雑に絡み合うため、機械強度が向上するが、磁性ナノ粒子を用いた圧粉磁心においては、加圧成形による磁性ナノ粒子の変形が小さいため、粒子同士が絡み合いにくく、また、磁性ナノ粒子同士の接触面積も小さいため、機械強度を十分に向上させることは困難であった。 However, in conventional powder magnetic cores using magnetic microparticles, the magnetic microparticles are greatly deformed by pressure forming and the particles become intricately intertwined, improving mechanical strength. In powder magnetic cores, the deformation of magnetic nanoparticles due to pressure molding is small, making it difficult for particles to entangle with each other, and the contact area between magnetic nanoparticles is also small, making it difficult to sufficiently improve mechanical strength. .

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、磁性ナノ粒子を含有する高密度かつ高強度の圧粉磁心を提供することを目的とする。 The present invention has been made in view of the problems of the prior art described above, and an object of the present invention is to provide a high-density and high-strength powder magnetic core containing magnetic nanoparticles.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、磁性ナノ粒子にフェノール樹脂及びエポキシ樹脂からなる群から選択される少なくとも1種の熱硬化性樹脂と炭素数が12~30の脂肪酸とを添加して圧縮成形することによって、磁性ナノ粒子を含有する高密度かつ高強度の圧粉磁心が得られることを見出し、本発明を完成するに至った。 As a result of intensive research to achieve the above object, the present inventors have discovered that magnetic nanoparticles contain at least one thermosetting resin selected from the group consisting of phenolic resins and epoxy resins and carbon atoms of 12 to 30 carbon atoms. The inventors have discovered that a high-density and high-strength powder magnetic core containing magnetic nanoparticles can be obtained by compression molding the mixture with a fatty acid of

すなわち、本発明の圧粉磁心は、平均粒径が1~300nmの磁性ナノ粒子と、フェノール樹脂及びエポキシ樹脂からなる群から選択される少なくとも1種の熱硬化性樹脂と、炭素数が12~30の脂肪酸とを含有し、前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との合計量に対して、前記熱硬化性樹脂の含有量が0.01~4.99質量%であり、前記脂肪酸の含有量が0.01~4.99質量%であり、前記熱硬化性樹脂と前記脂肪酸との合計量が0.02~5質量%であることを特徴とするものである。このような圧粉磁心においては、前記熱硬化性樹脂がフェノール樹脂であることが好ましThat is, the powder magnetic core of the present invention comprises magnetic nanoparticles with an average particle size of 1 to 300 nm, at least one thermosetting resin selected from the group consisting of phenol resins and epoxy resins, and carbon atoms of 12 to 300 nm. 30 fatty acids, and the content of the thermosetting resin is 0.01 to 4.99% by mass with respect to the total amount of the magnetic nanoparticles, the thermosetting resin, and the fatty acid, The content of the fatty acid is 0.01 to 4.99% by mass, and the total amount of the thermosetting resin and the fatty acid is 0.02 to 5% by mass. In such a powder magnetic core, it is preferable that the thermosetting resin is a phenol resin.

なお、前記磁性ナノ粒子にフェノール樹脂及びエポキシ樹脂からなる群から選択される少なくとも1種の熱硬化性樹脂と炭素数が12~30の脂肪酸とを添加することによって、前記磁性ナノ粒子を含有する高密度かつ高強度の圧粉磁心が得られる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、前記磁性ナノ粒子にフェノール樹脂及びエポキシ樹脂からなる群から選択される少なくとも1種の熱硬化性樹脂を添加すると、圧縮成形体の密度及び強度が向上する。しかしながら、フェノール樹脂及びエポキシ樹脂は前記磁性ナノ粒子との親和性が十分に高くないため、均一に混合しにくく、圧縮成形時の前記磁性ナノ粒子の流動性が十分に向上しない。このため、前記磁性ナノ粒子を含有する圧粉磁心の密度及び強度は十分に向上しない。一方、前記磁性ナノ粒子に前記熱硬化性樹脂と炭素数が12~30の脂肪酸とを添加すると、前記磁性ナノ粒子を含有する圧粉磁心の密度及び強度が十分に向上する。この理由は以下のように推察される。すなわち、前記脂肪酸のカルボキシ基は前記磁性ナノ粒子に吸着しやすいため、吸着した前記脂肪酸の炭化水素鎖と前記磁性ナノ粒子間に存在する遊離の前記脂肪酸の炭化水素鎖との相乗効果により前記磁性ナノ粒子の潤滑性が向上し、前記磁性ナノ粒子の流動性が向上すると推察される。また、前記脂肪酸がカップリング剤として作用することによって、吸着した前記脂肪酸の炭化水素鎖が前記熱硬化性樹脂と前記磁性ナノ粒子との親和性や結合力を向上させると推察される。そして、このような前記磁性ナノ粒子の高い流動性及び前記熱硬化性樹脂と前記磁性ナノ粒子との高い親和性によって、前記磁性ナノ粒子を含有する圧粉磁心であっても高密度化されると推察される。また、前記熱硬化性樹脂の高い強度及び前記熱硬化性樹脂と前記磁性ナノ粒子との高い結合力によって、前記磁性ナノ粒子を含有する圧粉磁心であっても高強度化されると推察される。 The magnetic nanoparticles can be contained by adding at least one thermosetting resin selected from the group consisting of phenol resins and epoxy resins and a fatty acid having 12 to 30 carbon atoms to the magnetic nanoparticles. Although the reason why a high-density and high-strength powder magnetic core can be obtained is not necessarily clear, the present inventors speculate as follows. That is, when at least one thermosetting resin selected from the group consisting of phenol resins and epoxy resins is added to the magnetic nanoparticles, the density and strength of the compression molded product are improved. However, since phenol resins and epoxy resins do not have a sufficiently high affinity with the magnetic nanoparticles, they are difficult to mix uniformly, and the fluidity of the magnetic nanoparticles during compression molding is not sufficiently improved. Therefore, the density and strength of the dust core containing the magnetic nanoparticles are not sufficiently improved. On the other hand, when the thermosetting resin and the fatty acid having 12 to 30 carbon atoms are added to the magnetic nanoparticles, the density and strength of the dust core containing the magnetic nanoparticles are sufficiently improved. The reason for this is inferred as follows. That is, since the carboxy groups of the fatty acids are easily adsorbed to the magnetic nanoparticles, the synergistic effect of the adsorbed hydrocarbon chains of the fatty acids and the free hydrocarbon chains of the fatty acids existing between the magnetic nanoparticles increases the magnetic properties. It is presumed that the lubricity of the nanoparticles is improved and the fluidity of the magnetic nanoparticles is improved. Furthermore, it is presumed that the hydrocarbon chain of the adsorbed fatty acid improves the affinity and bonding force between the thermosetting resin and the magnetic nanoparticles because the fatty acid acts as a coupling agent. Furthermore, due to the high fluidity of the magnetic nanoparticles and the high affinity between the thermosetting resin and the magnetic nanoparticles, even a dust core containing the magnetic nanoparticles can be densified. It is assumed that. Furthermore, it is presumed that due to the high strength of the thermosetting resin and the high bonding force between the thermosetting resin and the magnetic nanoparticles, even a powder magnetic core containing the magnetic nanoparticles can have high strength. Ru.

本発明によれば、磁性ナノ粒子を含有する高密度かつ高強度の圧粉磁心を得ることが可能となる。 According to the present invention, it is possible to obtain a high-density and high-strength dust core containing magnetic nanoparticles.

実施例1~4及び比較例1~4、6~10で得られた圧粉磁心の密度を示すグラフである。1 is a graph showing the density of powder magnetic cores obtained in Examples 1 to 4 and Comparative Examples 1 to 4 and 6 to 10. 実施例1~4及び比較例1~4、6~10で得られた圧粉磁心のクラック率を示すグラフである。1 is a graph showing the crack rate of powder magnetic cores obtained in Examples 1 to 4 and Comparative Examples 1 to 4 and 6 to 10.

以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be explained in detail based on its preferred embodiments.

本発明の圧粉磁心は、平均粒径が1~300nmの磁性ナノ粒子と、フェノール樹脂及びエポキシ樹脂からなる群から選択される少なくとも1種の熱硬化性樹脂と、炭素数が12~30の脂肪酸とを含有するものである。 The powder magnetic core of the present invention comprises magnetic nanoparticles with an average particle size of 1 to 300 nm, at least one thermosetting resin selected from the group consisting of phenolic resins and epoxy resins, and a carbon number of 12 to 30. It contains fatty acids.

本発明に用いられる磁性ナノ粒子としては圧粉磁心に用いられるものであれば特に制限はないが、例えば、Feナノ粒子、Fe含有合金ナノ粒子、Fe含有金属酸化物ナノ粒子が挙げられる。また、前記Feナノ粒子及び前記Fe含有合金ナノ粒子は、表面に絶縁層を備えていてもよい。これらの磁性ナノ粒子は1種を単独で使用しても2種以上を併用してもよい。これらの中でも、ヒステリシス損及び渦電流損を低減でき、かつ、飽和磁束密度を比較的大きくでき、高温での特性劣化も比較的少ないという観点から、表面に絶縁層を備えるFeナノ粒子、表面に絶縁層を備えるFe含有合金ナノ粒子が好ましい。 The magnetic nanoparticles used in the present invention are not particularly limited as long as they can be used in powder magnetic cores, and examples thereof include Fe nanoparticles, Fe-containing alloy nanoparticles, and Fe-containing metal oxide nanoparticles. Further, the Fe nanoparticles and the Fe-containing alloy nanoparticles may have an insulating layer on their surfaces. These magnetic nanoparticles may be used alone or in combination of two or more. Among these, Fe nanoparticles with an insulating layer on the surface, Fe nanoparticles with an insulating layer on the surface, Fe-containing alloy nanoparticles with an insulating layer are preferred.

前記Fe含有合金ナノ粒子としては圧粉磁心に用いられるものであれば特に制限はないが、例えば、FeNi合金ナノ粒子(パーマロイBナノ粒子等)、FeSi合金ナノ粒子(ケイ素鋼ナノ粒子等)、FeCo合金ナノ粒子(パーメンジュールナノ粒子等)、NiFe合金ナノ粒子(パーマロイCナノ粒子等)が挙げられる。また、前記Fe含有金属酸化物ナノ粒子としては圧粉磁心に用いられるものであれば特に制限はないが、例えば、NiZnフェライトナノ粒子、MnZnフェライトナノ粒子等のフェライト系ナノ粒子が挙げられる。 The Fe-containing alloy nanoparticles are not particularly limited as long as they are used in powder magnetic cores, but include, for example, FeNi alloy nanoparticles (permalloy B nanoparticles, etc.), FeSi alloy nanoparticles (silicon steel nanoparticles, etc.), Examples include FeCo alloy nanoparticles (permendur nanoparticles, etc.) and NiFe alloy nanoparticles (permalloy C nanoparticles, etc.). Further, the Fe-containing metal oxide nanoparticles are not particularly limited as long as they can be used in powder magnetic cores, and examples thereof include ferrite nanoparticles such as NiZn ferrite nanoparticles and MnZn ferrite nanoparticles.

前記絶縁層としては、例えば、SiO、Al、Fe、Fe、NiZnフェライト、MnZnフェライト等の金属酸化物からなる絶縁層;脂肪酸(例えば、デカン酸、ラウリン酸、ステアリン酸、オレイン酸、リノレン酸)、シリコーン系有機化合物(例えば、メチルシリコーン樹脂、メチルフェニルシリコーン樹脂、ジメチルポリシロキサン、シリコーンハイドロゲル)等の有機化合物からなる絶縁層;リン系化合物(例えば、リン酸カルシウム、リン酸鉄、リン酸亜鉛、リン酸マンガン)等の無機化合物からなる絶縁層が挙げられる。 Examples of the insulating layer include an insulating layer made of a metal oxide such as SiO 2 , Al 2 O 3 , Fe 2 O 3 , Fe 3 O 4 , NiZn ferrite, and MnZn ferrite; , stearic acid, oleic acid, linolenic acid), silicone-based organic compounds (e.g., methyl silicone resin, methylphenyl silicone resin, dimethyl polysiloxane, silicone hydrogel); Examples include insulating layers made of inorganic compounds such as calcium phosphate, iron phosphate, zinc phosphate, and manganese phosphate.

また、本発明に用いられる磁性ナノ粒子の平均粒径は1~300nmである。磁性ナノ粒子の平均粒径が前記下限未満になると、粒子表面の影響が大きく、磁性ナノ粒子自体の磁気特性が低下する。他方、磁性ナノ粒子の平均粒径が前記上限を超えると、渦電流損が増大して磁心損失が大きくなる。また、超常磁性現象が発現して保磁力が極めて小さくなり、ヒステリシス損を極めて小さくすることが可能となり、また、高周波において渦電流の経路が制限され、渦電流損を極めて小さくすることが可能となるという観点から、磁性ナノ粒子の平均粒径としては、1~100nmが好ましく、1~20nmがより好ましい。なお、磁性ナノ粒子の平均粒径は、TEM観察において100個の粒子の粒径を測定し、その平均値として求めることができる。 Further, the average particle size of the magnetic nanoparticles used in the present invention is 1 to 300 nm. When the average particle size of the magnetic nanoparticles is less than the lower limit, the influence of the particle surface is large, and the magnetic properties of the magnetic nanoparticles themselves are degraded. On the other hand, if the average particle size of the magnetic nanoparticles exceeds the upper limit, eddy current loss increases and magnetic core loss increases. In addition, a superparamagnetic phenomenon occurs and the coercive force becomes extremely small, making it possible to make hysteresis loss extremely small.In addition, the path of eddy current is restricted at high frequencies, making it possible to make eddy current loss extremely small. In view of this, the average particle size of the magnetic nanoparticles is preferably 1 to 100 nm, more preferably 1 to 20 nm. Note that the average particle size of the magnetic nanoparticles can be determined by measuring the particle size of 100 particles in TEM observation and taking the average value.

本発明に用いられる熱硬化性樹脂はフェノール樹脂及びエポキシ樹脂からなる群から選択される少なくとも1種である。このような熱硬化性樹脂を後述する炭素数が12~30の脂肪酸と併用して前記磁性ナノ粒子に添加することによって、前記熱硬化性樹脂と前記磁性ナノ粒子との親和性や結合力が向上し、高密度かつ高強度の圧粉磁心を得ることができる。また、これらの熱硬化性樹脂のうち、圧粉磁心の密度及び強度が更に向上するという観点から、フェノール樹脂が好ましい。 The thermosetting resin used in the present invention is at least one selected from the group consisting of phenolic resins and epoxy resins. By adding such a thermosetting resin to the magnetic nanoparticles in combination with a fatty acid having 12 to 30 carbon atoms, which will be described later, the affinity and bonding force between the thermosetting resin and the magnetic nanoparticles can be improved. It is possible to obtain a powder magnetic core with high density and high strength. Furthermore, among these thermosetting resins, phenolic resins are preferred from the viewpoint of further improving the density and strength of the dust core.

一方、フェノール樹脂及びエポキシ樹脂の代わりにポリイミド樹脂、アクリル樹脂又はシリコーン樹脂を用いた場合には、圧粉磁心の密度及び強度が十分に向上しない。 On the other hand, when polyimide resin, acrylic resin, or silicone resin is used instead of phenol resin and epoxy resin, the density and strength of the powder magnetic core are not sufficiently improved.

前記熱硬化性樹脂の含有量としては特に制限はないが、前記磁性ナノ粒子と前記熱硬化性樹脂と後述する脂肪酸との合計量に対して、0.01~5質量%が好ましく、0.1~2質量%がより好ましく、0.1~1質量%が特に好ましい。前記熱硬化性樹脂の含有量が前記下限未満になると、前記熱硬化性樹脂が前記磁性ナノ粒子間に十分に行き渡らないため、圧粉磁心の強度が向上しにくい傾向にあり、他方、前記上限を超えると、非磁性成分の割合が多くなり、圧粉磁心の磁気特性が低下する傾向にある。 The content of the thermosetting resin is not particularly limited, but it is preferably 0.01 to 5% by mass, and 0.01 to 5% by mass, based on the total amount of the magnetic nanoparticles, the thermosetting resin, and the fatty acid described below. It is more preferably 1 to 2% by weight, particularly preferably 0.1 to 1% by weight. If the content of the thermosetting resin is less than the lower limit, the thermosetting resin will not be sufficiently distributed between the magnetic nanoparticles, making it difficult to improve the strength of the dust core. If it exceeds , the proportion of non-magnetic components increases and the magnetic properties of the dust core tend to deteriorate.

また、本発明に用いられる脂肪酸は炭素数が12~30の脂肪酸である。このような脂肪酸を前記熱硬化性樹脂と併用して前記磁性ナノ粒子に添加することによって、前記熱硬化性樹脂と前記磁性ナノ粒子との親和性や結合力が向上し、高密度かつ高強度の圧粉磁心を得ることができる。また、このような脂肪酸は飽和脂肪酸であっても不飽和脂肪酸であってもよく、これらを併用してもよい。 Further, the fatty acid used in the present invention is a fatty acid having 12 to 30 carbon atoms. By adding such a fatty acid to the magnetic nanoparticles in combination with the thermosetting resin, the affinity and bonding force between the thermosetting resin and the magnetic nanoparticles are improved, resulting in high density and high strength. powder magnetic core can be obtained. Moreover, such fatty acids may be saturated fatty acids or unsaturated fatty acids, and these may be used in combination.

前記飽和脂肪酸としては、ラウリン酸(炭素数12)、ミリスチン酸(炭素数14)、ペンタデシル酸(炭素数15)、パルミチン酸(炭素数16)、マルガリン酸(炭素数17)、ステアリン酸(炭素数18)、アラキジン酸(炭素数20)、ヘンイコシル酸(炭素数21)、ベヘン酸(炭素数22)、リグノセリン酸(炭素数24)、セロチン酸(炭素数26)、モンタン酸(炭素数28)、メリシン酸(炭素数30)が挙げられる。これらの飽和脂肪酸は1種を単独で使用しても2種以上を併用してもよい。 The saturated fatty acids include lauric acid (carbon number 12), myristic acid (carbon number 14), pentadecyl acid (carbon number 15), palmitic acid (carbon number 16), margaric acid (carbon number 17), stearic acid (carbon number 18), arachidic acid (20 carbon atoms), henicosylic acid (21 carbon atoms), behenic acid (22 carbon atoms), lignoceric acid (24 carbon atoms), cerotic acid (26 carbon atoms), montanic acid (28 carbon atoms) ), melisic acid (30 carbon atoms). These saturated fatty acids may be used alone or in combination of two or more.

前記不飽和脂肪酸として、ミリストレイン酸(炭素数14、二重結合数1)、パルミトレイン酸(炭素数16、二重結合数1)、サピエン酸(炭素数16、二重結合数1)、オレイン酸(炭素数18、二重結合数1)、エライジン酸(炭素数18、二重結合数1)、バクセン酸(炭素数18、二重結合数1)、ガドレイン酸(炭素数20、二重結合数1)、エイコセン酸(炭素数20、二重結合数1)、エルカ酸(炭素数22、二重結合数1)、ネルボン酸(炭素数24、二重結合数1)、リノール酸(炭素数18、二重結合数2)、エイコサジエン酸(炭素数20、二重結合数2)、ドコサジエン酸(炭素数22、二重結合数2)、リノレン酸(炭素数18、二重結合数3)、ピノレン酸(炭素数18、二重結合数3)、エレオステアリン酸(炭素数18、二重結合数3)、ミード酸(炭素数20、二重結合数3)、ジホモ-γ-リノレン酸(炭素数20、二重結合数3)、エイコサトリエン酸(炭素数20、二重結合数3)、ステアリドン酸(炭素数18、二重結合数4)、アラキドン酸(炭素数20、二重結合数4)、エイコサテトラエン酸(炭素数20、二重結合数4)、アドレン酸(炭素数22、二重結合数4)、ボセオペンタエン酸(炭素数18、二重結合数5)、エイコサペンタエン酸(炭素数20、二重結合数5)、オズボンド酸(炭素数22、二重結合数5)、イワシ酸(炭素数22、二重結合数5)、テトラコサペンタエン酸(炭素数24、二重結合数5)、ドコサヘキサエン酸(炭素数22、二重結合数6)、ニシン酸(炭素数24、二重結合数6)が挙げられる。これらの不飽和脂肪酸は1種を単独で使用しても2種以上を併用してもよい。 The unsaturated fatty acids include myristoleic acid (14 carbon atoms, 1 double bond), palmitoleic acid (16 carbon atoms, 1 double bond), sapienoic acid (16 carbon atoms, 1 double bond), and oleic acid. acid (18 carbon atoms, 1 double bond), elaidic acid (18 carbon atoms, 1 double bond), vaccenic acid (18 carbon atoms, 1 double bond), gadoleic acid (20 carbon atoms, 1 double bond) 1 bond), eicosenoic acid (20 carbon atoms, 1 double bond), erucic acid (22 carbon atoms, 1 double bond), nervonic acid (24 carbon atoms, 1 double bond), linoleic acid ( 18 carbon atoms, 2 double bonds), eicosadienoic acid (20 carbon atoms, 2 double bonds), docosadienoic acid (22 carbon atoms, 2 double bonds), linolenic acid (18 carbon atoms, 2 double bonds) 3), pinolenic acid (18 carbon atoms, 3 double bonds), eleostearic acid (18 carbon atoms, 3 double bonds), Mead acid (20 carbon atoms, 3 double bonds), dihomo-γ -Linolenic acid (20 carbon atoms, 3 double bonds), eicosatrienoic acid (20 carbon atoms, 3 double bonds), stearidonic acid (18 carbon atoms, 4 double bonds), arachidonic acid (carbon atoms 20, number of double bonds: 4), eicosatetraenoic acid (number of carbon atoms: 20, number of double bonds: 4), adrenic acid (number of carbon atoms: 22, number of double bonds: 4), boseopentaenoic acid (number of carbon atoms: 18, double bonds) 5), eicosapentaenoic acid (20 carbon atoms, 5 double bonds), ozbond acid (22 carbon atoms, 5 double bonds), sardine acid (22 carbon atoms, 5 double bonds), tetracosapentaenoic acid (22 carbon atoms, 5 double bonds), Examples include enoic acid (24 carbon atoms, 5 double bonds), docosahexaenoic acid (22 carbon atoms, 6 double bonds), and nisic acid (24 carbon atoms, 6 double bonds). These unsaturated fatty acids may be used alone or in combination of two or more.

一方、炭素数が11以下の脂肪酸、脂肪酸の金属塩、脂肪酸エステル又は脂肪酸アミドを前記磁性ナノ粒子に添加した場合には、圧粉磁心の密度及び強度が十分に向上しない。 On the other hand, when a fatty acid having 11 or less carbon atoms, a metal salt of a fatty acid, a fatty acid ester, or a fatty acid amide is added to the magnetic nanoparticles, the density and strength of the dust core are not sufficiently improved.

前記脂肪酸の中でも、前記磁性ナノ粒子の流動性が向上し、圧粉磁心の密度が向上するという観点、並び、前記熱硬化性樹脂との絡み合いが多くなり、圧粉磁心の強度が向上するという観点から、炭素数が12~20のものが好ましく、炭素数が15~20のものがより好ましい。 Among the fatty acids, fatty acids improve the fluidity of the magnetic nanoparticles, improving the density of the powder core, and increase the entanglement with the thermosetting resin, improving the strength of the powder core. From this point of view, those having 12 to 20 carbon atoms are preferable, and those having 15 to 20 carbon atoms are more preferable.

また、前記脂肪酸としては直鎖状のものであっても分岐状のものであってもよいが、前記磁性ナノ粒子の流動性が向上し、圧粉磁心の密度が向上するという観点からは、直鎖状のものが好ましく、一方、前記熱硬化性樹脂との絡み合いが多くなり、圧粉磁心の強度が向上するという観点からは、分岐状のものが好ましい。したがって、圧粉磁心の密度と強度をバランスよく向上させることができるという観点から、直鎖状の脂肪酸と分岐状の脂肪酸とを併用することが好ましい。 Further, the fatty acid may be linear or branched, but from the viewpoint of improving the fluidity of the magnetic nanoparticles and improving the density of the dust core, Linear ones are preferred, while branched ones are preferred from the viewpoint of increasing entanglement with the thermosetting resin and improving the strength of the dust core. Therefore, from the viewpoint of improving the density and strength of the dust core in a well-balanced manner, it is preferable to use a linear fatty acid and a branched fatty acid in combination.

さらに、前記不飽和脂肪酸においては、圧縮成形時の応力が緩和され、クラックの発生が抑制されるという観点から、炭素-炭素二重結合数が2個以上有するものが好ましく、炭素-炭素二重結合数が3個以上有するものがより好ましい。 Furthermore, the unsaturated fatty acids preferably have two or more carbon-carbon double bonds, from the viewpoint of relieving stress during compression molding and suppressing the occurrence of cracks. It is more preferable that the number of bonds is 3 or more.

前記脂肪酸の含有量としては特に制限はないが、前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との合計量に対して、0.01~5質量%が好ましく、0.1~2質量%がより好ましく、0.1~1質量%が特に好ましい。前記脂肪酸の含有量が前記下限未満になると、前記脂肪酸が前記磁性ナノ粒子間に十分に行き渡らないため、その部分の磁性ナノ粒子の流動性が低くなり、圧粉磁心の密度が向上しにくい傾向にあり、他方、前記上限を超えると、非磁性成分の割合が多くなり、圧粉磁心の磁気特性が低下する傾向にある。 The content of the fatty acid is not particularly limited, but it is preferably 0.01 to 5% by mass, and 0.1 to 2% by mass based on the total amount of the magnetic nanoparticles, the thermosetting resin, and the fatty acid. % is more preferable, and 0.1 to 1% by mass is particularly preferable. When the content of the fatty acid is less than the lower limit, the fatty acid does not sufficiently spread between the magnetic nanoparticles, so the fluidity of the magnetic nanoparticles in that part tends to be low, making it difficult to improve the density of the dust core. On the other hand, when the above upper limit is exceeded, the proportion of non-magnetic components increases, and the magnetic properties of the powder core tend to deteriorate.

なお、前記脂肪酸の含有量は、前記磁性ナノ粒子の間に存在する遊離の脂肪酸の量であり、前記磁性ナノ粒子の表面を予め修飾している脂肪酸の量を含んでいない。前記磁性ナノ粒子の表面を予め修飾している脂肪酸は、その炭化水素鎖が前記磁性ナノ粒子の表面に対して垂直な方向に延びているため、すべり方向に対しても垂直に延びており、前記磁性ナノ粒子の流動性の向上が限定的となる。一方、前記磁性ナノ粒子の表面を予め修飾している脂肪酸のほかに、遊離の脂肪酸が前記磁性ナノ粒子の間に存在すると、この遊離の脂肪酸は、すべり方向に対して平行に配置されているため、前記磁性ナノ粒子の流動性が大きく向上する。 Note that the fatty acid content is the amount of free fatty acids present between the magnetic nanoparticles, and does not include the amount of fatty acids that have previously modified the surface of the magnetic nanoparticles. The fatty acid that has previously modified the surface of the magnetic nanoparticle has its hydrocarbon chain extending in a direction perpendicular to the surface of the magnetic nanoparticle, so that it also extends perpendicular to the sliding direction, The improvement in fluidity of the magnetic nanoparticles becomes limited. On the other hand, if free fatty acids exist between the magnetic nanoparticles in addition to the fatty acids that have previously modified the surface of the magnetic nanoparticles, the free fatty acids are arranged parallel to the sliding direction. Therefore, the fluidity of the magnetic nanoparticles is greatly improved.

また、前記熱硬化性樹脂と前記脂肪酸との合計量としては、前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との合計量に対して、0.02~5質量%(この場合、前記熱硬化性樹脂の含有量は0.01~4.99質量%であり、前記脂肪酸の含有量は0.01~4.99質量%である)が好ましく、0.1~2質量%(この場合、前記熱硬化性樹脂の含有量は0.1~1.9質量%であり、前記脂肪酸の含有量は0.1~1.9質量%である)がより好ましく、0.1~1質量%(この場合、前記熱硬化性樹脂の含有量は0.1~0.9質量%であり、前記脂肪酸の含有量は0.1~0.9質量%である)が特に好ましい。前記熱硬化性樹脂と前記脂肪酸との合計量が前記下限未満になると、前記熱硬化性樹脂及び前記脂肪酸が前記磁性ナノ粒子間に十分に行き渡らないため、圧粉磁心の密度や強度が向上しにくい傾向にあり、他方、前記上限を超えると、非磁性成分の割合が多くなり、圧粉磁心の磁気特性が低下する傾向にある。 Further, the total amount of the thermosetting resin and the fatty acid is 0.02 to 5% by mass (in this case, the total amount of the magnetic nanoparticles, the thermosetting resin, and the fatty acid is 0.02 to 5% by mass). The content of the thermosetting resin is preferably 0.01 to 4.99% by mass, and the content of the fatty acid is preferably 0.01 to 4.99% by mass), and the content of the fatty acid is preferably 0.1 to 2% by mass. (in this case, the content of the thermosetting resin is 0.1 to 1.9% by mass, and the content of the fatty acid is 0.1 to 1.9% by mass), and more preferably 0.1 to 1% by mass. % by weight (in this case, the content of the thermosetting resin is 0.1-0.9% by weight and the content of the fatty acid is 0.1-0.9% by weight) is particularly preferred. If the total amount of the thermosetting resin and the fatty acid is less than the lower limit, the thermosetting resin and the fatty acid will not be sufficiently distributed between the magnetic nanoparticles, and the density and strength of the powder magnetic core will improve. On the other hand, if the above upper limit is exceeded, the proportion of non-magnetic components increases, and the magnetic properties of the powder core tend to deteriorate.

また、前記熱硬化性樹脂と前記脂肪酸との合計量に対する前記脂肪酸の割合としては特に制限はないが、0.1~90質量%が好ましく、1~50質量%がより好ましく、20~50質量%が特に好ましい。前記脂肪酸の割合が前記下限未満になると、圧粉磁心の強度が向上しにくい傾向にあり、他方、前記上限を超えると、磁性ナノ粒子の流動性が低くなり、圧粉磁心の密度が向上しにくい傾向にある。 Further, the ratio of the fatty acid to the total amount of the thermosetting resin and the fatty acid is not particularly limited, but is preferably 0.1 to 90% by mass, more preferably 1 to 50% by mass, and 20 to 50% by mass. % is particularly preferred. If the ratio of fatty acids is less than the lower limit, the strength of the powder magnetic core tends to be difficult to improve, while if it exceeds the upper limit, the fluidity of the magnetic nanoparticles decreases, and the density of the powder magnetic core tends to improve. It tends to be difficult.

このような本発明の圧粉磁心の密度は6.3g/cm以上であり、高い比透磁率を有するものである。また、より高い比透磁率を有するという観点から、圧粉磁心の密度としては6.5g/cm以上が好ましい。 The powder magnetic core of the present invention has a density of 6.3 g/cm 3 or more and has a high relative magnetic permeability. Further, from the viewpoint of having higher relative magnetic permeability, the density of the powder magnetic core is preferably 6.5 g/cm 3 or more.

このような本発明の圧粉磁心の製造方法としては、前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸とを均一に混合できる方法であれば特に制限はなく、例えば、以下の方法により本発明の圧粉磁心を製造することができる。すなわち、先ず、前記磁性ナノ粒子と前記脂肪酸とを所定の含有量となるように混合する。前記磁性ナノ粒子と前記脂肪酸との混合方法としては特に制限はなく、例えば、ボールミルや乳鉢を用いて混合する方法、溶媒に前記磁性ナノ粒子と前記脂肪酸とを分散・溶解させた後、乾燥等により溶媒を除去することによって混合する方法等が挙げられる。 The method for producing the powder magnetic core of the present invention is not particularly limited as long as the magnetic nanoparticles, the thermosetting resin, and the fatty acid can be mixed uniformly. The powder magnetic core of the invention can be manufactured. That is, first, the magnetic nanoparticles and the fatty acid are mixed to have a predetermined content. The method of mixing the magnetic nanoparticles and the fatty acid is not particularly limited, and examples include mixing using a ball mill or mortar, dispersing and dissolving the magnetic nanoparticles and the fatty acid in a solvent, and then drying. Examples include a method of mixing by removing the solvent.

次に、このようにして調製した前記磁性ナノ粒子と前記脂肪酸との混合物に前記熱硬化性樹脂を所定の含有量となるように混合する。前記混合物と前記熱硬化性樹脂との混合方法としては特に制限はなく、例えば、ボールミルや乳鉢を用いて混合する方法、溶媒に前記混合物と前記熱硬化性樹脂とを分散・溶解させた後、乾燥等により溶媒を除去することによって混合する方法等が挙げられる。 Next, the thermosetting resin is mixed into the thus prepared mixture of the magnetic nanoparticles and the fatty acid so as to have a predetermined content. There are no particular limitations on the method of mixing the mixture and the thermosetting resin, for example, mixing using a ball mill or mortar, dispersing and dissolving the mixture and the thermosetting resin in a solvent, Examples include a method of mixing by removing the solvent by drying or the like.

本発明の圧粉磁心の製造方法において、前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との混合順は特に制限はなく、上述した方法のように、前記磁性ナノ粒子と前記脂肪酸とを混合した後、前記熱硬化性樹脂を混合してもよいし、前記熱硬化性樹脂と前記脂肪酸とを混合した後、前記磁性ナノ粒子を混合してもよい。 In the method for producing a dust core of the present invention, there is no particular restriction on the mixing order of the magnetic nanoparticles, the thermosetting resin, and the fatty acid. After mixing, the thermosetting resin may be mixed, or after mixing the thermosetting resin and the fatty acid, the magnetic nanoparticles may be mixed.

このようにして調製した前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との混合物は均一性が高いため、後述する加圧成形において前記磁性ナノ粒子の流動性が確保され、高密度かつ高強度の圧粉磁心を得ることが可能となる。 Since the mixture of the magnetic nanoparticles, the thermosetting resin, and the fatty acid prepared in this way has high uniformity, the fluidity of the magnetic nanoparticles is ensured during pressure molding, which will be described later, and the mixture has a high density and a high density. It becomes possible to obtain a strong powder magnetic core.

また、前記磁性ナノ粒子は再配列性に劣るため、溶媒に前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との混合物を分散・溶解させた後、スプレードライ等により顆粒状の混合物を調製してもよい。これにより、圧縮成形時に顆粒状の混合物が崩れて前記磁性ナノ粒子が再配列しやすくなるため、圧粉磁心の密度が向上する。 In addition, since the magnetic nanoparticles have poor rearrangement properties, after dispersing and dissolving the mixture of the magnetic nanoparticles, the thermosetting resin, and the fatty acid in a solvent, a granular mixture is prepared by spray drying or the like. You may. As a result, the granular mixture collapses during compression molding, making it easier for the magnetic nanoparticles to rearrange, thereby improving the density of the dust core.

次に、このようにして得られた前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との混合物を、潤滑剤を塗布した金型に充填する。前記潤滑剤としては特に制限はなく、例えば、ステアリン酸リチウム、ステアリン酸亜鉛等の飽和脂肪酸の金属塩、潤滑グリース(例えば、株式会社ミスミ製「M-HGSSC-H500」)等が挙げられる。 Next, the thus obtained mixture of the magnetic nanoparticles, the thermosetting resin, and the fatty acid is filled into a mold coated with a lubricant. The lubricant is not particularly limited, and examples thereof include metal salts of saturated fatty acids such as lithium stearate and zinc stearate, lubricating grease (for example, "M-HGSSC-H500" manufactured by Misumi Co., Ltd.), and the like.

次に、金型に充填した前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との混合物を加圧成形することによって、本発明の圧粉磁心を得ることができる。成形温度としては特に制限はないが、通常、室温~200℃であり、前記磁性ナノ粒子の流動性を確保するという観点から、前記熱硬化性樹脂及び前記脂肪酸の融点以上の温度が好ましい。また、金型に潤滑剤として飽和脂肪酸の金属塩を塗布した場合には、150℃以上の温度で加圧成形することが好ましい。成形圧力としては700MPa~3GPaが好ましく、1GPa~2GPaがより好ましい。成形圧力が前記下限未満になると、前記混合物が十分に圧縮されないため、圧粉磁心の密度が小さくなる傾向にあり、他方、前記上限を超えると、スプリングバック現象の影響が大きく、圧粉磁心の密度が小さくなる傾向にある。また、金型寿命も短くなる傾向にある。 Next, the powder magnetic core of the present invention can be obtained by pressure-molding the mixture of the magnetic nanoparticles, the thermosetting resin, and the fatty acid filled in a mold. The molding temperature is not particularly limited, but is usually between room temperature and 200°C, and from the viewpoint of ensuring the fluidity of the magnetic nanoparticles, the temperature is preferably higher than the melting point of the thermosetting resin and the fatty acid. Further, when a metal salt of saturated fatty acid is applied as a lubricant to the mold, it is preferable to perform pressure molding at a temperature of 150° C. or higher. The molding pressure is preferably 700 MPa to 3 GPa, more preferably 1 GPa to 2 GPa. When the compacting pressure is less than the lower limit, the mixture is not compressed sufficiently, and the density of the powder magnetic core tends to decrease.On the other hand, when it exceeds the upper limit, the influence of the springback phenomenon is large, and the powder magnetic core is The density tends to decrease. Furthermore, the life of the mold also tends to be shortened.

また、このようにして製造した圧粉磁心には、必要に応じて熱処理を施してもよい。これにより、加圧により圧粉磁心に生じた歪みを緩和し、磁気特性を改善することができる。このような熱処理の温度は通常500~800℃である。 Further, the powder magnetic core manufactured in this manner may be subjected to heat treatment as necessary. Thereby, the strain caused in the powder magnetic core due to pressurization can be alleviated, and the magnetic properties can be improved. The temperature of such heat treatment is usually 500 to 800°C.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

(実施例1)
磁性ナノ粒子として平均粒径100nmのFeNi合金ナノ粒子(アルドリッチ社製)4.925gと脂肪酸として飽和脂肪酸であるラウリン酸(和光純薬工業株式会社製、炭素数12)0.025gとを混合し、さらに、乳鉢で30分間破砕混合した。次に、熱硬化性樹脂としてフェノール樹脂系接着剤(セメダイン株式会社製「110」)を樹脂成分が0.05gとなるように秤量し、これを2-メトキシエタノール10mlに溶解した。得られた溶液に前記FeNi合金ナノ粒子とラウリン酸との混合物を添加し、自転公転ミキサーを用いて攪拌した。得られたペーストを室温で真空乾燥させて溶媒を除去した後、大気中、乳鉢で30分間破砕混合した。得られた破砕混合物を、グリース(株式会社ミスミ製「M-HGSSC-H500」)を塗布したペレット試験片用金型に充填し、手動加熱プレス機(株式会社井元製作所製「IMC-1946型改」)を用いて1.4GPaに加圧しながら180℃で20分間加熱した。加圧を停止した後、室温まで冷却して、得られた磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を金型から取り出した。得られた成形体の密度を表1及び図1に示す。
(Example 1)
4.925 g of FeNi alloy nanoparticles (manufactured by Aldrich) with an average particle size of 100 nm as magnetic nanoparticles and 0.025 g of lauric acid (manufactured by Wako Pure Chemical Industries, Ltd., carbon number 12), which is a saturated fatty acid, were mixed as a fatty acid. Then, the mixture was crushed and mixed in a mortar for 30 minutes. Next, a phenolic resin adhesive ("110" manufactured by Cemedine Co., Ltd.) as a thermosetting resin was weighed out so that the resin component was 0.05 g, and this was dissolved in 10 ml of 2-methoxyethanol. The mixture of FeNi alloy nanoparticles and lauric acid was added to the obtained solution, and the mixture was stirred using a rotation-revolution mixer. The obtained paste was vacuum dried at room temperature to remove the solvent, and then crushed and mixed in a mortar in the air for 30 minutes. The resulting crushed mixture was filled into a pellet test piece mold coated with grease ("M-HGSSC-H500" manufactured by Misumi Co., Ltd.), and a manual heat press machine ("IMC-1946 type modified" manufactured by Imoto Seisakusho Co., Ltd.) was used. ) was heated at 180° C. for 20 minutes while applying pressure to 1.4 GPa. After stopping the pressurization, it was cooled to room temperature, and the obtained magnetic nanoparticle molded body (powder magnetic core pellet (outer diameter 3 mmφ)) was taken out from the mold. The density of the obtained molded body is shown in Table 1 and FIG. 1.

(実施例2)
熱硬化性樹脂としてエポキシ樹脂ワニス(ソマール株式会社製「エピフォームR2400」、硬化剤としてジアミノジフェニルメタンを添加)を樹脂成分として0.05g用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Example 2)
A magnetic nanoparticle molded body was prepared in the same manner as in Example 1, except that 0.05 g of epoxy resin varnish (“Epiform R2400” manufactured by Somar Co., Ltd., diaminodiphenylmethane was added as a hardening agent) was used as a resin component as a thermosetting resin. (Powder magnetic core pellet (outer diameter 3 mmφ)) was produced. The density of the obtained molded body is shown in Table 1 and FIG. 1.

(実施例3)
脂肪酸として飽和脂肪酸であるリグノセリン酸(東京化成工業株式会社製、炭素数24)0.025gを用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Example 3)
A magnetic nanoparticle molded body (powder magnetic core pellet (outer diameter 3 mmφ) was prepared in the same manner as in Example 1 except that 0.025 g of lignoceric acid (manufactured by Tokyo Kasei Kogyo Co., Ltd., carbon number 24), which is a saturated fatty acid, was used as the fatty acid. ) was created. The density of the obtained molded body is shown in Table 1 and FIG. 1.

(実施例4)
脂肪酸として不飽和脂肪酸であるリノレン酸(ナカライテスク株式会社製、炭素数18)0.025gを用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Example 4)
A magnetic nanoparticle molded body (powder magnetic core pellet (outer diameter 3 mmφ) was prepared in the same manner as in Example 1, except that 0.025 g of linolenic acid (manufactured by Nacalai Tesque Co., Ltd., carbon number 18), which is an unsaturated fatty acid, was used as the fatty acid. ) was created. The density of the obtained molded body is shown in Table 1 and FIG. 1.

(比較例1)
脂肪酸及び熱硬化性樹脂を混合しなかった以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative example 1)
A magnetic nanoparticle molded body (powder core pellet (outer diameter 3 mmφ)) was produced in the same manner as in Example 1 except that the fatty acid and thermosetting resin were not mixed. The density of the obtained molded body is shown in Table 1 and FIG. 1.

(比較例2)
脂肪酸を混合しなかった以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative example 2)
A magnetic nanoparticle molded body (powder core pellet (outer diameter 3 mmφ)) was produced in the same manner as in Example 1 except that no fatty acid was mixed. The density of the obtained molded body is shown in Table 1 and FIG. 1.

(比較例3)
脂肪酸を混合しなかった以外は実施例2と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative example 3)
A magnetic nanoparticle molded body (powder magnetic core pellet (outer diameter 3 mmφ)) was produced in the same manner as in Example 2 except that no fatty acid was mixed. The density of the obtained molded body is shown in Table 1 and FIG. 1.

(比較例4)
脂肪酸としてカプリン酸(和光純薬工業株式会社製、炭素数10)0.025gを用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative example 4)
A magnetic nanoparticle molded body (powder core pellet (outer diameter 3 mmφ)) was prepared in the same manner as in Example 1 except that 0.025 g of capric acid (manufactured by Wako Pure Chemical Industries, Ltd., carbon number 10) was used as the fatty acid. did. The density of the obtained molded body is shown in Table 1 and FIG. 1.

(比較例5)
脂肪酸の代わりに飽和脂肪酸アミドであるエチレンビスステアリン酸アミド(和光純薬工業株式会社製、炭素数38)0.025gを用いた以外は実施例1と同様にして磁性ナノ粒子成形体を作製したが、金型から取り出す際に磁性ナノ粒子成形体が割れたため、密度測定はできなかった。
(Comparative example 5)
A magnetic nanoparticle molded body was produced in the same manner as in Example 1, except that 0.025 g of ethylene bisstearamide (manufactured by Wako Pure Chemical Industries, Ltd., carbon number 38), which is a saturated fatty acid amide, was used instead of the fatty acid. However, the density could not be measured because the magnetic nanoparticle molded body broke when removed from the mold.

(比較例6)
脂肪酸の代わりに飽和脂肪酸エステルであるモノステアリン酸グリセロール(和光純薬工業株式会社製、炭素数21)0.025gを用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative example 6)
A magnetic nanoparticle molded body (powder magnetic core A pellet (outer diameter 3 mmφ) was prepared. The density of the obtained molded body is shown in Table 1 and FIG. 1.

(比較例7)
脂肪酸の代わりに飽和脂肪酸金属塩であるラウリン酸亜鉛(和光純薬工業株式会社製、炭素数12)0.025gを用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative Example 7)
A magnetic nanoparticle molded body (powder magnetic core A pellet (outer diameter 3 mmφ) was prepared. The density of the obtained molded body is shown in Table 1 and FIG. 1.

(比較例8)
フェノール樹脂系接着剤の代わりにポリイミド樹脂ワニス(ソマール株式会社製「SPIXAREA」)を樹脂成分として0.05g用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative example 8)
A magnetic nanoparticle molded body (powder magnetic core pellet (external A diameter of 3 mmφ) was prepared. The density of the obtained molded body is shown in Table 1 and FIG. 1.

(比較例9)
フェノール樹脂系接着剤の代わりにアクリル樹脂系接着剤(協立化学産業株式会社製「WORLD ROCK」)を樹脂成分として0.05g用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative Example 9)
A magnetic nanoparticle molded body ( A powder magnetic core pellet (outer diameter 3 mmφ) was produced. The density of the obtained molded body is shown in Table 1 and FIG. 1.

(比較例10)
フェノール樹脂系接着剤の代わりにシリコーン樹脂系接着剤(セメダイン株式会社製「スーパーX」)を樹脂成分として0.05g用いた以外は実施例1と同様にして磁性ナノ粒子成形体(圧粉磁心ペレット(外径3mmφ))を作製した。得られた成形体の密度を表1及び図1に示す。
(Comparative Example 10)
A magnetic nanoparticle molded body (powder magnetic core) was prepared in the same manner as in Example 1, except that 0.05 g of a silicone resin adhesive (“Super A pellet (outer diameter 3 mmφ) was produced. The density of the obtained molded body is shown in Table 1 and FIG. 1.

<クラック率>
実施例1~4及び比較例1~4、6~9で得られた圧粉磁心ペレットを、ペレットの長手方向に平行な面で切断、研磨し、走査型電子顕微鏡を用いてその断面を観察した。50倍の倍率で取得した画像においてクラックの長さを計測し、クラックの長さを観察した断面の面積で割った値をクラック率(単位:cm/cm)として求めた。この測定を1つのペレットについて4箇所行い、その平均値を求めた。その結果を表1及び図2に示す。なお、比較例5で得られた磁性ナノ粒子成形体は、金型から取り出す際に割れたため、クラック率の測定ができなかった。
<Crack rate>
The powder magnetic core pellets obtained in Examples 1 to 4 and Comparative Examples 1 to 4, and 6 to 9 were cut and polished in a plane parallel to the longitudinal direction of the pellets, and the cross section was observed using a scanning electron microscope. did. The length of the crack was measured in an image obtained at a magnification of 50 times, and the crack ratio (unit: cm/cm 2 ) was determined by dividing the length of the crack by the area of the observed cross section. This measurement was performed at four locations on one pellet, and the average value was determined. The results are shown in Table 1 and FIG. 2. Note that the magnetic nanoparticle molded body obtained in Comparative Example 5 cracked when taken out from the mold, so the crack rate could not be measured.

表1及び図1に示したように、磁性ナノ粒子のみからなる場合(比較例1)に比べて、磁性ナノ粒子とフェノール樹脂(比較例2)又はエポキシ樹脂(比較例3)とを混合した場合には、圧粉磁心の密度が高くなり、炭素12~24の飽和又は不飽和の脂肪酸を更に混合した場合(実施例1~4)には、圧粉磁心の密度が更に高くなる(6.3g/cm以上)ことがわかった。また、フェノール樹脂を混合した場合(実施例1)には、エポキシ樹脂を混合した場合(実施例2)に比べて、高密度の圧粉磁心が得られることがわかった。一方、磁性ナノ粒子と炭素数10の飽和脂肪酸(比較例4)、飽和脂肪酸エステル(比較例6)又は飽和脂肪酸金属塩(比較例7)とフェノール樹脂とを混合した場合には、磁性ナノ粒子のみからなる場合(比較例1)に比べて、圧粉磁心の密度は高くなったが、6.3g/cm未満であり、磁性ナノ粒子と炭素12~24の飽和又は不飽和の脂肪酸とフェノール樹脂又はエポキシ樹脂とを混合した場合(実施例1~4)に比べて、低くなった。また、磁性ナノ粒子と炭素数12の飽和脂肪酸とポリイミド樹脂(比較例8)、アクリル樹脂(比較例9)又はシリコーン樹脂(比較例10)とを混合した場合には、圧粉磁心の密度は、磁性ナノ粒子のみからなる場合(比較例1)と同等以上であったが、6.3g/cm未満であり、磁性ナノ粒子と炭素12~24の飽和又は不飽和の脂肪酸とフェノール樹脂又はエポキシ樹脂とを混合した場合(実施例1~4)に比べて、低くなった。これらの結果から、磁性ナノ粒子に炭素数12~30の脂肪酸とフェノール樹脂又はエポキシ樹脂とを配合することによって、圧粉磁心の密度がより向上することが確認された。 As shown in Table 1 and Figure 1, compared to the case where the magnetic nanoparticles were made only of magnetic nanoparticles (Comparative Example 1), the case where magnetic nanoparticles were mixed with phenol resin (Comparative Example 2) or epoxy resin (Comparative Example 3) In some cases, the density of the powder magnetic core becomes high, and when a saturated or unsaturated fatty acid having 12 to 24 carbon atoms is further mixed (Examples 1 to 4), the density of the powder magnetic core becomes even higher (6 .3g/cm3 or more ). Furthermore, it was found that when a phenol resin was mixed (Example 1), a powder magnetic core with a higher density was obtained than when an epoxy resin was mixed (Example 2). On the other hand, when magnetic nanoparticles are mixed with a saturated fatty acid having 10 carbon atoms (Comparative Example 4), a saturated fatty acid ester (Comparative Example 6), or a saturated fatty acid metal salt (Comparative Example 7) and a phenolic resin, the magnetic nanoparticles Although the density of the powder magnetic core was higher than that of the case (Comparative Example 1), it was less than 6.3 g/ cm3 , and the density of the powder magnetic core was higher than that of the case consisting of magnetic nanoparticles and saturated or unsaturated fatty acids of carbon 12 to 24. It was lower than when phenol resin or epoxy resin was mixed (Examples 1 to 4). In addition, when magnetic nanoparticles, saturated fatty acids having 12 carbon atoms, and polyimide resin (Comparative Example 8), acrylic resin (Comparative Example 9), or silicone resin (Comparative Example 10) are mixed, the density of the powder magnetic core is , was equivalent to or higher than the case consisting only of magnetic nanoparticles (Comparative Example 1), but was less than 6.3 g/cm 3 , and was composed of magnetic nanoparticles, a saturated or unsaturated fatty acid of carbon 12 to 24, and a phenol resin or It was lower than when mixed with epoxy resin (Examples 1 to 4). From these results, it was confirmed that the density of the dust core was further improved by blending the fatty acid having 12 to 30 carbon atoms and the phenol resin or epoxy resin into the magnetic nanoparticles.

また、表1及び図2に示したように、磁性ナノ粒子のみからなる場合(比較例1)に比べて、磁性ナノ粒子とフェノール樹脂(比較例2)又はエポキシ樹脂(比較例3)とを混合した場合には、圧粉磁心のクラック率が小さくなり、炭素12~24の飽和又は不飽和の脂肪酸を更に混合した場合(実施例1~4)には、圧粉磁心のクラック率が更に小さくなることがわかった。また、フェノール樹脂を混合した場合(実施例1)には、エポキシ樹脂を混合した場合(実施例2)に比べて、圧粉磁心のクラック率が小さくなることがわかった。一方、磁性ナノ粒子と炭素数10の飽和脂肪酸(比較例4)、飽和脂肪酸エステル(比較例6)又は飽和脂肪酸金属塩(比較例7)とフェノール樹脂とを混合した場合には、磁性ナノ粒子のみからなる場合(比較例1)に比べて、圧粉磁心のクラック率は小さくなったが、磁性ナノ粒子と炭素12~24の飽和又は不飽和の脂肪酸とフェノール樹脂又はエポキシ樹脂とを混合した場合(実施例1~4)に比べて、高くなった。また、磁性ナノ粒子と炭素数12の飽和脂肪酸とポリイミド樹脂とを混合した場合(比較例8)には、磁性ナノ粒子のみからなる場合(比較例1)に比べて、圧粉磁心のクラック率は高くなった。さらに、磁性ナノ粒子と炭素数12の飽和脂肪酸とアクリル樹脂(比較例9)又はシリコーン樹脂(比較例10)とを混合した場合には、圧粉磁心のクラック率は磁性ナノ粒子のみからなる場合(比較例1)と同等以下であったが、磁性ナノ粒子と炭素12~24の飽和又は不飽和の脂肪酸とフェノール樹脂又はエポキシ樹脂とを混合した場合(実施例1~4)に比べて、高くなった。これらの結果から、磁性ナノ粒子に炭素数12~30の脂肪酸とフェノール樹脂又はエポキシ樹脂とを配合することによって、圧粉磁心のクラック率がより小さくなることがわかった。したがって、成形歪みを緩和する力に比べて成形体の強度が小さい場合にクラックが発生することから、本発明の圧粉磁心は高い強度を有するものであることが確認された。 In addition, as shown in Table 1 and Figure 2, compared to the case where the magnetic nanoparticles are made only of magnetic nanoparticles (Comparative Example 1), the combination of magnetic nanoparticles and phenol resin (Comparative Example 2) or epoxy resin (Comparative Example 3) When mixed, the crack rate of the powder magnetic core decreases, and when a saturated or unsaturated fatty acid with carbon 12 to 24 is further mixed (Examples 1 to 4), the crack rate of the powder magnetic core further decreases. I found out that it gets smaller. Furthermore, it was found that when a phenol resin was mixed (Example 1), the crack rate of the powder magnetic core was lower than when an epoxy resin was mixed (Example 2). On the other hand, when magnetic nanoparticles are mixed with a saturated fatty acid having 10 carbon atoms (Comparative Example 4), a saturated fatty acid ester (Comparative Example 6), or a saturated fatty acid metal salt (Comparative Example 7) and a phenolic resin, the magnetic nanoparticles The crack rate of the dust core was smaller than that of the powder magnetic core (Comparative Example 1), but when magnetic nanoparticles were mixed with a saturated or unsaturated fatty acid containing 12 to 24 carbons and a phenol resin or epoxy resin, It was higher than that in the cases (Examples 1 to 4). In addition, when magnetic nanoparticles, a saturated fatty acid having 12 carbon atoms, and a polyimide resin are mixed (Comparative Example 8), the cracking rate of the powder magnetic core is has become expensive. Furthermore, when magnetic nanoparticles, a saturated fatty acid having a carbon number of 12, and an acrylic resin (Comparative Example 9) or a silicone resin (Comparative Example 10) are mixed, the crack rate of the powder magnetic core is lower than that of the case where the powder magnetic core consists only of magnetic nanoparticles. (Comparative Example 1), but compared to the case of mixing magnetic nanoparticles, a saturated or unsaturated fatty acid with carbon 12 to 24, and a phenol resin or epoxy resin (Examples 1 to 4). It got expensive. From these results, it was found that by blending a fatty acid having 12 to 30 carbon atoms and a phenol resin or an epoxy resin into magnetic nanoparticles, the crack rate of the powder magnetic core was reduced. Therefore, it was confirmed that the powder magnetic core of the present invention has high strength since cracks occur when the strength of the molded body is small compared to the force for relieving molding distortion.

以上説明したように、本発明によれば、磁性ナノ粒子を含有する高密度かつ高強度の圧粉磁心を得ることが可能となる。したがって、本発明の圧粉磁心は、比透磁率が高く、ヒステリシス損や渦電流損が小さくなるため、変圧器(トランス)、電動機(モータ)、発電機、スピーカ、誘導加熱器、各種アクチュエータ等の電磁気を利用した製品のコア材などとして有用である。 As explained above, according to the present invention, it is possible to obtain a high-density and high-strength dust core containing magnetic nanoparticles. Therefore, the powder magnetic core of the present invention has high relative permeability and low hysteresis loss and eddy current loss, so it can be used in transformers, electric motors, generators, speakers, induction heaters, various actuators, etc. It is useful as a core material for products that utilize electromagnetism.

Claims (2)

平均粒径が1~300nmの磁性ナノ粒子と、フェノール樹脂及びエポキシ樹脂からなる群から選択される少なくとも1種の熱硬化性樹脂と、炭素数が12~30の脂肪酸とを含有し、
前記磁性ナノ粒子と前記熱硬化性樹脂と前記脂肪酸との合計量に対して、前記熱硬化性樹脂の含有量が0.01~4.99質量%であり、前記脂肪酸の含有量が0.01~4.99質量%であり、前記熱硬化性樹脂と前記脂肪酸との合計量が0.02~5質量%であることを特徴とする圧粉磁心。
Containing magnetic nanoparticles with an average particle size of 1 to 300 nm, at least one thermosetting resin selected from the group consisting of phenolic resins and epoxy resins, and fatty acids having 12 to 30 carbon atoms,
The content of the thermosetting resin is 0.01 to 4.99% by mass with respect to the total amount of the magnetic nanoparticles, the thermosetting resin, and the fatty acid, and the content of the fatty acid is 0.01% to 4.99% by mass. 01 to 4.99% by mass, and a total amount of the thermosetting resin and the fatty acid is 0.02 to 5% by mass .
前記熱硬化性樹脂がフェノール樹脂であることを特徴とする請求項1に記載の圧粉磁心。 The powder magnetic core according to claim 1, wherein the thermosetting resin is a phenol resin.
JP2019123119A 2019-07-01 2019-07-01 powder magnetic core Active JP7356270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019123119A JP7356270B2 (en) 2019-07-01 2019-07-01 powder magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019123119A JP7356270B2 (en) 2019-07-01 2019-07-01 powder magnetic core

Publications (2)

Publication Number Publication Date
JP2021009930A JP2021009930A (en) 2021-01-28
JP7356270B2 true JP7356270B2 (en) 2023-10-04

Family

ID=74199698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019123119A Active JP7356270B2 (en) 2019-07-01 2019-07-01 powder magnetic core

Country Status (1)

Country Link
JP (1) JP7356270B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267160A (en) 2000-01-12 2001-09-28 Tdk Corp Coil sealing dust core and method for manufacturing the same
JP2001358005A (en) 2000-06-13 2001-12-26 Daido Steel Co Ltd Atomized soft magnetic powder and dust core using it
JP2002260909A (en) 2001-02-28 2002-09-13 Matsushita Electric Ind Co Ltd Composite magnetic material
JP2003318014A (en) 2002-04-24 2003-11-07 Kobe Steel Ltd Dust core powder, high-strength dust core, and method of manufacturing the same
JP2004259807A (en) 2003-02-25 2004-09-16 Hitachi Metals Ltd Dust core and magnetic powder therefor
JP2009249739A (en) 2008-04-11 2009-10-29 Hitachi Metals Ltd Metal magnetic particulate, method for producing the same and powder magnetic core
JP2010053372A (en) 2008-08-26 2010-03-11 Nec Tokin Corp Iron-nickel alloy powder, method for producing the same, and powder magnetic core for inductor using the alloy powder
JP2013522441A (en) 2010-03-23 2013-06-13 ビーエーエスエフ ソシエタス・ヨーロピア Composition for producing magnetic or magnetized molded article, and method for producing the composition
JP2015170843A (en) 2014-03-07 2015-09-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267160A (en) 2000-01-12 2001-09-28 Tdk Corp Coil sealing dust core and method for manufacturing the same
JP2001358005A (en) 2000-06-13 2001-12-26 Daido Steel Co Ltd Atomized soft magnetic powder and dust core using it
JP2002260909A (en) 2001-02-28 2002-09-13 Matsushita Electric Ind Co Ltd Composite magnetic material
JP2003318014A (en) 2002-04-24 2003-11-07 Kobe Steel Ltd Dust core powder, high-strength dust core, and method of manufacturing the same
JP2004259807A (en) 2003-02-25 2004-09-16 Hitachi Metals Ltd Dust core and magnetic powder therefor
JP2009249739A (en) 2008-04-11 2009-10-29 Hitachi Metals Ltd Metal magnetic particulate, method for producing the same and powder magnetic core
JP2010053372A (en) 2008-08-26 2010-03-11 Nec Tokin Corp Iron-nickel alloy powder, method for producing the same, and powder magnetic core for inductor using the alloy powder
JP2013522441A (en) 2010-03-23 2013-06-13 ビーエーエスエフ ソシエタス・ヨーロピア Composition for producing magnetic or magnetized molded article, and method for producing the composition
JP2015170843A (en) 2014-03-07 2015-09-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component and manufacturing method thereof

Also Published As

Publication number Publication date
JP2021009930A (en) 2021-01-28

Similar Documents

Publication Publication Date Title
JP6277426B2 (en) Composite magnetic body and method for producing the same
JP6071211B2 (en) Low magnetostrictive high magnetic flux density composite soft magnetic material and its manufacturing method
WO2011010561A1 (en) Dust core and method for producing same
JP2019104954A (en) Metal element-containing powder, and molded body
JP2010251696A (en) Soft magnetic powder core and method of manufacturing the same
KR20120075425A (en) Iron-based soft magnetic powder for dust core, preparation process thereof, and dust core
JP2011243830A (en) Powder magnetic core and method for manufacturing the same
JP7332283B2 (en) dust core
JP6437200B2 (en) Low noise reactor, dust core and manufacturing method thereof
JP7356270B2 (en) powder magnetic core
WO2017159366A1 (en) Mixed powder for dust core and production method for mixed powder for dust core
JP2015124408A (en) Soft magnetic powder
WO2017082027A1 (en) Pressed powder formed body, electromagnetic component, and pressed powder formed body production method
JP6609255B2 (en) Soft magnetic powder mixture
JPWO2014171105A1 (en) Iron powder for dust core and insulation coated iron powder for dust core
WO2021095467A1 (en) Dust core
JP7387528B2 (en) Powder magnetic core and its manufacturing method
JP7348596B2 (en) powder magnetic core
JP2011129798A (en) Magnetic material for high frequency application, high-frequency device, and magnetic grain
JP2021009929A (en) Dust core
KR20180015712A (en) Mixed powder and pressure molecular core
JP5431490B2 (en) Manufacturing method of dust core
JP4856602B2 (en) Iron-based soft magnetic powder for dust core and dust core
JP6035788B2 (en) Powder for dust core
JP2009259979A (en) Dust core, manufacturing method of dust core, choke coil, and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230810

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230922

R150 Certificate of patent or registration of utility model

Ref document number: 7356270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150